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1 Introduction

This Perspective highlights the shift from the classic picture 
of olfaction as slow and static to a view in which dynamics 
play a critical role at many levels of sensing and behavior. 
Olfaction is now increasingly seen as a “wide-bandwidth 
temporal sense” (Ackels et al., 2021; Nagel et al., 2015). A 
parallel transition is occurring in odor-guided robot naviga-
tion, where it has been discovered that sensors can access 
temporal cues useful for navigation (Schmuker et al., 2016). 
We are only beginning to understand the implications of 
this paradigm-shift on our view of olfactory and olfacto-
motor circuits. Below we review insights into the informa-
tion encoded in turbulent odor plumes and shine light on 
how animals could access this information. We suggest that 
a key challenge for olfactory neuroscience is to re-interpret 
work based on static stimuli in the context of natural odor 
dynamics and actively exploring animals.

2  Fast odor signals in a turbulent physical 
space

The odorant concentration at a sensor is a time series that 
results from a reformatting of the spatiotemporal structure 
of an odor field (Fig. 1) by processes that operate prior to 
transduction, including flow dynamics (Fig. 1a), motion of 
the organism (Fig. 1d), and processes intrinsic to the organ-
ism, such as sniffing and antennal motion. With regard to 
flow, several physical mechanisms interact. After release 
into a flow, odors are transported downstream by the mean 
flow (Fig. 1a). Stirring alters the macroscopic structure of 
the odor field, imparting spatiotemporal structure. Simulta-
neously, molecular diffusion eradicates spatial patterns by 
destroying odor gradients. The resulting odor field develops 
as a balance between molecular diffusivity and the inten-
sity of stirring  (Crimaldi & Koseff, 2001). Since the aim of 
this perspective is to highlight the evidence for, and likely 
functional relevance of, high temporal resolution olfaction, 
we focus our discussion on more dynamic and intermittent 
odor landscapes (e.g. all freestream panels, Fig 1a). How-
ever, we also note the importance and relevance of “slower” 
olfactory processes, including gradient following schemes 
((Catania, 2013) and references therein), that are well-suited 
to more static odor landscapes (e.g. nearbed isokinetic panel, 
Fig. 1a).

The spatiotemporal structure of an odor field is thus refor-
matted into temporal fluctuations registered by a sensor, with 
both a finer spatial structure or faster relative motion (flow-
to-sensor) leading to higher-frequency fluctuations (Fig. 1b). 
The intermittency factor (γ, fraction of time the local concen-
tration is above some threshold, Fig 1c) is commonly used to 
describe these fluctuations but does not directly quantify the 
frequency content. The signal can be further reformatted by 
the sensor itself - active sensing. Examples include motion 
of the entire organism (e.g., walking or flying, Fig. 1d), or 
of a sensory appendage (e.g., antennal motion or turning of 
the head). Sniffing is another form of active sensing, since 
it modifies the local flow-field causing odor structures to be 
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Fig. 1  Odor landscapes and temporal reformatting of spatiotempo-
ral structure. a. Normalized instantaneous odor concentration fields 
measured by planar laser-induced fluorescence illustrate diverse odor 
landscapes in air (left & middle columns) and water (right column) 
for varying release conditions and flow speeds. Cross-hatching signi-
fies a data gap from laser shadowing behind the obstacle. b. Concen-
tration fluctuations across flow speeds show how changes in delivery 
rates of odor filaments of some characteristic length to a sensor yield 
appreciable differences in the statistics of temporally reformatted 
signals (top panel). A 10X magnified view of a six second window 
highlights this disparity (bottom panel). All time-series were taken on 
the mean plume centerline at differing downstream distances to match 
the total advection (diffusion/mixing) times from the source. c.  (top 
panel) The 10 cm/s time-series from panel b has intermittency  γ  = 
0.25 for concentration threshold  cT  = 0.005 (estimated noise floor, 

dashed black line), seen also in the corresponding binarized signal 
(second panel). Two synthetic time-series (third and bottom panels) 
also have γ  = 0.25, but all signals vary notably in frequency and 
amplitude content. d.  Moving through odor landscapes is an active 
sensing modality where the information content of the signal is  mod-
ified by sensor kinematics (top panel, black line shows a hypothetical 
trajectory). This is seen in concentration time-series from one static 
sensor (middle panel, black circle in top panel), and two active sen-
sors (bottom panel, green & magenta arrows in top panel) moving 
upstream (downstream) through the same plume along straight tra-
jectories (arrows, upper panel) on the mean plume centerline (dashed 
black line, upper panel) at 5 cm/s absolute velocity. All sensors have 
the same mean position over their three second trajectories (black cir-
cle symbol, top panel).
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advected past receptors. Active sensing is a form of signal 
processing, since it modifies the frequency content of the 
odor signal even prior to transduction —either increasing it  
(via enhanced relative motion of the sensor) or decreasing it  
(via enhanced mixing resulting from  sensor-induced stir-
ring). Thus, its role in olfaction may resemble that of whisk-
ing in somatosensation, or fixational eye movements in 
vision: transforming the spatiotemporal pattern of the natural 
input into a temporal pattern whose characteristics facilitate 
processing (Ahissar & Arieli, 2001; Rucci & Victor, 2015).

While the physics of stirring and diffusion governing odor 
field dynamics are identical in air and water, aqueous odor 
fields typically have finer-scale spatial structure since dif-
fusivities there are orders of magnitude lower than in air. In 
fact, a large body of literature details aspects of olfaction in 
aquatic crustaceans and vertebrates (Webster & Weissburg, 
2009). While the focus of this perspective is on air-mediated 
olfaction, the commonality of the underlying physics indi-
cates the value of studies in an aqueous environment for 
elucidating universal principles of odor transport, disper-
sion, and reception by sensors.

3  Evidence that animals process fast signals

Insects and mammals are able to track the dynamics of fast 
odors signals. In insects, the response latency in olfactory 
receptor neurons (ORNs) is approximately 2 ms (Szyszka 
et al., 2014), which allows receptor neurons to follow fast 
concentration dynamics (Brown et al., 2005; Geffen et al., 
2009; Kim et al., 2010). Odor onset asynchronies as short 
as 6 ms suffice to drive behavior and generate distinguish-
able responses to different odors in early processing in the 
antennal lobes (Stierle et al., 2013). This sensitivity could 
help insects to separate intermingled odors from different 
sources. Accordingly, second order neurons in the insect 
brain encode complex dynamics of odor stimuli (Kim et al., 
2015), and the premotor output neurons have latencies of 60 
to 80 ms (Strube-Bloss et al., 2012).

In mice and rats, odor processing is rapid and temporally 
precise, though not quite at the level seen in insects. Odor 
detection and discrimination can occur rapidly within few 
100 ms (Abraham et al., 2004; Uchida & Mainen, 2003). 
Mice can detect precise timing of optogenetically delivered 
stimulation to ORNs, and discriminate latency differences of 
as little as 25 ms (Smear et al., 2011)). With direct, patterned 
stimulation of mitral/tufted cells, the threshold is reduced 
to 13 ms (Rebello, 2014). Duration differences of as little 
as ~10 ms can also be detected (Li et al., 2014). Thus, the 
mammalian olfactory system could represent optogenetic 
stimuli at a time scale of several 10s of Hz (Chong, 2020). 
Moreover, recent work shows that OB cell populations can 
follow temporal patterning in natural plumes (Lewis, 2021), 

and fast temporal properties of odor stimuli such as intermit-
tency, frequency and phase (Ackels, 2021; Gumaste et al., 
2020) can be accurately recognized (Fig. 1b, c), supporting 
odor source separation (Ackels, 2021).

4  Active sensing imposes dynamics 
upon odor signals

Insects actively move their antennae towards locations of 
higher odor concentration, which affects the dynamics of 
neural odor representation (Huston et al., 2015). Wing flap-
ping during flight also imposes dynamics on odor sampling 
by the antennae (Li et al., 2018). Mammals sample odorants 
by sniffing, which are periodic events (2-15Hz) bringing the 
odorants in the air in contact with the olfactory mucosa. 
Neural activity of ORNs, mitral/tufted cells and inhibi-
tory neurons of the OB is precisely timed relative to each 
sniff cycle (Wachowiak, 2011). Hence sniffing may func-
tion as a neural reference of a signal that is decoded within 
several tens of milliseconds and includes bulbar fast LFP 
gamma activity (40-100Hz) (Wachowiak, 2011). Sniffing 
also appears to drive whisking, another rhythmic explora-
tory behavior in rodents, as well as hippocampal theta-like 
respiratory rhythm (Kurnikova et al., 2017; Moore et al., 
2013) particularly during odor-guided navigation (Findley, 
2021). The sniff rate also affects the processing of the odor-
ants: while slow sniffing provides a summated representation 
of odorants, rapid sniffing enhances odor representation dur-
ing learning (Jordan et al., 2018a) and allows differentiation 
by rapid adaptation in ORNs and MCs (Eiting & Wachowiak,  
2020; Verhagen et al., 2007). Movement of the nose rela-
tive to the odor plume will also affect odor dynamics,  
strongly extending the high frequency spectrum when mov-
ing upstream (Fig. 1b, d), while leaving intermittency unaf-
fected (Fig. 1c). Meanwhile, sniff-invariant concentration 
discrimination has also been reported (Jordan et al., 2018; 
Shusterman et al., 2018), consistent with latency or primacy-
based encoding of odor quality (Margrie & Schaefer, 2003; 
Wilson et al., 2017).

5  Multisensory integration of fast odor 
signals

In both mammals and insects, there is evidence for conver-
gent processing of mechanosensory and chemosensory infor-
mation. Specifically, studies suggest that olfactory neurons 
process both mechanosensory and chemosensory informa-
tion simultaneously (Grosmaitre et al., 2007; Tuckman et al., 
2021). The effect that mechanosensory input has on the olfac-
tory neurons may allow for better recovery of the underly-
ing temporal plume structure, for example, by subthreshold 
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summation or adaptively scaling the sensitivity of the system 
to the informational features of the odor plume.

6  Stereo‑olfaction

The mammalian olfactory system also allows for the rapid 
detection of the spatial origin among lateralized sources 
across both nares. Rats, whose nares are separated by a few 
mm, can be trained to localize odors within 1-2 sniffs, or as 
short as 50ms, mediated by side-specific bulbar responses 
(Rajan et al., 2006). This appears to depend on both interna-
sal time and intensity differences (ITD, IID), analogous to 
auditory localization by inter-aural differences. In humans 
self-motion perception appears to be subconsciously biased 
by non-trigeminal binaral odor cues (Wu et  al., 2020), 
though for conscious direction perception trigeminal co-
stimulation appears critical (Kobal et al., 1989). Further-
more, mice show rapid spontaneous nose movement toward 
the stimulated nostril (Esquivelzeta Rabell et al., 2017) 
within a single sniff, and it depends on intact Anterior 
Commissure (AC), connecting the first interhemispheric 
odor processing in the Accessory Olfactory Nucleus (AON) 
(Esquivelzeta et al., 2017). Indeed, neurons in the AON pars 
externa are excited by ipsi-nostril and contra-nostril-only 
stimulation with odorants of similar quality during each 
respiratory cycle (Kikuta et al., 2010). Evidence is also 
accumulating that stereo-olfaction can contribute to odor-
driven navigation (Catania, 2013; Khan et al., 2012; Liu 
et al., 2020; Marin et al., 2021).

Insects and other invertebrates also use bilateral compari-
sons across antennae in localization of odors. Trail follow-
ing in ants, for example, is disrupted if their antennae are 
crossed (Hangartner, 1967). Removal of one antenna reduces 
odor localization and induces compensation in movements 
of the remaining antenna (Draft et al., 2018). In the fruit 
fly bilateral antennal comparisons are important for orienta-
tion toward an attractive odor or away from a repulsive odor 
(Wasserman et al., 2012). In moths, a delay as short as 50 
ms in arrival of the female sex pheromone at one antenna 
relative to the other will bias turning behavior (Takasaki 
et al., 2012), suggesting a fast bilateral comparison of inputs 
from the antennae.

7  Behavior and navigation models

High-bandwidth sampling in olfaction has theoretical 
advantages for navigation and olfactory scene segrega-
tion. One way that rapid sampling could be harnessed for 
navigation is that intermittency (Fig. 1b) is a cue to loca-
tion in a plume (Connor et al., 2018; Crimaldi & Koseff, 
2001; Schmuker et al., 2016). However, so far there is no 

direct evidence that animals use intermittency to navigate. 
For example, insects seem to change their direction far 
more frequently than would allow for stable estimates of 
intermittency at each location (Cardé, 2021). Conversely, 
many aspects of fruit fly search can be modeled by navi-
gation algorithms that combine a simple state model with 
continuous updating of orientation based on instantaneous 
sensing of odor concentration (Álvarez-Salvado, 2018). 
Additionally, moment-by-moment updating may aid navi-
gation in noisy environments by destabilizing limit cycles 
that would otherwise prevent a successful search (Riman 
et al., 2021).

Rapid sampling also enables detection of odor fila-
ments. As an organism moves, a filament’s spatial struc-
ture is reformatted into a rapid temporal fluctuation above 
the mean odor concentration -- precisely the kind of tem-
poral feature that is captured by an olfactory receptor 
(Nagel et al., 2015) that adapts to recent history (Victor 
et al., 2019). How sensor movement and sampling in gen-
eral might affect or even benefit odor coding in a complex 
spatiotemporal odor environment is a topic of ongoing 
investigation.

Navigation -- and olfactory-guided behavior in general 
-- could be confounded by multiple odor sources. Hopfield, 
1991 suggested that odors emanating from spatially separate 
sources usually generate distinct spatio-temporal distribu-
tions, whereas co-located odor sources will result in co-
incident odor encounters. The temporal structure of odorant 
percepts imposed by their filamentous structure may thus be 
instrumental to figure ground-segregation. More generally, 
recognition of temporal coincidence of odorant encounters 
may be critical to solving the problem of olfactory scene 
analysis (Ackels et al., 2021; Rokni et al., 2014).

8  Implications for neural processing 
from the evolution of olfactory systems

Olfactory systems of insects and mammals have similar 
system-level properties for processing of fast dynamic odor 
signals (Nowotny et al., 2005; Strausfeld & Hildebrand, 
1999; Touhara & Vosshall, 2009). However, given dif-
ferences in molecular and functional properties of insect 
and mammalian odorant receptors (Benton et al., 2006), 
it is likely that system-level similarities have arisen via 
convergent evolution. Independent convergence onto the 
same circuit-level solution could indicate that there is 
a restricted range of fundamental solutions for tracking 
fast odor signals. If confirmed, this finding would have 
important implications for understanding the biological 
principles of using chemical signals to drive action, and 
for odor-sensing robots.
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9  Summary

The objective of this Perspectives article is to highlight 
the many ways in which dynamics play a key role in the 
structure of olfactory environments, how olfactory signals 
are sensed, and how they are used. Odor plumes are com-
plex because of turbulence, and animals use a variety of 
active sensing and neural processing capabilities to extract 
important information on fast time scales about odor iden-
tity and localization from those plumes. Strengthening 
cross-disciplinary bridges among biology, theory, com-
putational modeling and engineering can catalyze new 
generalizable knowledge about the sense of smell.
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