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Abstract. Visual representations can be generated via feedforward or feedback processes. 45 

The extent to which these processes result in overlapping representations remains unclear. 46 

Previous work has shown that imagined stimuli elicit similar representations as perceived 47 

stimuli throughout the visual cortex. However, while representations during imagery are 48 

indeed only caused by feedback processing, neural processing during perception is an 49 

interplay of both feedforward and feedback processing. This means that any 50 

representational overlap could be due to overlap in feedback processes. In the current study 51 

we aimed to investigate this issue by characterizing the overlap between feedforward- and 52 

feedback-initiated category-representations during imagery, conscious perception and 53 

unconscious processing using fMRI in humans of either sex. While all three conditions 54 

elicited stimulus representations in left lateral occipital cortex (LOC), significant similarities 55 

were only observed between imagery and conscious perception in this area. Furthermore, 56 

connectivity analyses revealed stronger connectivity between frontal areas and left LOC 57 

during conscious perception and imagery compared to unconscious processing. Together, 58 

these findings can be explained by the idea that long-range feedback modifies visual 59 

representations, thereby reducing representational overlap between purely feedforward 60 

and feedback-initiated stimulus representations measured by fMRI. Neural representations 61 

influenced by feedback, either stimulus-driven (perception) or purely internally-driven 62 

(imagery), are however relatively similar. 63 

 64 

Significance statement: Previous research has shown substantial neural overlap between 65 

imagery and perception, suggesting overlap between bottom-up and top-down processes. 66 

However, because conscious perception also involves top-down processing, this overlap 67 

could instead reflect similarity in feedback processes. In this study, we showed that the 68 

overlap between perception and imagery disappears when stimuli are rendered 69 

unconscious via backward masking, suggesting reduced overlap between purely bottom-up 70 

and top-down generated representations.   71 

 72 

Introduction. Visual experience relies on neural representations in visual cortex, which can 73 

be activated in two different ways. Externally, by light bouncing off of objects and hitting 74 

the retina, from which signals are sent via feedforward connections to early visual cortex 75 

and areas further up in the visual hierarchy (e.g. lateral occipital cortex). Or internally, via 76 
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feedback signals from high-level brain areas, such as areas in prefrontal cortex, for example 77 

during mental imagery and dreaming (Dentico et al., 2014; Dijkstra, Zeidman, Ondobaka, 78 

van Gerven, & Friston, 2017; Mechelli, Price, Friston, & Ishai, 2004). It remains unclear to 79 

what extent activation patterns in visual cortex caused by feedforward and feedback signals 80 

are similar.  81 

 Previous work has compared neural representations during perception and imagery, 82 

revealing convincing evidence that there is neural representational overlap between 83 

perception and imagery throughout large parts of visual cortex (Albers, Kok, Toni, 84 

Dijkerman, & de Lange, 2013; Cichy et al., 2012; Dijkstra, Bosch, & van Gerven, 2017; 85 

Horikawa & Kamitani, 2017; Johnson & Johnson, 2014; Lee, Kravitz, & Baker, 2012; O’Craven 86 

& Kanwisher, 2000; Reddy, Tsuchiya, & Serre, 2010; Stokes, Thompson, Cusack, & Duncan, 87 

2010; Thirion et al., 2006). The strongest overlap between perception and imagery is 88 

typically observed in high-level visual areas (Lee et al., 2012; Reddy et al., 2010b; Stokes et 89 

al., 2010), whereas the overlap in low-level areas seems to depend on the required detail of 90 

the imagery task (Kosslyn & Thompson, 2003) and the experienced imagery vividness 91 

(Albers et al., 2013; Dijkstra et al., 2017; Lee et al., 2012).  92 

However, while activation in visual cortex during mental imagery indeed only relies 93 

on feedback signals (Dijkstra et al., 2017; Dijkstra et al., 2020; Mechelli et al., 2004), visual 94 

activation during perception reflects an interplay between feedforward and feedback 95 

processes (Bastos et al., 2012; Bastos et al., 2015; Dijkstra et al., 2017; Dijkstra et al., 2020; 96 

Muckli, 2010; Lamme & Roelfsema 2000). To determine whether visual representations 97 

activated by feedforward and feedback signals do indeed activate similar neural 98 

populations, one needs to investigate a situation in which visual representations are caused 99 

by feedforward signals only and compare those to events that include feedback processing 100 

as well.  101 

 Backward masking has been hypothesized to disrupt feedback from high-level visual 102 

cortex to early visual cortex (Del Cul, Baillet, & Dehaene, 2007; Fahrenfort, Scholte, & 103 

Lamme, 2007;  Lamme, Zipser, & Spekreijse, 2002; Roelfsema, Lamme, Spekreijse, & Bosch, 104 

2002; van Gaal & Lamme, 2012). In a backward masking paradigm, a briefly presented target 105 

stimulus is rapidly followed by a second, masking stimulus. Appropriate backward masking 106 

renders the target stimulus invisible. Several studies have shown that masking leaves the 107 

feedforward sweep relatively unaffected, which can still cause activation in high-level visual 108 
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cortex (Jiang & He, 2006; Sterzer, Haynes, & Rees, 2008), while feedback processing is 109 

disrupted (Fahrenfort, Scholte, & Lamme, 2007; Lamme et al., 2002; Mashour, Roelfsema, 110 

Changeux, & Dehaene, 2020; van Gaal & Lamme, 2012). These and other observations have 111 

led to the idea that the feedforward sweep is unconscious and that recurrent processing is 112 

an important factor in achieving conscious awareness (Lamme, 2015; Mashour et al., 2020; 113 

Tononi, 2008). However, the exact relationship between feedback processing and conscious 114 

awareness is still debated (see e.g. Boly et al., 2017). 115 

 In the current study we investigated to what extent visual representations in visual 116 

cortex are modified by feedback, by comparing conditions in which stimuli are consciously 117 

perceived, not consciously perceived and imagined. We rely on the assumption that 118 

unconscious processing contains less or no feedback processing, and that therefore 119 

comparing unconscious to conscious and imagined representations will provide insight into 120 

the effects of feedback processing. However, it is important to note that this is an 121 

assumption based on previous research which will not be tested in the current study. 122 

Therefore, the exact implications of our results need to be inferred with caution. More 123 

elaborate and nuanced interpretations will be given in the discussion. We quantified the 124 

representational overlap between the different conditions by training a classifier on one 125 

condition and testing it on another condition (‘cross-decoding’; Albers et al., 2013; Dijkstra 126 

et al., 2018; Lee et al., 2012). The only difference between the conscious and unconscious 127 

condition was the stimulus onset asynchrony (SOA) between the target and the mask. To 128 

cue visual imagery in a way that does not induce an informative cue-signal that can be 129 

picked up by a classifier, we used a retro-cue paradigm (Harrison & Tong, 2009; see Fig. 1B).  130 

 131 

Materials and Methods 132 

Participants. Thirty-seven participants with normal or corrected-to-normal vision gave 133 

written informed consent and participated in the study. All participants were naïve to the 134 

aim of the experiment and most participants were familiar with similar visual perception 135 

fMRI studies. Two participants were excluded from the final analyses: one because they quit 136 

the experiment prematurely and one because they had misunderstood the task. Due to an 137 

accidental change in the refresh rate of the monitor (from 60 Hz to 75 Hz) the timing was 138 

slightly different for for 6/35 participants: presentation from 17ms to 13ms, ISI conscious 139 

from 66ms to 80ms, so that the presentation times were slightly shorter for the unconscious 140 
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condition and slightly longer for the conscious condition. Because this error did not change 141 

visibility ratings (unconscious: 1.37 (SD = 0.27) versus 1.35 (SD = 0.58); t(33) = 0.079, p = 142 

0.94 – conscious: 2.92 (SD = 0.37) vs 2.98 (SD = 0.61); t(33) = -0.25, p = 0.80) or 143 

discrimination sensitivity (unconscious: 0.19 (SD = 0.28) versus 0.03 (SD = 0.18); t(33) = 1.9, 144 

p = 0.07 – conscious: 3.33 (SD = 0.61) vs 3.82 (SD = 0.90); t(33) = -1.26, p = 0.22) we decided 145 

not to remove these participants. Thirty-five participants were included in the main analyses 146 

(mean age 25.9, SD = 5.9).  147 

 148 

Experimental design. Prior to the experiment, participants filled out the Vividness of Visual 149 

Imagery Questionnaire 2 (VVIQ2; Marks, 1973), which is a 16-item questionnaire that 150 

measures the general vividness of a participant’s imagery. The experiment consisted of two 151 

tasks, a perception and an imagery task, which were executed in interleaved blocks and 152 

whether participants started with the imagery or perception task was counterbalanced over 153 

participants. The perception task consisted of conscious and unconscious trials, which only 154 

differed in ISI between the stimulus and the mask: 0ms for the unconscious trials and 66ms 155 

(4 frames) for the conscious condition. We chose to operationalize conscious versus 156 

unconscious processing via experimental manipulation (strong versus weak masking) and 157 

not via post-hoc trial selection based on visibility reports, because this latter approach has 158 

been shown to violate statistical assumptions and may lead to spurious unconscious effects 159 

(for more details, see Shanks, 2017). During the perception task, a stimulus was presented 160 

very briefly (17ms), followed by a backward mask. Participants subsequently indicated 161 

whether the presented stimulus was animate or inanimate and rated the visibility of the 162 

stimulus on a scale from 1 (not visible at all) to 4 (perfectly clear; Fig. 1A). To prevent motor 163 

preparation, the response mapping for both the animacy and visibility ratings were 164 

randomized over trials. During the imagery task, two stimuli were each successively 165 

presented for 500ms, followed by a retro-cue indicating which of the two the participant 166 

should imagine. The participant then imagined the cued stimulus and subsequently 167 

indicated the animacy and the visibility of the imagined stimulus (Fig. 1B). The button-168 

response mapping for the animacy task and the visibility rating was randomized over trials 169 

to prevent motor preparation.  170 

 There were 184 conscious and 184 unconscious trials, 46 repetitions per stimulus, 171 

divided over 4 blocks. Each conscious-unconscious block lasted approximately 9 minutes. 172 
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There were 144 imagery trials, 36 repetitions per stimulus, divided over 4 blocks. Each 173 

imagery block lasted approximately 7 minutes. The order of the different stimuli and SOAs 174 

(unconscious versus conscious trials) within the perception task and the stimuli and retro-175 

cue combinations during imagery was fully counterbalanced within participants and which 176 

task (imagery or perception) was executed first, was randomized between participants. In 177 

total, there were 8 blocks, leading to an experimental time of approximately 65 minutes per 178 

participant. Including breaks and an anatomical scan, this added up to 90 minutes of fMRI 179 

scanning time.  180 

 181 

 182 

Figure 1. Experimental paradigm. (A) Masking task. A stimulus is presented for 17ms, followed by a mask 183 
(duration 400ms) after 0ms (unconscious condition) or 66ms (conscious condition). Participants had to indicate 184 
whether the stimulus was animate or inanimate and rate the visibility. (B) Visual imagery task. Participants 185 
were presented with two stimuli after each other followed by a cue indicating whether to imagine the first or 186 
the second stimulus, as vividly as possible. After the imagery, participants had to indicate whether the 187 
imagined stimulus was animate or inanimate and rate the visibility of their imagery. (C) Stimuli used: a rooster, 188 
a football, a fish and a watering can from the POPORO stimulus data set (Kovalenko, Chaumon, & Busch, 189 
2012). The neural analyses focused on pairwise comparisons between all possible combinations of stimuli.  190 
 191 

Stimuli. We used stimuli from the POPORO stimulus data set (Kovalenko, Chaumon, & 192 

Busch, 2012), which contains colour images of everyday objects and animals. From these 193 

stimuli we selected four (two animate and two inanimate) for the final study. The stimuli 194 

were selected based on (a) familiarity and visual difference, such as to maximise 195 

classification performance and on (b) accuracy and visibility scores calculated in a pilot 196 
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experiment. The stimuli were presented at 50% contrast on a grey background screen. They 197 

encompassed a 4 by 4 cm square which corresponded to a visual angle of 2.81 degrees. The 198 

stimuli were relatively small to prevent large eye-movements, which would affect our fMRI 199 

analyses. The mask was created by randomly scrambling the pixel values of all stimuli taken 200 

together and was also 4 by 4 cm in order to fully mask the presented stimuli.      201 

 202 

Behavioural analysis. To characterize performance on the discrimination animacy task we 203 

calculated d’ as the distance between the signal and the signal plus noise, calculated as the 204 

difference between the hit-rate and the false alarm rate (Macmillan & Creelman, 1990). A 205 

high d’ value indicates better performance and a d’ of zero indicates chance-level 206 

performance.  207 

 208 

fMRI acquisition. Each block was scanned in a separate fMRI run, adding up to 8 runs in 209 

total. In between runs, the researcher checked in with the participant and asked whether 210 

they needed a break. The experiment continued when the participant said they were ready 211 

to continue. fMRI data were recorded on a Siemens 3T Skyra scanner with a Multiband 6 212 

sequence (TR: 1 s; voxel size: 2 x 2 x 2 mm; TE: 34 ms) and a 32-channel head coil. For all 213 

participants, the field of view was tilted -25° from the transverse plane, using the Siemens 214 

AutoAlign Head software, resulting in the same tilt relative to the individual participant’s 215 

head position. T1-weighted structural images (MPRAGE; voxel size: 1 x 1 x 1 mm; TR: 2.3 s) 216 

were also acquired for each participant. 217 

 218 

fMRI pre-processing. Prior to decoding analyses, data were pre-processed using SPM12 219 

(RRID: SCR_007037). All functional imaging data were motion-corrected (realignment) and 220 

co-registered to the T1 structural scan. The scans were then normalized to MNI space using 221 

DARTEL normalisation and smoothed with a 6 mm Gaussian kernel, which has been shown 222 

to improve group-level decoding accuracy (Gardumi et al., 2016; Hendriks, Daniels, Pegado, 223 

& Op de Beeck, 2017; Misaki, Luh, & Bandettini, 2013). A high-pass filter of 128s was used to 224 

remove slow signal drift.   225 

 226 

Multivariate pattern analysis. Multivariate analyses were performed using Matlab version 227 

2018a (RRID: SRC_001622). We used linear discriminant analysis to decode the stimulus 228 
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identity per searchlight based on the beta estimates per trial. All individual trial beta 229 

estimates were obtained from one general linear model (GLM) which contained a separate 230 

regressor for each trial set at the onset of the image (or imagery frame for imagery with a 231 

duration of 0 (spike) for the conscious and unconscious conditions and a duration of 4 for 232 

the imagery condition (Dijkstra et al., 2017; Bosch et al., 2014). Additional regressors in this 233 

GLM were (1) the animacy response screen onsets, duration set to the time until response; 234 

(2) animacy response button presses, duration 0 (spike); (3) the visibility response screen 235 

onsets; duration set to the until response; (4) visibility response button presses, duration 0 236 

(spike); (5) onset of the first stimulus in the retro-cue task, duration 500ms; (6) onset of the 237 

second stimulus in the retro-cue task, duration 500ms and (8) a constant value per run to 238 

eliminate run-specific changes in mean signal amplitude. Finally, the average signals from 239 

the white matter (WM) and cerebral spinal fluid (CSF) (Caballero-Gaudes & Reynolds, 2017; 240 

Lund, Nørgaard, Rostrup, Rowe, & Paulson, 2005) as well as the motion parameters were 241 

included as nuisance regressors. Decoding within and across conditions was done pairwise 242 

between all combinations of the four stimuli, resulting in six decoding pairs, over which the 243 

accuracy was then averaged. Searchlights had a radius of 4 voxels, resulting in 257 voxels 244 

per searchlight on average. Searchlights moved through the brain based on the center voxel 245 

such that voxels participated in multiple searchlights (Allefeld & Haynes, 2014). Leave-one-246 

run-out cross-validation was performed, such that for each fold, a classifier was trained on 247 

three runs and tested on the fourth, left-out run. This was done for all comparisons except 248 

for imagery-conscious and imagery-unconscious cross-decoding, because these data already 249 

came from different task runs (see Fig. 1). Generalization across conditions is often 250 

asymmetric which could be due to a variety of reasons such as differences in signal to noise 251 

ratio between the two conditions (van den Hurk & Op de Beeck, 2019). Because we did not 252 

have a priori hypotheses about asymmetries in cross-decoding directions and because both 253 

directions revealed qualitatively similar results, we average across both cross-decoding 254 

directions before doing statistics across subjects. 255 

 256 

Psychophysiological interaction analysis. After identifying a visual area that contained 257 

stimulus information (significant stimulus decoding) in all three conditions, we performed a 258 

psychophysiological interaction (PPI) analysis to investigate differences in connectivity 259 

between this area and the rest of the brain between the conditions (Friston et al., 1997). Per 260 
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participant, the seed-region was defined as an 8 mm sphere centred on the peak averaged 261 

univariate activation over the three conditions, within a 16 mm sphere centred around the 262 

voxels in which decoding was significant for all three conditions at the group level (Fig. 3, 263 

MNI: -54 -65 -10). This approach ensures that approximately the same region was used for 264 

every participant while also taking account differences in structural and functional anatomy 265 

between participants. This method and size of region of interest (ROI) definition is based on 266 

recommendations in the literature for comparable analyses (Zeidman et al., 2019a,b). One 267 

participant was excluded because the t-contrast of the averaged activation over the three 268 

conditions versus 0 did not reach the statistical threshold of 0.05 in any of the voxels within 269 

the group sphere. Two PPI contrasts were calculated: (Conscious perception & unconscious 270 

processing) > imagery (feedforward) and (conscious perception & imagery) > unconscious 271 

processing (feedback). Connectivity with significant areas was compared in a post-hoc 272 

analysis by calculating the difference in connectivity between each two conditions (Fig. 4C; 273 

Friston et al., 1997). Note that the connectivity analyses were not stimulus specific; 274 

therefore, the first comparison, where we compare conditions that contained a mask 275 

(conscious & unconscious) with conditions that did not contain a mask (imagery), might be 276 

driven (partly) by processing of the mask instead of the stimuli preceding the mask.  277 

 278 

Statistical analysis. The application of standard second-level statistics, including t-tests, to 279 

multivariate pattern analysis (MVPA) measures is in many cases invalid due to violations of 280 

assumptions. Therefore, we used permutation testing to generate the empirical null-281 

distribution, thereby circumventing the need to rely on assumptions about this distribution. 282 

We followed the approach suggested by (Stelzer, Chen, & Turner, 2013) for searchlight 283 

MVPA measurements which uses a combination of permutation testing and bootstrapping 284 

to generate chance distributions for group studies. Due to the large computational load of 285 

searchlight decoding analysis, per participant, 25 permutation maps were generated by 286 

permuting the class labels within each run. Group-level permutation distributions were 287 

subsequently generated by bootstrapping over these 25 maps, i.e. randomly selecting one 288 

out of 25 maps per participant and then averaging over participants. 10000 bootstrapping 289 

samples were used to generate the group null-distribution per voxel and per comparison. P-290 

values were calculated per voxel as the right-tailed area of the histogram of permutated 291 

accuracies from the mean over participants. We corrected for multiple comparisons using 292 
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whole-brain FDR-correction with a q-value cut-off of 0.01. Cluster correction was 293 

performed, ensuring that voxels were only identified as significant if they belonged to a 294 

cluster of at least 50 significant voxels (Dijkstra, Bosch, & van Gerven, 2017).  295 

 296 

Data and code availability. All data will be made publicly available upon publication of this 297 

manuscript. Analysis code for this study will be made available via the corresponding author 298 

upon request.  299 

 300 

Results 301 

Behavioural results. To check whether participants indeed did not consciously perceive the 302 

stimuli in the unconscious condition, we tested their perceptual sensitivity and visibility 303 

scores. Whereas d’ was clearly significantly above zero for both the conscious (M = 3.74, SD 304 

= 0.87, t(34) = 25.40, p < 0.0001) as well as the imagery (M = 3.32, SD = 0.83, t(34) = 23.74, p 305 

< 0.0001) condition, this was not the case for the unconscious condition (M = 0.05, SD = 306 

0.20, t(34) = 1.57, p = 0.127; BF01 = 0.549; Fig. 2A). Furthermore, d’ was significantly higher 307 

for both the conscious condition (t(34) = 23.18, p < 0.0001) and the imagery condition (t(34) 308 

= 20.60, p < 0.0001) compared to the unconscious condition. d’ in the conscious condition 309 

was also slightly higher than in the imagery condition (t(34) = 2.62, p = 0.013). Furthermore, 310 

the visibility ratings for both the conscious condition (M = 3.03, SD = 0.54, t(34) = 10.94, p < 311 

0.0001) as well as the imagery condition (M = 2.91, SD = 0.38, t(34) = 11.76, p < 0.0001) 312 

were much higher than for the unconscious condition (M = 1.37, SD = 0.54; Fig. 2B). A few 313 

participants rated a proportion of trials in the unconscious condition as high visibility (Fig. 314 

2B), however, all of these participants still had a discrimination accuracy at chance (all < 315 

53.3%). Furthermore, there was no significant relationship between mean visibility rating 316 

and d’ in the unconscious condition over participants (r = 0.14, p = 0.41). Given the 317 

nonsignificant task performance and the potential confusion caused by the randomization 318 

of response mapping between trials, these high visibility ratings during the unconscious 319 

condition are unlikely to reflect true conscious visibility. Together, these results suggest that 320 

the stimuli were indeed strongly masked and therefore we were able to isolate feedforward 321 

processing as much as possible (Fahrenfort et al., 2007).  322 

 323 
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 324 

 325 

Figure 2. Behavioural results. (A) d’ for the animacy task shown separately for each condition. The bell-shaped 326 
curves represent the distribution over participants, the boxplots indicate the four quartiles and the dots 327 
represent individual participants. d’ was significantly higher than zero in the conscious as well as imagery 328 
condition, but not in the unconscious condition. P-values: * < 0.05, **** < 0.0001. (B) Percentage of trials of 329 
each visibility rating (1-4) separately for the three conditions. Boxplots represent the distributions over 330 
participants and dots represent individual participants.  331 

 332 

Decoding within conditions. To investigate which areas represented stimulus information 333 

during the three conditions, we performed a searchlight decoding analysis separately for 334 

each condition (Fig. 3). Statistical tests were performed using group-level permutation 335 

testing as described in Stelzer et al. (2013) and corrected for multiple comparisons (see 336 

Methods). Significant decoding clusters are shown in Figure 3 and listed in Table 1. The cut-337 

off accuracy value for significance was 0.508 for the unconscious and conscious conditions 338 

and 0.511 for imagery. The relatively low decoding accuracy of conscious representations 339 

(~0.55) compared to other studies (~0.55-0.65) (e.g. Eger et al., 2008; Axelrod & Yovel, 340 

2015) is likely due to the backward mask, which adds noise to the stimulus response. Given 341 

the low temporal resolution of fMRI, this means that the BOLD signal at the time of the 342 

stimulus will contain a mixture of stimulus response and response to the mask, increasing 343 

variance unrelated to the stimulus and thereby decrease decoding performance. In line with 344 

previous studies (Dijkstra, Bosch, & van Gerven, 2019; Pearson, Naselaris, Holmes, & 345 

Kosslyn, 2015), we could decode stimulus information during conscious perception as well 346 
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as imagery in low- and high-level visual areas, intra-parietal sulcus and lateral frontal cortex 347 

(Fig. 3B-E). Interestingly, significant decoding of unconscious stimuli was only observed in 348 

left high-level visual cortex, temporal pole and lateral frontal cortex (Fig. 3A). There was no 349 

significant unconscious decoding in low-level visual areas. All three conditions showed 350 

stimulus representations in left lateral occipital cortex (LOC; Fig. 3E).  351 

 352 

 353 

Figure 3. Condition specific neural representations. (A-C). For each condition, significant decoding clusters are 354 
shown for various axial slices. The heatmap indicates average decoding accuracy. (D-E) Significant decoding 355 
accuracy clusters (D) unique for each condition and (E) spatially overlapping between conditions. Significant 356 
decoding accuracy was found in all three conditions (indicated in black, circled in red) around the left lateral 357 
occipital cortex (LOC) at MNI coordinates -54 -65 -10. Decoding accuracies for the three conditions (UP = 358 
unconscious processing, CP = conscious perception, IM = imagery) within this ROI are plotted, with the error 359 
bars indicating the standard error of the mean (SEM).  360 
 361 

Table 1. Significant within decoding clusters. Atlas labels determined using the AAL atlas (Tzourio-Mazoyer et 362 

al. 2002) on the basis of the MNI coordinates of the peak decoding accuracy.  363 

Lobe Atlas label Condition MNI peak N voxels Peak accuracy 

 
    X Y  Z     

Occipital Occipital_Sup_R Conscious 30 -76 46 394 0.52 

 
Occipital_Inf_L Conscious -48 -70 -6 9302 0.54 

 
  Imagery -42 -66 -6 4922 0.54 
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Occipital_Inf_R Imagery 46 -76 -2 459 0.53 

 
Cuneus_L Conscious 0 -72 34 171 0.52 

 
Calcarine_R Conscious 12 -60 14 115 0.52 

 
    

   

    

Temporal Temporal_Sup_L Conscious -58 0 -4 951 0.53 

 
Temporal_Sup_R Conscious 68 -26 2 395 0.53 

 
    64 -2 -10 220 0.52 

 
Temporal_Sup_L Imagery -64 -38 20 100 0.53 

 
Temporal_Mid_L Imagery -60 -20 -20 182 0.53 

 
Temporal_Inf_L Unconscious -56 -62 -6 86 0.52 

 
Temporal_Pole_Sup_R Unconscious 52 14 -12 91 0.52 

 
    

   

    

Parietal Parietal_Inf_L Conscious -32 -36 40 72 0.52 

 
Parietal_Inf_R Imagery 40 -40 56 143 0.53 

 
Precuneus_L Conscious -14 -58 68 110 0.52 

 
Precuneus_R Imagery 20 -72 46 284 0.53 

 
SupraMarginal_R Conscious 52 -30 46 485 0.52 

 
  Imagery 64 -22 40 90 0.52 

 
Cingulum_Mid_L Imagery -4 30 32 263 0.53 

 
Cingulum_Mid_R Conscious 8 -34 42 56 0.52 

 
    

   

    

Frontal Frontal_Sup_Medial_L Conscious -6 58 22 468 0.52 

 
Frontal_Sup_R Conscious 18 52 26 91 0.52 

 
  Imagery 24 -4 60 172 0.53 

 
Frontal_Inf_Tri_L Conscious -48 18 28 1738 0.53 

 
  Unconscious 44 36 16 62 0.52 

 
Frontal_Med_Orb_R Conscious 2 46 -4 575 0.52 

 
Supp_Motor_Area_L Imagery -6 4 68 557 0.63 

 
Precentral_L Conscious -56 -2 26 76 0.52 

 
  Imagery -56 8 26 59 0.52 

 
    

   

    

Cerebellum Cerebellum_Crus2_R Conscious 30 -80 -40 71 0.52 

 364 

 365 

Psychophysiological interaction analysis. The decoding analysis showed that left LOC 366 

contained stimulus information during all three conditions (Fig. 3E, lateral view), suggesting 367 

that this area might be where feedback and feedforward signals overlap. Before directly 368 

investigating the representational overlap between conditions using across-condition 369 

decoding generalisation, we first investigated whether this area indeed showed more 370 

feedback connectivity during conscious perception and imagery compared to unconscious 371 

processing and more feedforward connectivity during conscious and unconscious processing 372 
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compared to imagery. To investigate this, we performed a PPI analysis to characterize 373 

differences in brain connectivity between the three conditions (Fig. 4, Table 2).  374 

 375 

 376 

Figure 4. Psychophysiological interactions with left LOC as seed region. (A) The blue dot illustrates the 377 
location of the seed region, red-yellow indicates brain areas that showed significantly stronger connectivity 378 
with left LOC during conscious perception (CP) and unconscious processing (UP) compared to imagery (IM), i.e. 379 
in conditions where feedforward connections were present versus not. (B) The blue dot indicates the location 380 
of the seed region, red-yellow indicates brain areas that showed significantly stronger connectivity with left 381 
LOC during conscious perception and imagery compared to unconscious processing, i.e. in conditions where 382 
feedback connections were present versus not (C) Direct comparisons of connectivity between all conditions 383 
for left high-level visual cortex and early visual cortex (EVC; left); left high-level visual cortex and left 384 
dorsolateral prefrontal cortex (ldlPFC; middle) and left high-level visual cortex and right dorsolateral prefrontal 385 
cortex (rdlPFC). Boxplots indicate variance over participants and dots represent individual participants. ** p < 386 
0.005, *** p < 0.0005.  387 

 388 

In line with the predictions, there was stronger connectivity during conscious perception 389 

and unconscious processing compared to imagery between left LOC and early visual cortex 390 

(EVC; MNI: -1 -85 9) as well as right LGN (MNI: 24 -29 4; Fig. 4A-C), in line with the idea that 391 

during these conditions there was more feedforward processing than during imagery. 392 

However, because these conditions also differed in whether a mask was presented 393 

(conscious and unconscious) or not (imagery), and the PPI analysis is not stimulus-specific, 394 

this feedforward connectivity might partly reflect processing of the mask and not the 395 

(unconscious) stimulus before the mask. Furthermore, there was stronger connectivity 396 

during conscious perception and imagery compared to unconscious processing between left 397 
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LOC and bilateral dorsolateral prefrontal cortex (dlPFC; left MNI: -45 36 9; right MNI: 48 36 398 

9) and right lateral frontal cortex, in line with increased feedback connectivity during these 399 

conditions. Post-hoc direct comparisons between conditions of the regions showing 400 

significant changes in connectivity (Fig. 4A,B) showed that connectivity between EVC and 401 

left LOC was stronger during conscious perception compared to imagery as well as during 402 

unconscious processing compared to imagery (Fig. 4C left). Furthermore, coupling between 403 

left LOC and left dlPFC was stronger during conscious perception compared to unconscious 404 

processing as well as during imagery compared to both conscious and unconscious 405 

processing (Fig. 4C middle). Finally, coupling between left LOC and right dlPFC was stronger 406 

during imagery compared to both conscious and unconscious processing (Fig. 4C right). 407 

These results indicate that, in line with our assumption, long-range feedback processing is 408 

indeed stronger during conscious perception and imagery compared to unconscious 409 

processing.  410 

 411 

Table 2. Clusters connected with high-level within-decoding spatial overlap-cluster. Atlas labels determined 412 
using the AAL atlas (Tzourio-Mazoyer et al. 2002) on the basis of the MNI coordinates of the peak T-value for 413 
the PPI analysis.  414 

Lobe Atlas label Comparison MNI peak N voxels Peak T val 

 
    X Y  Z     

Occipital Calcarine_R (CP & UP) > IM 10 -82 4 3654 8.21 

  
 

  
   

    

Temporal Temporal_Inf_L (CP & IM) > UP -54 -58 -8 87 5.11 

  
 

  
   

    

Parietal Parietal_Sup_L (CP & IM) > UP -22 -72 52 50 5.48 

  Parietal_Sup_R (CP & IM) > UP 16 -60 68 62 5.73 

  Precuneus_L (CP & UP) > IM -10 -52 20 53 4.6 

  Postcentral_R (CP & IM) > UP 62 -4 36 120 5.63 

  
 

  
   

    

Frontal Frontal_Inf_Tri_L (CP & IM) > UP -46 34 8 219 5.95 

  Frontal_Inf_Tri_R (CP & IM) > UP 46 34 10 149 6.8 

  Frontal_Inf_Oper_R (CP & IM) > UP 48 4 22 60 4.66 

  
 

  
   

    

Other Lateral Gen Nuc (CP & UP) > IM 22 -28 -4 80 9.12 

 415 

 416 

Generalisation across conditions. The above decoding analysis showed that left LOC 417 

contained stimulus information during all three conditions (Fig. 3E, lateral view) suggesting 418 

that this area might be where feedback and feedforward signals overlap. To directly test 419 
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whether the representations between conditions were similar, we performed across-420 

condition decoding, where we trained a classifier to dissociate the stimuli in one condition, 421 

and tested it in another condition. In this analysis, above-chance cross-decoding accuracy 422 

would indicate that the underlying stimulus representations are to some extent similar. 423 

Significant across-condition clusters are shown in Figure 5 and listed in Table 3.  In line with 424 

previous studies (Dijkstra, Bosch, & van Gerven, 2017a, 2019a; Lee et al., 2012; Pearson & 425 

Kosslyn, 2015; Reddy, Tsuchiya, & Serre, 2010c), we found representational overlap 426 

between conscious perception and imagery in visual, parietal and frontal areas (Fig. 5A, 427 

Table 1). In contrast, there was no significant cross-decoding between the unconscious 428 

condition and the other conditions in any brain area, suggesting an absence of 429 

representational overlap. Furthermore, despite the significant decoding in left LOC within all 430 

conditions (unconscious: M = 0.512, SD = 0.063; conscious: M = 0.519, SD = 0.097; imagery: 431 

M = 0.528, SD = 0.098), there was no significant cross-decoding overlap between the 432 

unconscious condition and the other conditions in this area, even at lower statistical 433 

thresholds (Fig. 5B).  434 

 435 

 436 

Figure 5. Across condition decoding accuracy. There was only significant representational overlap between 437 
conscious perception and mental imagery. (A) Significant cross-decoding clusters are shown for various axial 438 
slices. (B) Cross-decoding accuracy within the LOC cluster that had significant within-condition decoding in all 439 
three conditions (Fig. 3E), the same voxels were evaluated in all comparisons. Error bars indicate the SEM, n.s. 440 
= non-significant, * p < 0.05, ** p < 0.01, *** p < 0.005.  441 
 442 

Taken together, these results suggest that there is no representational overlap between 443 

unconscious and imagined neural representations. However, it is possible that we did not 444 
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observe significant representational overlap here, not because there is no overlap, but 445 

because we do not have enough power to reveal this overlap. The results presented in 446 

Figure 5B show that cross-decoding accuracy between conscious perception and imagery is 447 

significantly higher than the cross-decoding accuracy between the other conditions. This 448 

means that while we cannot exclude the possibility of overlap with unconscious 449 

representations, we can conclude that representational overlap with unconscious 450 

representations is lower than the overlap between conscious and imagined representations. 451 

However, this might partly be due to the fact that unconscious representations were less 452 

strong compared to the other conditions (see Fig. 3). We discuss this possibility in more 453 

detail in the discussion.  454 

 455 
Table 3. Significant across condition decoding clusters. Atlas labels determined using the AAL atlas (Tzourio-456 
Mazoyer et al. 2002) on the basis of the MNI coordinates of the peak decoding accuracy. Condition is not 457 
indicated here because only imagery-conscious across condition decoding was significant.  458 

Lobe Atlas label MNI peak N voxels 
Peak 

accuracy 

 
  X Y  Z     

Occipital Occipital_Mid_L -38 -80 34 59 0.51 

 
Occipital_Inf_R 44 -78 -4 261 0.52 

 
Lingual_R 20 -54 -10 91 0.51 

 

  
   

    

Temporal Temporal_Mid_R 60 -34 4 122 0.52 

 
Temporal_Pole_Sup_L -46 16 -26 72 0.51 

 
Fusiform_L -46 -64 -18 641 0.52 

 

  
   

    

Parietal Parietal_Sup_R 32 -62 50 97 0.51 

 
Parietal_Inf_L -32 -52 42 113 0.52 

 
Cingulum_Mid_R 4 14 30 79 0.52 

 
Precuneus_L -16 -56 14 76 0.52 

 
Angular_R 48 -62 32 60 0.51 

 

  
   

    

Frontal Frontal_Sup_Orb_L -26 14 -14 59 0.52 

 
Frontal_Mid_R 46 52 8 113 0.52 

 
Frontal_Inf_Oper_L -50 12 12 183 0.52 

 
Frontal_Inf_Tri_L -48 42 0 52 0.51 

 

  
   

    

Cerebellum Cerebellum_3_R 12 -38 -24 142 0.52 
 459 

 460 

 461 

Discussion 462 
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In this study we aimed to investigate the overlap between neural representations caused by 463 

feedforward versus feedback signals by comparing brain activity during mental imagery, 464 

conscious perception and unconscious processing. We found significant stimulus decoding 465 

for all three conditions in left high-level visual cortex (LOC). Furthermore, a PPI analysis 466 

showed that this area indeed showed more feedback connectivity during conscious 467 

perception and imagery compared to unconscious processing. These results suggested that 468 

this area might be the place where feedforward and feedback-initiated representations 469 

overlap. However, across-condition generalization revealed there was only significant 470 

representational overlap in this area between conscious perception and imagery, but not 471 

unconscious perception. These findings are in line with the idea that feedback changes the 472 

“format” of neural representations, leading to the reduction of overlap between 473 

representations caused by feedforward and feedback signals, but the presence of overlap 474 

between representations caused by feedback processes associated with perception of 475 

external stimuli and feedback processes associated with mental imagery.  476 

 The significant decoding of unconscious category-specific stimuli in high-level cortex 477 

agrees with previous findings (Axelrod, Bar, & Rees, 2015; Fahrenfort et al., 2012; Jiang & 478 

He, 2006; Rees, 2007). Although both conscious and unconscious category-specific 479 

representations were present in high-level visual cortex, we did not find representational 480 

overlap between the two. This is in line with previous studies using backward masking (Bar 481 

et al., 2001) and dichoptic fusion (Schurger, Pereira, Treisman, & Cohen, 2010). These 482 

studies also showed conscious and unconscious representations in high-level visual cortex, 483 

but no spatial or representational overlap between them. Conscious and unconscious 484 

representations may differ in several respects, including their duration, intensity, 485 

coherence, stability and reproducibility (Lamme & Roelfsema, 2000; Schurger et al., 2010, 486 

2015; Tononi & Koch, 2008). It has been proposed that long-range feedback may stabilize 487 

activity in local neural processors, as if the brain “decides” what specific input it has 488 

received. The network’s decision, given the input, is what may be reflected in conscious 489 

access (Dehaene, 2014; Schurger et al., 2015). The stabilization of neural activity by 490 

feedback therefore may change the format of neural category-specific representations 491 

(Baria, Maniscalco, & He, 2017; Dehaene, Sergent, & Changeux, 2003; Dijkstra et al., 2018; 492 

He, 2018; Weaver, Fahrenfort, Belopolsky, & van Gaal, 2019; Xie, Kaiser and Cichy 2020; 493 

King, Pescetelli, & Dehaene, 2016).  494 
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Although an intriguing possibility, some previous fMRI studies did report cross-495 

decoding between conscious and unconscious conditions (Fahrenfort et al., 2012; 496 

Moutoussis & Zeki, 2002; Sterzer et al., 2008; Sterzer & Rees, 2008). In these studies, 497 

awareness of face/house stimuli was either manipulated by dichoptic fusion (Fahrenfort et 498 

al., 2012; Moutoussis & Zeki, 2002), Continuous Flash Suppression (CFS; Sterzer et al., 2008) 499 

or binocular rivalry (Sterzer & Rees, 2008). Which specific brain areas retain information 500 

about unconscious stimuli likely depends on the methods used to render the stimuli 501 

invisible (Fogelson, Kohler, Miller, Granger, & Tse, 2014; Axelrod et al., 2015; Izatt et al., 502 

2014). Dichoptic fusion, CFS and binocular rivalry all rely on interactions between inputs 503 

from the two eyes and may primarily affect inhibition-adaptation cycles as early as V1, 504 

although much is still unclear at present (Axelrod et al., 2015; Rees, 2007; Tong, Meng, & 505 

Blake, 2006). In contrast, the neural effects of backward masking have previously been 506 

shown to disrupt recurrent interactions between high- and low-level visual regions (Del Cul, 507 

Baillet, & Dehaene, 2007; Fahrenfort, Scholte, & Lamme, 2007;  Lamme, Zipser, & 508 

Spekreijse, 2002; Roelfsema, Lamme, Spekreijse, & Bosch, 2002; van Gaal & Lamme, 2012). 509 

Future research is necessary to fully determine the specific effects of each visibility 510 

manipulation on neural processing to unravel the discrepancies between studies and to 511 

understand why representational overlap between conscious and unconscious 512 

representations is sometimes observed and sometimes not.  513 

 The idea that feedback processing changes the format of neural representations 514 

suggests that the representational overlap between these different modes of perception 515 

should change over time. Because of the sluggishness of the BOLD response, fMRI lacks the 516 

temporal resolution needed to characterize such dynamics. In contrast, recent studies using 517 

methods with higher temporal resolution such as electro-encephalography (EEG) and 518 

magneto-encephalography (MEG) do indeed suggest differences in the timing of 519 

representational overlap between conscious perception, unconscious processing and 520 

imagery. During conscious perception, neural representations first change rapidly over time 521 

during early time windows, likely reflecting the feedforward sweep, after which 522 

representations stabilize later in time, presumably via recurrent processing (Baria, 523 

Maniscalco, & He, 2017; Cichy, Pantazis, & Oliva, 2014; Dijkstra et al., 2018; He, 2018; 524 

Mostert, Kok, & de Lange, 2015; Schurger et al., 2015). Recent evidence shows that neural 525 

representations of stimuli that were strongly masked or missed during the attentional blink, 526 
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only overlap with conscious conditions at early stages of input processing (until ~250ms; 527 

Meijs, Mostert, Slagter, de Lange, & van Gaal, 2019; Weaver et al., 2019). Furthermore, a 528 

recent MEG study revealed that representations during imagery mostly overlap with 529 

representations during later stages of conscious perception (Dijkstra et al., 2018; Xie, Kaiser 530 

and Cichy 2020). This supports the idea that neural representations of consciously reported 531 

and unreported stimuli are similar during initial feedforward (and likely local recurrent) 532 

processing, but that long-range feedback changes the neural representations, which then 533 

mimics the representations initiated by imagery-related feedback processing.  534 

 It is important to note that the exact relationship between (long-range) feedback 535 

processing and conscious awareness is still debated (see e.g. Boly et al., 2017). Some 536 

theories suggest that local recurrent processing within sensory systems is sufficient for 537 

conscious experience (Lamme, 2015), whereas others propose that communication within a 538 

broader network, including fronto-parietal areas, is necessary (Dehaene & Changeux, 2011; 539 

Mashour, Roelfsema, Changeux, & Dehaene, 2020) and still others propose that activation 540 

of meta- representations is sufficient (Brown, Lau, & LeDoux, 2019; Lau & Rosenthal, 2011). 541 

Here, we used perception rendered unconscious via backward masking as a proxy for 542 

feedforward visual processing and in line with this assumption, our PPI results suggested 543 

that visual activity was only driven in a feedforward fashion in the unconscious condition. 544 

However, it is possible that there was still some form of feedback processing present during 545 

the unconscious condition, either weaker or more local compared to the conscious 546 

condition, that was not picked up by the PPI analysis. This means that the absence of 547 

representational overlap between the conscious and unconscious condition might be due to 548 

other factors that are affected by awareness besides feedback processing. Future research 549 

directly investigating how top-down processing changes neural representations, using 550 

methods with a higher temporal resolution, will give more insight into this issue. 551 

 Finally, in line with previous studies we not only found significant cross decoding 552 

between conscious perception and imagery in several visual areas (Albers et al., 2013; Cichy 553 

et al., 2012; Dijkstra et al., 2017; Lee et al., 2012; O’Craven & Kanwisher, 2012; Reddy, 554 

Tsuchiya, & Serre, 2010), but also in parietal and frontal areas (Christophel, Klink, Spitzer, 555 

Roelfsema, & Haynes, 2017; Dijkstra et al., 2017). Additionally, we observed stronger 556 

connectivity between LOC and the dlPFC during imagery and conscious perception than 557 

during unconscious perception. The dlPFC has been implicated in numerous studies 558 
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investigating the neural mechanisms of conscious reportability (conscious access) of input 559 

(Davidson et al., 2010; Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006; Lau & 560 

Passingham, 2006; Rees, 2007). These studies, similarly to ours, have all focused on 561 

conscious access of an external stimulus, whereas a recent study showed similar feedback 562 

connectivity during conscious perception and mental imagery (Dijkstra, Zeidman, Ondobaka, 563 

Van Gerven, & Friston, 2017). The current results suggest that dlPFC is important for 564 

conscious access, regardless of whether it is internally or externally generated. However, it 565 

should be noted that our perception task was not passive; participants actively attended to 566 

specific features of the stimulus in order to judge its animacy. Therefore, overlap between 567 

imagery and perception reported here might (partly) be due to the employment of similar 568 

attentional mechanisms (Dijkstra et al., 2019). During both the perception and imagery task, 569 

participants had to attend to specific spatial locations and features in order to correctly 570 

execute the animacy task. This means that during both tasks, spatial and feature based top-571 

down attention was employed. Moreover, the increase in dlPFC connectivity during imagery 572 

compared to conscious perception might reflect the increased attentional load of 573 

generating a sensory representation in the absence of its corresponding input (Dijkstra et al, 574 

2017). Furthermore, the nature of the imagery task used here, in which the imagined image 575 

is presented relatively shortly before the imagery, might result in lingering feedforward 576 

activity. Several studies using the same paradigm only showed feedback processing during 577 

imagery (Dijkstra, Zeidman, Ondobaka, Van Gerven, & Friston, 2017; Dijkstra, Ambrogioni, 578 

Vidaurre, & van Gerven, 2020), however, we cannot completely rule out that the imagery 579 

also contained some feedforward processing. To fully address this, future research should 580 

investigate whether similar patterns are found with conscious but passive perception and 581 

with imagery initiated from long-term memory.  582 

An alternative possibility for our findings is that feedback does not change the 583 

representational format per se, but that during the conscious condition, feedback enhances 584 

representations of feedforward information, for example via gain increase (Reynolds & 585 

Heeger, 2009; Wyart, Nobre, & Summerfield, 2012). Our results would then suggest that 586 

this kind of feedback-related enhancement is necessary to detect representational overlap 587 

between perception and imagery.  This would also mean that using more sensitive methods, 588 

such as single-cell recordings, might still uncover representational overlap between the 589 
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neural populations recruited during imagery and those activated by unconsciously 590 

processed stimuli. 591 

Related to this, it is important to note that while we did find significant decoding 592 

within unconscious processing, the decoding accuracy in this condition was lower than 593 

during both imagery and conscious perception. This means that our power to detect 594 

representational overlap with the unconscious condition was lower compared to the other 595 

conditions. Therefore, we cannot rule out that our lack of representational overlap with 596 

unconscious processing is due to low unconscious decoding. It is theoretically possible that 597 

the amount of representational overlap with unconscious conditions is as high as the other 598 

conditions, but that the low power within the unconscious condition prevented us from 599 

detecting this. Low unconscious decoding may partly reflect an inherent feature of 600 

unconscious processes, in the sense that feedforward initiated representations are less 601 

strong  (especially higher up in the cortical hierarchy) compared to representations that 602 

have been stabilized via long-range feedback connections as mentioned above (Lamme & 603 

Roelfsema, 2000; Schurger et al., 2010, 2015; Tononi & Koch, 2008), leading to lower 604 

decoding accuracy and therefore less power to detect representational overlap (Fahrenfort 605 

et al., 2012; van Gaal & Lamme, 2012; Weaver, Fahrenfort, Belopolsky, & Van Gaal, 2019). 606 

Furthermore, although this type of masking has been shown to selectively disrupt feedback 607 

processing while keeping feedforward activity intact (Fahrenfort et al., 2007; Van Gaal et al., 608 

2011, 2008), due to the low temporal resolution of the BOLD signal we are unable to 609 

completely rule out a reduction in feedforward activity due to the masking procedure. To 610 

fully rule out this possibility, ideally, the within-decoding accuracy in all conditions is 611 

equalized experimentally, for example by lowering the contrast of the stimulus in the 612 

conscious condition (see Lau and Passingham, 2006 for a similar approach in behaviour). 613 

This is an interesting avenue for future research. 614 

 In summary, our results show that neural representations measured by fMRI, 615 

triggered by purely feedforward (unconscious processing) or feedback (mental imagery) 616 

processes show reduced overlap. This suggests that the large representational overlap 617 

between imagery and perception reported in the literature (Dijkstra, Bosch, & van Gerven, 618 

2019; Pearson, 2019) is undetectable for stimulus triggered activation in the absence of 619 

feedback processing. Our results suggest that long-range feedback processing alters the 620 

format or strength of neural representations, for example through stabilization of the neural 621 
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code. More insight into this dynamical process can be gained using methods with higher 622 

temporal resolution than fMRI. Future research should explore exactly how feedback 623 

changes the format of representations and how different methods of rendering stimuli 624 

invisible affect this process.  625 
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