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Pumpless transport of droplets on open surfaces has gained significant attention because
of its applications starting from vapor condensation to Lab-on-a-Chip systems. Mixing
two droplets on open surfaces can be carried out quickly by using wettability patterning.
However, it is quite challenging to split a droplet in the absence of external stimuli because
of the interfacial energy of the droplet. Here, we demonstrate a standalone power-free
technique for transport and splitting of droplets on open surfaces using continuous wet-
tability gradients. A droplet moves continuously from a low to a high wettability region
on the wettability-gradient surface. A Y-shaped wettability-gradient track — laid on a
superhydrophobic background —is used to investigate the dynamics of the splitting process.
A three-dimensional phase-field Cahn-Hilliard model for interfaces and the Navier-Stokes
equations for transport are employed and solved numerically using the finite element
method. Numerical results are used to decipher the motion and splitting of droplet at the Y
junction using the principle of energy conservation. It is observed that droplet splitting de-
pends on the configuration of the Y junction; droplets split faster for the superhydrophobic
wedge angle of 90° and the splitting ratio (ratio of the sizes of daughter droplets) depends
on the widths of the Y branches. A critical branch-width ratio (z—’f = 0.79) is identified
below which the droplet does not split and moves towards the branch of higher width and
settles there. The present study provides the required theoretical underpinnings to achieve
autonomous transport and splitting of droplets on open surfaces, which has clear potential
for applications in Lab-on-a-Chip devices.

DOI: 10.1103/PhysRevFluids.6.094003

I. INTRODUCTION

Open surface droplet manipulation on engineered surfaces has gained a lot of attention recently
and has the potential to spawn a number of surface fluidics devices that may have a transformative
impact on micro and nanofluidics. This is exemplified by open surface liquid transport, mixing,
metering, splitting, etc. and has applications in Lab-on-a-Chip (LOC) systems [1,2], point-of-care
(POC) diagnostics [3], microfluidic devices [4-9], spray cooling [10], etc. Passive droplet migration
on a surface using wettability difference is demonstrated by Yuan et al. [11]. Open surface passive
liquid mixing was demonstrated by Morrissette et al. [2]. They showed liquid transport and mixing
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by using wettability patterning. In the absence of external force, droplet splitting is difficult to
achieve as compared with mixing because of the interfacial energy of the droplet.

Passive droplet manipulation on an open surface using a wettability gradient has gained a lot
of interest because of its nonintrusive nature. Various research groups have performed experiments
and numerical analyses of droplet manipulation on wettability-gradient surfaces [12—14]. Droplets
move on a surface with wettability gradients because of the curvature difference between the front
and back of the droplet. This curvature difference creates a net driving force along the direction of
droplet transport, so the droplet moves. In our previous work, we performed a numerical analysis
of droplet transport on different wettability-gradient surfaces [15], and we identified that the net
driving force on a droplet is a maximum for a surface having a gradient of wettability from super-
hydrophobic to superhydrophilic. Experimentally, it is possible to create such wettability-gradient
surfaces [16]. Liu et al. [16] demonstrated a technique of preparing a wettability-gradient surface
on a silicon wafer from superhydrophobic (contact angle 2166°) to superhydrophilic (contact angle
~15.5°). In the present work we used a surface with an almost similar wettability gradient.

Droplet splitting on an open surface resembles the droplet generation technique on a microchan-
nel: in both cases, the fluid interface has to be ruptured. Droplet generation in a microchannel of
Y and T-junction geometries are studied extensively by Ushikubo et al. [17] and Carlson et al.
[18]. They observed that the fluids and the interfacial properties play a major role in breaking
the interface. There are various active droplet-splitting techniques, such as electric-field-mediated
droplet control [19], electrowetting [20,21], using acoustic waves [22,23], using thermal actuation
[24], and using magnetic fields [25,26]. Samiei et al. [27] performed a systematic analysis of a
geometry-based unequal-droplet splitting in digital microfluidics. They developed an operator for
unequal-droplet splitting by geometrical modification of electrodes in digital microfluidics (DMF)
platforms. Using this operator, a droplet dispensed from a reservoir can be divided unequally.
Although there are a number of active droplet-splitting techniques available in the literature, to
the best of our knowledge, there is a paucity of studies on passive open surface droplet-splitting
techniques. The open surface platform is advantageous for the splitting of droplets because of
its accessibility, ease of fabrication, and adaptability. Song et al. [28] created a superhydrophobic
strip on a hydrophilic surface and demonstrated splitting. They used Y-shaped patterns and placed
the droplet at the junction of the superhydrophobic strips, which split the droplet into three parts.
The volume ratios of the split droplet were controlled by manipulating the position of the droplet
placement. The droplet could be split into a greater number of mini droplets by increasing the
number of superhydrophobic strips. Berry et al. [29] showed a passive open surface droplet-splitting
technique driven by capillary flow. They created a T-shaped bypass open channel and added a carrier
fluid for easy transport of the droplet. Although they showed a controlled droplet-splitting technique
by using an open channel on the surface, their approach required a carrier fluid to carry the droplet
and fabrication of open channels with bypass junctions, which is challenging.

There are some relevant works in the field. For example, the study on droplet running uphill from
Whitesides et al. [30], the recent work on jumping or trampolining drops on surface nanostructures
[31,32] and on bouncing drops driven by Marangoni stress [33]. Our previous work [15] focused
on transporting a droplet on a wettability-confined gradient surface with the primary objective
of finding the optimum wettability confinement. However in this work, we mainly focus on the
splitting dynamics of a droplet. In microfluidic devices, LOC systems, and the point-of-care (POC)
diagnostic systems, often it is required to split droplets a certain distance from the position where
the droplets are dispensed. In this work, we proposed an optimum wettability pattern that serves this
purpose in a passive manner. Although passive droplet transport on an open surface has been widely
studied in the past, the combination of the passive transport and splitting of a droplet together on
an open surface platform is not explored yet. To achieve passive droplet displacement, we created a
gradient of wettability on a surface, and, to split the moving droplet, we used wettability patterning
by creating a Y-shaped wettability-gradient track laid on a superhydrophobic background. With this
design, the droplet could be divided into two equal or unequal parts by manipulating the branch
widths of the Y track. The approach extends the applications to open surface droplet metering. The
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FIG. 1. A droplet of diameter dy = 0.5 mm is placed on a Y-shaped wettability-gradient track laid on
a superhydrophobic background. The superhydrophobic background of the Y track has a contact angle of
170°. The initial position of the droplet is at a distance d, from the left. The base track of the Y-shaped
wettability-gradient track has width w and is divided into two branches by a superhydrophobic wedge of wedge
angle «. The branches of the Y track have widths w; and w,. The length of the branches are L, = 1.5 mm and
the length of the base track of Y is L; = 2 mm. The wettability gradient is linear and the variation of contact
angle is from 67 = 165° to O™ = 25° for length L, and from 6% = 25° to #* = 5° for length L,. At the
bifurcation region, the contact angle is close to 25°, which is represented by yellow color at the base track and
the light green at the branches. The transition from yellow to light green is just to distinguish the base track
and the branches.

physics of the droplet transport, flow pattern inside the droplet, and the splitting mechanisms have
been explained through detailed numerical studies. The physics is explained through scale analysis
and with the help of an energy conservation approach. This concept is used here to combine droplet
transport and splitting on an open surface platform without creating any channels, which widens the
application potential of surface fluidics devices.

II. MATHEMATICAL FORMULATION

The problem geometry is shown in Fig. 1. The droplet is placed on a Y-shaped bifurcated
wettability-gradient track laid on a superhydrophobic background. The base track (length L;) and
the branches of the Y track (length L) have different wettability gradients. For the base track (length
L), the variation of the contact angle along the direction of droplet transport is

0" — ™)
———§.

01(s) = 6" —
1(s) L

(D
The symbol “s” denotes the coordinate along the surface fluidic channel with a wettability gradient.
For the branches of the Y track (length L,), the variation of contact angle along the direction of
droplet transport is

" -6
——

0r(s) = OM —
h(s) L

, 2)

where 6 = 165°, 9¥ = 25° and 6L = 5° represents the contact angle at the upstream, at the
bifurcation point of the Y track, and at the downstream end of the wettability-gradient track.

The numerical model is implemented in COMSOL Multiphysics [34] using a laminar two-
phase flow model with the phase-field method [35,36] for tracking the interface. It is assumed
that the flow is laminar and incompressible. The system is considered isothermal and at room
temperature. The density and viscosity of the droplet and the air are taken as constant. For con-
servation of mass and momentum, the incompressible continuity and Navier-Stokes equations are

094003-3



IMDAD UDDIN CHOWDHURY et al.

used [37]:
V-u=0, 3)

ou
por T Vyu=V.[pl+u(Vu+ vul)] + pg + F;, 4)

where all the bold quantities are vectors. The average density of the fluid is represented by p
(kg/m?), the average dynamic viscosity of the fluid is p (Pas), fluid pressure is p (Pa), and the
velocity vector is denoted by u (m/s). The surface tension force is represented by Fy (N/m?), I
represents the identity matrix, and the gravitational constant is denoted by g (m/s>). The average
value of fluid density p and the dynamic viscosity u is calculated as follows:

0= paVr1+ piVso, (5

m= Ve + miVyo, (6)

where p; and p; represent the density and dynamics viscosity of the droplet, respectively, whereas
Pq and p, are the density and dynamics viscosity of air, respectively. V| and Vy , are the fractions
of the phase-field function ¢, which can be expressed as

1-¢

Vi = > @)
+

Va =12 ®)

Via+Via =1, )

where ¢ is the phase-field function whose value varies from —1 to 1 across the interface. For air,
the value of ¢ is —1, whereas it is 1 for the droplet. From Eqgs. (5) and (6), in the droplet domain
p=p (¢ =1),and p = p, (¢ = —1) in the air domain.

The phase-field method gives a better alternative for solving multiphase flow situations. The
Cahn-Hilliard equation is used to capture the evolution of the interface which is a fourth-order partial
differential equation (PDE). In this method, the diffused interface is tracked using a phase-field
function ¢. The Cahn-Hilliard equation not only convects the interface but also ensures energy
conservation of the system. The phase-field function ¢ is governed by the following equation [36]:

%-ﬁ-u V¢ =V . xVG, (10)
where the mobility x (m? s/kg) represents the timescale of diffusion for the Cahn-Hilliard equation.
G is the chemical potential, which is calculated as the rate of change of free energy F' at the interface
(G = %). The free energy F is expressed as [37]

1
F(p, V)= / <5x2| Vo P+ Ko<¢>>dv, (11)

wherein using €,, (m) as the liquid-gas interface thickness, we can identify %ep_f2| Vo |* as the
interfacial free-energy density and Ky = 4:‘f2 (¢* — 1)? [37] is the bulk-energy density. To choose

the interface thickness €, we referred to Wu et al. [38]. They observed that the numerical results
vary drastically for Cahn number Cn = Ed’— > (.15. Since the variation in the result is very small for
Cn < 0.15 and we also observed it in our numerical simulation, and thus we have chosen Cn = 0.15.

The reason behind choosing the highest possible value of Cn is to reduce the computational expense.
For the highest value of Cn, we can get the maximum possible interface thickness €, for which the
solver works properly without affecting the results. In the present work, we consider the diameter of
the droplet dy as 0.5 mm and thus we have €,y = 75 um. We understand that the chosen interface
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thickness is not realistic, but this is the limitation of the numerical modeling of such sharp interfaces.
If we consider a realistic value (thickness on the nm scale) of the interface then the number of grid
cells becomes so large that it requires a supercomputer to simulate. Thus, for numerical modeling
of such sharp interfaces, researchers use the maximum feasible value of the interface thickness,
which generally ranges from 10 to 100 pum [38]. The mixing energy density A (V) is related to the

interfacial energy of the droplet o as o = 2{ % [36]. The chemical potential G can be expressed

as [37]
_OF s @D
G—%_)(—V ¢+—€pr ) (12)

In the present case, we decompose the Cahn-Hilliard equation into two second-order PDEs as
follows [34,36]:

M)y ve=v. —Vw (13)
3I pf
==V Vo + (- 1)+ <€pf )gf; (14)

The value of the mobility x should be high enough to maintain a constant interface thickness,
whereas it should be low enough to damp the convective motion. The mobility yx is controlled by a
mobility-tuning parameter 8. The mobility is calculated as x = Be,; [36]. The parameter 8 should
not be too high to avoid excessive diffusion and it should be sufficiently small to maintain a constant
interface thickness [34]. A value of 1 m s/kg is a good starting point for most of the models [34].
We started with 8 = 1 ms/kg and we found that the solution is insensitive for § < 0.01 ms/kg.
Thus we have considered 8 = 0.01 m s/kg. The external free energy is represented by f (J/m?).

In the present case, the phi derivative of the external free energy, a ¢ , is taken as zero. The surface
tension force F; is calculated as [34]
af
Fs = (—I/f - —)Vcb 15)
€pf” ¢

We considered all the boundaries of the three-dimensional (3D) domain (see Fig. 1) as zero
pressure “outlet” boundary conditions except the bottom boundary where wettability patterning
is performed. The bottom boundary is called the “wetted wall” where the Navier slip boundary
condition is adopted. A negligible hysteresis is considered at the wetted wall. The Navier slip
boundary condition enforces a finite tangential velocity at the wetted wall. The tangential velocity
component is zero at an extrapolated distance of 8 from the wall. It also enforces the no-penetration
boundary condition at the wetted wall as

u - Ay =0, (16)

where the normal unit vector at the wetted wall is represented by fiyay.

III. NONDIMENSIONAL PARAMETERS, NUMERICAL METHODOLOGY,
AND ENERGY BALANCE

A. Characteristic quantities and nondimensional parameters

Considering the characteristic length as the diameter of the droplet dy, for a droplet in steady-state
motion on a wettability-gradient surface, the droplet velocity can be expressed as K“’d" d“’b‘) [39].
The symbol K] is a constant. We have chosen this steady-state droplet velocity as the characterlstlc
velocity U,. Thus, for the linear wettability gradient considered,

d
U, = 2% (| cos 6" — cos61), (17)
L,
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where L = (L) + L) is the total physical length of the wettability-gradient track. The characteristic
time 7 is
do Ly

=2 _ . 18
U. o(|cosff —cosOL|) (18)

The change in droplet surface energy is the driving potential for droplet motion. The characteristic
rate of change of surface energy can be expressed as E, = 1’;—& with E;, = oAy, being the initial

available surface energy of the droplet and A;, = 7 d,>.

We solved the Navier-stokes equation by considering both fluids as a single fluid by taking the
average of fluid properties across the interface, and U represents the resultant velocity of the fluid.
Thus, the nondimensional fluid velocity U* = % However, the average velocity of the droplet Uy
is calculated as [13]

_ Ln@uav
[, n(@)dv ’

where 1(¢) = 1 for ¢ > 0 represents the droplet phase and n(¢) = 0 for ¢ < 0 represents the air
phase. The nondimensional rate of change of energy E* = EE— where E is the rate of energy. The

Uy 19)

nondimensional time t* = I, where 7 represents the physical time. A nondimensional parameter

i (cos 8" — cos H9°"M)d,
= T

is introduced to characterize the wettability gradient of a surface. The symbol L; denotes the length
of the track on which droplet moves. For the base track L; = L; and for the branch track L; = L,.
The upstream and downstream contact angle of the wettability-gradient surface is 6° and §9°%",
respectively. For the base track 8" = 6 and #9°"" = 9™ whereas for the branches of the Y track
6% = M and A% = @ as shown in Fig. 1.

We defined the nondimensional wetted area of the droplet as A* = A /A, where A is the transient
wetted area of the droplet which increases while the droplet moves from the low-wettability region
to the high-wettability region, and Ay = dy>/4 is the initial projected wetted area of the droplet.

B. Energy conservation

When a droplet is deposited on a wettability-gradient substrate, the substrate-droplet system tries
to attain a minimum-energy state and hence the movement of the droplet. The initially available
energy of the droplet includes kinetic energy, gravitational energy, and surface energy. During
the movement of the droplet, this available energy decreases continuously and is absorbed by the
different forms of dissipations. The droplet-substrate system follows the energy conservation as [40]

d d
E(Ek + Eg + Ea) + E(Ev + Ecl + Eﬁlm) =0 (20)

where the kinetic energy of the droplet is Ey, the gravitational energy is E,, and the surface energy
is E;. The dissipation energy has three parts, namely, viscous dissipation E,, contact line dissipation
E,;, and the precursor film dissipation Egj, [40]. As reported by Attane et al. [40], Eqyy, is mostly
negligible for partial wetting. Since in the present study more than 80% of the droplet remains in
the partial wetting state, we have not considered Egyy,. The Bond number By < 1 so Ej is negligible
compared with the other available energies E; and Ej. The rate of change of kinetic energy of the
droplet Ej is expressed as

. d 1
E, = o (Z szf), 1)
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where m represents the mass of the droplet and U, represents the average velocity of the droplet.
The symbol Y denotes the summation of all U, inside the droplet at a particular time instant. To
calculate the surface energy of the droplet Ej, a finite change in surface energy d E; while the droplet
transports can be calculated as dEs; = 0,dA;, + 05, dAg, + 0gdAg [41], where the surface tensions
of the three phases are represented by oy, oy,, and oy with [, v, and s corresponding to the liquid,
vapor, and solid, respectively. In this work we used o as a liquid vapor surface tension of the liquid
in place of o;,. The area of different phases are represented by A;,, Ay, and Ag;. Because dA;, =
—dAg and with the help of Young’s equation, d Es can be written as dE; = 0y, (dA;, — €08 OygdAg),
where the average contact angle of the droplet is calculated as 0,,, = (8¢ + 6,)/2 with 67 and 6,
corresponding to the front and back contact angle of the droplet. Hence, the rate of change of
surface energy of the droplet, EY, is [41]

. d
E;= E[Ulu(AZU — €08 OaygAsi)]. (22)

The dynamics of the contact line can be better explained by kinetic molecular theory and hydro-
dynamic theory. Since this is not really in the scope of our work, we simplified the contact line
dynamics for the calculation of contact line dissipation. The dissipation at the contact line E; is due
to the motion of the fluid molecule at the three-phase contact region. E.; is present for a smooth
solid surface [40]. The magnitude of E,; depends on the surface heterogeneity. E.; is more for a
rough surface as compared with the purely smooth solid surface. The rate of change of contact line
dissipation, Ecz, is calculated as [40]

) do\2
E, = [ ufe,,f(d—‘f) ar, 23)
r

where €, is the interface thickness, and 11 is the friction factor whose value depends on the surface
wettability and the viscosity of the droplet [42]. The value of uy varies from 0.1 to 1 [42]. As we
considered a smooth solid surface, so it is appropriate to have a low value of 1 s so that the friction
is minimum. Thus, in the present study we have taken the value of u as 0.1 [42]. The symbol I
represents the perimeter of the droplet footprint. The viscous dissipation E, is in the core of the
droplet, which is due to the internal viscous flow. The rate of change of viscous dissipation E, is
expressed as [40]

£ _1/2 du 2+_ dv 2+_ dw’ ol (e ?
S H dx dy dz a dx dy

dv  dw\® [dw du\’
= — 4+ =) lav. 24
+<dz+dy> +<dx+dz):| @9

C. Grid-independent test and time stepping

A grid-independent test was performed for the droplet transport on a Y-shaped bifurcated
wettability-gradient track. The droplet diameter is taken as 0.5 mm and the length of the base
track L; = 2 mm, the length of the branch track L, = 1.5 mm, the width of the branch tracks
w; = wy = 0.3 mm, and the width of the base track w = 0.6 mm, as shown in the Fig. 1. A*
increases sharply up to t* =~ 300, after which the increment in A* slows down. The variation of A*
clearly becomes negligible for #; < 0.056d), as shown in Fig. 2. Thus, the independent grid size is
considered as 0.056d,.

Pseudo-time-stepping is used to solve the governing equations. A fictitious time derivative serves
the purpose of pseudo-time-stepping as

u—u*
At

+u-Vu= %V [=pIl+ V. [v(Vu+(Vu)T)]+g+%, (25)
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FIG. 2. The variation of the nondimensional wetted area of the droplet A* with nondimensional time ¢*
plotted for different element sizes h, to get the independent grid size. The dotted line represents the independent
grid.

where u* is the guess velocity. The average kinematic viscosity is denoted by v = % and the pseudo-
time-step by At, which is calculated as

At = R—, (26)

where h; is the grid size and the Courant-Friedrichs-Lewy (CFL) number is represented by R. A
small Az corresponds to a small CFL number. A proportional integral derivative (PID) regulator
controls the CFL number. At each time instant, the solver starts with a small CFL number and
sends the feedback to the solver using the PID regulator to check the convergence of the solver. The
feedback loop continues until the solution converges.

D. Validation

To validate the solver, we have chosen the droplet transport on a linear wettability-gradient
surface as reported by Ahmadlouydarab and Feng [43]. A tetraethylene-glycol droplet of 1 mm
diameter having a density of 1130 kg/m?, a viscosity of 0.05 Pas, and a surface tension of
0.046 N/m at room temperature [12], is placed on a wettability-gradient surface with an upstream
contact angle of 92.3° and a downstream contact angle of 23°. The variation of the contact angle
is linear. The length of the wettability-gradient track is taken as L = 6.67 mm. For simplicity,
the density of the surrounding medium is considered to be the same as the droplet density. The
viscosity ratio is defined as N = % We have performed the validation for two viscosity ratios
N =1 and N = 50. The thickness of the interface is taken as €,r = 20.3 um [43] and the grid
size is taken as #; = 5 um such that there are four grid cells across the interface. The results are
independent of the chosen grid size. The mobility is taken as x = 1.387 x 1072 m?s/kg [43]. Thus
the mobility-tuning parameter turns out to be 3.467 m s/kg. The slip length is considered as 20 um
[43]. Nondimensional center position of the droplet is defined as x* = % and, the capillary number
of the droplet is Ca = "’TU’ The average velocity of the droplet is represented by U,. Figure 3 shows
the variation of Ca while the droplet moves on the wettability-gradient surface. The validation shows
a very good match (within 3%) with the numerical result of Ahmadlouydarab and Feng [43].
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FIG. 3. The variation of the capillary number of the droplet Ca while it transports on a wettability-gradient
surface. The red square and green triangle correspond to the Ca of Ahmadlouydarab and Feng [43]. The blue
and black lines represent the present simulated Ca.

IV. RESULTS AND DISCUSSION
A. Droplet-splitting dynamics

Under a wettability gradient, the motion of the droplet is due to the curvature difference between
the front and back half of the droplet [12]. Here we examine how the droplet splits into two equal
or unequal parts during the transport of the droplet depending on the branch width of the Y track.

Figure 4 shows the splitting dynamics of the droplet for the branch width ratio w,/w; = 1 and
a =90°. Up to ¢* = 161, the droplet moves smoothly on the base track due to the increase in
wettability from left to right (Iength L;). The wettability gradient of the base track is A = 0.47.
During the transport, the droplet spreads continuously, and the velocity of the droplet increases
sharply up to t* = 161. For t* > 161, the droplet encounters the superhydrophobic wedge. The
superhydrophobic wedge has very low wettability and it offers resistance to droplet motion. The

t*
222
122 283
161 634
Stage | Stage 11

FIG. 4. Droplet splitting on a Y-shaped bifurcated wettability-gradient track with the branch width ratio
wy/w; = 1 and the superhydrophobic wedge angle o = 90°.
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FIG. 5. (a) Variation of the nondimensional front and back position of the droplet x* and x,*, respectively,
with #*. The droplet shape evolution with closeup looks (side view, top view, and sectional profile) of droplet
spreading: (b) position A (end of Stage 1), (c) position B (initial phase of Stage II), and (d) position C (end of
Stage II) for w,/w; = 1 and the wedge angle « = 90°.

branches of the Y track have very high wettability (hydrophilic zone) and a wettability gradient,
which creates a driving force. The net effect is splitting of the droplet along two branches in the Y
track. The splitting occurs from * = 161 to t* = 634, dividing the droplet into two parts. Since we
have considered w, = wj, the droplet splits into two equal volumes. We divide the whole transport
and splitting process of the droplet into two stages. The smooth droplet transport on the base track
of Y is denoted Stage I (up to t* = 161) and the splitting of the droplet at the superhydrophobic
wedge is denoted Stage IT (#* > 161).

Figure 5(a) plots the nondimensional front (x;*) and back (x,*) positions of the droplet. Both x*
and x,* increase sharply in Stage I and slow down significantly in Stage II. In Stage I, the droplet is
on the base track, which has a higher wettability-gradient A as compared with the branches of the Y
track. Points A1, A2 (end of Stage 1), B1, B2 (start of Stage II), and C1 and C2 (end of Stage II) are
the positions of the droplet at which the zoomed views of the droplet is presented in Figs. 5(b)-5(d).
Figure 5(b) shows a zoomed view of the droplet shape at #* = 150 (position A), where the droplet
is in the base track (A = 0.47). It is observed that the distribution of droplet volume is lower in the
front part of the droplet as compared with the back part (see the sectional profiles A1-Al and A2-A2,
and the side view of the droplet at position A). This is mainly due to the wettability contrast on the
surface. The curvature difference between the droplet front and back, which drives the droplet, is
also clearly apparent. Figure 5(c) shows the closeup of the droplet shape at t* = 238, where the
droplet is exposed to the superhydrophobic wedge. The cross-sectional profiles (B1-B1 and B2-B2)
and the side view of the droplet at position B suggest that a larger fraction of the droplet volume is
on the back side as compared with the front. Figure 5(d) shows the droplet shape at the end of the
splitting (#* = 634). Because of the equal branch width, the volumes in the branches are identical.
As the branches of Y track have a low wettability gradient (A = 0.03) as compared with the base
track (A = 0.47), the curvature difference between the back and front part of the droplet at the
branches is minimal (see the sectional profiles C1-C1 and C2-C2 and the side view of the droplet at
position C).
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FIG. 6. Velocity contour with overlaying vector plot inside the droplet during transport on a Y-shaped
bifurcated wettability-gradient track having a branch-width ratio w,/w; = 1 and the superhydrophobic wedge
angle o = 90°. The reference point (X, Y, Z) = (0, 0, 0) is the bifurcation point of the Y track. The contours
and velocity vectors are plotted on three different cross sections at (a) t* = 112, (b) r* = 150, (c¢) * = 238,
and (d) t* = 634. The velocity vectors represent the direction of fluid velocity is shown by black arrows. The
droplet interface is shown by the solid blue line.

The splitting dynamics of the droplet during the transport on a Y-shaped bifurcated track can be
better understood by the velocity contour with vector plots, as shown in Fig. 6. The velocity contour
and the vectors correspond to the nondimensional fluid velocity U*. We consider four different
time instants during the droplet transport: t* = 112, * = 150, t* = 238, and t* = 634, as shown in
Figs. 6(a)-6(d), respectively. The velocity data are plotted at three cross sections X-Y, Y-Z, and Z-X
for t* = 112, t* = 150, and t* = 238. The cross-section X-Y is at a height Z* = 5 = 0.07 away

from the substrate while the cross-section Z-X is through the reference point Y* = d— = 0 which
bisects the droplet. As the droplet is moving in the X direction, the Y'-Z plane which passes through
the droplet center varies while the droplet transports. At t* = 112, the droplet is at the base track and
the velocity inside the droplet is nonuniform, as shown in Fig. 6(a). The X-Y and Z-X cross sections
suggest that the nondimensional velocity of the fluid U* is more in the front half of the droplet as
compared with the back half. This is because of the high wettability of the substrate in the front
part of the droplet which leads to higher inertia in the front contact line. The maximum value of U*
at t* = 112 is 0.03. At ¢* = 112, the droplet center is at X* = d = —1.94 thus, the Y — Z cross
section is taken at X* = —1.94 and the vector plot suggests that the fluid moves from droplet top to
bottom and finally direct towards the lateral contact line [refer to the Y-Z cross section of Fig. 6(a)].
This movement of the fluid in the vertical direction is due to the continuous height reduction of the
droplet top interface while it moves. Figure 6(b) shows the velocity data inside the droplet while
the droplet is at #* = 150. The behavior of the fluid velocity inside the droplet at t* = 150 is almost
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similar to the fluid velocity at t* = 112. The maximum value of U* is little bit higher (=0.036) at
t* = 150 as compared with t* = 112. The droplet at #* = 150 has higher spreading then att* = 112
and thus a higher driving force, which leads to a higher U*.

We have taken a time instant of Stage II (+* = 238) to understand the role of fluid velocity during
the splitting of the droplet, as shown in Fig. 6(c). Notably, the X-Y cross section suggests four
high-velocity patches in the velocity contour U*, two are at the back part of the droplet (base track),
and the other two patches are at the front part of the droplet (branches). There are four patches
in the velocity contour U* [refer to the X-Y cross section of Fig. 6(c)]. The two patches of U* at
the branches are due to the tension on the droplet in the direction of droplet transport. In contrast,
the other two patches of U* at the base track are due to the obstruction faced by the droplet on a
superhydrophobic wedge. The vector plot suggests that the two base track patches of U* are in the
opposite direction of droplet transport, and the magnitude is low compared with the front patches
[see X-Y cross section of Fig. 6(c)]. The two patches at the base track are due to the combined
effect of wettability confinement of the base track end corners at the bifurcation junction and the
obstruction of the superhydrophobic wedge. Whereas, the Z-X cross section of Fig. 6(c) shows
fluid motion in the opposite direction with a relatively low velocity due to the backward inertia
of the droplet after facing the obstruction in the superhydrophobic wedge. Due to the continuous
spreading of the droplet, there is a downward movement of the fluid, as shown in cross section
Y-Z of Fig. 6(c). The inward movement of fluid at the contact line is because of the wettability
confinement at the end corners of the base track in the bifurcation junction.

Finally, we show the velocity plot just after the splitting of the droplet (at #* = 634) in Fig. 6(d).
Due to the symmetry in the branches, we concentrate on the velocity data only for one branch. We
have taken three cross sections p-p, q-q, and r-r. The cross section r-r is at the height of Z* = 0.07
away from the substrate. The r-r and g-q cross sections show that the fluid velocity is more at the
back end than at the front of the splitting droplet, as the droplet separates at the bifurcation point.
The fluid velocity inside the droplet is nonuniform. It is observed that the fluid velocity is maximum
at the top of the droplet and decreases to a minimum value near the substrate, as shown in p-p and
g-q cross sections.

B. Energy balance

Various forms of energies associated with the droplet motion on a wettability-gradient surface is
discussed in Sec. III. The rate of change of contact line dissipation, E,;, can be simplified as [42]

. dep\> ¢ :
E, = =) ar~ Peeps) ~ puPUqt”, 27
’ /r“fef’f(dt) “ff"f(dr) (dt>( ) e .

where the perimeter of the contact line is represented by P. which changes during the droplet
transport because of the continuous spreading of the droplet and I' = P.€,;. The average contact
line velocity is represented by U, = fl—:. The variation of phase field variable ¢ along the radial

direction of the droplet is approximated as d—‘f ~ 1 [42] Thus, it is observed from Eq. (27)

that contact-line dissipation is not really dependent on the interface thickness €. ELI is scaled
as [ fdoUCl [refer to Eq. (27)], whereas the viscous dissipation E is scaled as mdoUd [refer to
Eq. (24)]. The nondimensional average droplet velocity U,;* = Fd, whereas the nondimensional
contact line velocity is Uy* = Q The nondimensional rate of change of viscous d1ss1pat10n is
E} = £, whereas the nondlmensmnal rate of change of contact-line dissipation is E = " s
observed that the velocities U;* and U,;* are of the same order [see inset of Fig. 7(a)] and hence we
can write

E *

PN (28)
Ev 22
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FIG 7. (a) Variation of the nondimensional viscous and contact line dissipation rates of the droplet E," and
Ed , respectively, with #*. (b) Variation of the nondimensional rate of change of surface energy of the droplet
E,” and the kinetic energy of the droplet E." with r*. (c) Variation of (E," + E.*) and (E," + E;”) with ¢*.

Hence, for a high-viscosity liquid droplet (i; > 0.1), E,* dominates over E;;*. But, as 1n the present
case, we considered a low-viscosity liquid (water droplet), so E.;" dominates over E,” as shown in
Flg 7(a) (note the two ordinate-axis scales differ by an order of magnitude). It is observed that both
E." and E,” increases sharply in Stage I (up to * = 161) because of the sharp increase in U,* and
U™ [see the inset of Fig. 7(a)]. Once the droplet is exposed to the superhydrophobic wedge and the
branc'hes of the Y track, both U;* and U,;* start decreasing and hence the decreasing trend of E."
and E,”

Figure 7(b) shows that, during droplet transport, the nondimensional rate of change of surface
energy of the droplet, E*, dominates over the nondimensional rate of change of kinetic energy
of the droplet, E;". The surface energy of the droplet decreases continuously. The surface energy
reduction rate E," increases sharply up to the end of Stage I because of the sharp spreading of the
droplet (up to * = 161). For t* > 161 (Stage II), because of the obstruction in droplet transport
by the superhydrophobic wedge, the (reduction) rate of surface energy change E," slows down.
In Stage I, the rate of decrease in surface energy is stronger than in Stage II. This is because of
the higher wettability gradient A = 0.47 in the base track compared with A = 0.03 in the branch
track. In Stage I, the surface energy reduction is ~60%, whereas in Stage II the reduction is around
20%. The total reduction in surface energy in the whole process is ~80%, and the remaining ~20%
surface energy stays in the droplet. The rate of change of kinetic energy E;" increases up to the end
of Stage I because of the increase in the droplet velocity U, in Stage 1. This increasing trend of
droplet velocity lasts up to the beginning of Stage II; after that, ;" decreases because of the low
inertia of the droplet and the low wettability gradient of the branches.
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TABLE I. Nondimensional initial and final surface energy of the droplet at Stage 11, «; and «f, respectively,
for :—? =1and ¢ = 90°.

Model K; Ky Ki — Ky

Numerical 0.49 0.23 0.26

As shown in Eq. (20), the available energies are E; and Ej, whereas these energies dissipate in
the form of E, and E,; [40]. Thus, as per the energy conservation, (E,+ Ep) = (Ev + E,;) [refer to
Eq. (20)]. Figure 7(c) shows that, during the droplet transport (E," + E.") and (E,” + E.;*) are the
mirror image of each other. At any particular ¢*, the sum of all E* is almost zero, thus energy is
conserved during droplet transport and splitting.

A droplet can be split into any number of parts with the help of external energy. The energy
required to split a droplet of radius R into n numbers of equal parts can be expressed as E,,, =
47 R?c(n'/3 — 1). For the equal branch width (w; = w, = ¢), the droplet splits into two equal parts
with the help of the wettability gradient on the branches and the superhydrophobic wedge. The
theoretical nondimensional surface energy k = E’“’ required to split a droplet into two equal parts
is 0.26 (n = 2), where E,, denotes the initial surface energy of the droplet, which is defined in
Sec. IIT A. The numerical values of k; and « s are shown in Table I. (k; — k) corresponds the energy
loss during the splitting. Note that the numerical prediction of (k; — k) = 0.26 is in very good
agreement with the theoretical prediction of nondimensional energy required to split a droplet (k =
0.26). We also calculated the available surface energy of the droplet just after the splitting of the
droplet (end of Stage II), as shown in Appendix A 2. We defined the nondimensional final surface
energy of Stage Il as ky = i, where the expression of E; 7 is o [(p1L2) — (L2g) cos(e +6" )] (refer
to Appendix A 2). We obtamed the theoretical value of ky = 0.27, which is close to the numerical
prediction of ky = 0.23.

C. Effect of geometrical parameters of the droplet and the Y track

In the previous sections, we mentioned that the droplet spreads continuously while it moves and
splits into two equal parts. Thus, the height and wetted area of the droplet changes continuously.
During droplet movement, the wetted area of the droplet steadily increases because of the continuous
spreading of the droplet. Figure 8(a) shows that A* increases sharply in Stage I because of the sharp
wettability gradient (A = 0.47) in the base track of Y. From the end of Stage I to t* = 294, A* still
increases sharply because of the inertia gained by the droplet in Stage I. At approximately t* = 294
the droplet loses the whole inertia gained from Stage 1. For t* > 294, most of the droplet is on the
branches of the Y track, and since the branches have low wettability gradient (A = 0.03), the droplet
spreads slowly and hence the increase in A* slows down.

We defined the nondimensional height of the droplet as 4* = h/L. The symbol & denotes the
maximum height of the droplet, and L = (L; + L) is the total physical length of the wettability-
gradient track. Figure 8(b) shows that 4* decreases sharply in Stage I because of the sharp spreading
of the droplet on the base track of Y. In Stage II also #* decreases, however, the rate of decrease in
h* slows down. This is because of the low wettability gradient (A = 0.03) in the branches of the Y
track (length L,) compared with the base track (length L;). #* decreases by almost 60% in Stage I
and ~20% in Stage II.

Figure 8(c) shows that the nondimensional time #* taken by the droplet to split into two
parts is decreasing as we increase the superhydrophobic wedge angle o up to 90°. Upon further
increase in «, t;* increases. Thus, o« = 90° is the optimum superhydrophobic wedge angle at
the bifurcation point of the Y track. The inset of Fig. 8(c) shows the geometrical parameters
of the superhydrophobic wedge. The length of Ly = L, sin 5 can be considered as the projected
obstruction length by the superhydrophobic wedge on the droplet. For a large value of « (close to
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FIG. 8. (a) Variation of the nondimensional wetted area of the droplet A* and (b) variation of the nondimen-
sional height of the droplet h* are plotted as a function of nondimensional time ¢* while the droplet transport and
split on the Y track with superhydrophobic wedge angle o = 90° at the bifurcation point. (c) Nondimensional
splitting time #,* taken by the droplet to split into two parts is plotted for different superhydrophobic wedge
angles .

180°), Ly is maximum (close to L,) and thus the droplet is exposed to the highest obstruction, so
the droplet takes a higher #,* to split. Upon decreasing the value of « (up to 90°), the droplet is
exposed to a lower Ly and thus #,* decreases. For o < 90°, the superhydrophobic wedge becomes
narrower at the bifurcation point and thus some parts of the droplet are on the superhydrophobic
wedge (refer to Appendix A 1). We defined a parameter called the nondimensional attachment area
at the bifurcation point, A* = A/Ap, where A is the attachment area of the two branching fluids at
the bifurcation point and Ay = dy?/4 is the initial projected area of the droplet. For o = 90°, A*
is 0.167. Upon further decreasing the value of « (less than 90°), A* starts increasing because of the
sharpening of the superhydrophobic wedge at the bifurcation point. For « = 30°, A* increases to
0.257, which leads to an additional attachment force F, between the two halves of the droplet in
the bifurcation region (refer to Appendix A 1) as compared with o = 90°. Thus, the droplet takes
a longer time (higher #,*) to split as compared with « = 90°. Figure 8(c) shows that a decreasing
value of & (below 90°) leads to an increase in 7,*.

D. Three different regimes in the droplet-splitting stage (Stage II)

At the end of the Stage I, the droplet is exposed to the superhydrophobic wedge and thus the
droplet loses its inertia. It is observed from the numerical results that the kinetic energy of the
droplet at Stage II is two to three orders of magnitude less than the surface energy of the droplet.
We identified three different regimes in Stage II depending on the movement of the droplet front on
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FIG. 9. The three distinct regimes during the droplet-splitting stage (Stage II). In Regime 1, p;* = 0.01¢* —
0.92 with R? = 0.98, whereas in Regime 3, p;* = 0.78¢*!/7 — 1 with R?> = 0.98.

the branches, as shown in Fig. 9. In Regime 1, the capillary force drives the droplet and the resistance
force in the bulk and the contact line of the droplet resist the droplet motion. We defined a parameter
called the nondimensional front position of the droplet in branch as p;* = Z—/‘Z, where x; is the droplet
front position along the direction of droplet spreading in the branch. The component of capillary
force in the direction of droplet spreading (x) is F. ~ og(cos O* — cos OM). The resistance force
on the droplet is of the form of hydrodynamic resistance which is at the bulk of the droplet and
the contact line resistance. From the above discussion in Sec. IV B, the hydrodynamic resistance
is F, ~ pdoUy, whereas the resistance at the contact line is F; ~ prdoU;. Both Uy and U, are
of the same order of magnitude and scale as ~7!, thus the total resistance on the droplet is F, =
F,4+Fy= W+ un f)do’%. As in Regime 1, the droplet moves due to the balance of F, and F,, so
we can write

x| ~t, (29)

. wi(Ly + Lp) .
oLy| cosOF — cosOL|

D1 (30)

The dependency of the nondimensional front position p;* with the nondimensional time ¢* is p;* ~
t*, which is also observed in our numerical results with R?> = 0.98, as shown in Regime 1 of Fig. 9.
We identified that the droplet front spreads on the branch slowly (Tanner’s spreading) in Regime
3. The liquid movement in this regime is governed by the dissipation of energy [44]. The viscous
dissipation is in the bulk liquid which occurs through the rolling motion on the liquid surface. During
this motion, the liquid packets from the free surface comes into the contact line (liquid front). For

such flow, assuming the lubrication approximation, the velocity (Poiseuille-flow assumption) of the
2

liquid front on the branch can be predicted as u ~ < ﬁl” , where e is the height of the liquid film in the

branch and Ap is the Laplace pressure gradient at the liquid front. For ¢ < x, the mean curvature

of the liquid front %ﬁ [44], and Ap ~ o%. Thus,

X1 oe’

u~ — ~

t Hixi

- (31
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FIG. 10. The splitting volume ratios of the droplet v, /v, is plotted with the branch-width ratios of the Y
track w,/w; for the superhydrophobic wedge angle o = 90°.

The liquid height e on the branches changes with time and, as the volume of the droplet V is
distributed equally on each branch for equal branch width (w; = w, = ¢), we can write e = V

2gx; "

Thus, Eq. (31) can be expressed as

Vi
X~ ( d 3> ", (32)
8uig
* o K v (L +L2)1/7 t*1/7 (33)
pr 2q Ly| cos0H — cos §L|1/7 ’

From the above equation we find that p;* obeys the relationship with t* as p;* ~ *!/7 in Regime

3. From Fig. 9, we obtained p;* ~ r*'/7 with R* = 0.98. The theoretical prediction is in good
agreement with our numerical results. We call Regime 2 the transition regime, where the droplet
front movement changes from the capillary-viscous regime to the Tanner’s spreading regime.

E. Effect of branch-width ratios on droplet splitting

The droplet-splitting parameter changes significantly for different configuration of the Y track.
As shown in Fig. 10, for branch widths w; = w,, the droplet splits into two halves (v; = v,). For
an unequal width of the branches of the Y track (w; # w,), the droplet splits into unequal volumes
(v # v7). Figure 10 shows that, as w,/w; increases, v, /v; increases. An increase in w,/w; means
an increase in the branch width w, and a decrease in the branch width w;. A higher branch width
can accumulate more volume. Thus, upon increasing w,, the volume v, (volume corresponds to
the branch width w;) increases which leads to an increase in v /v;. We defined a parameter U *
which is the difference in average U* between two branching fluids at #* = 320 (Stage II) where
the division of two branching fluid is made by cutting the droplet through the bifurcation point.
The variation of v,/v; is nonlinear with w,/w; from point A to point B. This is because of the
nonlinearity of U, * at a particular t* of Stage II, with w,/w,; as shown in the inset of Fig. 10. For
wy/w; < 0.79, the droplet cannot split into two parts, which is explained in the next section. We
consider that w,/w; = 0.79 is the critical branch-width ratio. A droplet can be split into the desired
volume by manipulating the branch width of the Y track.
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FIG. 11. Droplet dynamics for width ratio w,/w; = 0.714 and the superhydrophobic wedge angle o = 90°.

F. Dynamics of the droplet for w,/w; < 0.79 and « = 90°

For the branch-width ratio w, /w; < 0.79, in Stage I, although initially the droplet starts splitting
into two branches but because of the dominance of driving Laplace pressure towards the higher
branch-width side, the droplet finally enters into the higher-width branch, as shown in Fig. 11.
Force exerted on the droplet due to the Laplace pressure is scaled as Fj, ~ G(w% — w%)w;Lz, where
the radius of curvature at the droplet front and back is taken as w;/2 and w,/2, respectively. As
the droplet becomes a film in the branch and thus the other two radii of curvature at the droplet
front and back in both branches are > w;/2 and w;/2 and thus it does not contribute in Fj. The
forces due to the wettability gradient on both branches of widths w; and w, is scaled as F; ~
ow;(cos M — cos L) and F, ~ ow,(cos M — cos ), respectively. The hydrodynamic resistance
force on the droplet can be scaled as Fg ~ L""Lz , which is two to three orders of magnitude less
than Fp, Fy, and F;. In the initial phase of Stage 11 (from t* = 121 to t* = 235), the droplet spreads
on the branches due to the wettability gradient on the branches and also due to the inertia gained by
the droplet in Stage I. During that, the spreading is more on branch 2 as compared with the branch
1, as shown in Fig. 11. This is because of the higher driving force (F; > F;) on branch 2. This
phenomena of unequal-droplet spreading happens until the inertia of the droplet vanishes completely
(until £* = 235). For t* > 235, as the inertia of the droplet is close to zero, the competition between
Fy, F1, and F, drives the droplet. It is observed that the scaled values of if and ?’ are ~30 and
~40, respectively, for wy/w; = 0.714. Thus, F, dominates over F; and F, and the direction of F,
is towards branch 2, so the droplet moves towards the higher branch width side and settles there,
as shown in the Fig. 11. Considering the Poiseuille ﬂow of the droplet due to the driving Laplace-

pressure force Fj, the velocity of the droplet is u; =

12 L , where e is the height of the droplet

which can be approximated as e ~ and Ap = o( Ui - w%) is the driving Laplace pressure.

__v
Lr(wi+ws)
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Thus, the nondimensional velocity of the droplet u;* becomes

o(2 = )2

wp wy

3 . (34)
24, Ly° (wy + wy)?Ue

From the above equation, the theoretical prediction of u;* is 0.001 which matches well with our
numerical prediction (u;* = 0.0014) for w,/w; = 0.714 and @ = 90°.

*’\/

uj

V. CONCLUSION

We studied passive droplet transport and splitting on an open surface using a Y-shaped
wettability-gradient track on the surface. Generally, microchannels are widely used in microfluidic
devices for droplet mixing, metering, and splitting; however, the fabrication of microchannels
is quite challenging and time-consuming. An open surface droplet manipulation gives a better
alternative. The Y-shaped wettability-gradient track with the superhydrophobic background is used
for wettability patterning of an open surface in the present work. A droplet initially placed at
the inlet of the base track moves towards the Y junction and splits into the two branches due to
the wettability gradient. The net driving force due to the wettability gradient of the Y track, in the
direction of the droplet transport, is sufficient to overcome the droplet’s interfacial energy to split
into two parts by a superhydrophobic wedge at the bifurcation point of the Y track. The splitting
of the droplet is due to the combined effect of the wettability gradient and the superhydrophobic
wedge. The droplet splitting depends on the configuration of the Y track. We identified an optimum
configuration (superhydrophobic wedge angle o« = 90°) of the Y track at which the droplet splits
faster. We observed that the theoretical nondimensional energy (x = 0.26) required to split a
droplet into two equal parts matches well with the present energy loss during the splitting of the
droplet (x; — ky = 0.26). In the proposed wettability patterning, it is possible to have symmetric
and asymmetric droplet splitting by manipulating the branch widths. The droplet splits into two
halves for equal branch width, whereas an unequal branch width gives an asymmetric splitting.
We also identified a critical branch-width ratio (“” = 0.79), below which the droplet does not
split and moves towards the higher branch width side (wl) due to the back Laplace pressure. We
calculated the nondimensional velocity of the droplet «#;* = 0.0014 due to the back Laplace pressure
and it matches well with the theoretical prediction of u;* for ﬁ—: =0.714 and o = 90°. Thus, a
droplet of fixed volume can be displaced by a certain distance and then divided into two desired
volumes by manipulating the branch widths of the Y track, which has potential applications in the
Lab-on-a-Chip (LOC), smart microelectronics, point-of-care (POC) diagnostics, etc. We identified
three distinct regimes of droplet splitting and the temporal variations of the droplet front position
in the branches through scaling arguments. We also explored the flow pattern inside the droplet
during the transport and splitting. The physics of the droplet transport and splitting mechanisms
is explained through scaling and with the help of the energy conservation arguments. To validate
this work with experiment, one needs to create a Y-shaped wettability-gradient track of very
low hysteresis [45] on a superhydrophobic background. The droplet shapes during the transport,
droplet-splitting ratios for different branch width ratios, and the fluid motion inside the droplet can
be matched with the corresponding experiment.
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FIG. 12. Schematic of forces involved during the splitting of the droplet for o = 1 and (a) o = 90°,
(b) o =30°. Red line represents the droplet contact line. The dotted line corresponds the attachment area
between two parts of the droplet.

APPENDIX: FORCE BALANCE AND SURFACE-ENERGY CALCULATION
1. Forces involved during the splitting of the droplet

The droplet splits into two parts due to the combined effect of the wettability gradient and the
superhydrophobic wedge. Figures 12(a) and 12(b) show the force balance at the bifurcation point
while the droplet splits at t* = 283. We have not considered the hysteresis force in our numerical
modeling. The force T corresponds to the tensions on both the branches due to the wettability
gradient on the branches. The force Fy is the overall hydrodynamic resistance force. There is
an obstruction force Fy due to the superhydrophobic wedge in the opposite direction of droplet
transport. The force F, is the cohesive force between two parts of the droplet. The cohesive force is
the collective intermolecular forces such as H bonding and van der Waals forces. For o = 30°, the
droplet crosses the border of the superhydrophobic wedge due to the wedge’s narrowness. Thus, the
attachment area between two parts of the droplet is more than o = 90°. A larger attachment area at
the bifurcation junction for « = 30° leads to a greater attachment force F,. The force balance at the
bifurcation point is

mwm%=m+ﬁ, (A1)

F,=F, (A2)

2. Final surface energy of the droplet in the droplet-splitting stage (Stage II)

In the droplet-splitting stage (Stage II), the kinetic energy of the droplet is two to three orders of
magnitude less than the surface energy of the droplet, E, and hence the total available energy of the
droplet is equivalent to Ej.

For equal branch width (w; = w, = g), the droplet splits into equal parts. As the droplets in
both the branches are identical, the surface energy E; at the end of the splitting stage (Stage II) is
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FIG. 13. (a) Schematic of droplet initial and final shapes of droplet-splitting process for 2 = 1 and o =

90°. (b) Corresponding cross section 2-2 of the branch fluid. (c¢) Corresponding section 1-1 of the branch fluid.

calculated for single branch as shown in Fig. 13(a). The cross-section view of the branch fluid is
shown in Fig. 13(b). Using the geometry in Fig. 13(b), we can write

r—e

cosfB = — (A3)
e=r(1—cosp), (A4)

_ q/2
tan B = T—cosﬂ)’ (A5)

where e is the height of the droplet in branch, g is the width of the branch, r is the radius of curvature,
and g is the angle made by the droplet due to the confinement of the branch by the superhydrophobic
region. Let us consider the droplet volume as V and L, as the length of the branch. As the droplet
splits into two halves, volume conservation gives

Vv Br ,
27 |:180 _(r_e)} (A0

Thus, we can calculate r, 8, and e by using Eqs. (A4)—(A6) for a known V and L,. Let p; be the
total length of the droplet cap in the cross-sectional view [refer to Fig. 13(b)] which is equivalent to
2Br. The estimated E; of a single branch fluid is

eM +9L
Egr=o0 |:(P1L2) — (Lag) cos (T)] (A7)

The total surface energy of the droplet at the end of Stage Il is Ey r = 2E; ;.
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