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Abstract.
Background: Blood plasma proteins have been associated with Alzheimer’s disease (AD), but understanding which proteins
are on the causal pathway remains challenging.
Objective: Investigate the genetic overlap between candidate proteins and AD using polygenic risk scores (PRS) and
interrogate their causal relationship using bi-directional Mendelian randomization (MR).
Methods: Following a literature review, 31 proteins were selected for PRS analysis. PRS were constructed for prioritized
proteins with and without the apolipoprotein E region (APOE+/– PRS) and tested for association with AD status across three
cohorts (n = 6,244). An AD PRS was also tested for association with protein levels in one cohort (n = 410). Proteins showing
association with AD were taken forward for MR.
Results: For APOE �3, apolipoprotein B-100, and C-reactive protein (CRP), protein APOE+ PRS were associated with AD
below Bonferroni significance (pBonf, p < 0.00017). No protein APOE- PRS or AD PRS (APOE+/–) passed pBonf. However,
vitamin D-binding protein (protein PRS APOE-, p = 0.009) and insulin-like growth factor-binding protein 2 (AD APOE- PRS
p = 0.025, protein APOE- PRS p = 0.045) displayed suggestive signals and were selected for MR. In bi-directional MR, none
of the five proteins demonstrated a causal association (p < 0.05) in either direction.

1Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (http://adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of AD-
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or writing of this report.s
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Conclusion: Apolipoproteins and CRP PRS are associated with AD and provide a genetic signal linked to a specific,
accessible risk factor. While evidence of causality was limited, this study was conducted in a moderate sample size and
provides a framework for larger samples with greater statistical power.

Keywords: Alzheimer’s disease, apolipoprotein B-100, apolipoprotein E, blood proteins, C-reactive protein, insulin-like
growth factor binding protein 2, mendelian randomization analysis, polygenic trait, vitamin D-binding protein

INTRODUCTION

Over 50 million people currently live with demen-
tia worldwide, a figure forecast to rise to 152
million by 2050 as global populations live longer
[1]. The most common form of dementia is late-onset
Alzheimer’s disease (AD) [2], where individuals suf-
fer severe, progressive cognitive decline and a range
of neuropsychiatric symptoms [3] from their mid 60s
until death. AD is a highly heritable [4], polygenic
trait [5, 6] with a wide range of known genetic and
environmental risk factors [7, 8]. However, the pre-
cise etiology of AD remains unexplained [9] and no
disease altering treatments exist [10, 11].

Endophenotypes representing traits closer to a
hypothesized biological risk factor can help unpack
AD etiology and provide accessible targets for inter-
vention. For example, a wide range of blood plasma
proteins have been associated with AD [12] and pro-
vide a potential avenue for disease diagnosis and
treatment. Promisingly, prediction of AD diagno-
sis using plasma levels of amyloid-� (A�) [13]
and tau [14] is improving toward clinical level.
However, measuring known AD protein neuropatho-
logical end-products (A� and tau) provides limited
explanation of how other plasma proteins may medi-
ate AD risk. For example, Kiddle et al.’s systematic
review identified that four proteins (apolipoprotein
E (APOE), alpha-2-macroglobulin, complement C3,
and alpha-1-antitrypsin) were associated with AD in
at least five cohorts [12]. APOE and the complement
pathway have been consistently implicated in func-
tional and genetic studies of AD risk [15, 16] and
recent Mendelian randomization (MR) studies sug-
gest lower levels of APOE and complement C3 in
plasma may be causal for AD [17, 18].

One way to explore the role of plasma proteins
further is to assess their genetic overlap with AD.
Recent improvements in protein assay technology
have enabled the creation of a genetic atlas for plasma
proteins [19]. Over 3,000 proteins now have publicly
available genetic summary statistics [19], allowing
polygenic risk scores (PRS) to be constructed for
individual proteins. PRS represent aggregate genetic

propensity for a trait and so if associated with another
trait imply a degree of shared genetics influences
both traits. For example, a higher AD PRS has been
associated with lower cognitive ability in individu-
als without dementia [20] and with increased levels
of the promising AD biomarker p-tau181 [21]. If a
protein PRS is associated with AD, this provides a
genetic signal linked to a specific, accessible biologi-
cal risk factor, something which remains a challenge
for genome wide association studies (GWAS) [22].
PRS can also be calculated for individuals meaning
protein PRS associated with AD could inform AD
diagnosis prediction.

However, testing the association of PRS with a
trait does not demonstrate causality. For example, a
plasma protein PRS associated with AD may simply
indicate shared genetic variants which effect traits
or pathways unrelated to disease pathogenesis [23].
MR provides a method to test whether an exposure
causally effects an outcome by using genetic vari-
ants as instrumental variables in a construct similar
to a randomized control trial. This works because
an individual’s genes are effectively randomized at
birth enabling the creation of a quasi-intervention
group who have a genetic disposition for an expo-
sure [24]. In AD, MR has demonstrated the protective
effect of higher cognitive ability and educational
attainment in two large scale studies [7, 25] and has
indicated several blood metabolites are on the causal
disease pathway [26]. For plasma proteins specifi-
cally, MR has primarily been deployed as part of
large scale non-targeted, phenome-wide MR anal-
ysis [27, 28]. For example, Zheng et al. identified
111 causal associations between 65 proteins and 52
disease-related phenotypes (p < 3.5 × 10–7) includ-
ing sialic acid binding Ig-like lectin 3 (CD33) with
AD, supporting previous GWAS results [29, 30].
While phenome-wide MR designs excel at provid-
ing a multi-trait matrix of potential causal signals,
they lack the flexibility to unpack disease specific
relationships. For example, 61 out of 62 proteins asso-
ciated with AD at a p-value less than 0.05 in Zheng
et al. were tested using the Wald Ratio with only 1
SNP as an instrumental variable [27]. Disease specific
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approaches have more flexibility to relax assumptions
which can help increase statistical power and enable
more robust statistical sensitivity analyses [23].

The primary objective of this study was to explore
the genetic overlap between AD and plasma pro-
teins using PRS and to assess whether individual
plasma proteins play a causal role in AD etiology
using MR (see Fig. 1 for illustrative overview of
study design). This study identified a shortlist of
plasma proteins from existing literature that have
been robustly associated with AD or AD endopheno-
types and have publicly available genetic summary
data. PRS models were then created for each sho-
rtlisted protein and tested for association with AD
across three consortium cohorts, Genetic and Envi-
ronmental Risk in Alzheimer’s Disease (GERAD1),
Alzheimer’s Disease Neuroimaging Initiative (AD
NI), and AddNeuroMed (ANM). An AD PRS was
also constructed with publicly available genetic sum-
mary data from the largest case ascertained AD
GWAS to date [8] and used to test each protein for
bi-directional association in ANM where individual
level plasma protein data was available. Lastly, for
plasma proteins with PRS that demonstrated sig-
nificant associations with AD (see Materials and
Methods) in one or both PRS analyses, two sample

bi-directional MR was conducted to test for causality
(Fig. 1).

MATERIALS AND METHODS

Plasma protein candidates

A shortlist of plasma proteins was compiled for
analysis from previous AD discovery studies to
represent known protein candidates for genetic explo-
ration. A panel of 163 proteins previously associated
with AD or AD related phenotypes from a systematic
review of 21 non-targeted human AD blood pro-
tein discovery studies up to 2014 was used as the
baseline [12]. An additional literature review was
then conducted to cover the period from 2014–2019
and applied the same screening criteria (non-targeted
discovery studies, except for panel based studies
with > 100 candidates) [12] to generate the candidate
list (further details in the Supplementary Mate-
rial). Proteins were then selected for the shortlist
if they passed two criteria. Firstly, the association
replicated in > 1 study and, secondly, genetic sum-
mary data was available for the protein from Sun
et al.’s human plasma protein GWAS [19]. At the
time of analysis, Sun et al. was the largest, plasma

Fig. 1. Illustrative overview of study design outlining the four key steps in the study workflow: literature review, plasma protein PRS, AD
PRS, and bi-directional MR.
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protein GWAS using SomaLogic with publicly avail-
able data (downloaded and cross referenced from
http://www.phpc.cam.ac.uk/ceu/proteins/).

Plasma protein data preparation

Plasma protein genetic summary data was acq-
uired from Sun et al.’s GWAS of 3,622 proteins
in 3,301 healthy participants from the INTER-
VAL study (further details in the Supplementary
Material), a randomized trial of 45,000 blood
donors across 25 centers in England [31]. Summary
association results were made available on http://
www.phpc.cam.ac.uk/ceu/proteins/ and were down-
loaded for proteins on the shortlist. Files were then
uploaded to Rosalind, King’s College London’s
high-performance computing facility, for further
quality control (QC) and analysis. Further QC was
conducted using R.3.6.0 and was based primarily
on aligning to the protocol recommended for PRS
analysis [32]. Specifically, remaining duplicates, non
bi-allelic and non-target data overlapping variants
were removed and SNP rsIDs were added and
aligned with the target dataset (see https://github.
com/AlexHandy1/ad-genetic-overlap-analysis for
analysis scripts). Observed SNP heritability (h2SNP)
and cross protein genetic correlation (rg) was est-
imated for each protein using linkage disequilib-
rium score regression (LDSR) with the Python
LDSC package (Version 1.0.0) sourced from
https://github.com/bulik/ldsc.

AD data preparation

Individual level genotype data for AD cases and
controls was acquired from three consortium studies:
GERAD1, ADNI, and ANM.

GERAD1 is a European consortium (https://gtr.
ukri.org/projects?ref=G0902227) [33]. The GERA
D1 sample comprised up to 3,292 AD cases and 1,223
controls. Genetic data from a subset of 4,515 partic-
ipants was made available for this analysis prior to
QC (further details in the Supplementary Material).

ADNI is a longitudinal, multi-center North Amer-
ican study initiated in 2004 [34] and now in its fourth
wave (ADNI1, ADNI-GO, ADNI2, and ADNI3) col-
lecting clinical, imaging, genetic, and biomedical
biomarkers for AD. Genetic data from 1,674 par-
ticipants (not including ADNI3) was made available
for this analysis prior to QC (further details in the
Supplementary Material).

The ANM is a European consortium, initiated
in 2008 with the aim to establish biomarkers for
AD [35]. The Dementia Case Register (DCR) is
a follow-up of ANM, with UK subjects recruited
from the Maudsley and King’s Healthcare Partners
Dementia Case Register [36]. Genetic data from
1,063 participants from ANM (including DCR) was
made available for this analysis prior to QC (further
details in the Supplementary Material). In addition to
full clinical and demographic data, 410 participants
had plasma protein data. Plasma protein data was
collected using SomaLogic’s multiplexed, aptamer-
based assay (SOMAscan) with SOMAmers for 1,016
proteins. Normalized, log2 transformed residuals
were used as the phenotype after regression with age,
sex, batch, and 10 principal components.

For all three consortium datasets, standard genetic
QC procedures were applied (removal of non-au-
tosomal chromosomes, alleles with minor allele fre-
quency < 1%, genotypes with call rate < 98% and
Hardy Weinberg deviations at 1 × 10–5) based on
protocol by Coleman [37] (further details in Supple-
mentary Figure 1). The sample size remaining for
analysis after these QC procedures were applied is
reported in the results (see Tables 2 and 3).

Plasma protein PRS

A PRS was constructed with the post QC Sun
et al. GWAS data (“base data”) for each shortlist
protein using PRSice-2 software (version 2.3.1e)
[38]. PRSice automatically removes strand ambigu-
ous SNPs and SNPs that are not present in both
base and target data. SNPs were further “clumped”
if LD (measured in r2) was > 0.1 within a win-
dow of 250 kilobases with the SNP with the lowest
GWAS p-value within each region retained. After
clumping, PRS were calculated with SNPs under 10
pre-defined p-value thresholds (5e-08, 5e-05, 5e-04,
0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1). PRS at
all 10 thresholds for each protein were then indepen-
dently tested for association with each individual AD
dataset (GERAD1, ADNI and ANM) using logistic
regression. Age, sex, and 7 principal components to
control for population stratification were included as
covariates to create a null model (covariates only),
which was subtracted from the full model (covariates
and PRS), to provide a Lee adjusted r2 [39] assuming
an AD prevalence of 7% [40].

Protein PRS, for each selected protein, were tested
for association with AD with the APOE region
(992 SNPs within 750 kilobases of rs429358 on
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chromosome 19) included (APOE+) and excluded
(APOE-) for all participants. APOE SNPs were
removed to test whether protein PRS associations
held without the known, strong effects of APOE
alleles on AD risk [41]. As a secondary analysis
to explore sex and age specific associations, PRS
were constructed and tested for subgroups strati-
fied by male, female, and 70 years and over (≥ 70)
to test for gender and age specific effects. Lastly,
random-effects meta-analysis was conducted on the
PRS results at each p-value threshold across the three
AD datasets using R and a restricted maximum likeli-
hood (REML) estimator from the metafor R package
[42]. Meta-analyzed results were ranked by lowest
p-value to identify the most significant PRS model
threshold for each protein-AD association. A Bonfer-
roni corrected p-value of 0.00017 (0.05 / (number of
proteins x number of PRS p-value thresholds tested))
was estimated and used as the primary threshold for
significance. Given this is a conservative threshold,
if no proteins pass this threshold in all participants
(APOE+ and APOE–), nominally significant proteins
(p < 0.05) will be considered for MR analysis based
on an assessment of their association strength (e.g.,
how close to Bonferroni threshold) and consistency
(e.g., association across subgroups).

AD PRS

An AD PRS was constructed using the meta-
analyzed stage 1 discovery results from Kunkle et
al.’s AD GWAS [8] of 21,982 AD cases and 41,944
cognitively normal controls (“base data”) downloa-
ded from https://www.niagads.org/datasets/ng00075.
Kunkle et al. was selected to provide statistical power
and a clinical phenotype as the largest case ascer-
tained AD GWAS to date. QC was applied to the base
data of 11,480,632 variants to remove NAs, variants
without an rsID and non bi-allelic variants leaving
10,528,610 variants for PRS analysis. As rsIDs were
already provided in the AD base data and aligned to
GRCh37, non-target data overlapping variants were
removed with PRSice during the PRS analysis. p-
value thresholds and clumping configuration settings
in PRSice were kept constant with the protein PRS
analysis. No covariates were included as age, sex,
batch, and population stratification were already con-
trolled for in the production of the protein residuals
phenotype which was used as the target data. This
decision was taken to align with other proteomic
studies integrating genetic and proteomic data [19]
and to enable comparability. AD PRS were tested for

association with each individual shortlist protein
using linear regression and the PRS model with
the best fit (measured by lowest p-value) was pre-
sented for each protein. As with the protein PRS,
AD PRS were tested for association with and
without APOE SNPs and secondary analysis was con-
ducted on subsets stratified by gender (male, female)
and age (≥ 70). Bonferroni correction (and a more
liberal assessment of association strength) was esti-
mated and applied to control for multiple testing as
described in the protein PRS analysis (with num-
ber of tests adjusted for the number of proteins with
individual level blood data available for analysis).

Bi-directional MR

MR analysis was performed using the MR Base
R package [43] on a subset of proteins from the
PRS analyses. Proteins were selected for MR if they
had a p-value below Bonferroni significance in either
PRS analysis (protein PRS to AD APOE+/– or AD
PRS to protein APOE+/–) or if they were nomi-
nally significant (p-value < 0.05) in both directions
(protein PRS to AD APOE+/– and AD PRS to pro-
tein APOE+/–). Given Bonferroni is a conservative
threshold, if no protein passed Bonferroni signifi-
cance, the strongest protein association with a p-value
below 0.05 was also considered. Univariate MR was
performed with each protein as the exposure and AD
as the outcome. Genetic instrument SNPs for each
protein were selected from Sun et al. at two p-value
thresholds for analysis (5 × 10–8 and 5 × 10–6). The
less stringent 5 × 10–6 threshold was applied to
ensure SNPs were available for all proteins with
the noted limitation of introducing potential weak
instrument bias. Selected SNPs were then clumped
within a 250 kb window at LD r2 < 0.001. F statis-
tics were generated for each SNP (SNP-exposure
effect size∧2/SNP-exposure standard error∧2) to test
for weak instrument bias and excluded if < 10 [44].
The remaining SNPs were further pruned if they were
associated with any of the other proteins or with AD
directly (p < 5 × 10–8 in Kunkle et al. GWAS). This
was implemented to exclude SNPs that may affect AD
through a pathway other than the exposure protein
(horizontal pleiotropy) [45]. SNPs were also removed
in the APOE region (chromosome 19, base-pairs
4500000–4580000) as potential confounders that
violate MR’s core assumptions, given their known
association with AD [46]. Protein exposure SNPs
and AD outcome SNPs were harmonized and tested
with alleles assumed to be on the forward strand (no
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palindromic SNPs removed). As a secondary test,
the MR analysis was also run with palindromic
SNPs flipped and removed if non-inferable. Causal
estimates were estimated using inverse variance
weighted (IVW) two sample MR and sensitivities
were tested with MR-Egger, weighted median and
leave one out analysis (further details in the Supple-
mentary Material). To test for causality in the opposite
direction, this analysis pipeline was repeated with
AD as the exposure (using AD SNPs with p-value
< 5 × 10–8 from Kunkle et al. stages 1, 2, and 3) and
each protein as the outcome.

An interactive web dashboard was built with R
Shiny to present the full PRS and MR results (avail-
able at https://alexhandy1.shinyapps.io/ad-genetic-
overlap-web-results/) with the key results reported
herein.

RESULTS

Data preparation

The literature review provided 4 new studies [36,
47–49] adding 14 new proteins and bringing the total
candidate protein list to 175. From the 175 candidate
proteins, 31 passed the shortlist inclusion criteria (> 1
study replication, GWAS data available, see Table 1).

Sun et al.’s GWAS provided summary statistics
for 3301 participants (see characteristics in Supple-
mentary Table 1) covering 10,572,788 variants for
each protein, with 5,210,103 variants included for
PRS analysis after additional QC for this study (see
Supplementary Table 2). Average h2 SNP across the
proteins was 0.10; however, results were treated as
indicative given the average standard error was 0.16

Table 1
Protein shortlist for analysis ordered by number of studies replicated in from literature review

Protein name UniProt ID Studies replicated SOMAmer ID
in (N) (Sun et al. study)

Pancreatic prohormone P01298 7 PPY.4588.1.2
Apolipoprotein E (isoform �3) P02649 6 APOE.2937.10.2
Complement factor H P08603 5 CFH.4159.130.1
Plasma protease C1 inhibitor P05155 5 SERPING1.4479.14.2
Complement C3 P01024 5 C3.2755.8.2
Fibrinogen (D-dimer) P02671, 5 FGA.FGB.FGG.4907.56.1

P02675,
P02679

Serum amyloid P-component P02743 4 APCS.2474.54.5
Haptoglobin P00738 3 HP.3054.3.2
Interleukin-3 P08700 3 IL3.4717.55.2
Complement C4-A/B P0C0L4 3 C4A.C4B.4481.34.2

P0C0L5
Interleukin-10 P22301 3 IL10.2773.50.2
Vitronectin P04004 3 VTN.13125.45.3
Insulin-like growth P18065 3 IGFBP2.2570.72.5

factor-binding protein 2
Angiopoietin-2 O15123 2 ANGPT2.13660.76.3
Apolipoprotein B-100 P04114 2 APOB.2797.56.2
C-C motif chemokine 26 Q9Y258 2 CCL26.9168.31.3
C-reactive protein P02741 2 CRP.4337.49.2
Clusterin P10909 2 CLU.4542.24.2
Granulocyte colony- P09919 2 CSF3.8952.65.3

stimulating factor
Interleukin-13 P35225 2 IL13.3072.4.2
Interleukin-8 P10145 2 CXCL8.3447.64.2
Kit ligand P21583 2 KITLG.9377.25.3
Matrix metalloproteinase-9 P14780 2 MMP9.2579.17.5
Natriuretic peptides B P16860 2 NPPB.3723.1.2
Plasminogen P00747 2 PLG.3710.49.2
Resistin Q9HD89 2 RETN.3046.31.1
Serotransferrin P02787 2 TF.4162.54.2
Tenascin P24821 2 TNC.4155.3.2
Tumor necrosis factor P01375 2 TNF.5936.53.3
Vascular cell adhesion protein 1 P19320 2 VCAM1.2967.8.1
Vitamin D-binding protein P02774 2 GC.6581.50.3
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Table 2
Summary characteristics of GERAD1, ADNI, and ANM participants post QC

Total AD Cases Controls Males Females 70 and over Mean age

GERAD1 (N) 4,492 3,277 1,215 1,640 2,852 3,189 70.5
ADNI (N) 1,007 639 368 559 448 886 78.2
ANM (N) 745 371 374 309 436 641 78.2
Total (N) 6,244 4,287 1,957 2,508 3,736 4,716

Table 3
Summary characteristics of ANM participants with plasma protein data post QC

Total AD Cases MCI Cases Controls Males Females 70 and over Mean age

ANM (blood) (N) 410 210 104 96 163 247 330 75.2

Table 4
Summary of proteins with APOE+ PRS associations from meta-analyzed logistic regression with AD in all participants below Bonferroni

significance

Protein PRS p SNPs in Beta∗∗ 95% 95% R2∗∗∗ p
threshold∗ PRS (N) CI Lower CI Upper

APOE �3 5.0E-08 5 0.26 0.20 0.31 0.01 6.5E-21
APOB-100 5.0E-08 2 0.58 0.46 0.70 0.01 6.7E-20
CRP 5.0E-08 5 –0.31 –0.42 –0.20 0.01 1.5E-08
∗p-value from protein GWAS below which SNPs were included in PRS. PRS p-value threshold for most significant PRS model (based
on meta-analyzed p-value) presented. ∗∗Estimated based on normalized, per standard deviation of PRS. ∗∗∗Estimated from meta-analysis

outputs using the formula R2 =
(

z√
n−2+z2

)2

where z is the Z-score for the protein PRS and n is the total sample size.

(including 8 proteins with h2 SNP less than 0) (see the
Supplementary Material for further details).

For the AD cohort, 6,244 participants were avail-
able for analysis from GERAD1, ADNI, and ANM
(see Table 2) with 5,218,413 overlapping variants
included for PRS analysis after QC (see the Supple-
mentary Material for further details).

In the AD PRS analysis where only ANM had
plasma protein data, 410 participants with plasma
protein data remained for analysis after QC (see
Table 3).

PRS results

Plasma protein PRS
In all participants, APOE+ PRS for APOE �3 (p =

6.5 × 10–21), apolipoprotein B-100 (APOB-100, p =
6.7 × 10–20), and C-reactive protein (CRP, p = 1.5
× 10–8) were associated with AD at Bonferroni
significance (p < 0.00017) (see Table 4 and full results
at https://alexhandy1.shinyapps.io/ad-genetic-overl
ap-web-results/). No other protein APOE+ PRS
passed Bonferroni significance in all participants or
subgroups. For APOE- PRS (992 SNPs within 750
kilobases of rs429358 on chromosome 19 removed),
no proteins, including APOE, APOB, and CRP,
passed Bonferroni significance in all participants
or subgroups. In all participants, APOE- PRS for

vitamin D-binding protein (VDBP) presented the
strongest signal (p = 0.009) with 7 other proteins
passing nominal significance (p < 0.05). The 3 pro-
teins passing Bonferroni significance in APOE+ PRS
(APOE �3, APOB-100, and CRP) and the strongest
APOE- PRS signal in all participants (VDBP) were
deemed signals warranting further exploration in MR
analysis.

AD PRS
AD PRS models were tested for association with

26 of the 31 shortlist proteins in 1 ANM cohort
(due to data availability) and in the same 3 sub-
groups (males, females and ≥ 70). In all participants
and subgroups, no proteins were associated with
AD APOE+ or APOE- PRS (992 SNPs within 750
kilobases of rs429358 on chromosome 19 removed)
at Bonferroni significance (p < 0.00019, view full
results at https://alexhandy1.shinyapps.io/ad-gene
tic-overlap-web-results/). In all participants, Hap-
toglobin presented the strongest association with AD
APOE+ PRS (p = 0.0107), with CRP (p = 0.0108)
the other protein to pass nominal significance. For
AD APOE- PRS, Complement factor H was the
strongest signal (p = 0.021) with 6 other proteins
passing nominal significance. Insulin-like growth
factor-binding protein 2 (IGFBP2) was one of these
proteins (p = 0.025) and came close to Bonferroni
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significance in ≥ 70 (p = 0.00026). Given IGFBP2
was also the only protein to display a nominally
significant association for APOE- PRS in both direc-
tions (AD APOE- PRS p = 0.025, protein APOE- PRS
p = 0.045) it was selected for MR analysis.

Bi-directional MR results

MR analysis was conducted with five proteins,
APOE �3, APOB-100, CRP, IGFBP2, and VDBP
to test for casual associations. Only two pro-
teins (CRP and VDBP) had valid SNP instruments
at 5 × 10–8 but all proteins had available SNP

instruments at 5 × 10–6. No proteins passed nom-
inal significance (p < 0.05) using IVW with SNPs
selected at 5 × 10–8 or 5 × 10–6 (see Fig. 2 and view
full results at https://alexhandy1.shinyapps.io/ad-
genetic-overlap-web-results/). Overall, exclusion of
non-inferable palindromic SNPs produced similar
results across all methods. All instruments selected
had an F statistic > 10 and there was limited evidence
of horizontal pleiotropy (no Egger intercept p < 0.05)
or heterogeneity between SNPs (no Cochran’s Q
p < 0.05 for protein across multiple methods). There
was also no evidence of reverse causality when AD
was tested as an exposure.

Fig. 2. MR results with protein as exposure and AD as outcome for IVM, MR-Egger and weighted median with alleles assumed on forward
strand for harmonization with SNP instruments selected at 5 × 10–6.
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DISCUSSION

Main findings

This study set out to identify if a shortlist of plasma
proteins, previously associated with AD in observa-
tional studies, genetically overlap with AD by testing
if PRS for these proteins were associated with AD.
For proteins with evidence of genetic overlap, MR
was conducted to test whether exposure to the protein
was causal. The findings provide strong evidence that
APOE �3, APOB-100, and CRP genetically overlap
with AD and, therefore, identifies a genetic signal
linked to a set of specific, accessible risk factors.
Moreover, this overlap appears to be driven by the
APOE genotype, providing evidence that APOE’s
strong genetic effect on AD [41] may be partially
linked to plasma proteins. However, our MR anal-
ysis found no evidence of causality for APOE �3,
APOB-100, or CRP.

Apolipoproteins in plasma have been linked to
AD risk through their role in regulating cholesterol
[50], with increased total cholesterol (TC) associated
with higher risk [51, 52] while increased high-density
lipoprotein cholesterol (HDL-C) appears protective
[53]. CRP has also been suggested as a causal factor in
AD through its pro-inflammatory role in the immune
response [54, 55]. Observational evidence is nuanced,
with increased levels of CRP in midlife associated
with multiple dementias in later life [56] contras-
ting with lower levels of CRP found in individuals
who actively have AD [57].

The key advantage of MR is its ability to help dis-
entangle causal associations from associations which
could be triggered by numerous confounders [24].
Our null MR results for APOE �3, APOB-100, or
CRP align with larger MR studies that found no
causal associations between AD and CRP [25], TC
or HDL-C [58, 59], the hypothesized mechanisms of
action for apolipoproteins. However, these results are
not yet conclusive. A more recent MR meta-analysis
found that both TC and HDL-C showed causal asso-
ciations with AD [60] with Rasmussen et al.’s larger
MR study also suggesting APOE in plasma is causal
for AD [18]. Unfortunately due to data availability,
our study was only able to measure APOE isoform
�3 rather than the higher effect isoforms �2 and �4
[61] suggesting our null MR result may be due to iso-
form rather than a lack of causality. All these findings
support the need for a larger scale MR study measur-
ing a consistent and historically comparable set of
plasma protein exposures.

Independently of APOE, VDBP and IGFBP2 pre-
sented suggestive signals of genetic overlap with AD
in our study. Research investigating the effect of
VDBP and IGFBP2 on AD is less well developed.
VDBP has been shown to attenuate A� aggregation in
vitro and in mice [62] and two recent MR studies have
identified a causal relationship between increased
levels of VDBP and reduced AD risk [63, 64], with
Larsson et al demonstrating particularly strong evi-
dence from two large samples. In our MR analysis,
VDBP did not demonstrate evidence of causality,
however, our sample is smaller than Larsson et al
and may have lacked statistical power. IGFBP2 has
been shown to restrict the neuroprotective effects of
insulin growth factors [65] and increased levels have
been associated with higher AD risk and lower cogni-
tive performance [66]. In our MR analysis, IGFBP2
did not demonstrate evidence of causality. To the best
of our knowledge, this is the first study to conduct a
targeted MR on IGFBP2 and AD, suggesting further
research is required before making a strong inference
on causality.

Limitations and future directions

Our study has three key limitations. Firstly, the
initial proteins considered for analysis had to demon-
strate prior association with AD and, therefore,
represent only a subset of proteins in plasma. Whilst
a targeted design was deliberate to lower the risk of
false positives and support interpretability, it does
increase the probability that causal proteins for AD
were not included in the analysis. This exclusion
risk was amplified by data availability constraints
and a reliance on the SomaLogic platform, with
only 53% of candidate proteins from the literature
review possessing publicly available genetic sum-
mary data at the time of analysis. Most notably,
alpha-2-macroglobulin and alpha-1-antitrypsin were
each replicated in 6 studies in the literature review
(the same number of replications as APOE) but were
excluded due to a lack of genetic data. Moving for-
ward, a planned outreach effort to aggregate summary
data from other research groups and assay platforms
(as demonstrated by [27]) supported by integrating
new data [67] could improve protein coverage and
increase statistical power.

Secondly, the statistical power to correctly iden-
tify true positives was limited across multiple steps
of the analysis. Studies are now routinely con-
ducted with samples of 100,000 + individuals for
common human traits [68–70] in order to capture
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the small effect sizes of individual SNPs [71]. Sam-
ple size is particularly important for traits with low
to moderate heritability where the effect size of
individual SNPs is likely to be lower [72]. In this
study, estimates of observed SNP heritability (h2 SNP)
for proteins were themselves hampered by sample
size (see https://github.com/bulik/ldsc/wiki/FAQ),
but a median h2 SNP of 0.09 (interquartile range
0.006–0.22) suggests analyzed proteins were at most,
moderately heritable. Moderate heritability weakens
PRS and MR [73], given PRS and MR instrumen-
tal variables are a composite of genetic liability
which is dependent on the heritability of a trait. This
may partly explain the limited genetic overlap and
low variance explained (R2) of AD by individual
protein PRS (see https://alexhandy1.shinyapps.io/ad-
genetic-overlap-web-results/). Low R2 may also
reflect that proteins often exert their effects as part
of large molecular networks rather than as individ-
ual entities [74]. Therefore, larger sample sizes and
multivariate statistical tests are required to robustly
corroborate the lack of causal protein-AD associa-
tions in this study.

Lastly, the nature of the phenotype data collected
possesses several inherent limitations. Both protein
and AD case target data were collected at a sin-
gle point in time. For AD this means a proportion
of controls may have developed into cases and for
proteins it means observed variability over time [75,
76] is not captured. For AD there is the added lim-
itation of using a clinical diagnosis as a phenotype.
Clinical manifestation is heterogenous [77, 78] and
in-life diagnosis can be inaccurate [79, 80] implying
that adding endophenotype measures closer to causal
biology (e.g., hippocampal volume) and symptomol-
ogy (e.g., cognitive performance) may allow more
precise association analysis.

Future analyses should, therefore, aim to expand
protein coverage, increase sample sizes, and expand
PRS and MR analyses to AD endophenotypes.

CONCLUSION

This study provides evidence that apolipoproteins
and CRP PRS are associated with AD and identi-
fies a genetic signal linked to a specific, accessible
risk factor. However, none of the proteins tested in
MR demonstrated evidence of causality. This study
was conducted in a moderate sample size and may
have lacked the statistical power to identify true
causal associations. Therefore, this study provides a

framework for future research to robustly interrogate
protein causality in larger samples.
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