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Abstract

Background: The primary progressive aphasias (PPA) represent a group of usually sporadic neurodegenerative
disorders with three main variants: the nonfluent or agrammatic variant (nfvPPA), the semantic variant (svPPA), and
the logopenic variant (lvPPA). They are usually associated with a specific underlying pathology: nfvPPA with a
primary tauopathy, svPPA with a TDP-43 proteinopathy, and lvPPA with underlying Alzheimer’s disease (AD). Little is
known about their cause or pathophysiology, but prior studies in both AD and svPPA have suggested a role for
neuroinflammation. In this study, we set out to investigate the role of chemokines across the PPA spectrum, with a
primary focus on central changes in cerebrospinal fluid (CSF)

Methods: Thirty-six participants with sporadic PPA (11 svPPA, 13 nfvPPA, and 12 lvPPA) as well as 19 healthy
controls were recruited to the study and donated CSF and plasma samples. All patients with lvPPA had a tau/Aβ42
biomarker profile consistent with AD, whilst this was normal in the other PPA groups and controls. We assessed
twenty chemokines in CSF and plasma using Proximity Extension Assay technology: CCL2 (MCP-1), CCL3 (MIP-1a),
CCL4 (MIP-1β), CCL7 (MCP-3), CCL8 (MCP-2), CCL11 (eotaxin), CCL13 (MCP-4), CCL19, CCL20, CCL23, CCL25, CCL28,
CX3CL1 (fractalkine), CXCL1, CXCL5, CXCL6, CXCL8 (IL-8), CXCL9, CXCL10, and CXCL11.

Results: In CSF, CCL19 and CXCL6 were decreased in both svPPA and nfvPPA compared with controls whilst CXCL5
was decreased in the nfvPPA group with a borderline significant decrease in the svPPA group. In contrast, CCL2,
CCL3 and CX3CL1 were increased in lvPPA compared with controls and nfvPPA (and greater than svPPA for
CX3CL1). CXCL1 was also increased in lvPPA compared with nfvPPA but not the other groups. CX3CL1 was
significantly correlated with CSF total tau concentrations in the controls and each of the PPA groups. Fewer
significant differences were seen between groups in plasma, although in general, results were in the opposite
direction to CSF, i.e. decreased in lvPPA compared with controls (CCL3 and CCL19), and increased in svPPA (CCL8)
and nfvPPA (CCL13).
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Conclusion: Differential alteration of chemokines across the PPA variants is seen in both CSF and plasma.
Importantly, these results suggest a role for neuroinflammation in these poorly understood sporadic disorders, and
therefore also a potential future therapeutic target.
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Background
The primary progressive aphasias (PPA) are a rare group
of disorders characterised by focal degeneration of the
brain regions involved in language function [1] and fall
within the frontotemporal dementia (FTD) spectrum.
There are three main variants—the nonfluent or agram-
matic variant (nfvPPA), the semantic variant (svPPA),
and the logopenic variant (lvPPA)—distinguished by the
language deficits with which they present as well as their
neuroanatomical signatures [2]. Similarly, the predomin-
ant neuropathology underlying each of the variants usu-
ally differs, with nfvPPA most commonly a tauopathy
such as progressive supranuclear palsy or corticobasal
degeneration [3, 4], whilst svPPA is almost always a
TDP-43 proteinopathy [5]. In contrast, lvPPA is not a
frontotemporal lobar degeneration (FTLD) pathologic-
ally (i.e. not a primary tauopathy or TDP-43 proteinopa-
thy) in most cases [6]; instead, the underlying pathology
is usually that of Alzheimer’s disease (AD), and lvPPA is
often therefore considered an atypical language variant
of AD.
Recent studies have shown that neuroinflammation is

an important pathophysiological factor in neurodegener-
ative disorders [7]. Although less research has been per-
formed in FTD, molecular, pathological, and biomarker
studies all suggest that inflammation is important here
as well (reviewed in Bright et al. [8]). The process of
neuroinflammation is complex and multistage but in-
volves activation of glial cells, which in turn leads to up-
regulation of several proteins that help to guide the
response. These include chemokines, a family of proteins
that regulate leukocyte traffic but also have a number of
other roles both within the immune system and outside,
e.g. in development and synaptic transmission [9]. Only
a few studies have so far investigated changes in chemo-
kines in FTD spectrum disorders [10, 11], and so we
aimed to assess this more thoroughly by using a panel of
chemokines in the biofluids of a well-defined cohort of
people from across the PPA spectrum, particularly fo-
cusing on changes centrally within the cerebrospinal
fluid (CSF).

Methods
Participants
Thirty-six people with sporadic PPA and available CSF
and plasma were consecutively recruited through the
Longitudinal Investigation of FTD (LIFTD) study at

University College London (Table 1): 11 svPPA, 13
nfvPPA, and 12 lvPPA, diagnosed according to current
consensus criteria [2]. All cases were negative for a
C9orf72 expansion and mutations in any of the genes
causative of FTD. 19 healthy controls were recruited
over the same time period. All patients with lvPPA had a
biomarker profile consistent with underlying Alzheimer’s
disease: mean (standard deviation) total tau/Aβ42 ratio
(INNOTEST®, Fujirebio Europe N.V., Gent, Belgium) of
3.2 (2.2) with a range 1.2 to 8.3 where > 1 is considered
abnormal. All svPPA or nfvPPA participants and all con-
trols had a ratio < 1.

Proximity Extension Assay panel
Twenty chemokines were measured in the CSF and
plasma of all participants using Proximity Extension
Assay technology on the Olink® neuroinflammatory
panel [12]. Briefly, samples were incubated with matched
antibodies with DNA tags. When matched antibodies
come in close proximity, DNA tags will only hybridise
when the coupled antibodies match and then the se-
quence is amplified by qPCR. Results are expressed as
normalised protein expression values. The chemokines
measured were CCL2 (MCP-1), CCL3 (MIP-1a), CCL4
(MIP-1β), CCL7 (MCP-3), CCL8 (MCP-2), CCL11
(eotaxin), CCL13 (MCP-4), CCL19, CCL20, CCL23,
CCL25, CCL28, CX3CL1 (fractalkine), CXCL1, CXCL5,
CXCL6, CXCL8 (IL-8), CXCL9, CXCL10, and CXCL11.

Statistical analysis
All statistical analyses were performed in STATA (v.16))
with the primary analysis focused on the results in the
CSF. As this was an exploratory study, no correction for
multiplicity was performed. The Shapiro-Wilk test was
performed to determine the normality of distribution of
each chemokine measure in each group.
Within the control group, Spearman correlation coeffi-

cients were assessed for each individual chemokine be-
tween their values and the age of participants at CSF
collection. Sex differences were calculated using Mann-
Whitney U tests.
The levels of each chemokine in the CSF were then

compared between groups using a linear regression
model; bootstrapping with 1000 repetitions was used if
the chemokine measures were not normal.
Spearman correlation coefficients were assessed for

each individual chemokine between their values and
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each of Aβ42 and total tau (t-tau) concentrations within
the control and PPA groups.
In order to explore the relationship between chemo-

kine values in CSF and plasma, Spearman correlation co-
efficients were assessed in each individual chemokine
between CSF and plasma values within the control
group as well as the disease groups.
The levels of each chemokine in the plasma were sub-

sequently compared between groups using a linear re-
gression model as previously; bootstrapping with 1000
repetitions was used if the chemokine measures were
not normal.

Results
There were no significant differences between the
groups in terms of either age at CSF collection or sex
(Table 1).
Within the control group, no significant correlations

were found between chemokines and age except for
CXCL9 (rho = 0.55, p = 0.016) (Supplementary Table 1).
No significant differences were found between chemo-
kine values in males and females except in CCL28 where
concentrations were lower in females (0.4 (0.1) versus
0.5 (0.1) in males, p = 0.034).
Within CSF, three chemokines had > 80% of values

across the groups below the lower limit of detection
(CCL20 44/55, CCL13 53/55, CCL7 54/55) and were not
assessed further. Seven of the remaining 17 chemokines
showed a significant difference between groups. In both
svPPA and nfvPPA, CCL19 and CXCL6 were decreased
compared with controls (Fig. 1, Supplementary Table 2).
CCL19 was additionally significantly decreased in both
nfvPPA and svPPA compared with lvPPA, as was
CXCL5, although this chemokine was decreased only in
the nfvPPA group compared with controls (albeit with a
borderline significant decrease in the svPPA group). In
contrast, CCL2, CCL3 and CX3CL1 were increased in
lvPPA compared with controls (and greater than nfvPPA
for CCL2, and both nfvPPA and svPPA for CX3CL1).
CXCL1 was also increased in lvPPA compared with
nfvPPA but not the other groups.

No correlations were found between Aβ42 concentra-
tions and values of any of the chemokines within the
controls or the PPA groups except for a correlation in
the nfvPPA group for CXCL6: rho = 0.58, p = 0.033
(Supplementary Figure 1). However, CX3CL1 was sig-
nificantly correlated with t-tau concentrations in the
controls and each of the PPA groups (Supplementary
Figure 1): controls rho = 0.51, p = 0.025, svPPA rho =
0.64, p = 0.035, nfvPPA rho = 0.72, p = 0.005, lvPPA rho
= 0.59, p = 0.045. None of the other chemokines corre-
lated with t-tau across the groups but CCL4 was corre-
lated in controls (rho = 0.59, p = 0.033), and CXCL5 was
correlated in svPPA (rho = 0.65, p = 0.029).
In the chemokines that were found to be abnormal in

CSF across groups, none of the CSF values were corre-
lated with plasma values within the control group or any
of the PPA groups. Only chemokines for which no sig-
nificant group differences were seen showed a correl-
ation between CSF and plasma values, both within the
control group (CCL8: rho = 0.48, p = 0.039; CCL11: rho
= 0.46; p = 0.048; CCL25: rho = 0.53, p = 0.021), the
lvPPA group (CCL4: rho = 0.68, p = 0.015; CXCL8: rho
= 0.79; p = 0.002), and the nfvPPA group (CCL4: rho =
0.78, p = 0.002; CCL11: rho = 0.64; p = 0.017; CCL25:
rho = 0.58, p = 0.040; CXCL10: rho = 0.66, p = 0.014).
No correlations were seen in the svPPA group.
Within plasma, fewer significant differences were seen

between groups (Supplementary Figure 1, Supplemen-
tary Table 3). However, CCL8 was higher in svPPA com-
pared with controls and CCL13 was higher (with CCL20
lower) in nfvPPA compared with controls. In contrast,
CCL3 and CCL19 were significantly lower in lvPPA
compared with controls and the svPPA group (as well as
the nfvPPA group for CCL3). Additionally, CCL4 was
lower in lvPPA compared with nfvPPA but not with the
other groups.

Discussion
We report chemokine levels in biofluids in PPA,
showing differential alteration across the PPA vari-
ants. Interestingly, the direction of significant change

Table 1 Demographics of participants in the study. PPA, primary progressive aphasia; svPPA, semantic variant; nfv, nonfluent variant;
lv, logopenic variant. N, number of participants. Values are shown as mean (standard deviation)

Controls svPPA nfvPPA lvPPA

N 19 11 13 12

Age at CSF 63.5 (6.9) 60.5 (5.9) 67.0 (6.3) 66.7 (6.3)

Sex (% male) 47.4 54.5 53.8 50.0

Disease duration at CSF N/A 4.6 (2.0) 4.5 (1.9) 3.6 (2.2)

Aβ42 999.9 (235.4) 879.7 (259.5) 845.6 (318.3) 439.8 (159.4)

Total tau 325.7 (93.3) 355.7 (152.9) 405.8 (184.7) 1206 (555.4)

Total tau/Aβ42 ratio 0.3 (0.1) 0.4 (0.1) 0.5 (0.3) 3.2 (2.2)
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differed between those with underlying AD patho-
logically (lvPPA, where CSF values were increased
and plasma values decreased) and those with FTLD
(svPPA and nfvPPA, where CSF values were de-
creased, and for all but one chemokine, plasma values
were increased). Comparing the CSF chemokine

values with CSF biomarkers of amyloid and tau,
CX3CL1, which was increased in lvPPA, was signifi-
cantly correlated with t-tau concentrations across all
of the groups.
In keeping with lvPPA being associated with under-

lying AD pathology, the findings of increased CCL2,

Fig. 1 Mean normalised protein expression values for the chemokines in controls and each of PPA groups in CSF. Significant differences with p
values are shown on the graphs
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CCL3, and CX3CL1 in this group parallel previous stud-
ies in those with a typical AD clinical presentation [13–
18]. CCL2 (MCP-1) is expressed by neurons, astrocytes,
and microglia and has previously been shown to be
raised in the CSF of people with typical AD including
those with mild cognitive impairment (MCI) [13, 14,
19]. A further study also showed that CSF CCL2 concen-
trations correlated with the extent of brain atrophy and
cognitive impairment in AD [15], with one report sug-
gesting that higher levels were associated with more
rapid progression from MCI to AD [16]. CCL3 (MIP-1a)
is also expressed by neurons, astrocytes, and microglia
[20], and this expression has been shown to be increased
in the brains of people with AD as well as in mouse
models [21, 22]. Here, we show increased levels of CCL3
in the CSF of the atypical AD phenotype lvPPA. Inter-
estingly, we also show lower levels of CCL3 peripherally
in the plasma, a finding also previously found by another
group in serum [17]. The pathophysiological explanation
for this difference between central and peripheral CCL3
levels remains unclear. Lastly, CX3CL1 (fractalkine) is
produced by neurons, particularly in the hippocampus
and cortex, and suppresses microglial activation [23].
Importantly, from an AD perspective, CX3CL1 has also
been shown to be upregulated in the hippocampus dur-
ing memory-associated synaptic plasticity [23]. Several
studies have demonstrated significantly higher CSF con-
centrations of CX3CL1 in people with MCI and AD
[21], with concentration being shown to differentiate
MCI from controls with high sensitivity and specificity
[18]. Our study also showed a strong correlation with t-
tau in lvPPA as well as in the controls and other groups,
suggesting an association with increased neuronal dam-
age particularly in the AD brain.
Although non-significant, a number of other che-

mokines showed a trend to an increase in lvPPA
compared with controls, e.g. CCL23 (p = 0.068), in-
creased concentrations of which have previously been
shown to help predict progression from MCI to AD
[24]. CXCL1 showed a significant increase in lvPPA
compared with nfvPPA; this chemokine has also been
shown to be increased in the CSF of people with AD
in a prior study [25].
Overall, this study highlights the important patho-

physiological overlap of atypical variants of AD with the
more typical variant. Here, we show that the central che-
mokine profile of change is similar in lvPPA to that
found in amnestic AD.
In contrast, the two FTLD pathological forms of PPA

show differential alterations of chemokines to lvPPA,
with parallel decreases in CCL19, CXCL5, and CXCL6
in both svPPA and nfvPPA. This finding suggests that
these are related to underlying FTLD pathology per se,
rather than the individual proteinopathy, as svPPA

(TDP-43) and nfvPPA (tau) usually differ in their pri-
mary pathological cause. Unfortunately, little is known
about alterations in chemokines levels in FTD so far.
Only a few small studies have investigated chemokines,
showing decreased levels of CCL5 (RANTES) and in-
creased levels of CCL2, CXCL8, and CXCL10 in CSF [8,
10]. Previous studies have not investigated such an ex-
tensive set of chemokines in FTD across differential
pathologies. CCL19, CXCL5, and CXCL6 are all
expressed in the brain, although their roles are not clear.
Nonetheless, CCL19 in particular has been studied in
neuroinflammation-related diseases such as multiple
sclerosis [26, 27], although here the levels were increased
rather than decreased as found in our study. Whilst
these are preliminary findings in nfvPPA and svPPA,
they are important in signalling a role for neuroinflam-
mation in these disorders. Little is currently known
about why these sporadic diseases develop, and although
a few studies have previously suggested a role for neuro-
inflammation in svPPA [28, 29], this study also suggests
it is a relevant pathophysiological phenomenon in
nfvPPA also. Interestingly, the levels of chemokines are
generally decreased in svPPA and lvPPA compared to
the increase seen in lvPPA—the reason for this is not
clear: the inflammatory response to neurodegeneration
is complex and studies investigating the response to in-
flammation including the involvement of the resolution
pathway will be important.
Whilst central neuroinflammatory processes in neuro-

degenerative disorders are increasingly well-studied,
fewer studies have investigated peripheral immune find-
ings. There was generally poor correlation between CSF
chemokine values and those in plasma within the con-
trols, suggesting that peripheral values generally do not
represent central levels. However, abnormal values were
found in each of the PPA variants compared with con-
trols (and for all but one measure, in the opposite direc-
tion to that found centrally in CSF). Certainly for svPPA,
a previous study has showed an increase in systemic
autoimmune disease compared with controls [29], but
otherwise, little is known about peripheral inflammation
in PPA, and more studies are required.
There are a number of limitations of the study. We

did not have access to detailed behavioural or neuropsy-
chometry data within the cohort, and it would be useful
for future studies to investigate the correlation of clinical
features with chemokine levels. The presence of co-
morbidities such as systemic disease, mood disorders,
and cerebrovascular disease (including for the latter, the
presence of white matter hyperintensities on MRI) were
also not evaluated: their effect on chemokine levels
would be important to clarify in further analyses. Whilst
each group was of similar disease duration, participants
were on average around 3 to 5 years into their illness. It
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would therefore be helpful to study both people very
early in their clinical syndrome as well as to investigate
longitudinal change in chemokines in PPA in order to
understand the temporal relationship within the disease.

Conclusions
Overall, this study highlights the complex inflammatory
response in the different variants of PPA and shows
clear differences between those with AD and FTLD
pathology. Such biomarkers may be helpful in future tri-
als for a number of reasons including assessing the ex-
tent of neuroinflammation present [30], although not for
individually classifying the different forms of PPA. Our
results establish a baseline for further study of the role
of chemokines in PPA with the potential role of neuro-
inflammation as a therapeutic target in these sporadic
disorders an important area of future research.
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