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Tasks such as classification of data and determining the ground state of a Hamiltonian cannot be carried out
through purely unitary quantum evolution. Instead, the inherent nonunitarity of the measurement process must be
harnessed. Post-selection and its extensions provide a way to do this. However, they make inefficient use of time
resources—a typical computation might require O(2") measurements over m qubits to reach a desired accuracy
and cannot be done intermittently on current (superconducting-based) NISQ devices. We propose a method
inspired by thermalization that harnesses insensitivity to the details of the bath. We find a greater robustness
to gate noise by coupling to this bath, with a similar cost in time and more qubits compared to alternate
methods for inducing nonlinearity such as fixed-point quantum search for oblivious amplitude amplification.
Post-selection on m ancillae qubits is replaced with tracing out O[log € / log(1 — p)] (where p is the probability of
a successful measurement) to attain the same accuracy as the post-selection circuit. We demonstrate this scheme
on the quantum perceptron, quantum gearbox, and phase estimation algorithm. This method is particularly
advantageous on current quantum computers involving superconducting circuits.
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I. INTRODUCTION

Algorithms for classification of data, optimizing the energy
to find the ground state properties of a Hamiltonian (and
indeed optimizing classifiers for a given data set) require the
use of nonlinear operations that cannot be achieved solely
through unitary quantum evolution. When carrying out these
tasks on a quantum computer we must use the nonunitarity of
the measurement process. There are several ways in which to
do this depending upon the relative abundance of resources,
quantified by measures such as the number of qubits, coher-
ence times, and gate fidelities. Post-selection and the related
repeat-until-success algorithms are popular choices.

However post-selection makes inefficient use of time
resources—a typical computation requires O(2™) measure-
ments over m qubits to reach a desired accuracy. Nevertheless,
it is a frequently used tool in atomic contexts where coher-
ence times are long and manipulation timescales short, so
that time is not the limiting resource. For superconducting
circuits where coherence times are much shorter and where
measurements of a subset of qubits is not possible while
maintaining the coherent evolution of the remainder, this is
more problematic.

Curiously, post-selection in fact wuses classical
nonlinearity—through a yes or no decision based upon a
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measurement on ancillae qubits. This suggests how a more
time-efficient scheme might be developed. Fundamentally, the
nonlinearity of the classical world is induced by observation
of only a portion of a larger quantum world. It is possible
then to replace post-selection with a scheme where explicit
measurement of ancillae qubits is not required, i.e., where
they are traced out or simply ignored.

Eigenstate thermalization gives a clue as to how this can
be achieved. Coupling a small system at high temperatures to
a large, low temperature bath allows us to cool the small sys-
tem. Eigenstate thermalization extends this notion to closed
quantum systems. Coupling a large number of ancillae qubits
in a low entropy state (e.g., |00000...)) to a small system
and evolving the total system under some unitary evolution
allows entropy to flow from the small system of interest to the
ancillae.

II. RESULTS

Inspired by this, we replace the classical yes or no nonlin-
earity of post-selection with a nonlinearity attained by tracing
out ancillae. In the following we demonstrate the application
of ancillae thermalization to the quantum perception, quantum
gearbox and a ground state preparation algorithm. Robustness
to noise is demonstrated for the quantum gearbox in simula-
tion for two different noise models and on the “ibmq_virgo”
quantum device.

Our scheme is a type of amplitude amplification—a gener-
alization of Grover search [1] introduced by Brassard ez al. [2].
Amplitude amplification comes in various flavors depending
upon whether the state of the target qubits or probability
of success at each iteration is known or not. For a direct
comparison with our method, we focus upon an implemen-
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TABLE I. Comparison of computational resources for unitary transformations. Computational resources in the of post-selection, ancillae
thermalization, and % fixed-point oblivious amplitude amplification (FP OAA) [3] for guaranteeing unitary transformations in the large
initial success probability regime. We define Q(Oy) as the number of operations required to implement the N-qubit gate, O, and py as the
initial probability of a successful measurement. In the asymptotic limit the number of operations required to implement controls on U,,,, is
constant. Additionally, Q(W,) ~ O(1) and can be ignored in practice. Although ancillae thermalization has more operations, we observe lower
susceptibility to gate errors. We suspect this is due to the exponentially fewer operations acting on each ancilla in ancillae thermalization,
exposing them to less gate noise. Justification for these values can be found in Appendix A while a comparison of noise robustness can be

found in Sec. III.

Method Measurements Qubits Gates
Post-selection o(pyH n+m OWU,tm)
I
T FP OAA 0 O(n + m) O<L[m n Q(Un+m)]>
; log(1 — po)
Ancillae log e > < log e
0 oln+ ———m O\ ————[m+ QW) + Wn])
Thermalization ( log(1 — po) Tog(1 — po) QWUpim) + OQW,)

tation that does not require the knowledge of either and
decreases the error monotonically, 5 fixed-point search [3].
Used in the context of amplitude amplification, this algorithm
which we call % fixed-point oblivious amplitude amplifi-
cation (FP OAA) is equivalent to the optimal “fixed-point
quantum search” from Yoder et al. in the regime of large
initial success probabilities [4]. In this regime we find ancil-
lae thermalization more robust to the effects of gate errors,
with a similar cost in time and more qubits. In addition, the
different structure of our method allows implementation of a
wider class of transformations while retaining no knowledge
of the target state, including nonunitary transformations, the
latter of which OAA algorithms alone do not allow [5]. We
demonstrate this using a nonoptimal procedure for ground
state preparation shown in Fig. 3. Table I and Fig. 4 show
the trade-offs in resources between the various approaches for
unitary transformations and robustness to gate noise, respec-
tively, in the large success probability regime.

A. From post-selection to ancillae thermalization

Figure 1(a) demonstrates post-selection used in a repeat-
until-success circuit. A unitary U applies a desired operation
R to an input state |¢/), conditioned upon the outcome of a
measurement of m ancillary qubits. For example the unitary

271
UI0)®" 1) = /BolO)®"RIV) + Y /PelEdY) (1)
k=1

achieves the rotation R on |v/) and the state |0)®™ on the
ancillary qubits with probability py. The states Ey|vy) corre-
sponds to incorrect transformations of the target qubits. If the
procedure fails, all qubits are reset and the process is repeated.
The probability of failure after N iterations of the algorithm is
€ ~ (1 — po)"; the transformation R is implemented exactly
with a finite probability.

Ancillae thermalization and more generally amplitude am-
plification take a different philosophy. The output from U
on the target qubits is interpreted as a superposition of cor-
rectly transformed (R|v)) and incorrectly transformed (E|y))
states. Tracing out the ancillary qubits prepares the target
qubits in a mixed state p that is approximately correct.
The density matrix p has an overlap (Y |RTpR|Y) =1 —€

with R|yr). For ancillae thermalization, this fidelity with the
target state is obtained with an exponential reduction in mea-
surements for an increased cost in ancillary qubits. This is
achieved by iteratively entangling fresh ancillary qubits with
the target qubits via unitary V. = UW, where W is a reset gate
that transforms Ej|y¥) — |¢) for all k. The ancillae condi-
tionally entangle with the incorrectly transformed parts of the
system’s wave function through control gates on the previous

(2) m |0)¥™- Success
10 77 —D} |1) - Failure
U
W) #4 | Rlv)
(b)
o
o
=4
p

FIG. 1. Comparison between post-selection and ancillae ther-
malization. (a) Post-selection circuit acting on n-qubit target state
|) and m ancillae. Applying U and measuring |0)®" on the ancillae
guarantees a successful transformation R|y) of the target qubits.
Measuring |1) on any ancilla implies a failure and the procedure
is repeated. (b) Ancillae thermalization circuit equivalent to O(N)
attempts at applying |Ry) with N = 2. Note that each attempt of
post-selection is exponential in measurements. Ancillae thermaliza-
tion is a modification of post-selection. Measurements are replaced
with gates and new ancillae entangle with the incorrectly transformed
parts of the target qubits’ wave function. All ancillae are then traced
out. The unitary V acts on |) and m ancillae per iteration. It is fac-
torized as V = UW where W is a reset gate discussed in Appendix B.
The circuit produces a finalized mixed target state p that has an over-
lap with desired state R|y) up to error €, i.e., Tr(p|yY' ) (¢¥']) =1 —€
where [V') = R|Y).
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ancilla at each iteration. The circuit to achieve this is shown
in Fig. 1(b). The overlap between the target qubits and R|y)
increases exponentially with the number of iterations applied
(see Appendix B for full details).

B. Quantum perceptron

The quantum perceptron [6] is the first explicit exam-
ple of a quantum circuit fulfilling the requirements for a
meaningful quantum neural network. It was introduced by
Schuld et al. [7]. It is able to simulate a classical percep-
tron while taking advantage of quantum properties such as
processing input data as a superposition. In general, quantum
neural networks struggle to construct a nonlinear activation
function due to their linear dynamics. The quantum percep-
tron uses a post-select circuit shown in Fig. 2(a) to achieve
this nonlinearity. This circuit implements the transformation
[y — exp[—ig(0)Y]|¥) onto a target qubit with probability
p(0) ~ O(1/2). The angle of rotation ¢(#) = arctan[tan?(6)]
is sigmoidal in shape and can be used to capture the nonlinear
properties found in classical neural networks in a quantum
setting.

Ancillae thermalization removes the need to post-select in
order implement the quantum perceptron. The circuit shown
in Fig. 2(b) achieves the same level of accuracy as O(N),
with N = 2 attempts of the post-selection circuit. To achieve
a total overlap with the desired state exp[—ig(6)Y]|y) within
additive error €, the process of applying V to fresh ancillae
and the target qubit must be repeated O[log(1/¢)] times. This
achieves a fidelity between the finalized target qubit and the
desired state given by

(1/f|€iq(9)y:0 e—iq(O)YW)
= L= smin (L= |(le @Yy, ()

where § =1 — p(0) and € has been rescaled. The fidelity
increases exponentially with the number of iterations.

Results of applying ancillae thermalization to the quantum
perceptron obtained from IBMQ’s “qasm-simulator” i.e., a
simulator with no noise and “ibmg-oursense” quantum ma-
chine are shown in Fig. 2(c). As in other applications of
NISQ devices, there is an optimum circuit depth that balances
theoretical advantages of deeper circuits with the effects of
noise. The quantum perceptron displays an increase in accu-
racy with increasing iterations up to a threshold where further
operations increase exposure to finite gate fidelity leading to a
decrease in accuracy. This point is emphasized in the subfigure
which shows a lower fidelity for a higher number of iterations.

C. Phase estimation

Next, we apply our procedure to a ground state preparation
algorithm. Although more efficient state preparation algo-
rithms exist, see [8—10], this setting is still of interest since it
reveals the role of the ancillae as an effective low-temperature
bath in addition to demonstrating a FP OAA scheme for
nonunitary transformations.

The quantum phase estimation algorithm shown in
Fig. 3(a), computes the eigenvalue 6 satisfying AJA) =
exp (2mif)|A). Post-selecting on the precision qubit register
can prepare target qubits in the ground state of an n-qubit
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FIG. 2. Quantum perceptron/nonlinear activation function g(6).
(a) Post-select circuit for implementing angle ¢(0) in the quantum
perceptron, acting on an ancilla and the target qubit. A successful
transformation of exp[—iq(6)Y ]|¥) corresponds to measuring |0) on
the ancilla with probability p(9) = cos*(8) + sin*(6). Upon failure,
when |1) is measured on the ancilla, the target qubit is guaranteed to
transform as exp(—im /4)|y). As aresult, the target qubit can be reset
by rotation R,(7/2) and the circuit is repeated. (b) Ancillae ther-
malization circuit for an equivalent O(N) attempts of post-selection,
with N = 2 applications of the circuit in (a). The reset and second
instance, which acts on a new ancilla, are both conditioned by the
state of the first ancilla. (c) Angle g(6) obtained by ancillae ther-
malization for different number of iterations and 6. The values were
obtained from IBMQ’s “qasm-simulator” (symbols) (no noise) and
“ibmq_ourense” quantum computer (rings). The subfigure shows the
fidelity from ibmq_ourense between the finalized target qubits and
ground state for different numbers of iterations.

Hamiltonian. Ancillae thermalization achieves the same effect
by tracing out ancillae qubits—the ancillae effectively provide
a low entropy reservoir into which the excess energy of the
target state can be transferred.

The circuit shown in Fig. 3(b) achieves the same level of
accuracy as O(N) for N = 2 attempts of phase estimation with
post-selection. In a similar manner to the quantum perceptron,
a total overlap with the ground state within additive error € is
achieved by applying V to fresh ancillae and the target qubits
O[2™log(1/€)] times. After tracing out the ancillae qubits,
the fidelity between the finalized mixed target state p and the
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FIG. 3. Ground state preparation of a Hamiltonian. (a) Post-select circuit for ground state preparation in the form of the quantum phase
estimation algorithm. The algorithm prepares the ground state of a Hamiltonian onto target qubits inputted as an equal superposition of
all possible bit strings. The circuit consists of a synthesized unitary A = exp(—iH ) acting on the target qubits while being controlled
by m precision ancillae. Measuring |0)®" on the ancillae indicates a successful ground state preparation onto the target qubits. Any other
measurement indicates that an excited state has been prepared and failed. Upon failure of ground state preparation, all qubits are reset and the
circuit is repeated. (b) Ancillae thermalization circuit for an equivalent O(N) attempts of post-selection, with N = 2 applications of the circuit
given in (a). The NOR gate compiles conditions from the ancillae while the reset gate S redistributes the weights of the incorrectly prepared
states of the target qubits onto all bit strings. Each iteration acts on the scrambled states of the target qubits and is controlled by the output of
the last NOR ancilla. A complete description for the NOR and scrambling gate can be found in Appendix B. (c) Fidelity between the finalized
target qubits and ground state of the Hamiltonian using ancillae thermalization. We show results for different numbers of iterations. The results
were obtained from IBMQ’s “qasm-simulator” for H; = 0]0)(0| — 37”|1)(1| and H, = Z?J:l a;jli){jl. We simulate different levels of noise
based upon a model of thermal relaxation between the qubits and their environment. The range of data points for the noise based simulations
was restricted due to computational limitations. Additionally, an approximation was made on the initialization and scrambling operations in

the nondiagonal two qubit case. Further details of these experiments can be found in Appendix B.

ground state is given by
(Aalplhg)) = (1 — JeuE DD, (3)

where J = (N — 1)/N, N = 2" is the number of eigenstates,
and m is the minimum number of precision qubits required to
distinguish between all energy values without imperfections.
Therefore the precision, i.e., the number of ancillae used in
the phase estimation circuit, dictates an upper bound on the fi-
delity. Ancillae thermalization shows an exponential increase
in fidelity as the number of iterations increase compared to
the fidelity attained with the same number of attempts of the
post-select circuit. We assume that the value of the ground
state energy is known up to precision 27". Additionally, a
preprocessing procedure has occurred which shifts all energy
values by this amount such that correctly preparing the ground
state is indicated by measuring |0)®",

Results of applying the ancillae thermalization to ground
state preparation obtained from IBMQ’s qasm-simulator with
the addition of simulated noise are shown in Fig. 3(c). The
fidelity was computed between the finalized target qubits
and the ground states of the one qubit Hamiltonian H; =
0]0)(0] — 37”|1)(1| and the two qubit Hamiltonian H, =
Zi =1 4i 11} (jl (a random set of parameters a;; were chosen

in the latter case as described in Appendix C) for different
numbers of iterations of the ancillae thermalization circuit. As
in the case of the quantum perceptron, an increase in fidelity
with the number of iterations reaches an upper bound when
the circuit depth leads to too great an exposure to gate noise.

The fidelity is lower in the two-qubit case than predicted
analytically. This is due to an approximation made on the
initialization and scrambling operations on the target qubits.
Furthermore, due to the inclusion of Toffoli gates in the
NOR gate, the ancillae thermalization modification of post-
selection is highly sensitive to noise. This is exacerbated for
larger Hamiltonians due to the increase in number of gates
required to act on the target qubits and slower convergence
of fidelity with the number of iterations. A more detailed
discussion of these effects and of the parameter values used
in the simulations can be found in Appendix C.

OAA schemes alone cannot deterministically implement
nonunitary transformations. However, recent developments in
block encoding [11] and quantum signal processing [12] allow
us to embed an approximate n-qubit projector in the upper-left
corner of an n 4 k qubit unitary, where k is the number of
ancillae needed for the encoding. Amplitude amplification
is then used to deterministically implement this approximate
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FIG. 4. Noise robustness for the quantum gearbox. (a) Quantum gearbox circuit for m = 2 ancillary qubits [13]. This circuit is a
generalization of the quantum perceptron found in Fig. 2 with m = 1 ancilla. Measuring [0®") on the ancillae with probability p(6) =
cos*(8) + sin*(8) corresponds to the successful transformation of exp[—ig(9)Y] on the target qubit where g(#) = arctan[tan?()] and
sin(6) = sin(f;) - - - sin(6,,). Measuring [1) on any ancillae corresponds to applying R,(— /2) onto the target qubits, and thus can always
be reset by applying R, (7 /2). For the simulation 6; = 6, = m /4. (b) Ancillae thermalization circuit for an equivalent O(N) attempts of
post-selection with N = 2 applications of the circuit in (a). Unitary V, which acts on the fresh ancillae and incorrect states of the target
qubit, is conditioned by the state of all ancillae from the previous iteration. (c) and (d) Fidelity between the finalized target qubit and desired
state exp[—ig(0)Y1|{) using ancillae thermalization and § FP OAA for a different number of operations, i.e., exposure to gate noise. Both
dephasing and depolarizing noise models were simulated in (c) while (d) is run on the “ibmq_vigo” quantum device, in addition to a noiseless

simulation.

projector onto the target qubits [10]. A further comparison of
resource costs between these methods can be found in Table II
in Appendix A. State-of-the-art algorithms for ground state
preparation assume the initial target qubit state has a nontriv-
ial overlap with the ground state. For ease of demonstration
we initialize the target state in an equal superposition of all
eigenstates and construct a reset gate, i.e., the scrambling
gate, which scrambles every eigenstate such that the output
has an equal overlap with all other eigenstates. In order for
ancillae thermalization to have a competitive ground state
preparation algorithm, a more sophisticated initialization and
reset procedure must be implemented.

III. ROBUSTNESS TO NOISE

Resource costs such as the number of qubits and gate
operations are a good indication of an algorithm’s efficiency.
On near-term quantum devices, however, an algorithm’s ro-
bustness to noise is a much more practical measure. Ancillae
thermalization is more robust than alternative schemes.

Demonstrating robustness to noise: Figs. 4(c) and 4(d)
demonstrates ancillae thermalization’s robustness to noise
compared with 5 FP OAA for the quantum gearbox—an
extension of the quantum perceptron with two ancillary

qubits [13]. The circuits for the quantum gearbox, ancillae
thermalization, and % FP OAA are given in Figs. 4(a) and 4(b)
and Fig. 6 in Appendix C. The multicontrol gates in both
circuits were implemented without additional ancillae. Specif-
ically, the three-qubit control gate was implemented using six
C-NOT gates and seven single-qubit control gates, while the
four-qubit control gate was implemented using two single-
qubit control gates and three three-qubit control gates [14].
Simplified multiqubit Toffoli gates were used to further reduce
operational cost [15].

Full state tomography was performed on the target qubit
with 24 576 shots for both circuits. The fidelity was then
computed between the target qubit and desired transforma-
tion R = ¢~?, where sin(0) = sin(6;) sin(6,). Note that in
practice full state tomography is not required as the target
qubit will be assumed to have a sufficiently large fidelity with
the desired state. Additionally, the number of single qubit
and C-NOT operations were measured per iteration of each
algorithm.

In addition to demonstration on IBMQ’s quantum machine,
simulations of both circuits were performed with depolarizing
and thermal relaxation noise. The depolarizing noise error
parameter A = 0.001, 0.01, for all the single-qubit and two-
qubit gates, respectively. Details of the latter noise model are

033151-5



L. WRIGHT et al.

PHYSICAL REVIEW RESEARCH 3, 033151 (2021)

given by the “high” noise level in Table III in Appendix C.
All circuits run on IBMQ’s quantum machine were compiled
using the OpenQASM backend [16] without additional error
mitigation techniques.

Origin of noise robustness: We believe that the robustness
to noise of ancillae thermalization arises because of the intrin-
sic robustness of the thermalization to changes in the coupling
of the system to the bath. In the special case of the quantum
perceptron, some of the controls—which are the proxy for the
system-bath interaction—can be removed entirely without any
detriment to the performance. This can be seen in Fig. 2(b)
where no controls are placed upon the R, (26) rotations of the
fresh ancillae. We have preliminary evidence of robustness
to reducing controls in other circumstances. This strongly
suggests that ancillae thermalization does indeed inherit ro-
bustness to noise from independence upon the bath-system
interaction. A thorough analysis will be the subject of a future
work.

An additional consideration in the comparison between
ancillae thermalization and 5 FP OAA is the number of op-
erations acting on each ancilla qubit. This number is fixed in
ancillae thermalization by the depth of the post-select unitary,
regardless of the finalized accuracy, exposing ancillae to less
gate noise.

We expect our intuition to be applicable to a variety of
circuit and quantum machine archetypes. The fixed-point
quantum search proposed by Yoder ef al. has been shown
to have an exponential decrease in query complexity over
7 fixed-point quantum search in the regime of small initial
success probabilities. Currently, it is unknown whether fixed-
point quantum search for OAA has an increased robustness to
gate noise compared to ancillae thermalization in this regime.
In the large initial success probability regime, however, it
is known that the operational costs of fixed-point quantum
search coincide with 5 FP OAA for an equivalent finalized
success probability. Therefore, although a direct comparison
has not been made, we expect ancillae thermalization to have
the highest overall robustness to gate noise within the large
initial success probability regime.

Mitigating qubit costs and control complexity: One draw-
back of ancillae thermalization is the use of resource intensive
control gates. However, the same considerations that suggest
robustness to gate noise also motivate ways to mitigate con-
trol costs and complexity. Inspired by the fact that a system
thermalizes when only a subset of its modes are coupled to
a heat bath, we have preliminary evidence that the number
of control qubits and complexity of controls can be reduced
by conditioning on a subset of factors of the unitary. In the
case of thermalization, the coupling to the bath can be simple
providing that the Hamiltonian is sufficiently scrambled. The
scrambling transfers energy to the bath-coupled modes where
it is dissipated. We find that it is sufficient to control simple
factors of the unitary with the more complex factors playing
the role of scrambling. In the context of repeat-until-success,
such a mitigation scheme would correspond to controlling
on an imperfect error flag. The result would no longer be
guaranteed a success. This is less useful than its application
in ancillae thermalization where even an imperfect correction
of error increases the amplitude for success exponentially in
time. The speedup from conditioning on a subset of operations

does not change the linear-in-time scaling of the number of
qubits, only the prefactor to this scaling. Moreover, the time to
reach the desired accuracy increases, reflecting the increased
time to thermalize if the coupling to the bath is weakened.
Nevertheless, this ability to tension these costs against one
another will likely prove useful in near-term applications.

IV. DISCUSSION

The nonlinearity of the classical world can be understood
by the observation of a minor part of a quantum system—the
unobserved part of the system acting as an environment. The
environment can be interpreted as a heat bath extracting en-
tropy from our system, or equivalently an entanglement bath
which gradually and selectively entangles with a subset of our
system. A simple and effective model of a heat bath is to
assume no back reaction so that each mode of the heat bath
interacts exactly once with the system of interest. It forms
such a small fraction of the overall size of the bath that the
bath distribution is unaltered. At the same time, the fact that
the system never interacts with this mode again means that the
back reaction effects are not felt. We have used these two ideas
to allow a set of ancillae qubits initialized in some low entropy
state to extract entropy from our system. The free evolution
of our ancillae is with a zero energy Hamiltonian—ensuring
that entropy only flows from the system of interest to the
ancillae and each ancilla interacts only once with the system
corresponding to a no back reaction condition. The resulting
algorithm is a type of FP OAA for unitary and nonunitary
transformations, achieving nonlinearity by tracing out auxil-
iary degrees of freedom. Its structure is rather different from
its counterparts, which require fewer qubits. The 7 FP OAA
scheme achieves an optimal amplitude amplification through
a cunning cancellation of phases. It is a fundamental obser-
vation of statistical mechanics however that the nature of a
heat bath does not determine the thermal equilibrium state
(provided suitably weak coupling). Our scheme effectively
harnesses this universality to obtain a degree of robustness to
gate infidelity in addition to deterministically implementing a
wider class of transformations without knowledge of the target
state. Moreover, it seems possible to reduce the qubit cost
and control gate complexity at the expense of longer times.
This gives additional freedom to operate within the NISQ
constraints of qubit count and gate fidelity. Which scheme is
optimal is contingent upon the particular system to which the
algorithm is applied. Still, it is gratifying that there exists a
regime where a simple physically motivated scheme such as
the one we present can outperform other methods.
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APPENDIX A: RESOURCE SCALING

The entries in Table I of the main paper show a comparison
of resources required to implement the techniques discussed
in this paper compared to ancillae thermalization. Here we
give more detail on how these entries are obtained.

1. Unitary transformation

Measurements: For a post-select unitary U acting on m
ancillae and target qubits |¢), up to O(2™) measurements
on the ancillae are required to implement R onto |¢). This
assumes all measurements are independent of each other. On
the other hand, no measurements are required in % OAA and
ancillae thermalization.

Number of qubits: All qubits can be reused upon fail-
ure in post-select circuits since the ancillae state collapses
upon measurement. The state E|y) is independent of R and
can always be reset. Therefore U acting on m ancillae and
n-target qubits requires n 4+ m qubits in total. Using an ad-
ditional m — 1 qubits in OAA allows for a linear scaling in
QIS,,(/3)]. To achieve a fidelity (¥/|RTpR|¥) = 1 — € for
ancillae thermalization requires N = log(1/€)/log[1/(1 —
po)] — 1 applications of V, where e(1 — [(¢|Ry)[>)~! —
€. Insertions of m new ancillae and m — 1 NOR ancillae
qubits are needed at each application. Therefore a total O{n +
log[1/(1 — po)]log(1l/e)m} qubits are required for ancillae
thermalization.

Operations: The most important resource in the compar-
ison of ancillae thermalization and OAA is the number of
gate operations required. This is computed in the case of
post-selection, OAA and ancillae thermalization as follows.

(i) Post-selection. We define Q(Oy ) as the number of single
qubit and C-NOT gates required to implement the N-qubit
gate O. Therefore, U requires a total of Q(U,,,) operations
for n target and m ancillary qubits . No further coherence
time nor operations are needed, since the ancillae becomes
disentangled with the target qubits once measured and the
circuit can be reset.

(ii) 5 FP OAA. A detailed derivation of the resource costs
can be found in Ref. [17]. We summarize the key results here.
An upper bound on the error for the kth nested iteration is
given by (1 — p)3k < €. Rearranging we find

1 1 1
k= @[loglog (Z) — loglog <(1 — P)ﬂ' (AD

The number of operations at each iteration can be computed
using the recursive relation Q[A, ,(j)] = OlA,»(j — D]+
2Q[Sm(%)]. Consequentially, its closed form can be written
as

T X T
014,10 = | QWnsn) +€[54(5) ]}3* — 2[54(3) |
(A2)

where the initial conditions are given in Egs. (D2) and (D3).
The function Q[S,,(7r/3)] is the number of operations re-
quired to implement the controlled phase shift. Assuming
access to additional ancillae, S,,(;t/3) can be constructed in
a similar way to the NOR gate such that the number of opera-

tions scale linearly with m, for m > 2.

Using our expression for k from Eq. (A1) and Q[S,, (7 /3)],
the result for the total number of operations in 5 FP OAA
follows.

(iii) Ancillae thermalization. Ancillae thermalization
produces an overlap (Y|RpR|Y) =1— (1 —p)’*T' (1 —
|(|RVr)|?) between the finalized target qubits and the desired
state for P iterations of V. To achieve an overlap 1 — e,
Ollog(1/e)] implementations of V are required. Each V
consists of Q(U,+,) + Q(R,) operations, of which controls
need only be implemented on gates acting on the target qubits.
The result for the number of operations required in ancillae
thermalization follows.

2. Ground state preparation

In this paper we use ground state preparation as a demon-
stration to deterministically apply a nonunitary operation onto
target qubits using ancillae thermalization. We also mention
using OAA in addition to linear combination of unitaries to
achieve the same task. Here we give a comparison of resources
between the two schemes.

a. Phase estimation

The phase estimation algorithm (PEA) implements an ex-
act projector onto the ground state of a Hamiltonian with
p = 1 — €. Error € is intrinsic to PEA and originates from the
binary approximation of the eigenvalues. A higher precision
is required to ensure these “imperfections” do not effect the
computation. We assume a preprocessing shift has occurred
such that the ground state energy value is 0 and initialize the
target state in an equal superposition of all eigenstates.

Measurements: For an initial target state |{), given as an
equal superposition of eigenstates, an average O(pal) =2"
measurements for pg = 27" are required for ground state
preparation. No measurements are required in ancillae ther-
malization nor block encoding + OAA.

Number of qubits: Post-selection and the PEA act upon an
n-qubit input state and m ancillae qubits. Here the number of
ancillary qubits is dependent on the required precision of the
eigenvalue m ~ O[n/2 4 log(1/€) 4+ log(1/A)], where A is
the lower bound on the spectral gap [8]. Qubits can be reused
upon failure. Ancillae thermalization with the PEA require
a total O{mlog(1/€)/log[1/(1 — po)]} qubits, the result fol-
lows with log[1/(1 — pg)] ~ O(2").

Operations:

(i) Post-selection. U,,,, requires 2™ applications of the
controlled evolutionary unitary A = e~#. To implement A
with error €’ requires Q(A) ~ O[Apolylog(2", 1/€')] oper-
ations where A is the number of operations required to
simulate H [18]. We assume A ~ O(d), where d is the
sparsity of H, i.e., maximum number of nonzero entries in
each row of H [18] and Q(W,) ~ O(1). Therefore, to pre-
pare the ground state using the PEA requires Q(U,4m) ~
0[2"0(A)] = 022 A~le~1d).

(ii) Ancillae thermalization. The number of operations for
the NOR gate scale linearly with m while two additional
operations are needed per ancillae to implement a control.
We require all qubits that have been acted on to remain
coherent throughout the computation and assume Q(W,) ~
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TABLE II. Comparison of computational resources for ground state preparation. Computational resources for post-selection and ancillae
thermalization using phase estimation (PEA) as well ancillae thermalization using linear combination of unitaries (LCU) via the results found
in Ref. [8]. We also show the results for most state-of-the-art quantum ground state preparation algorithm [10]. This algorithm uses block
encoding in addition to amplitude amplification to approximately project the target qubits onto the ground state, where k is the number of
qubits required in the block encoding. O is up to polylogarithmic factors. Here we assume the number of calls to H, A ~ d, where d is
the sparsity of the Hamiltonian, i.e., maximum number of nonzero elements in each row of the Hamiltonian and A is the lower bound on the
spectral gap. Note that we assume the input target state is given as an equal superposition of all eigenstates. Various schemes may exponentially
reduce the number of ancillary qubits required for ancillae thermalization, e.g., by conditioning on only a subset of elements of a factorization

of the unitary U. Indeed, a heat bath does not need to couple to all elements of a system to effectively cool.

Ground state preparation Measurements Qubits Gates
Post-selection and PEA oM Oln + log(1/A) + log(1/e€)] 0" A e IN)
Ancillae .

0 O[2"polylog(1/e, 1/A)] 02 A e IN)
Thermalization and PEA
Ancillae

o 0 O[2"polylog(1/e, 1/A)] O[2" A~" Apolylog(2", A™!, e™h)]

Thermalization and LCU
Block encoding and OAA 0 O(n +k) O12"* A~k A log(1/€)]

O(1) or ~O[log(n)] [19]. The total number of operations is
Oflog(1/€)/1log[1/(1 — pop)IQ(U,+m)}, the result follows.

b. Linear combination of unitaries

Linear combination of unitaries (LCU) can be used to
construct a truncated Taylor series of the time-dependent
evolutionary operator. This approximately projects the target
qubits onto the ground state of the Hamiltonian. The im-
plementation of this unitary is nondeterministic, thus either
OAA or ancillae thermalization can be used to amplify the
probability of success. A detailed derivation of the resource
costs of LCU for ground state preparation can be found in [8].
We summarize the key results here.

Number of qubits: The number of ancillary qubits, i.e., the
precision required for LCU is less than PEA, requiring m ~
Ollog(1/A) + loglog(2"/€)] qubits to achieve the same ac-
curacy. The probability of correctly implementing the ground
state projector by LCU is py ~ O(27"), assuming [i/) is in
an equal superposition of eigenstates. We ignore any qubits
required for the Hamiltonian simulation.

Operations: LCU requires implementing a unitary B on the
ancillae followed by Ay = exp(—iHk) on the target qubits,
representing a segment of the Taylor series for A. B can be im-
plemented with Q(B) ~ O[A~"10g*?(2"/¢)] operations. The
Hamiltonian simulation represented by A is implemented with
Q(A) ~ O[Apolylog(2", €~1)] operations to a required accu-
racy & = O(27" A¢). Thus the number of operations needed to
perform LCU, Q(LCU) ~ O[A~! Apolylog(2¥, A~!, e~1)].
Assuming Q(W,)) and Q(C-LCU) — Q(LCU) ~ O(1) leads to
the result shown in Table II for ancillae thermalization.

APPENDIX B: METHODS

We provide a detailed description of the methods and re-
sults found in the main text.

1. Ancillae coupling and reset gates

To construct the ancillae thermalization circuit we use the
methods discussed in Sec. II A to initially apply U followed
by iterations of the controlled unitary V. For ground state
preparation, V includes a reset gate and unitary U of the
phase estimation circuit acting on excited states in the wave
function of the target qubits. It is constructed as follows: First,
we only apply V if the ancillae from the previous iteration are
not in the state |0)®’. This state corresponds to the preparation
of the target qubits in the ground state. The condition is
checked through use of a NOT-OR (NOR) gate. This logic
gate acts upon all ancillae from the previous iteration and an
additional m — 1 NOR ancillae qubits. The result of whether
the previous ancillae correspond to the preparation of the
ground state is outputted onto the last NOR ancilla. Second,
a reset gate consisting of a scrambling operation acts upon
the target qubits conditioned by the last NOR ancilla. The
purpose of the scrambling operation is to redistribute the
probability of an eigenstate to all other eigenstates equally. A
full description of the NOR and scrambling gate can be found
in Appendices B2 and B 3, respectively. Finally, another
application of the phase estimation unitary U—controlled by
the last NOR ancillary quibit—acts upon the target qubits and
a batch of m fresh ancillae.

2. NOR gate

The quantum NOT-OR (NOR) gate shown in Fig. 5 is an
quantum logic gate. Its purpose is to compile the controls on
all excited states represented by the ancillae onto a single
qubit. The gate acts on the m precision ancillae from each
iteration in addition to m — 1 NOR ancillae in initial state
|0y®"=! The state of the last NOR ancilla is |0) if and only if
the precision ancillae are in |0)®™, otherwise the NOR qubit is
in state |1). The scrambling gate W and U in the next iteration
of V are both controlled by the last NOR ancilla. If the ground
state energy Eg # 0, then a preprocessing procedure needs to
be implemented to shift all the energies by a constant such that
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FIG. 5. Operations required in ancillae thermalization for ground state preparation. (a) The NOR gate quantum circuit used to compile the
precision ancillae conditions into a single qubit. The gate acts on all ancillae from the iteration and m — 1 fresh NOR ancillae. The output state
of the last NOR ancilla is |0) if and only if the state of the precision ancillae is |0)®, otherwise the last NOR qubit state is |1). The scrambling
gate and next iteration of U are both controlled by the last NOR qubit. (b) Histogram showing the overlap between a randomly chosen state
and a scrambled state which has been transformed by an arbitrary local unitary. We can see numerically that the unitary increases the overlap

1

between the states to ~+, becoming more accurate as the system size increases. This proves that the application of a scrambling gate gives the

N

desired result of redistributing the probability weights of each state equally.

|0y®™ corresponds to the preparation of the ground state of an
arbitrary Hamiltonian on the target qubits.

3. Scrambling gate

The purpose of the scrambling gate is to redistribute the
weight of each eigenstate equally among all other eigenstates
on the target qubits. We assume that an equal distribution
of eigenstates corresponds to a maximally mixed set of bit
strings. This approximation is discussed further in this sec-
tion below. Figure 5(b) shows that for a randomly chosen
eigenstate of U, applications of arbitrary local unitaries will
increase its overlap with another eigenstate. As N increases,
the mean overlap between the transformed eigenstate and a
perpendicular state converges to 1/N. To numerically prove
this result, N-qubit state |A;) and its perpendicular state |Af‘)
were chosen uniformly with the Haar measure. The overlap
between |)»1l) and |A1) acted on by local Hadamard gates, i.e.,
H®N was computed and the process was repeated 1000 times.
The simulation was also repeated with local X gates which
gave the same result.

Scrambling approximation: The eigenstates of a diago-
nal unitary correspond to single bit strings. Consequently, a
maximally mixed state of bit strings corresponds to a equal
distribution of eigenstates, where application of a Hadamard
gate on a bit string scrambles the state entirely. This is not true
for nondiagonal unitaries, where eigenstates correspond to a
linear combination of bit strings. However, as N increases so
does the number of eigenstates which have an average overlap
1/N with each bit string. Therefore, the assumption that a
maximally mixed set of bit strings can approximate an equal

distribution of eigenstates for an arbitrary unitary becomes
more accurate as the number of target qubits increase.

4. Fidelity calculations

In this section we derive the fidelity between the finalized
target qubits from the tracing out method and the desired
state for the quantum perception and ground state preparation
algorithms.

a. Quantum perceptron

Applying the quantum perceptron post-select unitary U
onto the state |0)[y) produces

¢0) =V P@O)IO)Y') + /1 = p@OINE),

where |') = R(0)|). The reset gate W transforms E|v/) —
|[vr) and a new ancilla is inserted. U, conditioned by the state
of the previous ancilla, acts on the new ancilla and target
qubits to give

161) = (v P©)I0) + /1 — p(©)y/p(©)[1))10) )
+ [1 = p@11)|¥).

Resetting, inserting new ancillae, and applying U conditioned
by the previous iteration’s ancilla P times leads to the state

(BI)

(B2)

P-1
br) = (Z pO)1— p(9>1k|k>)|w/>+ [1— p@))F |P) ),

k=0
(B3)
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where |k) = [1)®%]0)®~%) and |P) = |1)®”. The density ma-
trix after P steps is given by

:|A)|¢/)(¢/|(A|+|B)|1ﬂ)(¢|(3|+"' (B4)
where \/p(G) [1— p@]F|k) and |B) =[1—

p(@)]z |P). Usmg (k/|k) =0 for all k # k’, a partial trace is
performed on the ancillae to obtain

{1 =11 = p@O1" Y)Y @' + 11 = pOI 1) ().
(B5)

Using the equation above, the fidelity between the finalized

target qubits and desired state F = Tr(pérgeth//) (¥']) can be

written as

F(prgers 1)) = 1= (1 = p)(1 = (w19, (B6)

As the quantum perceptron is an example of a single ancilla
repeat-until-success circuit, the result can easily be general-
ized to the m ancillae case.

P
o target —

b. Ground state preparation

To prepare the target qubits in the ground state of a
specified Hamiltonian we utilize quantum phase estimation.
This algorithm computes 0 < 6 < 1 which satisfies A|L) =
e*™ | 1) up to a finite precision for m ancillae qubits in the
first register. In other words, it computes the binary value
6=0,00,6,,...,0, with 6; € {0, 1}. The unitary A can al-
ways be constructed from Hermitian matrix H such that
ALy = e BT\ = E = —@ where E is the energy corre-
sponding to eigenstate |1). Note that in all of our experiments
T=1.

The n- target qubits are initialized to an equal superposi-
tion |¢,) = f Zl 1 |A;) of all eigenstates. Implementing the

phase estimation unitary U onto |0®™)|,) gives

16;)|A:)
[é1) E [A:) E —. (B7)
I i=N* N

The false positive in the prepared ground state originates from
the finite precision on the eigenvalues. A scrambling operation
S is performed on the incorrectly prepared eigenstates by
placing a condition on the ancillae. This operation produces
an overlap (A;|SA) ~ % foralli=1,...,N. Details of S and
the conditioning on the ancillae can be found in Appendix B.
A batch of m new ancillae are inserted. U acts on the new
ancillae and target qubits conditioned by the previous ancillae
to transform the state as

166)10) |9 |k 1Y)
|¢2>=< GWG g )ZI/\ LA -1

where |k) = ZfV:N 41 10;) and a conditioned S has been ap-
plied to the target qubits.

After P iterations of inserting ancillae, applying U and S,
the state is given by

P—1 1
lpp1) = (ZN’*‘ )2 01k)® )ZM

i=0

1
+ — 1) [yy). (B9)
Nz

By expanding |vy) it can be shown that scrambling the state
increases the overlap with the ground state

Pl
|¢p2> = (Z N‘H |9 )®(P l)|k)®z % |k>®P)|A.G>

i=0 N
+ — 0% ), (B10)
N7
where |Xg) = Y7 |4;) and [ag) = Y0y [2))-
The density matrix after P steps is given by
p" = 1A)1x6) (K |(Al + IB)|rg) (el (Bl + -+, (B11)

where

P-1

1 —i i 1

4) = (X2 == 100°C 0% + =0 ). (B12)
i N2 N©

1

23]

|B) = k)®F. (B13)

Performing a partial trace on the ancillae the density matrix of
the target qubits is given by

» 1 NN\ oo
Prarget = m 1- N |26} {AG]

(N =N

[A)(Ap| + - . (B14)

Using the equation above, the fidelity between the finalized
target qubits and ground state can be written as

1 N — N*\ !
11— .
w5 ]
The fidelity is bound by the distinguishability of the eigen-
states. In the main paper we choose m such that N* =

F(0fger 116)) = (B15)

APPENDIX C: NUMERICAL SIMULATION PARAMETERS

Here we provide the parameters used in the numerical
simulations shown in the main text.

1. Qiskit code

We construct the example circuits discussed in this paper
using the python qiskit API [20]. This allows the decompo-
sition of our circuits into the universal gate set consisting
of arbitrary single qubit rotations and C-NOT gates. We use
a total of 8192 shots for each data point in both examples
and chose not to display error bars since they are statistically
negligible. Figure 6 shows the 7 /3 FP OAA circuit for the
quantum gearbox simulation, implemented using qiskit. The
code used for the experiments in this paper can be found
at [21].
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FIG. 6. % FP OAA circuit for the quantum gearbox. First iteration of 3 FP OAA for an equivalent O(N) attempts of post-selection with

=3 appllcatlons of the circuit in Fig. 4(a). The circuits consists of repetltlons of the post-select unitary U and controlled phase gate S,,(;r /3)
for m = 2, which performs a phase shift on the |0) state of the top ancillary qubit. The quantum gearbox with 5 FP OAA was simulated with
depolarizing and thermal relaxation noise in addition to being run on IBMQ’s quantum device. Fidelity between the finalized target and desired
state was computed for different numbers of nested iterations and compared against ancillae thermalization. In all three noise models it is shown
in Figs. 4(c) and 4(d) that ancillae thermalization has an increased robustness to gate noise as a function of circuit depth.

2. Hamiltonians

The Hamiltonians used in the experiments are given by

0 0
2

—0.08609 —0.22467 —0.41822 —0.10511
% —0.22467 —1.40667 —0.16506 —0.67003
27| —0.41822 —0.16506 —3.06202  0.09996
—0.10511 —0.67003  0.09996 1.41319
(CDH

Hz was chosen such that A = ¢ 2 = VDVT where D =
Z 0 € 5 “|k) (k|. V contains the eigenvectors of A and has the
form V =7 + €B where the elements B;; ~ N(0,0.5) and
perturbation € = 0.5. Orthonormalization of V' is ensured by
the Gram-Schmidt process. The motivation behind H, comes
from the accurate approximation on the scrambling gate dis-
cussed in Appendix B3. As the number of target qubits
increase, the space of applicable Hamiltonians increases and
this approximation becomes more accurate.

3. Simulated noise

The simulated noise for ground state preparation represents
the thermal relaxation between each qubit and their environ-
ment. This was parametrized by the thermal relaxation time
T, the dephasing constant 75, and the implementation time
of each gate. The thermal relaxation noise model provided by
Qiskit was used in the ground state preparation experiment
of H,. This model is parametrized by the thermal relaxation
time 7;, dephasing constant 75, and implementation time of
CC-A, C-A, C-NOT, and single qubit gates. Table III shows
the range of parameter values used in the ground state prepa-
ration experiments with different levels of noise. The noise
was computed by decomposing each gate into C-NOT and
single qubit gates where the noises are given explicitly. The
gates C-A and CC-A were an exception to this decomposition
and custom gate noises were computed, respectively, using the
values below. T} and 7, were sampled for each qubit from a
normal distribution with means p; and w;, respectively, and
shared variance o.

APPENDIX D: BACKGROUND

Here we provide a brief explanation of the other techniques
mentioned in the main text.

1. Classical perceptron

The classical perceptron whose quantum analog is dis-
cussed in the paper consists of two parts: The first part takes
n-inputs xi, . . ., x, and performs linear regression with synap-
tic weights wy, ..., w, plus a bias b. This computes the input
signal to the perceptron 8 = x;w; + xw; + - - - + b. The sec-
ond part maps 6 onto the activation function a(@) € [0, 1].
This is known as the state of a perceptron and is used either
as an input for a next perceptron or an output for a neural
network. Within the quantum perceptron the latter of the two
processes is represented by an angle of rotation upon a target
qubit as a function of 8. The challenge is to overcome the
innate linearity of quantum dynamics to find a realization of
this nonlinear function.

2. Oblivious amplitude amplification

Oblivious amplitude amplification (OAA) replaces post-
selection with tracing out ancillary qubits to guarantee a
specified unitary transformation, without knowledge of the
target state [5]. The allocation of resources for OAA differ to
that of our proposed method. We focus upon an implementa-
tion that monotonically decreases the error of implementing

TABLE III. Table of parameter values used in the simulation of
thermal relaxation noise for the two-qubit ground state preparation
experiment.

Statistical

Implementation time (ns) params. (us)

Noise level U1 U2 U3 C-NOT C-A CC-A 1251 12%) o

Low 0 50 100 300 1600 3000 1800 2000 10
Medium 0 50 100 300 1600 3000 180 200 10
High 0 50 100 300 1600 3000 50 70 10
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the specified unitary transformation in the regime of large
initial success probabilities, % FP OAA [3]. See Fig. 6.
Repeating Eq. (1) of the main text here for clarity, we seek
a transformation U that achieves a desired unitary transfor-
mation R of a target set of qubits with some probability pg:

2m—1

U10)="19) = /polO)®"RIV) + Y /PelKEY). (D)
k=1

In essence, 7 FP OAA “boosts” the final success proba-
bility from pp=1—€ to 1 — € using the equality (1 —
e™/3) = ¢~/3 This is done by replacing U with A,

given by

Ag=U, (D2)

Ap = —Ar1S(T/3)A]_ S /3)Ak-1, (D3)

where S(/3) = 1" — (1 — €™/3)|0™)(0™| is a controlled 3
phase shift applied to the ancillary qubits. A; concatenates
this procedure k times to obtain a final success probability
Pfinal = 1 — €3, Each recursion increases Pfinal SUpErexponen-
tially at the cost of an exponential number of operators. The
larger number of gate operations acting on each ancillary
qubit in % FP OAA, as discussed in Sec. III, may lead to
a reduced robustness to noise when compared with ancillae
thermalization.
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