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ABSTRACT

Since the demonstration in 2018 that organic radicals can be used to make highly efficient organic light-emitting
diodes, there has been an explosion of interest in their capabilities and many experimental and computational
studies of their performance. Here we take a theoretical view and describe the electronic structure of radicals
from an algebraic perspective. By rediscovering and adapting historic investigations of organic radicals, we show
how many experimentally useful properties can be determined without synthesis or computation, but simply from
knowledge of the molecular structure and in particular whether or not the radical is an alternant hydrocarbon.
These include the location of orbital amplitude in the SOMO, absorption and emission characteristics, and
solvatochromic shift. We explain these results in the context of modern organic light-emitting diodes in order to
inform future investigations.

1. INTRODUCTION

In 2018 a record-breaking organic light-emitting diode (OLED) was made with 27.6% external quantum efficiency
(EQE) and approximately 100% internal quantum efficiency (IQE).1 Unlike most organic light-emitting diodes,
this was not based on a closed-shell molecule but on an organic radical, TTM-3NCz [tris-(2,4,6-trichlorophenyl)methyl
3-substituted-9-(naphthalen-2-yl)-9H-carbazole].1 Radicals (strictly speaking, monoradicals*) are molecules with
one unpaired electron whose qualitative electronic structure is shown in Fig. 1.

HOMO

SOMO

LUMO

Figure 1. Qualitative electronic structure of a radical, with a filled Highest Occupied Molecular Orbital (HOMO), half-filled
Singly Occupied Molecular Orbital (SOMO), and empty Lowest Unoccupied Molecular Orbital (LUMO).

The internal quantum efficiency of conventional closed-shell molecules is usually limited to 25% by the spin-
statistics limit, but there is no such restriction for radicals.2,3 Historically, radical molecules were often considered
too unstable4,5 for serious consideration in OLEDs, and those that were stable (such as the triphenylmethyl
radical and its derivatives) were usually non-emissive, leading to the view of radical OLEDs as somewhat of
an obscure intellectual curiosity. However, in 2015 Peng et al. demonstrated an OLED based on an organic
radical, TTM-1Cz [(4-N-carbazolyl-2,6-dichlorophenyl)bis(2,4,6-trichlorophe- nyl)methyl radical].6 This was, to
our knowledge, the first demonstration of a functioning radical OLED, with EQE of 2.4%.6
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*Monoradicals have only one unpaired electron. Radicals with two or more unpaired electrons have not, to our

knowledge, been used in functioning OLEDs and are not considered in this article.
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Since the discovery in 2018 of a highly-efficient radical OLED, there has been great interest in radical op-
toelectronics, both synthetic2,5 and computational,5,7–10 as well as review articles from an organic synthetic
perspective3 and an applied physics viewpoint.11 However, there has been comparatively little research into
the theoretical electronic structure of organic radicals, and the success of methods such as Hückel theory and
Pariser-Parr-Pople (PPP) theory12–15 for closed-shell optoelectronic species16–19 suggests that this could be a
promising avenue of research for radicals too. We therefore seek to go beyond the qualitiative (but usually
correct) depiction of radical electronic structure as shown in Fig. 1.

To the best of our knowledge, the electronic structure of radicals was first investigated theoretically by
Longuet-Higgins in 1950,20 then by Dewar and Longuet-Higgins in 195421 and in more detail be Longuet-Higgins
and Pople in 1955.22 These last two articles were part of a series of articles on the electronic structure of
conjugated organic species15,21–24 and built on earlier work such as the Coulson-Rushbrooke theorem25 and
its application to radicals by Longuet-Higgins.20 As far as we are aware these articles were not known to the
optoelectronic field until they were rediscovered in 2019 and their results used to inform and predict the design
of radical OLEDs in an article published in 2020.2 At the time Dewar, Longuet-Higgins and Pople wrote these
articles electronic structure theory notation was not standardised and the standard notation used today26 is
different in many respects that that used by them. There is therefore a need to rederive their results in modern
notation such that they may be more easily appreciated by the modern optoelectronics community.

In this article we therefore seek to rederive the main results from the papers by Dewar, Longuet-Higgins
and Pople21,22 concerning neutral organic radicals, and interpret their results in the context of modern organic
light-emitting diode design. We are also able, in some circumstances, to derive results which are more general
and widely-applicable than those originally presented.

We stress that there are many other theoretical techniques which may be of use in explaining the functionality
of radical OLEDs, and which have previously been successfully applied in optoelectronic systems, such as group
theory27 which can inform orbital mixing16,19,28 and spin-orbit coupling,28,29 as well as intensity borrowing
theory.2,16,30 Further application of these theories to radicals is left as future work.

The article is structured as follows. In section 2 we detail spin considerations, followed by choosing the
molecular orbitals to optimize (lower) the energy of the ground state in section 3 and the computation of excited
states in section 4. In section 5 we introduce an atomic orbital basis and in section 6 we apply the standard
Pariser-Parr-Pople approximations. In section 7 we see how, for the case of an alternant hydrocarbon radical,
substantial simplifications occur and derive various molecular properties. Application to OLEDs are considered
in section 8 before conclusions are given in section 9.

2. SPIN CONSIDERATIONS

In this article we consider a molecule with Ne electrons where Ne is odd, such that (in a restricted wavefunction)
there will be k = (Ne − 1)/2 paired electrons and one unpaired electron. For reasons which will become
apparent later, and in accordance with later convention,13,16 we number the SOMO orbital zero, and the HOMO,
HOMO−1 etc as 1,2,. . . while the LUMO, LUMO+1 etc are numbered 1′, 2′, . . .. We also assume that the unpaired
electron is in an α (up spin) orbital.

One common way of describing a radical system is with an unrestricted wavefunction,22,26 i.e.

|Ψu
0 〉 = |ψαk ψ̄

β
kψ

α
k−1ψ̄

β
k−1 . . . ψ

α
1 ψ̄

β
1ψ

α
0 〉 (1)

where ψαk is the wavefunction for the kth up spin orbital and ψ̄βk the wavefunction for the kth down spin orbital,

and the spatial parts of ψαk and ψ̄βk are not required to be the same. The bar in ψ̄βk denotes that the spin part
of the wavefunction is down spin (ms = −1/2). This description, commonly used in Unrestricted Hartree-Fock
(UHF) and many Density Functional Theory (DFT) calculations,1,2 can provide a good description of the ground
state but struggles to accurately describe higher-lying excited states due to spin-contamination.7

This is because, in nonrelativistic systems which we consider here, eigenstates of the electronic Hamiltonian
Ĥ must also be eigenstates of the spin projection operator Ŝz (with eigenvalue Ms, setting ~ = 1) and the total
spin operator Ŝ2 (with eigenvalue S(S + 1). The wavefunction in Eq. (1) is an eigenstate of Ŝz with eigenvalue
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+1/2, but is not usually an eigenstate of Ŝ2.26 This means that, especially when there are multiple unpaired
electrons, it is not possible to determine whether the state is a doublet or a quartet, sometimes referred to as the
spin-contamination problem.7 The lack of clear doublet/quartet character is highly problematic when comparing
computational results to experimental measurements, since optical transitions are only permitted between states
of the same spin, which in the case of radicals means between different doublet states or between different quartet
states, but not from doublets to quartets or vice versa.

The difficulty of accurately describing the excited states of radicals with unrestricted calculations was, to
our knowledge, first explained in 1955.22 This was rediscovered by He et al. in 20197 where computational
calculations confirmed Longuet-Higgins’ theoretical predictions.

Instead of the unrestricted wavefunction, Longuet-Higgins et al. suggest using a restricted one:22

|Ψ0〉 = |ψkψ̄kψk−1ψ̄k−1 . . . ψ1ψ̄1ψ0〉 (2)

where the spatial part of ψk and ψ̄k are the same, such that the α and β superscripts can be omitted. This can be
achieved through restricted open-shell Hartree Fock (ROHF) calculations, explicitly spin-adapting DFT (some-
times referred to as X-TDDFT7) and through high-level complete active space self-consistent field (CASSCF)
calculations.

The wavefunction in Eq. (2) is an eigenstate of Ŝ2 with an eigenvalue 3/4, corresponding to a doublet. Excited-
state wavefunctions based on Eq. (2) may not necessarily be eigenstates of Ŝ2 but simple linear combinations of
excited states can be found which are eigenstates of Ŝ2.22

3. CHOICE OF MOLECULAR ORBITALS

Having determined that we are to consider a restricted wavefunction, we now discuss how best to calculate
the spatial part of the molecular orbitals. There are, of course, many different approaches and here we will
follow the one of Longuet-Higgins and Pople.22 They begin, as with the conventional derivation of the Roothaan
equations,26 by defining the optimal orbitals to be those which minimize the energy of the (restricted) ground
state determinant |Ψ0〉 of Eq. (2). Any infinitestimal variation in the orbitals of |Ψ0〉 is equivalent to incorporating
small amounts of singly excited configurations:

|Ψ0〉 →|Ψ0〉+

k∑
i=1

λi0|Ψ0̄
ī 〉+

∞∑
j=1

λ0j |Ψj′

0 〉+

k∑
i=1

∞∑
j=1

λij(|Ψj′

i 〉+ |Ψj̄′

ī
〉) (3)

where |Ψj′

i 〉 corresponds to exciting an electron from spin orbital i to (unoccupied) spin orbital j′. The second
term on the RHS of Eq. (3) corresponds to exciting an electron into the empty SOMO spin-down orbital, the
third term to exciting the up-spin electron in the SOMO to an empty orbital j′ and the fourth term to an in-phase
combination of exciting from occupied orbital i to unoccupied orbital j′. These three terms are all eigenstates
of Ŝ2 and with eigenvalue 3/4 (setting ~ = 1), i.e. they are doublets, and for simplicity we define the normalized
state

|Ψj′,+
i 〉 =

1√
2

(|Ψj′

i 〉+ |Ψj̄′

ī
〉). (4)

These excitations are illustrated in Fig. 2.

Small perturbations of the ground state could also mix in the states containing |Ψj̄′

ī
〉 − |Ψj′

i 〉; this linear

combination is not an eigenstate of Ŝ2 and is not considered further.

The change in energy associated with Eq. (3) is therefore

δE =
k∑
i=1

λi0〈Ψ0|Ĥ|Ψ0̄
ī 〉+

∞∑
j=1

λ0j〈Ψ0|Ĥ|Ψj′

0 〉+
k∑
i=1

∞∑
j=1

√
2λij〈Ψ0|Ĥ|Ψj′,+

i 〉. (5)
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Figure 2. Molecular orbital diagrams showing various electronic states considered in the paper. On the left-hand side
the orbitals are labelled with the usual labels (HOMO, SOMO etc) and the orbital numbering used in the article is used
on the right-hand side of each diagram. Part (a) shows the ground state |Ψ0〉, (b) is exciting a down-spin electron from
(bonding) orbital i to the SOMO, |Ψ0̄

ī 〉, (c) to exciting the up-spin electron from the SOMO to (antibonding) orbital j′,

denoted |Ψj′

0 〉. Parts (d) and (e) show exciting an electron from bonding orbital i to antibonding orbital j′, (d) to exciting

an up-spin electron |Ψj′

i 〉 and (e) to exciting a down-spin electron |Ψj̄′

ī
〉. The in-phase combination of the excitations in

(d) and (e) forms |Ψj′,+
i 〉 as given in Eq. (4). Part (f) shows a double excitation from ı̄ to 0̄ and 0 to j′, which has the

same spatial orbital occupancy and Ms = 1/2 value as (d) and (e) and which is taken in linear combinations with (d) and
(e) to form spin-pure states.

In order for |Ψ0〉 to be stationary (for our purposes, a minimum), δE must be zero for all values of {λij}, which
is satisfied if and only if all Hamiltonian bra-kets in Eq. (5) are zero. These matrix elements are:22

〈Ψ0|Ĥ|Ψ0̄
ī 〉 =hi0 +

k∑
l=1

[2(i0|ll)− (il|l0)] + (i0|00) (6a)

〈Ψ0|Ĥ|Ψj′

0 〉 =h0j′ +
k∑
l=1

[2(0j′|ll)− (0l|lj′)] (6b)

〈Ψ0|Ĥ|Ψj′,+
i 〉 =

√
2

{
hij′ +

k∑
l=1

[2(ij′|ll)− (il|lj′)] + 1
2 [2(ij′|00)− (i0|0j′)]

}
(6c)

where hij corresponds to the one-electron integral 〈ψi|ĥ(1)|ψj〉 and (ij|kl) is a two-electron spatial integral in
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the chemists’ notation:26

(ij|kl) =

∫
dr1

∫
dr2ψ

∗
i (r1)ψj(r1)

1

r12
ψ∗k(r2)ψl(r2). (7)

Careful examination of Eq. (6) suggests the following, approximate, Fock-like operator22

〈ψp|F̂ |ψq〉 = Fpq = hpq +
k∑
l=1

[2(pq|ll)− (pl|lq)] + 1
2 [2(pq|00)− (p0|0q)], (8)

and by inserting Eq. (8) into Eq. (6) we obtain

Fp0 + 1
2 (p0|00) =0 (9a)

F0q − 1
2 (0q|00) =0 (9b)
√

2Fpq =0 (9c)

where p = 1, 2, . . . , k and q = 1′, 2′, . . . ,∞ (we assume at present a theoretically infinite and complete basis set).
Eq. (9) is not as straightforward an in the conventional closed-shell case, but by approximating that (p0|00) and
(0q|00) are small (and they can sometimes be shown to be zero by symmetry) Longuet-Higgins and Pople suggest
simply considering22

Fpq = 0. (10)

Strictly speaking, the equations in Eq. (9) only consider the case where p is a doubly occupied orbital and q is an
empty orbital. However, since F̂ is a linear and Hermitian operator,22 its eigenstates will have real eigenvalues
and be orthogonal. Consequently the relevant molecular orbitals we require are simply eigenfunctions of F̂

F̂ |ψl〉 = εl|ψl〉, (11)

with eigenvalue, or orbital energy,

εl = Fpp = hpp +

k∑
l=1

(2Jpl −Kpl) + Jp0 − 1
2Kp0, (12)

where we have used the standard definitions for the Coulomb and exchange integrals26

Jpq =:(pp|qq), (13a)

Kpq =:(pq|qp), (13b)

and assumed, as in conventional electronic structure theory, that the orbitals are real.

Using standard electronic structure theory algebra26 the total electronic energy is

〈Ψ0|Ĥ|Ψ0〉 =

(
k∑
l=1

2hll

)
+ h00 +

k∑
l=1

(
2J0l −K0l +

k∑
m=1

2Jlm −Klm

)
(14a)

≡

(
k∑
l=0

2hll

)
− h00 +

k∑
l=0

k∑
m=0

(2Jlm −Klm)−
k∑

m=0

(2J0m −K0m) (14b)

=
k∑
l=1

(hll + Fll) + 1
2 (h00 + F00)− 1

4J00. (14c)

Note that this is more complicated than for a conventional closed-shell system26 as there is only one electron in
the SOMO.
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4. EXCITED STATES

We now consider the low-lying excited states of a radical. Longuet-Higgins and Pople22 only considered excita-
tions involving the HOMO, SOMO and LUMO and here we consider the more general case where excitations
involve any bonding orbital i to any antibonding orbital j′.

The singly excited state formed by exciting from ı̄ to the SOMO (|Ψ0̄
ı̄ 〉, Fig. 2(b)), and from the SOMO to j′

(|Ψj′

0 〉, Fig. 2(c)) are considered first. Both these states are eigenstates of Ŝz (with eigenvalue 1/2) and Ŝ2 (with
eigenvalue S(S + 1) = 3/4).

We then consider exciting from orbital i to j′, which is more complicated. From standard (non-relativistic)
electronic structure theory,26 the electronic Hamiltonian commutes with Ŝz and Ŝ2, meaning that the eigenstates
of of Ĥ must also be eigenstates of Ŝz and Ŝ2. The true (Full Configuration Interaction, FCI) eigenstates of
a radical are generally too computationally expensive to determine, but (as mentioned earlier) it is useful to
ensure that approximate eigenstates of Ĥ (such as those determined from considering a reduced space of orbital

excitations) are also eigenstates of Ŝz and Ŝ2. When considering the action of Ŝ2 upon, for instance, |Ψj′

i 〉, a

doubly excited state |Ψ0̄j′

ı̄0 〉 is generated as part of the solution, corresponding to exciting an electron from ī to

0̄ and then from 0 to j′, as shown in Fig. 2(f). This excitation has the same spatial orbital occupancy as |Ψj′

i 〉
and |Ψ̄′

ı̄ 〉, and in order to obtain a complete set of spin-pure states with Ms = +1/2 and one electron in orbitals
i, 0 and j′, this double excitation must also be considered.

4.1 Energies

The energy of |Ψ0̄
ı̄ 〉 is

E(Ψ0̄
ı̄ ) ≡〈Ψ0̄

ı̄ |Ĥ|Ψ0̄
ı̄ 〉

=

(
k∑
l=0

2hll

)
− hii +

k∑
l=0

k∑
m=0

(2Jlm −Klm)−
k∑
l=0

(2Jil −Kil) (15a)

=E0 + F00 − Fii − Ji0 + 1
2Ki0 + 1

2J00, (15b)

and of |Ψj′

0 〉,

E(Ψj′

0 ) ≡〈Ψj′

0 |Ĥ|Ψ
j′

0 〉

=

(
k∑
l=1

2hll

)
+ hj′j′ +

k∑
l=1

k∑
m=1

(2Jlm −Klm) +

k∑
l=1

(2Jlj′ −Klj′) (16)

=E0 + Fj′j′ − F00 − J0j′ + 1
2K0j′ + 1

2J00. (17)

As discussed above, evaluation of states with one electron in orbitals i, 0 and j′ is more complicated. We

firstly find the Hamiltonian matrix in the basis of {|Ψj′

i 〉, |Ψ
̄′

ı̄ 〉, |Ψ
0̄j′

ı̄0 〉} (Fig. 2(d), (e) and (f) respectively)

H =

[(
k∑
l=1

2hll

)
+ h00 − hii + hj′j′ +

k∑
l=1

k∑
m=1

(2Jlm −Klm)

+
k∑
l=1

(−2Jil +Kil + 2J0l −K0l + 2Jlj′ −Klj′)− Ji0 − Jij′ + J0j′ +Ki0 +Kij′

]
I

+

−K0j′ +Kij′ −Ki0

+Kij′ −Ki0 +K0j′

−Ki0 +K0j′ −Kij′

 , (18)

Proc. of SPIE Vol. 11799  117991A-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Oct 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



with associated spin Hamiltonian matrix

S2 =

7/4 −1 +1
−1 +7/4 −1
+1 −1 +7/4

 . (19)

This matrix has eigenvalues of 3/4 = (1/2)× (1/2 + 1) twice, corresponding to two doublet states, and 15/4 =
(3/2)× (3/2 + 1), corresponding to one quartet state. The quartet eigenstate is

|4Ψj′

i 〉 =
1√
3

(
|Ψj′

i 〉 − |Ψ
̄′

ı̄ 〉+ |Ψ0̄j′

ı̄0 〉
)
7→ 1√

3

 1
−1
1

 (20)

and the doublet eigenstates can be chosen to be |Ψj′,+
i 〉 considered earlier

|Ψj′,+
i 〉 =

1√
2

(|Ψj′

i 〉+ |Ψj̄′

ī
〉) 7→ 1√

2

1
1
0

 (21)

and a second doublet state which we define as

|Ψj′,−
i 〉 =:

1√
6

(
−|Ψj′

i 〉+ |Ψ̄′

ı̄ 〉+ 2|Ψ0̄j′

ı̄0 〉
)
7→ 1√

6

−1
1
2

 (22)

where ‘7→’ means maps to the vector representation of {|Ψj′

i 〉, |Ψ
̄′

ı̄ 〉, |Ψ
0̄j′

ı̄0 〉}. Rotating the Hamiltonian in Eq. (18)

to the basis of {|4Ψj′

i 〉, |Ψ
j′,+
i 〉, |Ψj′,−

i 〉} we obtain

H =
[
E0 − Fii + Fj′j′ − Jij′ + 1

2Ki0 + 1
2K0j′ +Kij′

]
I

+

−(K0j′ +Kij′ +Ki0) 0 0

0 Kij′ − 1
2 (K0j′ +Ki0)

√
3

2 (K0j′ −Ki0)

0
√

3
2 (K0j′ −Ki0) −Kij′ + 1

2 (K0j′ +Ki0)

 , (23)

from which we find

E(4Ψj′

i ) =E0 − Fii + Fj′j′ − Jij′ − 1
2Ki0 − 1

2K0j′ , (24a)

E(Ψj′,+
i ) =E0 − Fii + Fj′j′ − Jij′ + 2Kij′ , (24b)

E(Ψj′,−
i ) =E0 − Fii + Fj′j′ − Jij′ +Ki0 +K0j′ . (24c)

All states have as a component of their energy expression the energy of the ground state E0, minus the energy of
the orbital the electron is excited from, plus the energy or the orbital the electron is excited to, less the Coulomb

attraction between an electron in j′ and a hole in i. Furthermore, the energy of |Ψj′,+
i 〉 has the same functional

form as the standard expression for a singlet exciton in a closed shell molecule;26 viz. the ground-state energy
plus the energy of the orbtial the electron is excited to, minus the energy of the orbital the electron is excited
from, minus the Coulomb attraction of the electron and hole, plus an exchange ‘penalty’ of 2Kij′ . Since exchange
integrals are always positive or zero,32 the quartet state is lower in energy than the doublets, as expected from
Hund’s rules.

These results are more general than those in Ref. 22 which only considers excitations within the HOMO,
SOMO and LUMO manifold (equivalent to setting i = 1 and j = 1 in the notation used here). Note that

〈Ψj′,+
i |Ĥ|Ψj′,−

i 〉 6= 0 and in general these two states will be mixed by the Hamiltonian.�

�These states are eigenstates of Ŝz and Ŝ2 with the same eigenvalues of 1/2 and 3/4 respectively, such that there is
no quantum mechanical reason why they should not mix.
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4.2 Transition dipole moment

Using standard electronic structure theory algebra26 we find

〈Ψ0|µ̂|Ψ0̄
ı̄ 〉 =〈i|µ̂|0〉, (25a)

〈Ψ0|µ̂|Ψj′

0 〉 =〈0|µ̂|j′〉, (25b)

〈Ψ0|µ̂|Ψj′

i 〉 =〈i|µ̂|j′〉, (25c)

〈Ψ0|µ̂|Ψ̄′

ı̄ 〉 =〈i|µ̂|j′〉, (25d)

〈Ψ0|µ̂|Ψ0̄j′

ı̄0 〉 =0, (25e)

〈Ψ0|µ̂|Ψj′,+
i 〉 =

√
2〈i|µ̂|j′〉. (25f)

In addition the standard expression for the permanent dipole moment of a molecule in our notation is26

~µ = 〈Ψ0| −
k∑
i=1

ri|Ψ0〉+
∑
A

ZArA. (26)

We find later that these expressions simplify significantly for alternant hydrocarbons.

5. ATOMIC ORBITAL BASIS

To convert the eigenvalue equation in Eq. (11) into a form which is amenable to computation we use the standard
Linear Combination of Atomic Orbitals (LCAO) approximation, defining22

|ψp〉 =
∑
ν

Cνp|φν〉 (27)

where the summation extends over all atomic orbitals {|φν〉} with orbital coefficient Cνp. In accordance with
convention22 we use Greek letters for atomic orbitals and Roman letters for molecular orbitals and we omit the
r dependence of orbitals for simplicity.

Inserting Eq. (27) into Eq. (11) we find∑
ν

CνpF̂ |φν〉 = εp
∑
ν

Cνp|φν〉 (28)

multiplying on the right by 〈φµ| and integrating over all space leads to∑
ν

〈φµ|F̂ |φν〉Cνp =
∑
ν

〈φµ|φν〉Cνpεp (29)

which can be more succinctly written as

FC = SCE (30)

where we have defined the atomic orbital Fock matrix terms and overlap integrals as well as an orbital energy
matrix:

Fµν =〈φµ|F̂ |φν〉, (31a)

Sµν =〈φµ|φν〉, (31b)

Epq =εpδpq. (31c)

Equation (30) is similar to, but not exactly the same as, the conventional Roothaan equations [cf. Equation
(3.139) of Ref 26], since the Fock operator for the radical in Eq. (8) is not the same as the conventional Fock
operator [cf. Equation (3.154) of Ref 26].
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To find an expression for the Fock matrix in the atomic orbital basis, we combine Eq. (8) and Eq. (27), giving

Fµν = hµν +
∑
ρ

∑
σ

{
[2(µν|ρσ)− (µσ|ρν)]

(
k∑
l=1

C∗ρlCσl

)
+ 1

2 [2(µν|ρσ)− (µσ|ρν)]C∗ρ0Cσ0

}
, (32)

which suggests defining a density matrix

Pρσ =

(
k∑
l=1

2C∗ρlCσl

)
+ C∗ρ0Cσ0, (33)

such that

Fµν = hµν +
∑
ρ

∑
σ

Pρσ[(µν|ρσ)− 1
2 (µσ|ρν)]. (34)

This equation, coupled with Eq. (30), therefore form the basis for radical electronic structure calculation.

Thus far, our equations have been completely general for monoradicals; that is, they does not require pre-
sumption of zero differential overlap or considering the π system to be separate from the σ system. While this
is advantageous for high-level computation, in general it is difficult to derive general rules and guiding principles
without making certain simplifications.

6. APPLICATION OF PPP APPROXIMATIONS

We now consider approximating the self-consistent equations of the previous sections in order to derive general
predictive rules for radical chromophores. The approximations Longuet-Higgins and Pople use22 are essentially
those of conventional Pariser-Parr-Pople theory,12–14 namely

1. The σ-system is treated as a non-polarizable core and its interaction with the π system is accounted for in
{hµν}, which is treated as an empirical parameter

2. The neglect of differential overlap (NDO) approximation, which assumes that 〈φµ|φν〉 = δµν , where δµν is
the Kroenecker delta. This is equivalent to the overlap matrix being the identity matrix, viz. S = I.

3. Two electron integrals which depend on the overlap of two p orbitals on different atoms are neglected, i.e.

(µν|ρσ) '(µµ|ρρ)δµνδρσ

=γµρδµνδρσ (35)

where γµρ is a function which depends on the distance between atoms µ and ρ, i.e. γµρ ≡ γµρ(|rµ − rρ|).
Various parameterizations16,31 exist for this function, such that at large |rµ − rρ| it has Coulombic (|r|−1)
dependence and at |r| = 0 is equal to a Hubbard-like repulsion term.

4. The attraction between an electron on atom µ and the nucleus of atom ν is approximated to be

〈φµ|
−Zeff

ν

|rµ − rν |
|φµ〉 ' −Zeff

ν γµν (36)

where Zeff
α is the effective nuclear charge of atom α (after accounting for the σ system). For carbon atoms

this is simply Zeff
α = 1.

Combining these approximations we set

hµµ = αµ −
∑
µ6=ν

Zeff
ν γµν (37)
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where αµ is the on-site energy (Hückel α) term, and

hµν = βµν , µ 6= ν (38)

where βµν is the Hückel β term, usually taken to be a constant value if the two atoms are adjacent and zero
otherwise. However, in what follows the βµν value can vary, provided that it is non-zero only between adjacent
atoms. Note that the interaction between an electron on atom µ and the charge on atom µ is included implicitly
in αµ.

Combining these approximations with the formula for the Fock matrix in Eq. (34) we find22

Fµµ =αµ + 1
2Pµµγµµ +

∑
ν 6=µ

γµν(Pνν − Zeff
ν ), (39a)

Fµν =βµν − 1
2Pνµγµν , µ 6= ν. (39b)

In the next section we will see that these expressions simplify further for the case of alternant hydrocarbon
radicals.

7. ALTERNANT RADICAL HYDROCARBONS

We now consider the specific case of radicals which are alternant hydrocarbons,20,22,25 that is, only carbon
atoms are in the conjugated system, and the carbon atoms can be divided into two classes, denoted starred and
unstarred, such that no two atoms from the same class are adjacent. Radicals such as the allyl radical, benzyl
radical and triphenylmethyl radical are alternant, whereas the cyclopentadienyl radical is not.

As we are considering monoradicals with an odd number of electrons, there will be R = (N + 1)/2 carbon
atoms in one class, which we denote the starred class (?) and R−1 = (N−1)/2 carbon atoms which are unstarred
(◦). There may be situations in which the starred and unstarred atoms are more unevenly distributed that this,
but we do not consider such cases here. We can, without loss of generality, list all the starred atoms first in the
atomic orbital basis, then all the unstarred atoms.

We firstly consider the the solution to the Fock matrix for an alternant hydrocarbon where we set the density
matrix P = 0, such that the Fock matrix reduces to a Hückel Hamiltonian. Due to the grouping of starred then
unstarred carbon atoms this matrix has a block form:

F(P = 0) =

(
αIR B
BT αIR−1

)
(40)

where IR is the R×R identity matrix, and B is the a rectangular matrix of R rows and R− 1 columns.

In general, the Fock matrix is N × N , so will have N eigenvalues and distinct eigenvectors. Some of the
eigenvalues may be zero or degenerate, as we shall see.

We now consider an arbitrary eigenvalue to F(P = 0) where we denote the first R coefficients as c? and the
remaining R− 1 as c◦. As it is an eigenvalue we can by construction write(

αIR B
BT αIR−1

)(
c?

c◦

)
=

(
αc? + Bc◦

BT c? + αc◦

)
= λ

(
c?

c◦

)
(41)

Let us now consider a vector similar to the eigenvector in the previous equation, but with the sign of all unstarred
coefficients reversed, (

αIR B
BT αIR−1

)(
c?

−c◦
)

=

(
αc? −Bc◦

−BT c? + αc◦

)
= (2α− λ)

(
c?

c◦

)
(42)

and we see that this is also an eigenvector of F(P = 0) with eigenvalue (2α−λ). This means that the eigenvectors
occur in pairs of energy λ and 2α − λ. However, there are an odd number of orbitals, and therefore an odd
number of eigenvalues. The only way to reconcile this with eigenvalues occuring in pairs is if one eigenvalue is
its own pair, i.e. λ = 2α− λ.
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Inserting this condition into Eq. (41) gives

Bc◦ =0, (43a)

BT c? =0 (43b)

Eq. (43a) has R − 1 unknowns (scalar variables in c◦) and R conditions (the length of the 0 vector) and in
general the only solution to Eq. (43a) is c◦ = 0. However, Eq. (43b) has R variables and R− 1 conditions, and
in general it will always be possible to find a nontrivial solution for c? 6= 0. By the pairing properties discussed
above, the solution λ = α will have R − 1 solutions of lower energy and R − 1 solutions of higher energy, and,
further to the orbital numbering scheme above, this solution is therefore corresponds to ε0, the SOMO.

We now consider the properties of the solution obtained from the Hückel-like equations. By combining the
pairing properties of the eigenvectors with the definition of the density matrix in Eq. (33) we see that, if ρ and
σ are both starred, or both unstarred,

Pρσ =
k∑
l=1

(C∗ρlCσl + C∗ρl′Cσl′) + Cρ0Cσ0 = δρσ (44)

where we have used the orthogonality of the eigenvectors of a Hermitian (or real symmetric) matrix.

Inserting Eq. (44) into Eq. (39) and setting Zeff
ν = 1 for a carbon atom,

Fµµ =αµ + 1
2γµµ (45a)

Fµν =0 Both atoms starred or both unstarred (45b)

Fµν =βµν − 1
2Pνµγµν Otherwise (45c)

We now see that, including a non-zero density matrix, the Fock matrix has the form

F(P) =

(
(α+ 1

2γµµ)IR B(P)

B(P)
T

(α+ 1
2γµµ)IR−1

)
(46)

which is very similar to that in Eq. (40). By using similar reasoning to the above, it follows that the eigenvalues

of F(P) will be paired such that for eigenvalue λi with eigenvector

(
c?

c◦

)
, there exists an eigenvector

(
c?

−c◦
)

with

eigenvalue λi′ = 2α+ γµµ − λi. The SOMO is at energy λ0 = α+ γµµ/2 with no amplitude on any of the R− 1
unstarred carbons and amplitude only on the R starred carbon atoms. It therefore follows by induction that, as
the first iteration of the self-consistent field procedure has alternacy symmetry, and for the Nth iteration, the
(N + 1)th iteration will also have alternacy symmetry, so will the eventual solution.

We can consequently state for the converged molecular orbitals:22

1. For a doubly occupied, bonding orbital l, with coefficients Cρl and energy εl ≡ Fll, there exists a corre-
sponding empty, antibonding orbital l′ with energy

Fl′l′ =2α+ γµµ − Fll (47)

and coefficients

Cρl′ =

{
Cρl ρ starred
−Cρl ρ unstarred

(48)

It immediately follows that

C∗ρlCρm = C∗ρl′Cρm′ (49)

whether or not atom ρ is starred or unstarred.
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2. The SOMO is located only on starred atoms such that

Cρ0 = 0, ρ unstarred, (50)

and has energy

F00 =α+ 1
2γµµ. (51)

3. As a result of Eq. (47) and Eq. (51),

εl′ − ε0 =ε0 − εl (52a)

εl′ − εm =εm′ − εl (52b)

such that the orbital energies are symmetrically distributed around the SOMO.

4. For a two electron integral in the molecular orbital basis, by combining the orbital pairing properties in
Eq. (48) and Eq. (50) with the definition of the atomic orbital basis in Eq. (27) and the neglect of differential
overal in Eq. (35) we see

(lm|pq) =
∑
µ

∑
ρ

C∗µlCµmC
∗
ρpCρqγµρ (53a)

=(l′m′|pq) = (lm|p′q′) = (l′m′|p′q′), (53b)

(l0|pq) =(l′0|pq). (53c)

It immediately follows from the definition of the Coulomb and Exchange integrals26 that

Jlm =Jl′m = Jlm′ = Jl′m′ , (54a)

J0j =J0j′ , (54b)

Klm =(l′m′|lm) = (lm|l′m′) = Kl′m′ , (54c)

Kl′m =Klm′ , (54d)

Kl0 =Kl′0. (54e)

5. For the dipole moment between spatial orbitals l and m, denoted, 〈ψl|µ̂|ψm〉, with the neglect of differential
overlap this becomes13,21

〈ψl|µ̂|ψm〉 ≡ 〈l|µ̂|m〉 = −e
∑
ν

C∗νlrνCνm. (55)

Combining this result with the alternacy properties we see

〈l|µ̂|m〉 =〈l′|µ̂|m′〉 (56a)

〈l|µ̂|0〉 =〈l′|µ̂|0〉 (56b)

6. For excited states we see

E(Ψ0̄
ı̄ ) =E(Ψi′

0 ) (57a)

〈Ψ0̄
ı̄ |Ĥ|Ψi′

0 〉 =Ki0. (57b)

This means that the i → 0 and 0 → i′ excitations are degenerate, even including two-electron effects. We
can therefore define

|Ψ±i0〉 =
1√
2

(|Ψ0̄
ı̄ 〉 ± |Ψi′

0 〉) (58)
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with energies

E(Ψ±i0) = E0 + F00 − Fii − Ji0 + 1
2Ki0 + 1

2J00 ±Ki0 (59)

In this notation, the minus combination is of lower energy. Note that if the electronic states are defined
with the orbitals in a different order (as in Ref. 21 and adopted in Ref. 22) then antisymmetry properties
may lead to the plus combination being of lower energy. The choice of orbital notation, of, course, does
not affect the prediction of any observable property such as dipole moment.

7. For the transition dipole moment of |Ψ±i0〉 excited states, we find, in our notation,

〈Ψ0|µ̂|Ψ−i0〉 =0 (60a)

〈Ψ0|µ̂|Ψ+
i0〉 =

√
2〈i|µ̂|0〉 (60b)

where we have used the alternacy properties and assumed, as in conventional electronic structure theory,
that the orbitals are real.

The ‘plus’ and ‘minus’ states |Ψ±i0〉 are somewhat similar to pseudoparity in Pariser’s interpretation of PPP
theory,13 but here the dark state is always of lower energy (from Eq. (59) and since exchange integrals
are always positive13,32), whereas this is not necessarily the case with plus and minus states in closed-shell
alternant hydrocarbons.13

8. When exciting orbital i to j′,

E(Ψj′,+
i ) = E(Ψi′,+

j ). (61)

However, the mixing of these states is significantly more complex than for the case of Ψ±i0, and as far as
we are aware was not considered by Longuet-Higgins and Pople for i 6= j.22 A full analysis of this is left as
further work.

9. For the permanent dipole moment of the ground state |Ψ0〉, using Eq. (26) and treating the nuclei as having
effective nuclear charge Zeff

ν we find

~µ = −
∑
ν

(Pνν − Zeff
ν )rν . (62)

For an alternant hydrocarbon as Pνν = Zeff
ν = 1 it immediately follows that

~µ = 0, (63)

such that the ground-state molecule will have no dipole moment. It is straightforward to generalise this to
show that an alternant hydrocarbon radical will have no higher multipole (quadrupole etc) either.

The results in 1–3 are those found by Longuet-Higgins and Pople. The results in 4–9 are similar to those
found by Pariser for closed-shell molecules13 and some of the results by Dewar, Longuet-Higgins and Pople are
special cases of them,21,22 but we believe these general results for radicals have not appeared in the literature
before and are the central results of this paper.

8. APPLICATION TO ORGANIC LIGHT-EMITTING DIODES

In this section we consider how the theoretical results derived above can help inform the design and properties of
organic light-emitting diodes and other optoelectronics. Unless otherwise stated, these results are for alternant
hydrocarbon radicals.

Organic radicals commmonly used in OLEDs such as TTM and PTM are chlorinated derivatives of alternant
radicals.11 Strictly speaking, the chlorine atoms may interact with the hydrocarbon π system in these molecules,
but to a good approximation this interaction can be neglected since the large size of chlorine 3p orbitals compared
to carbon 2p, and their much higher electronegativity, is likely to make any such interaction minimal.1 This
means that we can reasonably expect molecules such as TTM and PTM to display the same properties, discussed
below, as a conventional alternant hydrocarbon radical.
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8.1 Alternacy symmetry and the SOMO

From standard frontier molecular orbital theory, the radical is likely to react via the SOMO. The SOMO of an
alternant hydrocarbon radical is found only on the (N + 1)/2 starred atoms. In general, the radical molecule
reacting chemically is undesirable in an optoelectronic device, and it is therefore advisable to protect atoms
through which the radical might react by bonding substituents to them (such that the radical is sterically
hindered). The question then arises as to which atoms in particular in the conjugated system require protection,
and these will be the (N + 1)/2 starred atoms. It is no surprise, therefore, that it is these atoms which are
protected by chlorines in the TTM (tris-2,4,6-trichlorophenylmethyl) radical.3,11 We therefore advise that in
the design of future radical emitters based on a hydrocarbon structure the SOMO atoms (which can be deduced
without computation) are protected.

8.2 Absorption and emission of radicals

Taken together, the results in section 7 mean that, in an alternant hydrocarbon radical, the low-energy region of
the spectrum will show an extremely weak D1 absorption, corresponding to |Ψ−i0〉, and an intense, high-energy
absorption corresponding to |Ψ+

i0〉.21,22

The rate of emission of a molecule is determined by the Einstein coefficient of spontaneous emission27

Afi =
8π3ν3

fi

3ε0c3~2
|µfi|2, (64)

where νfi and µfi are the frequency and dipole moment of the transition respectively. The D1 state of an alternant
radical hydrocarbon will have a vanishingly small dipole moment, and hence a very slow rate of spontaneous
emission. Spontaneous emission is therefore likely to be outcompeted by undesirable internal conversion to the
ground state D0. This leads to a principal design rule:2 for a radical to be emissive, it should not be an alternant
hydrocarbon.�

However, by breaking alternacy symmetry through inclusion of heteroatoms, odd-membered rings, or both,
it is possible for the D1 state to become bright, and in practice the most successful optoelectronic molecules
to date are usually an alternant radical ‘donor’ (often based on the triphenylmethyl radical) bonded to a non-
alternant ‘acceptor’.11 In these systems the lowest-energy excitation is usually from the HOMO of the acceptor
to the SOMO of the donor,2 which we denote |Ψ0

h〉. This would generally be expected to be dark since relevant
orbitals are spatially disjoint,16 but with relevant orbital interaction it is possible for this excitation to ‘borrow
intensity’16,30 from the intense |Ψ+

10〉 transition of the radical,2 such that the |Ψ0
h〉 state has a dipole moment at

first order

〈Ψ0|µ̂|Ψ0,(1)
h 〉 ' 〈Ψ0|µ̂|Ψ+

10〉
〈Ψ+

10|Ĥ|Ψ
0,(0)
h 〉

E(Ψ
0,(0)
h )− E(Ψ+

10)
(65)

where |Ψ0,(0)
h 〉 and |Ψ0,(1)

h 〉 are the acceptor-HOMO to donor-SOMO excitation states perturbed to zero and first
order respectively. Analysis of this expression has led to design rules based on orbital interaction.2,11

8.3 Solvent dependence

The absence of any dipole moment (or higher multipole) in an alternant hydrocarbon radical from Eq. (63) means
that such molecules will show minimal solvatochromic shift with absorption. This would reasonably expected to
hold in an amorphous film (with the radical embedded in a host material, as is commonly seen in OLEDs1,2),
such that the film absorption is relatively insensitive to the polarizability of the host material.

This result is also advantageous from a computational perspective since, as the solvent is unlikely to substan-
tially influence absorption spectra, the excitation energy values calculated by a conventional, gas-phase, static
calculations (e.g. in Refs 1, 2, 16) may not need significant adjustment for solvation effects.

Whether or not a solvatochromic shift is seen in emission depends on the dipole moment of the excited state,
which in turn depends on the orbital parentage of that state. A detailed analysis of this is outside the scope of
the paper and left for further research.

�It may be possible to construct extremely rigid alternant radicals in which internal conversion is hindered; see Ref 11
for more details.
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8.4 Non-aufbau occupancy

Recent articles5,10 reported that certain (non-alternant) organic radicals had a non-aufbau orbital occupancy,
such that the energy of the SOMO was lower than the energy of the HOMO (and in some cases, lower than
the energy of other doubly-occupied orbitals),5 illustrated in Fig. 3. These articles used DFT and high-level
multiconfigurational calculations to confirm their results. We can, however, provide a theoretical explanation
based on the results in this paper in section 4, and which do not rely on any assumption of alternancy or PPP
approximations.

1

2

1'

0SOMO

HOMO

LUMO

HOMO-1
...

...

Figure 3. Schematic molecular orbital diagram of a radical molecule with a non-aufbau orbital occupancy, showing the
SOMO beneath the HOMO in energy.

For a molecule to have non-aufbau occupancy, the energy of the configuration with the SOMO (orbital 0 in
our notation) beneath the energy of the HOMO (orbital 1) in our notation must be of lower energy than the
energy of moving an electron from the (higher-lying) HOMO to the (lower-lying) SOMO. We therefore consider
a hypothetical molecule with non-aufbau occupancy for which the self-consistent field equations have been solved
with electron occupancy of that in Fig. 3. We already know from Eq. (15b) that

E(Ψ0̄
1̄)− E0 = F00 − F11 − J10 + 1

2K10 + 1
2J00, (66)

and by construction we are considering a system where F00 < F11. Consequently, in order for E(Ψ0̄
1̄) > E0,

F11 − F00 <
1
2J00 − J10 + 1

2K10 (67)

By construction the LHS of Eq. (67) is positive, and from standard electronic structure theory32 J10 > K10 > 0.
It does not follow that, in general, the RHS of Eq. (67) will be positive or greater than the LHS. This is the case
for radicals who have an aufbau occupancy. However, if we consider a situation where the SOMO and HOMO
are spatially disjoint and far separated then we can approximate J00 � J10 > K10 ' 0, then it may be possible
for the RHS of Eq. (67) to be positive. This suggests that molecules where the HOMO and SOMO are spatially
disjoint (such that an excitation between them would be of charge-transfer character) then it is more likely for
non-aufbau character to be observed, and which is observed computationally.5,10

9. CONCLUSIONS

In this article we have rederived the original application of electronic structure theory to conjugated alternant
organic radicals.21,22 As well as presenting previous results in modern notation we have derived further results,
such as the excitation energy from orbital HOMO−n to SOMO being identical to that from the SOMO to the
LUMO+n, even including two-electron (Coulomb and Exchange) effects. We have also proven that a ground-state
alternant hydrocarbon radical will have no dipole or higher multipole.

These results, of course, rely on a number of approximations, such as the neglect of (p0|00) terms in Eq. (9),
the use of a minimal basis set, and the neglect of differential overlap. Although arguably crude, the predicts
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of the theory (such as a very weak D1 absorption and an intense D2 absorption) are generally borne out by
experimental results.2,11

The use of organic radicals in optoelectronics is now a rapidly increasing, but comparatively unexplored, field
compared to closed-shell systems and there are therefore many avenues of future research.

From a theoretical perspective, it is probably possible to derive further results for alternant organic radicals,

such as the static dipole moment of excited states, and the mixing of excitations of the form |Ψj′,+
i 〉. Further

results may arise from combining the results here with intensity borrowing perturbation theory,30 extending the
results already obtained in Refs. 2, 11. It may be possible to combine these results with pre-existing theoretical
considerations such as group theory and spin selection rules to formulate further design principles.

From a computational perspective, it will be instructive to simulate radicals using the approximations given
here and compare this to high-level calculations such as complete active space self-consistent field (CASSCF)
calculations which have been previously used to benchmark PPP theory.16

Overall we believe that there is huge scope for theoretical principles to guide, explain and predict highly
efficient optoelectronic devices.
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