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Wireless implantable neural recording chips enable multichannel 
data acquisition with high spatiotemporal resolution in situ. Recently, 
the use of machine learning approaches on neural data for diagnosis 
and prosthesis control have renewed the interest in this field, and 
increased even more the demand for multichannel data. However, 
simultaneous data acquisition from many channels is a grand 
challenge due to data rate and power limitations on wireless 
transmission for implants. As a result, recent studies have focused 
on on-chip classifiers (Fig. 1 top), despite the fact that only primitive 
classifiers can be placed on resource-constrained chips. Moreover, 
robustness of the chosen algorithm cannot be guaranteed pre-
implantation due to the scarcity of patient-specific data;  waveforms 
can change over time due to electrode micro migration or tissue 
reaction, highlighting the need for robust adaptive features. 

To address these issues, this work presents a wireless neural 
recording system-on-chip with a Compressed Hadamard Transform 
(CHT) processor, which serves both as a feature extractor (FE) for 
classification and as a data compressor for waveform reconstruction. 
Fig. 1 (bottom) shows the block diagram of the system. A 16-channel 
10-bit analog front-end (AFE) based on [1] amplifies and digitizes 
signals within the local field and action potential bands with 
adjustable gain and bandwidth. Since the activity of an electrode 
location cannot be guaranteed a priori, each channel can be 
configured individually to remain off, to output raw data, or to output 
features. The CHT processor realizes the matrix product of a 64x10-
bit input window with 8 selected rows from the 64x64 Hadamard 
matrix. The selection can be configured per-channel and on-the-fly 
which eliminates the inefficiency caused by computing and 
transmitting nondescriptive features. The effective data compression 
ratio is 5 as the bit width increases from 10 to 16. The 8x16-bit 
features are allocated on the output data stream in 13 consecutive 
10-bit packets, padded with 51 zero packets. Therefore, the average 
data rate reduces from 3.2 Mbps to 640 kbps at 20 kHz sampling 
rate. The resulting power savings in the impulse radio ultra-wideband 
transmitter (IR-UWB TX) compensates for the power overhead of the 
CHT processor. 

Fig. 2 shows the hardware implementation of the matrix product 
based on an accumulator bank. Contrary to other spectral 
transforms, there is no need for multipliers or a coefficient memory 
as Hadamard coefficients (±1) are generated on-the-fly without any 
significant overhead. For waveform reconstruction, transmitted 
features are brought back to the time domain by applying the inverse 
Hadamard transform. Group selection of indices operates as a band-
pass filter. The lowest indices capture the most of the energy, hence 
the highest reconstruction fidelity. Fig. 3 (left) shows the preclinical 
validation of the system in-vivo. Cortical responses to optogenetic 
stimulation were recorded in rats using a 16-channel soft micro-
electrocorticography array, microfabricated using thin-film and 
silicone processing technology inspired from the e-dura process [2].   
Fig. 3 (right) displays the raw and the low-pass reconstructed 
waveforms and multi-unit spiking activity obtained in real time. 

For classification, the most descriptive features vary between 
patients and channels. Therefore, the indices are tailored per patient 
and per channel using the feature importance obtained from training 
on raw data. Classification experiments were performed offline on 
the iEEG.org and the CHB-MIT seizure datasets using the XGBoost 
package with leave-one-out cross-validation. The classifier is an 
ensemble of 8 decision trees with depth 4. Fig. 4 presents the 
experiment setup and the results obtained on each patient. An initial 
training was performed on all available channels and all 64 indices 
to determine the most descriptive 16 channels and 8 indices per-
channel from the constructed tree. The main training was performed 
using only those channels and indices, which simulates the chip 

configuration. The chosen 
indices vary between 
patients, and span the entire 
spectrum. The average 
sensitivity for the CHB-MIT 
dataset is 92% and reaches 
97.8% if only two of the 
outliers are excluded. 

Fig. 5 depicts the wireless 
power and data transfer subsystem in detail. The magnetically 
induced AC voltage at 13.56 MHz frequency is converted to DC 
power by an active half-wave rectifier with delay compensation 
techniques. A regulated 1 V supply is provided by the low-dropout 
(LDO) regulator and maintained by an external capacitor. The chip 
clock is recovered from the power carrier. An amplitude-shift keying 
(ASK) demodulator was used for downlink transmission at 13.56 
kbps. The uplink is established by the IR-UWB TX. The 6 GHz carrier 
frequency is generated by an active inductor-based LC oscillator. 
The oscillator and the buffer stage are modulated by 1.8 ns wide 
pulses to comply with the FCC mask and to save power. Measured 
at 3.2 Mbps and 640 kbps, the TX dissipates 33 μW and 6.6 μW, 
respectively, which correspond to 10.3 pJ/b energy efficiency. 

The 16-channel prototype fabricated in 65nm CMOS has a footprint 
of 1.6 mm by 0.78 mm, 0.382 mm2 of which is occupied by the core 
blocks. The total power consumption is 401.45 μW including the 
power and command receiver (355 μW). Fig. 6 (top) displays the 
power and area breakdowns. The power per channel including data 
transmission is 2.72 μW for raw data and 2.9 μW for features, 
meaning that 80% data rate reduction is achieved in return of only 
6.7% increase in power. The area per channel including the AFE and 
the CHT processor is 0.021 mm2, which makes the architecture 
feasible for up to a thousand channels.  

Fig. 6 (bottom) compares the proposed design with the current state 
of the art [3-6]. The seizure detection performance with CHT features 
is similar to [5-6] on the same dataset. The CHT processor occupies 
less area than the conventional FEs based on fast Fourier transform 
(FFT), discrete wavelet transform (DWT), and finite impulse 
response (FIR) filters. At 20 kHz sampling rate, the transmitted 
features enable 312.5 class/s at the receiver side, which 
corresponds to 149 nJ/class or 9.3 nJ/class/channel energy 
efficiency for AFE, FE and TX. This is significantly less than the 
reported energy cost of on-chip classifiers, which makes sending 
multichannel data to off-chip, more advanced and flexible classifiers 
feasible. Moreover, new features can be computed on the receiver 
side as necessary thanks to the waveform recovery option.  
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Fig. 1. Proposed neural recording approach (top) and the block 
diagram of the proposed system-on-chip (bottom). 

 
Fig. 2. Compressive Hadamard Transform hardware and its uses 
for seizure classification and filtered waveform reconstruction. 

 
Fig. 3. In-vivo experiment setup (left) and comparison of raw and 
low-pass reconstructed waveforms (right). 

 
Fig. 4. Classifier experiment setup (left) and results (right) using 
CHT features on CHB-MIT and iEEG.org datasets. 

 
Fig. 5. Wireless power and data transfer block diagrams (left) and 
the measured IR-UWB pulse characteristics (right). 

 
Fig. 6. Power and area breakdowns (top) and comparison with 
published work (bottom). 

 


