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Abstract

Multiple sclerosis (MS) is an immune-mediated, inflammatory, neurological disease

affecting myelin in the central nervous system, whose driving mechanisms are not yet

fully understood. Conventional magnetic resonance imaging (MRI) is largely used in the

MS diagnostic process, but because of its lack of specificity, it cannot reliably detect

microscopic damage. Quantitative MRI provides instead feature maps that can be

exploited to improve prognosis and treatment monitoring, at the cost of prolonged

acquisition times and specialised MR-protocols.

In this study, two converging approaches were followed to investigate how to best use

the available MRI data for the diagnosis and prognosis of MS. On one hand, qualitative

data commonly used in clinical research for lesion and anatomical purposes were shown

to carry quantitative information that could be used to conduct myelin and relaxometry

analyses on cohorts devoid of dedicated quantitative acquisitions. In this study arm,

named bottom-up, qualitative information was up-converted to quantitative surrogate:

traditional model-fitting and deep-learning frameworks were proposed and tested on MS

patients to extract relaxometry and indirect-myelin quantitative data from qualitative

scans. On the other hand, when using multi-modal MRI data to classify MS patients

with different clinical status, different MR-features contribute to specific classification

tasks. The top-down study arm consisted in using machine learning to reduce the

multi-modal dataset dimensionality only to those MR-features that are more likely to

be biophysically meaningful with respect to each MS phenotype pathophysiology.

Results show that there is much more potential to qualitative data than lesion and tissue

segmentation, and that specific MRI modalities might be better suited for investigating

individual MS phenotypes. Efficient multi-modal acquisitions informed by biophysical

findings, whilst being able to extract quantitative information from qualitative data,

would provide huge statistical power through the use of large, historical datasets, as

well as constitute a significant step forward in the direction of sustainable research.
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Chapter 1

Introduction

Several neurological disorders lack objective criteria for patients stratification with regard

to subtypes at early stages of the disease, leading to inaccurate prognoses and making it

impossible to have reliable personalised treatment plans. This applies, specifically, also to

multiple sclerosis (MS), an inflammatory demyelinating disease affecting the myelinated

axons in the central nervous system, damaging the myelin and the axons to varying

degrees. The factors at the base of MS pathogenesis are only partially understood, and

the mechanisms driving its complex and unpredictable evolution are still unclear [1].

1.1 Problem statement

MS diagnosis relies on lesion-based evidence explaining clinical symptoms, as specified

in the 2017 McDonald criteria [2]. Lesion load is usually assessed through T2-weighted

magnetic resonance imaging (MRI), that reveals pathological tissue as hyperintense

regions. Qualitative scans have represented the workhorse of MS clinical research for

decades, and large historical qualitative datasets have been built over the years. However,

conventional qualitative MRI lacks specificity, as different histopathological substrates

of tissue damage might produce the same patterns of the MR-signal and could not

be told apart. Furthermore, whilst conventional MRI readouts are sensitive to certain

macroscopic aspects of MS, they do not detect early, widespread microscopic damage,

unlike quantitative approaches. For example, in addition to the well-characterised

inflammatory white matter lesions, studies using magnetisation transfer imaging have

shown that the normal appearing white matter of the majority of MS patients has

significant abnormalities otherwise invisible to traditional T2-weighted MRI [3].
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On the other hand, having access to a very rich collection of features might be detri-

mental to the classical human-based recognition process of finding disease biomarkers,

as they might be embedded into a combination of features which makes the information

they carry difficult to be visually identified and exploited. Therefore, advanced statistical

machine learning and pattern recognition techniques have been applied to a wide variety

of neurodegenerative disorders to support the diagnostic process, such as in traumatic

brain injury [4] and Alzheimer’s disease [5, 6].

With the rising number of specialised quantitative MR-sequences to investigate MS

pathophysiology, only few of which eventually reaching clinical fruition, and the growing

interest towards multi-modal, big-data approaches, it has become imperative to assess

which modalities justify increased acquisition times and costs for their added values

to clinical phenotyping and patient management. At the same time, given the ample

amount of qualitative scans available, being able to extract quantitative information

from routinely acquired images, and thus taking full advantage of the MR-modalities

already at hand, would provide great statistical power through the employment of large

historical datasets for quantitative analyses, as well as representing a key step forward

in the direction of sustainable and efficient research.

1.2 Aims

This problem was tackled through two converging pathways:

• a bottom-up arm, which aimed to enhance, or up-convert the qualitative content

of routine scans to quantitative information sensitive to MS — this approach

was further divided into two studies, one using a classical model-fitting approach,

and one implementing a dedicated advanced deep-learning algorithm;

• a top-down arm, which aimed to reduce a multi-dimensional dataset down to

those MRI modalities that most likely correlate with MS pathophysiology, using

machine learning feature selection and classification analysis.

The dual-approach has been instrumental in the definition of a work plan that could

contribute in a systematic way towards the stated problem, with the specific objectives

and overall contributions from each arm being summarised as follows.
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1.2.1 Bottom-up

In the bottom-up study, traditional model fitting and deep learning were employed in

order to extract quantitative information from MR-images otherwise used only for lesion

segmentation and anatomical purposes. Simple modalities acquired routinely for clinical

assessment are often dismissed from quantitative analyses because they are traditionally

labelled as qualitative: it is thus key to assess whether computational models allow qualit-

ative scans to be exploited for indices sensitive to myelin, as well as other quantitative met-

rics. This can be rephrased under the bottom-up hypothesis that, in the absence of dedic-

ated quantitative scans, standard qualitative images can be used to infer summary relaxo-

metry and myelin-sensitive indices that well correlate with their respective ground truth.

The myelin relaxation, or MyRelax, framework1, was used to extract proton density (PD),

macromolecular tissue volume (MTV), T2 and T1 maps from qualitative PD-, T2- and

T1-weighted scans, in this thesis often referred to, collectively, as qualitative images or

qualitative scans. A U-Net was then used to extract magnetisation transfer ratio (MTR)

from the same qualitative scans by means of deep learning. In this context, the prefix

QuaSI-, standing for qualitative scans for indirect-, has been introduced to better distin-

guish quantitative maps produced from qualitative scans, from ground truth, e.g. QuaSI-

PD produced via MyRelax as opposed to PD acquired through dedicated sequences.

With this in mind, the bottom-up study can be decomposed and summarised into three

objectives:

1. MyRelax validation: to assess the accuracy and reproducibility of QuaSI-PD,

-T2, -T1 maps obtained from the qualitative scans using the MyRelax framework,

by comparing them with the quantitative PD, T2, T1 maps obtained using gold

standard quantitative MRI sequences.

2. MyRelax MS application: to evaluate the applicability of the MyRelax frame-

work to MS, with QuaSI-MTV maps produced using MyRelax being compared

to MTR, to test how much information attributable to myelin is shared by the

two modalities. T1-/T2-weighted ratio images (T1w/T2w) were also compared

to the MTR maps for the same reason.

3. U-Net MS application: to implement a deep learning network to extract MTR

information directly from the qualitative scans — QuaSI-MTR — bypassing

traditional model fitting.

1Courtesy of Dr Francesco Grussu.
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1.2.2 Top-down

The top-down study consisted in using machine learning to reduce the dimensionality of

the multi-modal MRI dataset only to those feature that are more likely to be biophysically

meaningful with respect to characterising MS progression, informing future acquisitions

and investigation.This was applied to a multi-modal MRI dataset including anatomical,

relaxometry, diffusion and sodium quantitative measurements for healthy controls and

MS patients with different MS subtypes.

The development of a decision system based on targeted multi-modal quantitative

MRI, advanced feature extraction and multi-parametric classification would support

the implementation of clinical applications, aiding personalised clinical management

so that patients could receive the treatment that best suits their own phenotype. This

would improve the accuracy of prognoses, especially at early stages where macroscopic

alterations like atrophy are not as predominant, and microstructural and functional

information might be most meaningful. This would also allow to pinpoint which MRI

modalities might contribute more to the diagnosis and patient follow-up, resulting in

good candidates for clinical optimisation, and which ones are not as likely to benefit

from the added acquisition time and cost.

1.2.3 Contributions

With respect to the bottom-up and top-down objectives, three key contributions can

be delineated:

• MyRelax: myelin and relaxation imaging, reporting the contributions from

the MyRelax validation and MyRelax MS application bottom-up objectives [7];

• Deep learning MTR from qualitative images, following the U-Net MS applic-

ation bottom-up objective [8];

• Biophysically meaningful features for classification of MS phenotypes, as-

sociated to the top-down study [9].

1.3 Outline

In the Background part, a description of myelin and its physiological role in the central

nervous system is given, together with a brief overview of MS as a demyelinating disease,

its symptoms, diagnosis and phenotypes. A general introduction of MRI fundamentals,
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the current state-of-the-art, main contributions and limitations of myelin imaging and

quantitative MRI techniques are then outlined, followed by an introduction to machine

learning and a literature review on its applications to modern neuroimaging.

Three parts follow, each related to one of the three key contributions delineated above; in

each part, the Introduction chapter frames the context of the study, the Methods chapter

describes the MRI protocols and image analysis techniques used, with the outcomes

being reported and interpreted in the Results and Discussions chapters, respectively.

A Conclusions and future works chapter reflects on the limitations and future works

for each key contribution, with closing remarks on the overall contribution of the whole

body of work.
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Chapter 2

Myelin: what is it and what is its role?

Myelin is a lipidic substance forming a multi-layered sheath surrounding axons, creating

an electrically insulating membrane preventing electric current travelling within the

fibre to leave the cell.

In the central nervous system (CNS, which includes brain, spinal cord and optic nerve),

myelin is supplied by cells called intrafascicular oligodendrocytes, whilst Schwann cells

insulate the axons of the peripheral nerves. Myelin is distributed along the axons discon-

tinuously: the insulating sheath spreads along most of the fibre’s length, with gaps at reg-

ular intervals 1–2 µm wide along the axon called nodes of Ranvier. These gaps are rich in

voltage-gated ion channels, and allow sodium ions to move across the axonal membrane,

depolarising it, and initiating the generation of an action potential. Myelinated segments

are devoid of these channels, constraining ion transfer across membrane only at the

nodes of Ranvier. The action potential appears then to jump from one node to the next

in a propagation process called saltuatory conduction. This process allows signal trans-

mission speed to reach around 150 m/s, whereas in unmyelinated axons it cannot exceed

10 m/s [10]. Disruption of the myelin sheath causes the impulses travelling through the

affected fibres to be distorted or interrupted, producing a wide variety of symptoms, ran-

ging from physical conditions, such as vision and balance deterioration, fatigue, bladder

problems and stiffness and/or spasms, to degradation of memory and cognitive functions.

Both myelin chemical composition and spatial distribution are fundamental for fast

and efficient signal propagation within the brain. The loss or damage of such insulating

sheath is called demyelination, and can result in the disruption of signal transmission

and consequent neuronal degeneration.
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Multiple Sclerosis

Multiple sclerosis (MS) is an immune-mediated, inflammatory, neurological disease of

the CNS, characterised by an abnormal response of the body’s immune system affecting

myelin and damaging neurons to various degrees. Because the exact antigen the immune

cells are instructed to attack is still unknown, MS is considered an immune mediated

disease rather than autoimmune, although this continues to be the subject of debate in

the scientific community [11, 12]. A wide array of anticancer drugs has been repurposed

for the treatment of MS inflammatory symptoms due to their immunosuppressive and

immunomodulatory role. These drugs regulate the responses of the central nervous

system immune system by inhibiting the activation and proliferation of T-cells, B-cells,

lowering antibody production and deactivating macrophages attacking myelin [13].

3.1 Pathophysiology

MS is first characterised by inflammation and acute demyelination, then followed by

gliosis, which leads to the formation of scarring tissue, or lesions, also called sclerosis.

The consequent axonal damage might result in axonal transection, leading to axonal loss

via Wallerian degeneration, that is the process of anterograde degeneration, spreading

forward along the distal part of the axon, following axonal injury. Neurodegeneration

is defined as the progressive loss of neuronal structure and/or function, eventually

culminating with the death of neurons; it has been reported since the first stages of the

disease, leading to a higher rate of atrophy compared to controls, and is the main cause

of accumulation of cognitive and physical disability. Whilst Wallerian degeneration has

been shown to contribute significantly to axonal loss within lesions, other mechanisms

25



Part I: Background

of axonal degeneration may also come into play at different stages of the disease [14].

3.2 Epidemiology

Studies performed at a global level have led researchers to believe that the disease is

triggered in a genetically predisposed individual by one or more environmental factors,

whose specific nature is at the moment still unknown. It appears that women are affected

more often than men, with a ratio of about 3:1, which suggests the involvement of

hormones in the development of the disease. In addition, a combination of geographic

and ethnic factors is believed to have an impact, with a higher incidence of MS being

observed at higher latitude compared to regions near the equator [14, 15].

3.3 Phenotypes

The process of inflammation, demyelination and neurodegeneration starts often at

a sub-clinical level. In the majority of MS patients, the disease begins to manifests

with episodes of reversible neurological deficits lasting at least 24 hours, a condition

called clinically isolated syndrome (CIS). CIS can be either a monofocal or multifocal

episode, where the former is characterised by a single neurologic symptom, which is

often optic neuritis1, whilst the latter is defined by multiple simultaneous symptoms (for

example optic neuritis accompanied by sensorimotor conditions in the distal part of the

body) caused by lesions or inflammation foci affecting more than one area. People who

experience a CIS may or may not manifest further symptoms during their life, therefore,

whilst the episode is suggestive of MS, it does not meet alone the criteria for a diagnosis

of clinically defined MS. However, it has been shown that when CIS is accompanied

by asymptomatic brain lesions similar to those seen in MS, the risk of conversion to

clinically defined MS by 10 years ranges between 60% and 80%, whereas, in the absence

of lesions, the likelihood of developing MS in the same timespan is as low as 20% [16].

In case of conversion to clinically defined MS, or progressive disease course from the

onset, patients may be categorised into three MS phenotypes [17], whose progression

in time is summarised in Figure 3.1:

• Relapsing-remitting MS (RRMS) is the most common disease course, affecting

1Inflammation or lesion of the optic nerve or pathways that control eye movements and visual

coordination which may result in blurring or desaturation of vision, reduction of the peripheral vision

or blindness in one eye. A dark spot, or scotoma, may occur in the centre of the visual field.
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Figure 3.1: MS phenotypes classification and progression. RRMS : relapsing remitting

MS; SPMS : secondary progressive MS; PPMS : primary progressive MS. Figures from

https://www.nationalmssociety.org/What-is-MS/Types-of-MS in June 2021.

approximately 85% of MS patients. It is identified by clearly defined episodes of

new neurologic symptoms or exacerbations of pre-existing ones, called relapses.

Such attacks are then followed by periods of partial or complete recovery, or

remissions, during which all symptoms may either disappear or persist and become

permanent. Either way, remissions are characterised by the apparent absence of

progression of the disease.

• Secondary progressive MS (SPMS) follows an initial relapsing-remitting course,

with a progressive worsening of neurologic function and consequent accumulation

of disability over time. Less than 20% of the patients who are diagnosed with

RRMS will eventually transition to SPMS [18]. Patients may or may not continue

to experience relapses caused by inflammation: the disease gradually shifts from

the inflammatory process typical of RRMS to a more steadily progressive phase

characterised by axonal damage or loss.

• Primary progressive MS (PPMS) is characterised by worsening of neurologic

function and accrual of disability from the onset of symptoms, with rare relapses.

Unlike SPMS, PPMS is the first and only phase of the disease for approximately

15% of people with MS, and involves much less inflammation (and more neuronal

loss) compared to RRMS. As a result, PPMS patients usually present fewer brain

lesions than RRMS patients, and the lesions tend to contain fewer inflammatory

cells. PPMS patients usually present also more lesions in the spinal cord than

in the brain. Together, such differences make PPMS more debilitating and more
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difficult to diagnose and treat than MS relapsing forms.

3.4 Diagnosis

When diagnosing CIS patients, that is in absence of reoccurring relapses involving

neurological functions, the diagnostic process follows the guidelines defined by the

McDonald criteria, based on the evidence of three conditions: the insurgence of at least

two different lesions in two independent regions of the CNS (dissemination in space

criterion, DIS) occurred at dates at least one month apart from each other (dissemin-

ation in time criterion, DIT), and the presence of chronic inflammation (inflammatory

criterion). Inflammation can be determined by performing a cerebrospinal fluid (CSF)

oligoclonal band screen, which can be used in substitution for DIT [1]. After ruling out

any other possible diagnosis, one for MS can be done.

The McDonald criteria include specific guidelines for using MRI and other analyses to

aid the physician in the diagnostic process [19]. As of 2021, the latest update to the

McDonald Criteria is the 2017 revision, which builds upon the 2010 revision by providing

additional avenues for obtaining supporting evidence of lesion dissemination (both DIS

and DIT). As per the updated criteria, both asymptomatic and now symptomatic MRI

lesions can be considered in determining DIS or DIT (not including lesions in the optic

nerve in a patient presenting with optic neuritis). Furthermore, lesions in cortical grey

matter have also been included for DIS assessment, now demonstrated by evidence of

one or more lesions suggestive of MS in at least two of four CNS areas: periventricular,

cortical or juxtacortical, infratentorial sites, and the spinal cord [2].
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Magnetic Resonance Imaging

Because of the conjoint criteria that need to be met, magnetic resonance imaging

(MRI) plays a fundamental role in the MS diagnostic process. MRI is a non-invasive

diagnostic tool that exploits the magnetic properties of nuclear spins to reconstruct the

anatomical structure of the examined tissue, whilst also investigating its biological and

physiological properties. In this chapter, the fundamentals of MRI have been presented,

mostly with reference to Brown et al. (2014) Magnetic resonance imaging: physical

principles and sequence design [20]. Whilst not but a glance at the vast MRI landscape,

this section aims to give the reader the basic notions necessary to understand the

context of the reported work.

4.1 Fundamentals of nuclear spin–magnetic field inter-

action

Nuclear spin represents an intrinsic property of particles that manifests when they

interact with a magnetic field. Nuclear magnetic resonance (NMR), and equivalently

MRI, exploit the interaction of unpaired spin-1/2 particles with magnetic fields imposed

by the diagnostic apparatus. The nuclear species most typically targeted in medical

applications is water hydrogen nuclei 1
1H, that is protons, due to the abundance of

water, and thus 1
1H nuclear spins, within biological tissues. Specialised techniques might

however focus on different nuclear species, such as 23
11Na with spin 3/2, in case of sodium

MRI1, which instead is used to investigate neuronal cell function and integrity [21]. The

nuclear magnetic moment ~µ is associated to the intrinsic spin angular momentum ~S

123
11Na abundance in the human body is about 1000 times lower than 1

1H: 80 mM and 88 M respectively.
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according to the relation

~µ = γ~S (4.1)

where γ is defined as gyromagnetic ratio which, in the case of 1
1H protons, is equal

to γ = 267.513 · 106 rad/sT. The sum of the magnetic moments over a volume V

affected by a constant external magnetic field defines the local magnetic moment per

unit of volume, or magnetisation:

~M =
1

V

∑
i

~µi (4.2)

4.1.1 Zeeman effect and thermal equilibrium

The application of a static magnetic field ~B0 = B0ẑ induces the partial alignment of the

magnetic moments parallel to the field. This is an energetically favourable state, given

the classical formulation of the magnetic potential energy U = −~µ · ~B0 is minimised for

~µ ‖ ~B0. According to the quantum formulation, this can be explained by the Zeeman

effect, i.e. the discrete splitting of energy levels induced by the application of a magnetic

field (also referred to as Zeeman splitting). The energy levels (or eigenvalues) are

given by

Ems = −~µ · ~B0 = −γ~S · ~B0 = −γSzB0 = −γ~msB0 (4.3)

where Sz = ~ms is the z-component of the spin vector, ms = [−s,−s + 1, ..., s − 1, s]

is the magnetic spin quantum number describing the possible states associated to a

particle with spin quantum number s, and ~ = h/2π, with h being Plank’s constant. For
1
1H, s = 1/2 and ms = ±1/2, leading to the two spin states usually referred as spin-up

(+1/2) and spin-down (−1/2), with associated energy eigenvalues E+ = −γ~B0/2

and E− = γ~B0/2 respectively. The energy gap between levels is therefore

∆E = E− − E+ = γ~B0 (4.4)

At equilibrium, this produces a net longitudinal component of the magnetisation Mz

aligned along the ẑ axis with magnitude M0. The value of M0 depends on the temper-

ature of the sample: in regimes close to the human body temperature (∼310 K), this

relation can be approximated by Curie’s law :
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M0 =
µ2ρ

3kBT
B0 (4.5)

where ρ represents the density of spins within the sample, also referred to as proton dens-

ity in conventional 1
1H MRI, kB is the Boltzmann’s constant, and T the temperature of

the sample (expressed in kelvin units). For 1
1H, µ2 = γ2S2 = γ~2s(s+ 1), with s = 1/2.

4.1.2 Precession

The application of ~B0 also establishes a motion of precession of the magnetic moments

around the z axis that can be described in the classic formalism2 by

d~µ

dt
= γ~µ× ~B0 (4.6)

which can be solved along the x , y , z components as
µx(t) = µx(0) cos(ω0t) + µy(0) sin(ω0t)

µy(t) = µy(0) cos(ω0t)− µx(0) sin(ω0t)

µz(t) = µz(0), ∀t

(4.7)

where the angular velocity vector is ~ω0 = −ω0ẑ , indicating a left-handed rotation with

respect to the z-axis, and the precessional frequency, referred to as Larmor frequency,

is defined as

ω0 = γB0 (4.8)

The precession causes therefore each magnetic moment to accumulate a phase φ0 over

time according to the relation

dφ0

dt
ẑ = ~ω0 = −ω0ẑ

φ0 = −ω0t

(4.9)

4.2 RF pulse and resonance condition

The equilibrium state can be perturbed by the application of a different magnetic field

~B1 orthogonal to ~B0. ~B1 is produced by a radiofrequency (RF) coil placed around the

2A similar solution can be obtained in terms of expectation values 〈µx 〉,〈µy 〉,〈µz 〉 through the quantum

formulation.
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sampled material whilst in transmit phase and over only a short period of time τ , or

pulse, and it is therefore also referred to as RF pulse.

~B1 rotates in the xy -plane at frequency ωRF: when ωRF = ω0, ~B1 rotates at the Larmor

frequency and this condition is called on-resonance (hence the resonance in MRI).

The RF pulse induces a second precessional motion of the magnetic moments with

frequency ω1 = γB1 which, similarly to what expressed by equation (4.9), causes a

rotation of the average magnetisation, around the axis of application of ~B1, by an angle

θ = −ω1τ = −γB1τ (4.10)

called flip-angle3. This causes the magnetic moments to be tipped away from the

ẑ axis towards the transverse plane, whilst precessing at the Larmor frequency in a

state of phase coherence, as represented in Figure 4.1. This reduces the magnitude

of the longitudinal magnetisation, and the phase coherence causes the emergence of

a net transverse magnetisation ~M⊥ = Mx x̂ +My ŷ lying in the xy -plane, which can be

equivalently expressed in complex notation as

M+ = Mx + iMy = M⊥e
−i(ω0t−φ0) (4.11)

where M⊥ indicates the magnitude of the transverse magnetisation vector, and its x-

and y -components can be expressed as

Mx = Re(M+); My = Im(M+) (4.12)

After the RF pulse, the magnitudes of the longitudinal and transverse components of

the magnetisation therefore become

Mz(0+) = Mz(0−) cos(θ); M⊥(0+) = Mz(0−) sin(θ) (4.13)

where the RF pulse is assumed to be applied instantaneously at t = 0; Mz(0−), Mz(0+),

and M⊥(0+) are, in order, short hand notations for Mz immediately before, and Mz

and M⊥ immediately after the RF pulse. If the system is at thermal equilibrium when

the RF pulse is applied, then Mz(0−) = M0 and equation (4.13) become

Mz(0+) = M0 cos(θ); M⊥(0+) = M0 sin(θ) (4.14)

3For 1
1H, θ = π/2 can be achieved in τ = 1 ms withB1 = 5.9 µT
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Figure 4.1: The application of the on-resonant B1 pulse represented in the on-resonant

reference frame S′[x ′, y ′, z ], also rotating at the Larmor frequency, and in the laboratory

reference frame S[x, y , z ], where precession can be observed. In this example,

Mz(0−) = M0 and θ = π/2.

The optimal flip-angle value depends on the purpose of the MR-sequence and its

parameters, as it will be explained in section 4.7. For example, for signal readout, a

θ = π/2 excitation RF pulse is often applied to maximise the transverse magnetisation,

and consequently the signal amplitude too (see section 4.8), although a smaller θ may

be more efficient to ensure shorter acquisition times.

4.3 Longitudinal relaxation

After an RF pulse, which suppose is applied at t = 0, the system relaxes to the

more energetically favourable state through dipole-dipole energy exchange between

the magnetic moments and the surrounding environment, historically referred to as

lattice. The longitudinal component of the magnetisation Mz returns to its equilibrium

value M0, whilst the transverse component decays. This process is characterised by the

longitudinal, or spin-lattice, relaxation time T1 according to a simple exponential model:

dMz

dt
=

1

T1

(M0 −Mz) (4.15)

with solution

Mz(t) = M0 − (M0 −Mz(0+))e−t/T1

= M0 − (M0 −Mz(0−) cos(θ))e−t/T1

(4.16)

with Mz(0+) depending on the magnitude of the longitudinal magnetisation before the

RF pulse and the flip-angle θ as in equation (4.13).

If the pulse sequence is repeated, the time between iterations is called repetition time

TR. For any n-th repetition, equation (4.16), valid for n = 0, can be generalised to
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Mz(tn) = M0 − (M0 −Mz(0−) cos(θ))e−tn/T1, 0 ≤ tn < TR, n = 0, 1, 2, ...(4.17)

with tn = t − nTR. If TR � T1, the spin-lattice relaxation can be assumed to have

completely relaxed to thermal equilibrium between repetitions, and every n-th iteration

will begin with Mz(tn = 0−) = Mz(t = nT−R ) = M0, ∀n.

Studies have shown that T1 varies as a function of B0: the best fitting of 1
1H brain MRI

data in white matter, grey matter and blood has resulted in the empirical function:

T1 = C(γB0)β (4.18)

with scaling factor C varying for the different tissues4, and β ' 1/3 for all of them [22].

No change in T1 with increased field strength is observed however in the CSF. This phe-

nomenon is related to the efficiency of the spin-lattice relaxation, which is determined

by the degree of frequency coupling between the spin precession and the magnetic noise

in the lattice due to molecular dynamics [23]. It can be classically described in terms

of molecular tumbling: if occurring at a rate close to Larmor frequency, it provides

the spins an efficient pathway for thermal relaxation, leading to a shorter T1 compared

to spins in a molecular environment where the tumbling rate is considerably higher or

lower than Larmor frequency. Free moving water molecules (such as those constituting

the CSF) and small molecules are characterised by a wide spectrum of tumbling rates,

which results in most water molecules not being resonating at the Larmor frequency:

this causes T1 relaxation in water to be inefficient, hence the long T1. On the other

hand, large molecules with very low mobility present a tight hydration layer whose water

molecules exhibit very restricted, low tumbling rates, concentrated mainly below the

Larmor frequency, which also results in inefficient spin-lattice relaxation and long T1. In

the middle, water molecules bound to moderately sized macromolecules (e.g. fat, middle

sized proteins) are only moderately restricted, presenting a relatively larger spectral com-

ponent matching Larmor frequency: this leads to an overall more efficient spin-lattice

relaxation and shorter T1. Increasing B0 results in a higher ω0, which may reduce the

spectral overlap between moderately sized proteins tumbling rates and Larmor frequency,

making the spin-lattice relaxation less efficient, increasing T1 as a function of B0 [24].

Contrast agents, such as gadolinium compounds, can be used to catalyse the lon-

gitudinal relaxation process via proton-electron interactions, reducing T1. Contrast

agents have not been used in this project, therefore an in-depth description of how they

4CWM = 7.1 · 10−4, CGM = 1.2 · 10−3, Cblood = 3.4 · 10−3. WM: white matter, GM: grey matter.
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work is left elsewhere; more information can be found in Caravan et al. (1999) which,

in addition of providing a clear and detailed review of gadolinium chelates structure,

function and applications, is also a source of quite interesting quotes:

While it is odd enough to place patients in large superconducting magnets

and noisily pulse water protons in their tissues with radio waves, it is odder

still to inject into their veins a gram of this potentially toxic metal ion which

swiftly floats among the water molecules, tickling them magnetically. [25]

4.4 Transverse relaxation

The phase coherence of the transverse component of the magnetisation likewise decays

over time, leading to the extinction of the induced signal. This process is characterised

by the transverse relaxation time T2: it is mediated by spin-spin energy exchange

(akin to T1-relaxation, also referred to as T1 contribution to T2), spin-spin flip-flop

dipolar interactions and fluctuations in the local static field due to different molecular

configurations causing spins to precess at different frequencies (referred to as secular

contribution to T2 [26]).

The magnitude of the transverse magnetisation also decays according to an exponential

model:

dM⊥
dt

= −
M⊥
T2

(4.19)

with solution

M⊥(t) = M⊥(0+)e−t/T2 = Mz(0−) sin(θ)e−t/T2 (4.20)

Similarly to equation (4.17), this can be also generalised for any n-th repetition and

tn = t − nTR such that:

M⊥(tn) = Mz(0−) sin(θ)e−tn/T2, 0 ≤ tn < TR, n = 0, 1, 2, ... (4.21)

Amorphous tissues composed of relatively small and free moving molecules (such as the

CSF) do not support magnetic field inhomogeneities and are therefore characterised

by long T2. As the tissue structure increases in complexity, with bigger molecular size

and motion becoming more restricted, spin-spin relaxation becomes more efficient due
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to the emergence of local magnetic field domains, reducing T2 [27]. The presence

of paramagnetic agents, namely iron, whether endogenous, such as iron ions within

deoxyhemoglobin or ferritin, or exogenous in the form of iron-based contrast agents,

also produce local magnetic field inhomogeneities which, coupled with the random

motion of water molecules in close proximity of iron deposits (see section 4.17), result

in faster T2 decay [28, 29]. According to dipolar relaxation theory, T2 relaxation is

expected to be field-independent, however studies have shown a shortening of T2 for

very high fields (7 T and above) as well, which is believed to be due to susceptibility

and microscopic diffusion effects [30, 31]. This T2 reduction is sequence-dependent

and can be mitigated with ultra-short TE sequences (see next section).

In addition to the random shifts in the magnetic field due to the microscopic environment

and water molecules random motion, static inhomogeneities may be also imparted,

e.g. from defects in the magnet or magnetic field gradients (see section 4.10). This

contributes to transverse magnetisation decay with a relaxation time T ′2 that results in a

faster dephasing due to an overall shorter transverse relaxation time T ∗2 < T2 such that

1

T ∗2
=

1

T ′2
+

1

T2

(4.22)

T ∗2 effects have been neglected so far, although one can substitute T2 → T ∗2 to account

for them.

4.5 Spin-echo

In the general case where T2 → T ∗2 , extrinsic T ′2 effects can be strong enough to cause

rapid transverse magnetisation decay. Because of the static nature of these shifts,

spin-echo sequences can reverse their effects by inverting the spin phase with a θ = π

RF refocusing pulse.

By expressing local field inhomogeneities at a point ~r as ∆B(~r), each magnetic moment

~µ(~r) at that position experiences a local static magnetic field B(~r) = B0 + ∆B(~r);

because of this, each nuclear spin precesses at frequency ω(~r) = γB(~r). In the frame of

reference resonant at the Larmor frequency, the spatial distribution of precession frequen-

cies causes the magnetic moments to accumulate a phase as described in equation (4.9):

φ(~r , t) = −γ∆B(~r)t (4.23)
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Figure 4.2: Schematics of a typical spin-echo experiment in the S′[x ′, y ′, z ] resonant

reference frame: a) a π/2 excitation pulse is applied at thermal equilibrium; b) the trans-

verse magnetisation decays due to T2* relaxation; c) after a time t = TE/2, a π refocus-

ing pulse is applied, inverting the dephasing; d) the transverse magnetisation refocuses,

recovering the dephasing due to T2’ relaxation; e) at t = TE, a spin-echo is produced.

If then a π RF pulse is applied at t = τ , the dephasing accumulated just before the

pulse φ(~r , τ−) = −γ∆B(~r)τ is flipped to φ(~r , τ+) = γ∆B(~r)τ . After a further time

τ , at t = 2τ , the phase will thus be

φ(~r , 2τ) = φ(~r , τ+)− γ∆B(~r)τ = 0 (4.24)

The refocusing induces a peak in the transverse magnetisation magnitude affected only

by T2 decay called spin-echo, with magnitude:

M⊥(TE) = M⊥(0+)e−TE/T2 (4.25)

where the time interval TE = 2τ is called echo-time. An exampled is shown in Figure 4.2.

Spin echo measurements usually employ a π/2 excitation pulse for signal readout, which

allows to express the initial transverse magnetisation, for any given iteration of the

sequence after a repetition time TR, as

M⊥(0+) = Mz(0−) sin(π/2) = M0

(
1− e−TR/T1

)
(4.26)

where equation (4.16) was used to expand Mz(0−), and equation (4.25) can be re-

written as

M⊥(TE, TR) = M0

(
1− e−TR/T1

)
e−TE/T2 (4.27)

Multiple spin-echoes can be elicited as long as refocusing pulses are applied, each at

a TE interval from the previous one. This results in a train of spin echoes occurring

at times multiple of TE whose peak intensities over time define an envelope function

that decays as a function of T2.
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4.6 Bloch equation

By extending equation (4.6) to the entire population of spins in a given volume (i.e. by

substituting the magnetisation ~M to the magnetic moment ~µ), and combining it with

equations (4.15) and (4.19), it is possible to describe the dynamics of the magnetisation

in the presence of an external field ~Bext through the vector equation:

d ~M

dt
= γ ~M × ~Bext +

1

T1

(M0 −Mz)ẑ −
1

T2

~M⊥ (4.28)

referred to as the Bloch equation, where ~Bext = B0ẑ in presence of only the static

field, or ~Bext = B0ẑ + B1(cos(ωRFt)x̂ − sin(ωRFt)ŷ) when also applying the rotating

RF field (with ωRF = ω0 in case of an on-resonance pulse). For the static field case,

e.g. after the RF pulse has been applied, the solution for equation (4.28) along the

ẑ component is the same as equation (4.16), whilst for the transverse component can

be expressed in complex notation as

M+(t) = M⊥(0+)e−i(ω0t−φ0)e−t/T2

= M⊥(0+)(cos(ω0t − φ0)− i sin(ω0t − φ0))e−t/T2

(4.29)

where M⊥(0+) is the magnitude of the initial transverse magnetisation, which depends

on the flip-angle and the longitudinal magnetisation before the RF pulse (see equation

(4.13)).

4.7 Steady-state

After an RF pulse with flip-angle θ, the longitudinal and transverse components of

the magnetisation are described by equations (4.13). During the TR between an RF

pulse and the next, the magnetisation relaxes to thermal equilibrium according to the

Bloch equation. It will be assumed that transverse magnetisation is completely decayed

between repetitions, whether naturally, if TR � T2, or by purposely dephasing it through

the application of magnetic field gradients called spoilers, which introduce a T ′2-like

dephasing effect (see section 4.15 for more details on sequence implementation).

If θ = π/2, the system immediately follows a periodic pattern, or steady state: using

the total time notation Mz(t) = Mz(tn + nTR), ∀n, this results in the longitudinal

magnetisation building-up from Mz(nT+
R ) = 0 to a steady state value Mz((n + 1)T−R )
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determined by equation (4.17), for every n-th period TR. If also TR � T1, the system

goes periodically from Mz(nT+
R ) = 0 to thermal equilibrium, with steady-state value

Mz((n + 1)T−R ) = M0, ∀n. The steady-state value is then directly transposed into

transverse magnetisation by the RF pulse, as defined by equation (4.21).

If however θ < π/2 and TR is smaller or comparable to T1, the steady-state will be

only reached after a transient number of iterations n ≥ N, specifically when the loss

in the longitudinal magnetisation due to the RF pulse θ-tipping is equal to the amount

recovered due to spin-lattice relaxation during the TR period. This is usually the case

for fast imaging techniques using small θ and short TR to speed up the acquisition

process. In these cases, it is important to calculate the optimal flip-angle, defined as

Ernst angle θE, resulting in the maximum transverse magnetisation since, as it will be

shown in next section, it directly translates into relative maximum signal amplitude.

Equations (4.17) and (4.21) can be re-written in terms of total time t = tn + nTR and

steady-state values as

Mz((n + 1)T−R ) = M0 − (M0 −Mz(nT−R ) cos(θ))e−TR/T1 (4.30)

M⊥((n + 1)T−R ) = Mz(nT−R ) sin(θ)e−TR/T2 (4.31)

where, for a naturally spoiled sequence, it is easy to observe from equation (4.31) that

M⊥((n + 1)T−R )→ 0 for TR � T2. If the system is indeed in steady-state, then

Mz((n + 1)T−R ) = Mz(nT−R ) = M
SS

z , ∀n ≥ N (4.32)

and equations (4.30) can be re-written as

M
SS

z = M0 − (M0 −M
SS

z cos(θ))e−TR/T1 (4.33)

or, equivalently, by solving for M
SS

z :

M
SS

z = M0

1− e−TR/T1

1− cos(θ)e−TR/T1
(4.34)

The transverse magnetisation, as given by equation (4.21), can now be expressed in

terms of M
SS

z as a function of θ:
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Figure 4.3: Ernst angle for different TR/T1. Whilst the absolute maximum of the

transverse magnetisation M⊥(θE, 0) = M0 is obtained for θE = π/2 and TR � T1,

relative steady state magnetisation maxima can be achieved for shorter TR at lower

angles. In this graph, T2 decay has been ignored by setting tn = 0.

M⊥(θ, tn) = M
SS

z sin(θ)e−tn/T2

= M0

1− e−TR/T1

1− cos(θ)e−TR/T1
sin(θ)e−tn/T2, 0 ≤ tn < TR, ∀n ≥ N

(4.35)

From equation (4.35) and Figure 4.3, one can easily see that, for TR � T1, the

transverse magnetisation is indeed maximised for an Ernst angle θE = π/2, however,

using a π/2 flip angle with short TR, results in a sub-optimal steady-state condition.

The Ernst angle can be found analytically by calculating the derivative of equation

(4.35) with respect to θ, and setting it equal to zero, which results in

θE = arccos
(
e−TR/T1

)
(4.36)

4.8 Signal detection

The rotation of the transverse magnetisation ~M⊥ precessing in the xy -plane around

the direction of ~B0 produces a variation of magnetic flux as described by Faraday’s law

of electromagnetic induction. The same coil used to generate the ~B1 RF pulse is then

used to sample the signal induced by the change of magnetic flux in the coil sections

that intersect with the xy -plane5. The magnetic flux ΦM produced through the coil

5Different coils may also be used for excitation (transmit coil) and acquisition (receive coil) depending

on the specific application and MR-scanner. E.g. in a spinal cord imaging session, a body transmit coil,

usually integrated in the scanner, may be employed for the excitation, whilst a more targeted receive

coil may be used for the signal acquisition.
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by the magnetic field ~BM associated to the magnetisation is given by

ΦM(t) =

∫
S

~BM(~r , t) · d~S =

∫
S

(~∇× ~AM(~r , t)) · d~S =

∮
d~l · ~AM(~r , t) (4.37)

with S being in this context the coil surface and AM the vector potential associated

to the magnetisation. By representing each magnetic moment as a current loop, it

is possible to express the vector potential in terms of the effective current density

~JM(~r , t) = ~∇× ~M(~r , t) as

~AM(~r , t) =
µ0

4π

∫
d3r ′

~JM(~r ′, t)

|~r − ~r ′| =
µ0

4π

∫
d3r ′

~∇′ × ~M(~r ′, t)

|~r − ~r ′| (4.38)

with µ0 being the magnetic permeability in vacuum. By plugging equation (4.38) in

equation (4.37) and manipulating the products between vectors, it can be shown that

the flux can be re-written as

ΦM(t) =

∫
d3r ′ ~M(~r ′, t) ·

[
~∇′ ×

(
µ0

4π

∮
d~l

|~r − ~r ′|

)]
(4.39)

One can notice that the term within round brackets is equivalent to the expression of

the vector potential that the receiving coil itself would produce if traversed by a unit of

current I, evaluated at position ~r ′. Because the curl of a vector potential is a magnetic

field ~B, it is therefore possible to define the term within square brackets as

~Brec(~r ′) =
~B(~r ′)

I
= ~∇′ ×

(
µ0

4π

∮
d~l

|~r − ~r ′|

)
(4.40)

or receive field, i.e. the magnetic field per unit of current that would be produced by

the coil in any point ~r ′ of non-zero magnetisation. This enables to relate the magnetic

flux produced by the magnetic moments through the receive coil to the magnetic flux

that would be produced by the coil through the magnetic moments: an example of the

principle of reciprocity.

The signal measured, referred to as free induction decay (FID), can thus be expressed as

FID ∝ −
dΦM(t)

dt
= −

d

dt

∫
d3r ~M(~r , t) · ~Brec(~r)

= −
d

dt

∫
d3r [Mx(~r , t)Brec

x (~r) +My(~r , t)Brec
y (~r) +Mz(~r , t)Brec

z (~r)]

(4.41)

The negative time derivative can be taken inside the integral and applied to each
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component of the magnetisation independently. The negative time derivative of the

longitudinal magnetisation can be expressed through equation (4.16), by making the

dependency on position ~r explicit:

−
d

dt
Mz(~r , t) =

1

T1(~r)
(M0 −Mz(0))e−t/T1(~r) (4.42)

For the remaining two components, by knowing from equation (4.12) that Mx =

Re(M+); My = Im(M+), it is useful to calculate the time derivative of equation (4.29):

−
d

dt
M+(~r , t) =

(
iω0 +

1

T2(~r)

)
M⊥(~r , 0)e−i(ω0t−φ0(~r))e−t/T2(~r) (4.43)

For standard medical applications, B0 ∼ 1 T and T1, T2 ∼ 10–1000 ms, which means

ω0 � (1/T1, 1/T2) since the Larmor frequency is four orders of magnitude larger

than 1/T1 and 1/T2: when considering the sum of the terms in equation (4.41), it is

therefore possible to neglect any term with a multiplicative factor of 1/T1 or 1/T2 with

respect to ω0, which allows to neglect equation (4.42), and approximate (4.43) to

−
d

dt
M+(~r , t) ' iω0M⊥(~r , 0)e−i(ω0t−φ0(~r))e−t/T2(~r) (4.44)

' iω0M⊥(~r , 0)[cos(ω0t − φ0(~r))− i sin(ω0t − φ0(~r))]e−t/T2(~r)

' ω0M⊥(~r , 0)[sin(ω0t − φ0(~r)) + i cos(ω0t − φ0(~r))]e−t/T2(~r)

which leads to

−
d

dt
Mx(~r , t) = −Re

(
d

dt
M+(~r , t)

)
' ω0M⊥(~r , 0) sin(ω0t − φ0(~r)))e−t/T2(~r)

−
d

dt
My(~r , t) = −Im

(
d

dt
M+(~r , t)

)
' ω0M⊥(~r , 0) cos(ω0t − φ0(~r)))e−t/T2(~r)

(4.45)

By substituting equation (4.45) in (4.41) and neglecting the term associated to the lon-

gitudinal magnetisation due to the previous considerations, the signal can be expressed as

FID ∝ ω0

∫
d3rM⊥(~r , 0)e−t/T2(~r)[Brec

x (~r) sin(ω0t − φ0(~r))

+ Brec
y (~r) cos(ω0t − φ0(~r))]

∝ ω0

∫
d3rM⊥(~r , 0)Brec

⊥ (~r)e−t/T2(~r) sin(ω0t − φ0(~r) + θB(~r))

(4.46)

where the generic substitutions Brec
x = Brec

⊥ cos(θB), Brec
y = Brec

⊥ sin(θB) have been
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performed.

The FID is then demodulated by decomposing it through an in-phase and a quadrature

channel, which corresponds to multiplying the signal by a sin(ω0t) and− cos(ω0t) factor

respectively. This process is called quadrature demodulation and yields two signal com-

ponents with a π/2 phase difference, which can be therefore conveniently represented in

complex notation as real and imaginary channel: sRe and sIm. The demodulated signal ex-

pressed in complex notation s = sRe + i sIm presents no oscillation due to the precession6

which is equivalent to the signal as it would be detected from the perspective of an on-

resonant rotating reference frame. With reference to equation (4.46) and considering

only the oscillating term, the two signal components sRe and sIm can be expressed as

sRe(t) ∝ sin(ω0t) sin(ω0t + φ(~r))

∝
cos(φ(~r))− cos(2ω0t + φ(~r))

2

low−−→
pass

cos(φ(~r))

2
∝ Re(e−iφ(~r))

sIm(t) ∝ − cos(ω0t) sin(ω0t + φ(~r))

∝ −
sin(φ(~r)) + sin(2ω0t + φ(~r))

2

low−−→
pass
−

sin(φ(~r))

2
∝ Im(e−iφ(~r))

(4.47)

where φ(~r) = θB(~r)−φ0(~r) is the total accumulated phase, and a low-pass filter allows

to eliminate the high frequency component, keeping only the static envelope of the signal,

assuming perfect demodulation. The demodulated signal can then be expressed as

s(t) ∝ ω0

∫
d3rM⊥(~r , 0)Brec

⊥ (~r)e−t/T2(~r)e i(φ0(~r)−θB(~r)) (4.48)

4.9 Signal weighting

Equation (4.48) is particularly interesting because makes the relationship between FID

signal, the MR-system and parameters, and sample properties discussed so far, explicit.

This can be better observed upon supposing the RF coil to be uniform enough that the

initial magnetisation phase φ0, the receive field phase θB, and the transverse component

of the receive field B⊥ can be considered independent from position7. For a standard

spin-echo acquisition (π/2 excitation pulse), the demodulated signal for an echo-time

6A residual, low-frequency oscillation in time might still be present due to imperfect demodulation.

This may cause signal loss over time which resembles a T ′2 effect.
7In practice, this assumption is often not met, in which case a receive bias field can be defined. It

appears as a low-frequency, smooth artifact that makes the image appear more or less bright in the areas

where the receive coil is more or less sensitive. This is often corrected for in post-processing [32].
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TE and repetition time TR can be expressed as

s(TE, TR) = ω0ΛB⊥

∫
d3rM⊥(~r , 0)e−TE/T2(~r)

= ω0ΛB⊥

∫
d3rM0(~r)

(
1− e−TR/T1(~r)

)
e−TE/T2(~r)

= γΛB⊥
µ2

3kBT
B2

0

∫
d3rρ0(~r)

(
1− e−TR/T1(~r)

)
e−TE/T2(~r)

(4.49)

where equations (4.5), (4.8) and (4.26) have been used, and the proportionality con-

stant Λ has been introduced, which includes the constant phase terms, as well as gain

factors from the detection system. The direct proportionality between the signal and

the magnitude of the static field B2
0 explains the need for higher MR-fields to achieve

higher signal-to-noise ratios. By introducing the effective spin density ρ(~r):

ρ(~r) = γΛB⊥
µ2

3kBT
B2

0ρ0(~r) (4.50)

it is possible to express equation (4.49) as

s(TE, TR) =

∫
d3rρ(~r)

(
1− e−TR/T1(~r)

)
e−TE/T2(~r) (4.51)

This relation is especially important because it highlights how the modulation of the

MR-system parameters TE and TR enables the induction of weighted signal. Suppose

to acquire MR-signals from two samples with different ρ, T1 and T2. Short TR and TE

(compared to T1 and T2 respectively) cause the signals to be T1-weighted: the short

TE causes T2 decay to be negligible and comparable in the two cases, meaning that the

difference between signals is mainly driven by the difference between initial longitudinal

magnetisations which, due to the short TR, have not reached equilibrium yet, and is

therefore dictated by the different T1’s (longer T1 means slower recovery and thus lower

signal). On the other hand, long TR and TE cause the signals to be T2-weighted, since

the long TR ensures the longitudinal magnetisation is at equilibrium before subsequent

excitation, making the signal T1-independent, whilst the long TE causes T2-decay to

be more prominent and affect the two signals (longer T2 means slower decay and thus

higher signal). Finally, long TR and short TE mute dependency on both T1 and T2,

causing the signals to be ρ-weighted and differ based on the actual difference in spin

densities of the two samples. For standard 1
1H MRI, the signal would be referred to as

proton density –, or PD-weighted, although the same concept applies when acquiring

ρ-weighted signal from other atomic species, such as in 23
11Na MRI. Examples of T1-, T2-
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Figure 4.4: From left to right: examples of T1-, T2- and PD-weighted images.

and PD-weighted images are shown in Figure 4.4. Alternatively, for fast acquisitions

using very short TR � T1, it is still possible to achieve PD-weighting despite the short

repetition time by employing a flip-angle much smaller than the Ernst angle θ � θE

for the chosen TR. This can be observed by substituting equation (4.35) in equation

(4.48), that is by re-writing the signal for any given flip-angle θ as

s(θ) =

∫
d3rρ(~r)

1− e−TR/T1(~r)

1− cos(θ)e−TR/T1(~r)
sin(θ)e−TE/T2(~r)

'
∫

d3rρ(~r)
1− e−TR/T1(~r)

1−
(

1− θ2

2

)
e−TR/T1(~r)

θe−TE/T2(~r), θ � θE

'
∫

d3r
ρ(~r)θ

1 + T1

2TR
θ2
e−TE/T2(~r), θ � θE, TR � T1

(4.52)

where the following approximations have been used for x � 1: sin(x) ≈ x , cos(x) ≈
1− x2/2, e−x ≈ 1− x . Given equation (4.36), θE can be approximated as

θE ' arccos
(

1−
TR
T1

)
, TR � T1 (4.53)

from which it is possible to show8 that θE '
√

2TR/T1. Equation (4.52) thus becomes

s(θ) '
∫

d3r
ρ(~r)θ

1 +
(
θ
θE

)2 e
−TE/T2(~r), θ � θE, TR � T1 (4.54)

losing all dependency on T1, showing that, by employing a small θ and short TE, it is

possible to obtain PD-weighted signal even from a short TR sequence, albeit at lower

8cos(x) ≈ 1− x2/2 ⇒ cos(
√

2y) ≈ 1− y ⇒ arccos(1− y) ≈
√

2y
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signal intensity.

4.10 Fourier imaging

The expression for the signal reported in equation (4.48) is given by the sum of the

spin contributions within the sample. Due to the molecular environments they are

in, identical spins can experience different local magnetic fields, hence precessing

at different frequencies. The difference in frequencies caused by the microscopical

properties of the spin neighbourhood is called chemical shift, and can be exploited in

NMR measurements to probe the molecular composition of the sample. The signal

can be decomposed in its constituent frequencies, or spectral components, through

a Fourier-transform, thus resulting in the signal spectrum:

ŝ(ω) = F [s(t)](ω) =

∫
dt s(t)e iωt (4.55)

In addition to acquiring the signal spectrum, the objective of MRI is also to reconstruct

the 3D spatial distribution of the spin populations that have contributed to its genera-

tion. The reconstructed 3D image is constituted by volumetric pixel units called voxels,

whose dimensions depend on the MR-sequence parameters used for the acquisition and

define the image resolution. To produce such images, three spatially constant magnetic

field gradients are applied as part of the MR-protocol. The direction of the magnetic

fields is parallel to ~B0 = B0ẑ and their magnitude varies linearly along the x-, y - and

z-axes, respectively. The gradient vector

~G(t) = Gx(t)x̂ + Gy(t)ŷ + Gz(t)ẑ (4.56)

may be defined. Each gradient component i ideally follows a boxcar profile, that is

Gi(t) = Gi when the gradient is on, and Gi(t) = 0 otherwise, with i = x , y , z , although

a trapezoidal time-profile is also used as a more realistic approximation. The total

magnetic field along the z-axis can then be written as

Bz(~r , t) = B0 + ~G(t) · ~r (4.57)

The gradients introduce a spatial dependency to the precessional frequency:

ω(~r , t) = γBz = ω0 + γ ~G(t) · ~r = ω0 + ω
G

(~r , t) (4.58)
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as well as the phase φ
G

accumulated by the magnetic moments in the on-resonant

reference frame:

dφ
G

dt
ẑ = ~ω

G
= −ω

G
ẑ

φ
G

(~r , t) = −
∫ t

0

ω
G

(~r , t ′)dt ′ = −γ~r ·
∫ t

0

~G(t ′)dt ′
(4.59)

With reference to equation (4.48), and following same steps as for equations (4.49)–

(4.51), under the assumption of RF coil uniformity (which is acceptable at the voxel-

scale), the expression for the demodulated signal in the presence of the magnetic field

gradients is given by

s(t) =

∫
d3rρ(~r)e iφG (~r ,t) (4.60)

where the relaxation effects have been omitted, or the associated factor equivalently

incorporated into the effective spin density ρ.

A key step for MRI is to introduce the concept of k-space, where ~k = (kx , ky , kz) is

a vector defined as

~k =
γ

2π

∫ t

0

~G(t ′)dt ′ = γ

∫ t

0

~G(t ′)dt ′ (4.61)

where γ = γ/2π and the time dependency is considered implicit in ~k = ~k(t). Equation

(4.59) can then be re-written as

φ
G

(~r , t) = −2π~k · ~r (4.62)

By re-writing equation (4.60) as a function of ~k , one can express it in terms of the 3D

Fourier transform of the effective spin density ρ:

s(~k) =

∫
d3rρ(~r)e−i2π

~k·~r = F [ρ(~r)](~k) (4.63)

with ~k acting as the signal constituent spatial frequency. By applying an inverse Fourier

transform to the left and right hand sides of equation (4.63), it is therefore possible to

reconstruct the spatial distribution of the effective spin density from the signal acquired

over time:

ρ(~r) = F−1[s(~k)](~r) (4.64)
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4.11 Slice selection

Each spatial gradient introduces a dependency on one spatial direction, hence the need

for three orthogonal magnetic field gradients. In 2D MR-protocols, the gradient along

the z-axis is used to select the z-coordinate of the xy -plane to be imaged. Whilst

being applied, the slice select gradient G
SS

z causes the spins located in the slice with

coordinate z to precess at a frequency

ω(z) = ω0 + γG
SS

z z (4.65)

If an RF pulse rotating at a frequency ωRF = ω(z̄) is then applied simultaneously with

the gradient, only the spins in the slice at z = z̄ will be excited due to the spatially

selective on-resonant condition. In this section, it is convenient to express precession

frequencies in Hz units ν, rather than rad/s, such that ω = 2πν.

So far the RF pulse has been assumed to be resonant with only one specific frequency

at a time. However, given equation (4.65), this corresponds to an infinitely thin slice,

which is obviously not practical. In reality, the RF pulse is designed to target a range

of frequencies ∆ω = 2π∆ν, which in turn determines the thickness of the excited slice:

∆z =
∆ω

γGSS

z

=
∆ν

γGSS

z

(4.66)

Slice thickness depends therefore on the bandwidth of the RF pulse BWRF = ∆ν, that

is the range of frequencies in Hz units resonant with the pulse, and is given analytically

by the Fourier transform of the temporal profile of the RF pulse B1(t):

BWRF(ν) = F [B1(t)](ν) (4.67)

In the limit case where ωRF = ω (where the spatial dependency is implicit in ω = ω(z)),

the temporal profile of the RF pulse can be expressed using complex notation as

B1(t) ∝ e iωRFt = e i2πνRFt (4.68)

which in the frequency domain, from equation (4.67), corresponds to a bandwidth

proportional to a Dirac delta function BWRF(ν) = δ(ν − νRF). In reality, to excite a

range of frequencies ∆ν around the central frequency νRF, the magnitude of the RF

pulse is modulated over time according to a sinc(π∆νt) function. This can be derived

by considering a sum of RF pulses as expressed in equation (4.68), each resonating at
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a frequency ν ∈ N, with N = [νRF − ∆ν/2, νRF + ∆ν/2] or, equivalently:

B1(t) ∝
∫
ν∈N

dνe i2πνt

∝
e i2πνt

2i t

∣∣∣νRF+ ∆ν
2

νRF−∆ν
2

∝
e iπ∆νt − e−iπ∆νt

2iπt
e i2πνRFt

∝
sin(π∆νt)

πt
e i2πνRFt

∝ sinc(π∆νt)e i2πνRFt

(4.69)

In the frequency domain, this is equivalent to a rectangular function, or boxcar

Π((ν − νRF)/∆ν) centred on ν = νRF and of bandwidth ∆ν. This can be shown

in terms of Fourier transform by observing the first line in equation (4.69) where,

knowing that Π(ν) = 1 for ν ∈ N, and Π(ν) = 0 otherwise, it is possible to notice that:

B1(t) ∝
∫
ν∈N

dνe i2πνt

∝
∫ ∞
−∞

dνΠ
(ν − νRF

∆ν

)
e i2πνt

∝ F−1
[

Π
(ν − νRF

∆ν

)]
(t)

(4.70)

Figure 4.5 shows an example ofB1 profile and corresponding slice selection. Analytically,

B1 is a continuously defined function over time which goes to zero only at |t| = ∞,

which is clearly not practical. As a result, the boxcar excitation frequency profile, and

the sharp slice thickness are also ideal limits. In practice, the RF pulse is time-truncated

to include only a certain number of zero-crossings, with this number being key in the RF

pulse design, as it determines how close the actual excitation profile and slice boundaries

will be to the ideal ones.

4.12 Rephasing and gradient echo

The application of the slice select gradient also introduces an additional dephasing

term similar to the T ′2 effects discussed in section 4.4. Given the RF pulse is applied

simultaneously to the slice select gradient, as soon as the magnetic moments are tipped

away from their equilibrium position and a transverse magnetisation starts to build up,

the different precessional frequencies across the slice thickness given by equation (4.65)
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Figure 4.5: The graph on the left shows an example of the B1(t) profile in complex

form. The scheme on the right represents the slice selection process: the frequency

of the sinc envelope defines the bandwidth of the pulse, and thus the thickness of the

imaged slice, whilst the frequency of the complex phase determines its centre.

cause a dephasing of the spins proportional to the area under the gradient profile as

given by equation (4.59). For a static gradient, this is equivalent to

φ
Gz

(z, t) = −γGSS

z zt (4.71)

with consequent signal loss as described by equation (4.60). For this reason, a second

rephasing gradient lobe with same amplitude but opposite sign is usually applied, after

the RF pulse is terminated, to offset the dephasing due to the first gradient. The

rephasing induces a new peak in the transverse magnetisation called gradient echo, with

TE echo time. Every time the transverse magnetisation, and the signal with it, decays

due to the application of a magnetic field gradient, the dephasing can be recovered by

adding a rephasing gradient along the same direction, thus producing a gradient echo.

Since the only dephasing recovered is the one imposed by the gradient in the first place,

the amplitude of the gradient echo will be affected by T ∗2 decay; otherwise, the general

principle is equivalent to what described in section 4.5.

The duration of the rephasing lobe (and, equivalently, the gradient echo timeTE) depends

on the flip-angle of the RF-pulse: for small flip-angles, the spin tipping can be approxim-

ated to take place instantaneously at the mid-point of the RF pulse (t = 0), with the de-

phasing being caused only by the second half of the slice select gradient. Assuming pulse

and slice select gradient to be applied simultaneously over a τz time interval −τz/2 <
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t < τz/2, the dephasing is therefore assumed to occur over 0 < t < τz/2, such that

φ
Gz

(z, τz/2) = −γGSS

z zτz/2. By applying a rephasing lobe with amplitude G
RP

z = −GSS

z

over τz/2 < t < τz , after the RF pulse has terminated, the total dephasing is recovered:

φ
Gz

(z, τz) = −γGSS

z z
τz
2
− γGRP

z z
τz
2

= 0 (4.72)

For small flip-angles, the rephasing lobe duration is thus 50% the slice select, and TE =

τz ; larger flip-angles instead induce a wider dephasing, requiring a longer rephasing: for

π/2 flip-angle, the ideal rephasing time can be shown to be 50.6% of the slice select gradi-

ent duration. For slice select and rephasing gradients with different amplitudes, the areas

under the gradient profiles need to be matched, rather than just the gradients duration.

4.13 Phase encoding, frequency encoding and k-space

coverage

Once the rephasing is complete, the slice is ready to be imaged. The signal produced

by the spins in the slice is given by equation (4.63), with kz = 0 due to Gz being off,

and the integration over z being limited to the thickness of the slice ∆z :

s(kx , ky) =

∫
dx

∫
dy

∫ z0+ ∆z
2

z0−∆z
2

dzρ(x, y , z)e−i2π(kxx+ky y) (4.73)

In order to reconstruct the spatial distribution of the effective spin density in the slice, it

is therefore necessary to sample the signal at different kx and ky throughout the k-space.

The centre of the k-space (kx , ky) = (0, 0) is defined by the absence of gradients and its

neighbourhood contains low-frequency spatial information, which constitutes the bulk

of the image, as it determines the overall image contrast and shapes; higher-frequency

spatial information, that is sharper edges and details, can be accessed by sampling

(kx , ky) points farther away from the centre of the k-space. Different (kx , ky) points

can be sampled by applying frequency encoding G
FE

x and phase encoding G
PE

y gradients,

respectively.

The phase encoding gradientG
PE

y is applied over a time τy , inducing a spatial dependency

between the phase accumulated by the magnetic moments and their y -coordinate,

similarly to what is expressed by equation (4.71). This is equivalent to a shift in the

k-space over the phase encoding direction equal to
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δky = γG
PE

y τy (4.74)

The frequency encoding gradient G
FE

x is applied in two lobes with opposite sign to

elicit a gradient echo, as described in 4.12. For a fully sampled k-space, the negative

(dephasing) lobe has 1/2 the area of the positive (rephasing) lobe, and is applied

simultaneously, or soon after the phase encoding. In the simple case of both lobes

having the same amplitude, the dephasing lobe has a duration τx/2, whilst the rephasing

lobe follows over a time interval τx , eliciting a gradient echo in the mid-point. The signal

induced by the gradient echo is then sampled during the rephasing lobe at intervals

∆τx , with the frequency encoding gradient effectively introducing a spatial dependency

between the spins local precessional frequencies and their x-coordinate. The dephasing

and rephasing lobes correspond to shifts in the frequency encoding direction δk−x and

δk+
x respectively, given by

δk−x = − γGFE

x

τx
2

= −Kx

δk+
x = γG

FE

x τx = 2Kx

(4.75)

Each (δkx , δky) pair delineates a 2D shift in the k-space from one point to another

(kx , ky)→ (kx + δkx , ky + δky): the path connecting these points is called trajectory.

Starting at the centre of the k-space, the (δk−x , δky) shift leads to (0, 0)→ (−Kx , δky);

the rephasing gradient moves then the trajectory by δk+
x along the frequency encoding

direction, that is (−Kx , δky) → (Kx , δky), covering the entire k-line kx ∈ [−Kx , Kx ]

and phase encoding coordinate ky = δky . By changing the ky -coordinate, that is by

sampling the signal over different k-lines, it is possible to span the trajectory across the

entire k-space. In a standard 2D gradient echo sequence, schematised in Figure 4.6,

this is done by repeating the sequence described above, with the time between each RF

pulse and the next one being the repetition time TR. At each new iteration, the value

of G
PE

y is changed by a multiple of ∆G
PE

y , or step, through the range [−GPE

y,max, G
PE

y,max],

where Gy,max
PE is the maximum amplitude of the phase encoding gradient. This defines

a step in the ky direction ∆ky = γ∆G
PE

y τy , which allows to span over the phase encoding

range ky ∈ [−Ky , Ky ] at discrete ∆ky intervals, with Ky = γG
PE

y,maxτy .

Depending on the stepping order, the phase encoding range can be covered according to

different ordering schemes. In the sequential ordering scheme, the ky -range is covered

linearly from −Ky to Ky stepping by ∆ky at each iteration. Alternatively, a centric

reordering scheme can be used, with the k-space trajectory starting from ky = 0 and then

moving back and forth with increasing discrete shifts 0→ ∆ky → −∆ky → 2∆ky →
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Figure 4.6: On the left, standard 2D gradient echo sequence: notice the rephasing

lobe of the slice-selection gradient, and the stepping of the phase-encoding gradient.

On the right, the corresponding k-space coverage, with each new k-line being acquired

at every new iteration of the sequence.

−2∆ky → ...→ Ky → −Ky . A variation of the centric reordering, the reverse-centric

reordering scheme is equivalent to the former, but in the opposite direction, that is from

the periphery of the k-space to the centre. Depending on the MR-sequence, the ordering

scheme might have an effect in terms of how the sequence parameters, such as the TE,

affect the signal, and should therefore be taken into consideration during data processing.

In three spatial dimensions, i.e. a 3D acquisition, the gradient encoding is the same,

with the addition of a phase encoding gradient G
PE

z over the z direction. The slice-select

gradient G
SS

z is applied to excite a thicker slice, called slab, divided into partitions. Each

partition is reconstructed through the application of a phase encoding gradient G
PE

z ,

whose amplitude is stepped at each iteration to span through all the partitions.

4.14 Field of view, Nyquist sampling criterion and res-

olution

The MR-signal is collected over a matrix of uniformly distributed points in the k-space,

whose granularity is determined by the sampling time interval ∆τx and the stepping of

the phase encoding gradient ∆G
PE

y . The matrix step dimensions (∆kx ,∆ky) over the

frequency and phase encoding directions are defined as
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∆kx = γG
FE

x ∆τx

∆ky = γ∆G
PE

y τy
(4.76)

with the number of steps being referred to as matrix size. Considering only the discrete

sampling over the frequency encoding direction, with a matrix size of 2n, the measured

signal sm can be expressed as the product of the signal s (equation (4.63)) and a combing

function given by the sum of 2n Dirac delta functions separated by ∆kx intervals, with

a scaling factor ∆kx :

sm(kx) = s(kx) ·
[

∆kx

n−1∑
p=−n

δ(kx − p∆kx)
]

= ∆kx

n−1∑
p=−n

s(p∆kx)δ(kx − p∆kx)

(4.77)

The reconstructed spin density ρ̂ is given by the inverse-Fourier transform of equation

(4.77):

ρ̂(x) =

∫
dkxsm(kx)e i2πkxx

= ∆kx

∫
dkx

n−1∑
p=−n

s(p∆kx)δ(kx − p∆kx)e i2πkxx

= ∆kx

n−1∑
p=−n

s(p∆kx)

∫
dkxδ(kx − p∆kx)e i2πkxx

= ∆kx

n−1∑
p=−n

s(p∆kx)e i2πp∆kxx

(4.78)

From this, it is already possible to see that the reconstructed spin density is periodic,

i.e. it is translationally invariant when shifted by a period 1/∆kx :

ρ̂
(
x +

1

∆kx

)
= ∆kx

n−1∑
p=−n

s(p∆kx)e i2πp∆kx (x+1/∆x)

= ∆kx

n−1∑
p=−n

s(p∆kx)e i2πp∆kxxe i2πp

= ρ̂(x)

(4.79)

where e i2πp = 1, due to p ∈ [−n, n − 1] being integer. The reconstructed density func-

tion is therefore constituted of 2n identical copies of ρ̂ repeating over the x dimension
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with uniform spacing Lx = 1/∆kx . In order to avoid overlapping of neighbouring copies

of the reconstructed density, known as ghosting artifact, the dimension of the imaged

sample Ax must be smaller than Lx , such that ∆kx < 1/Ax . This condition is referred

to as the Nyquist sampling criterion, and is used to calculate the upper limit for the

sampling time interval ∆τx above which ghosting appears.

The same process can be applied to the phase encoding direction, leading to a spatial

interval Ly = 1/∆ky . In this case, the Nyquist sampling criterion is used to calculate

the upper limit for the phase encoding stepping ∆G
PE

y . The image field of view (FOV)

can thus be defined as

FOV = [Lx , Ly ] =
[ 1

∆kx
,

1

∆ky

]
(4.80)

The truncation of the measured signal in equation (4.77) to a finite sum over 2n points

is the result of the finite dimensions of the sampled k-space. By recalling that signal

sampled at farther points of the k-space contains higher spatial frequency information, it

derives that this approximation limits the amount of detail that can be reconstructed from

the signal, which in turn imposes a lower limit to the smallest resolvable distance between

objects, or resolution, causing the emergence of a blurring artifact. As a result, the spin

density also needs to be discretised over a matrix in the physical space, thus the division

of MR-images into voxels, whose dimensions is determined by the image resolution.

For a 2D protocol, the voxel z dimension is equal to the slice thickness ∆z , whilst the

in-plane resolution (∆x,∆y) is determined by the physical matrix size. It can be shown

that the matrix size for the physical space is the same as the k-space matrix size, that

is the number of voxels within the image FOV over the x and y directions is equal to

the number of samples over the frequency and phase encoding directions respectively.

Therefore, for a matrix size (2nx , 2ny), the in-plane resolution is given by

∆x =
Lx
2nx

=
1

2nx∆kx
; ∆y =

Ly
2ny

=
1

2ny∆ky
(4.81)

where it can be clearly seen that in the limit of an infinite matrix size, the resolvable

distance would be infinitely small, and the resolution infinitely high. It is thus possible

to define the spin density within a voxel ρ̂MRI, as displayed in an MR-image, as the

reconstructed spin density at that physical position, multiplied by the volume of the voxel:

ρ̂MRI(~r) = ρ̂(~r)∆x∆y∆z (4.82)
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4.15 MR-sequences

An MR-sequence is a programmed set of RF pulses and magnetic field gradients defined

by specific parameters, such as flip-angle, TE and TR, resulting in MR-images high-

lighting specific properties of the sample. To follow, the description of some standard

MR-sequences, with a focus on those used in for this project.

4.15.1 Spin echo

The physical process at the base of a spin echo has been discussed in section 4.5. In a

standard 2D spin echo sequence, shown in Figure 4.7, a π/2 excitation pulse is applied

at t = 0 simultaneously with a slice select gradient G
SS

z , followed by a rephasing lobe

G
RP

z as described in sections 4.11 and 4.12. A phase encoding gradient G
PE

y with stepped

amplitude every TR, and a dephasing lobe along the frequency encoding direction G
FE

x

are then applied as described in section 4.13. The dephasing gradient is however applied

with a positive amplitude, instead of a negative one. At t = TE/2, the refocusing π RF

pulse is applied together with a slice select gradient. In this case, no rephasing lobe G
RP

z

is necessary as the dephasing accumulated during the first half of the π RF pulse due

to the gradient is automatically recovered during the second half due to the π pulse

symmetry. Since the role of the refocusing pulse is to invert the spins phase, this also

inverts the phase accumulated due to the dephasing G
FE

x gradient, effectively making it

equivalent to a dephasing lobe with negative amplitude (which is why it was initially set

as positive). At t = TE, the spin echo occurs and it is sampled simultaneously with the

application of the rephasing lobe of the frequency encoding gradient. The rephasing

gradients (G
RP

z and G
FE

x ) offset the dephasing accumulated due to the initially applied

gradients, whilst the π RF pulse recovers the dephasing due to T ′2 effects over the TE.

The signal amplitude at the peak is therefore only affected by T2 decay and, for given

TE and TR sequence parameters, can be determined according to equation (4.51).

4.15.2 Multi-echo spin echo

As described in section 4.5, given a spin echo sequence, it is possible to keep eliciting spin

echoes after the first one by applying multiple π refocusing pulses after the first, each

accompanied by a slice select gradient. The k-space is covered independently for each

new spin-echo. Since every echo results in an independent image, the phase encoding

ordering is not important as long as the entire k-space is covered. Once the sequence
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is complete and the signal Fourier-transformed, each echo will result in an MR-image

(or a volume of the same image) with different T2-weighting due to the increasing TE.

The volumes can then be fitted voxel-wise to extrapolate a map of quantitative T2.

In the simplest case, two refocusing pulses are applied, which result in two spin echoes,

the first at a short TE, and the second at a long TE. This is often referred to as dual

echo spin echo. Coupled with a long TR, one can notice from equation (4.51) that this

allows to generate PD- and T2-weighted images respectively within the same sequence.

4.15.3 Fast/turbo spin echo

Instead of generating a separate image for each echo, multiple echoes can be employed

to speed up the acquisition process, as shown in Figure 4.7: by sampling each echo over

a different line of the k-space, multiple k-lines can be covered during the same TR. This

sequence is an application of RARE (Rapid Acquisition with Relaxation Enhancement),

but is also often referred to as fast spin echo or turbo spin echo (TSE) depending on

the MRI scanner manufacturer (since Philips data has been used in this project, it will

be referred to as TSE). The number of echoes, and thus k-lines, acquired in the same

TR is called echo train length or turbo factor. Dual echo TSE has been for decades the

workhorse of clinical MRI, only recently starting to be replaced by its 3D counterpart, as

it allows the generation of two images with clinically relevant weighting, and relatively

high resolution, using a single fast sequence.

TSE follows the same gradient scheme described for the multi-echo spin echo, with the

difference that instead of a single phase encoding gradient being applied at the beginning

of every iteration, phase encoding lobes with equal amplitude but opposite sign are

applied before and after each spin echo, stepping the value of the amplitude at each new

echo. This allows to move the k-space trajectory to a new line during each new echo, and

reset it to ky = 0 between echoes. Unlike multi-echo spin echo, the multiple spin echoes

are combined to generate a single image, and the phase encoding ordering scheme must

be taken into consideration when modelling the signal. In particular, if the refocusing

pulses are applied every TE, each echo will be generated at a different effective echo time:

T 1
E = TE, T 2

E = 2TE, T 3
E = 3TE and so on, with T nE referring to the echo time of the

n-th spin echo. As a result, the final MR-image will not be described by a single TE value,

and the TE associated with the sequence will be representative only of the first spin echo.

For this reason, an effective echo time T eff
E is defined, corresponding to the time between

the excitation pulse and the occurrence of the signal peak of the spin echo sampled along

57



Part I: Background

Figure 4.7: Diagrams for three standard 2D MR-sequences: spin-echo (SE), turbo spin

echo (TSE) and echo planar imaging (EPI). TSE and EPI enable to acquire multiple

k-lines in the same TR: the paired phase encoding gradients in a TSE allow to sample

a new k-line for each echo, whilst returning the k-space trajectory to ky = 0 between

echoes; EPI instead uses short phase encoding gradients, or blips, to switch to a new

k-line, following a snake-like pattern. The envelope of TSE peaks decays according to

T2, whilst for EPI it follows T ∗2 decay. In both cases, the resulting image is not defined

by a single TE and an effective echo time must be defined.

the central k-space line, that is ky = 0. Since the peak of the echo is also sampled in the

middle of the k-line, that is kx = 0, this allows to associate the T eff
E to the signal sampled

at the centre of the k-space s(kx = 0, ky = 0). By recalling that the central area of

the k-space is the one containing the bulk of the image information in terms of overall

contrast and shapes, it becomes clear why T eff
E is used as the effective echo time for the

entire image. In case of centric reordering scheme, T eff
E = TE since the first spin echo

is also sampled at ky = 0, but this may not be true for other phase encoding schemes.

4.15.4 Gradient echo

The standard 2D gradient echo sequence (GRE, or fast field echo, FFE for Philips man-

ufacturer) has been already described in section 4.13. It can be greatly sped-up through

the addition of spoiler gradients along all directions: these are applied at the beginning

of every iteration specifically to dephase, or spoil, the remnant transverse magnetisation

between repetitions. As described in section 4.7, this sequence, referred to as spoiled

fast low-angle shot (FLASH), allows to employ much shorter TR’s and smaller flip angles,

resulting in an overall shorter acquisition time. FLASH sequences can be both 2D and

3D, and can achieve PD-, T2- and T1-weighting simply by varying TR, TE and flip angle.
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4.15.5 Echo planar imaging

Similarly to TSE for spin echo, echo planar imaging readout (EPI) uses multiple gradient

echoes to sample multiple k-lines within the sameTR, as shown in Figure 4.7. This is done

by applying a rapid train of G
FE

x gradients in the frequency encoding direction, all with

same amplitude and alternate sign. Each gradient rephases the magnetisation during the

first half, eliciting a gradient echo at the mid-point, and dephases it during the second half,

preparing it for the next echo. Positive lobes move the k-space trajectory left-to-right,

whilst negative lobes move it right-to-left. Between each echo and the next, a short phase

encoding gradient pulse, or blip, is applied, moving the trajectory one line up, covering the

entire k-space in a snake-like path. As for the gradient echo, the envelope of the peaks de-

cays in time as a function ofT ∗2 . Similarly to TSE, an effective echo timeT eff
E , correspond-

ing to the echo time relative to the gradient echo sampled at the centre of the k-space, is

defined. EPI is also prone to geometric distortions and artifacts due toB0 inhomogeneit-

ies and eddy currents, although correction methods exist that mitigate their effects [33].

4.15.6 Inversion preparation

It is possible to precede any acquisition sequence by a preparatory module consisting

of a π RF pulse applied at time t = 0, which inverts the longitudinal magnetisation

so that Mz(0+) = −M0. This is done for different purposes, such as to obtain heavily

T1-weighted images or to suppress the signal from a certain tissue. In the case of an

inversion recovery sequence, the magnetisation is left to recover via T1 relaxation as

described in section 4.3 for a time TI, or inversion time, according to equation (4.16):

Mz(~r , T−I ) = M0

(
1− 2e−TI/T1(~r)

)
(4.83)

The acquisition sequence, e.g. a spin echo, is then applied at t = TI, with the transverse

magnetisation for an echo being

M⊥(~r , TE + TI) = M0

∣∣∣1− 2e−TI/T1(~r)
∣∣∣e−TE/T2(~r) (4.84)

with the absolute value due to the fact that, once the longitudinal magnetisation is tilted

into the transverse plane by the π/2 excitation pulse, only its magnitude is considered,

as its sign is translated into a phase offset. This causes the signal also to be modulated

and locally reduced by a function of T1. By repeating the same sequence and acquiring

different images at a different TI, it is possible to reconstruct the T1 relaxation curve
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in each voxel, which can be fitted to extrapolate a spatial map of quantitative T1.

A π preparatory pulse may be also applied prior of a 3D-FLASH sequence to produce

fast, isotropic, heavily T1-weighted images. Being a 3D sequence, multiple kz -lines are

acquired within the same TR by stepping the G
PE

z gradient, with the effective inversion

time T eff
I being defined as the time between the inversion pulse and the acquisition of the

central kz = 0 line. The sequence, including the preparatory module, is then repeated

stepping the G
PE

y gradient. This sequence, referred to as magnetisation prepared

rapid gradient echo (MP-RAGE, or 3D T1-turbo field echo, 3D T1-TFE for Philips

manufacturer), is a staple for anatomical MRI due to the sharp contrast and resolution.

Alternatively, a single TI can be used, specifically tailored so that Mz(t = TI) = 0 for

a given T1, that is TI = ln(2) · T1. In brain MRI, this is often used to suppress the

signal produced by fluids, due to their characteristically long T1, and the sequence is

referred to as fluid attenuated inversion recovery, or FLAIR. In the case of CSF, average

T1 ∼ 4000 ms, therefore TI ∼ 2700 ms. A FLAIR is also characterised by relatively long

TE and TR to achieve a T2-weighted contrast, and is largely used in clinical applications

for the identification of brain lesions. The short tau inversion recovery, or STIR, is a

similar signal suppression technique, using a short TI to instead attenuate the signal

produced by fat. Because of fat short T1 varying considerably as a function of B0

(T1 = 288 ms at 1.5 T, T1 = 371 ms at 3 T [34]), magnetic field strength needs to be

taken into account when calculating STIR TI.

4.16 Myelin imaging

Due to the abundance of water in biological tissues, imaging of water hydrogen nuclei 1
1H

constitutes the typical objective of MRI. Water in the body can be found free or bound

to other molecules. These different water states, or pools, determine different magnetic

and imaging properties of the water protons. Unlike protons in the free water pool, water

protons bound to lipids or other macromolecules are tightly packed, restricting their

motion and resulting in T2-values in the order of magnitude of microseconds. When

imaged via conventional MRI techniques whilst employing a TE > 1 ms, bound pool

protons are effectively invisible since, due to their extremely short T2, the MR-signal they

produce decays before it can be acquired. A few specialised techniques with ultra-short

TE [35] have been developed in order to detect the signal coming from bound protons,

whilst other specialised methods have been developed to perform myelin mapping in an

indirect way. Nonetheless, it is important to remember that each method has its own
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assumptions and limitations, hereby described with reference to Heath et al. (2017)

Advances in noninvasive myelin imaging review [27], and that, as a recent meta-analysis

performed by Mancini et al. (2020) reports:

A holy grail of myelin imaging does not exist, at least as long as we consider

histology to be the ground truth. Given that we have to pick or poison... [36]

4.16.1 Magnetisation transfer

Despite being invisible to conventional MRI, water protons bound to macromolecules

exhibit a much wider range of resonance frequencies, and this property can be exploited

to indirectly image them. In magnetisation transfer (MT) imaging, an off-resonance

RF pulse is applied to saturate the macromolecular protons, whilst leaving free water

protons unexcited. By exploiting the T2 properties of the bound macromolecular pool,

cross-relaxation with the free water pool via spin-spin interactions causes the free

water protons to partially saturate and, if subsequently imaged, to manifest a reduced

MR-signal depending on the local macromolecular content. This effect of exchanging

energy between water pools is known as magnetisation transfer. Under the assumption

that macromolecular content is a good representative for myelin, MT can be exploited

as an indirect measure for myelin content.

The simplest application of this effect is MT ratio (MTR) imaging, based on the ratio

between an image with MT-weighting and one without (that is, a reference image).

By adding an independently acquired T1 map, and maps of B0 and B1 fields for inhomo-

geneity correction to the MTR setup, macromolecular proton fraction (MPF) can be

estimated, representing the relative amount of protons in the macromolecular pool.

Quantitative MT employs multiple MT pulses at different off-resonances in order to

characterise the bound pool properties via multi-parametric modelling. To robustly fit

all the parameters in these models, many different measurements are required, leading

to long acquisition times. Additional assumptions can be included to simplify the models

and the MR-protocol, although they may not necessarily be valid across subjects of

differing age or disease status.

4.16.2 Macromolecular tissue volume

Under the same assumption of myelin abundance in the CNS macromolecular pool,

macromolecular tissue volume (MTV) can also be used as an indirect metric for myelin

content. MTV expresses the fraction of tissue volume in each voxel occupied by the
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water in the bound pool. It is defined as a function of proton density (see section 4.9),

as MTV = 1− PD: if PD represents the relative concentration of free water protons,

then 1− PD indicates the relative density of the macromolecular pool. PD-mapping

is conceptually one of the most basic MRI measures, and several estimation techniques

have been described in literature, however the resulting quantitative PD maps are usually

corrupted by inhomogeneities in the coil receiver field. In order to account for this bias,

different bias field correction methods have been developed: i) some combine data

from multichannel coils into a single channel, whilst others keep data from the multiple

channels separate during the estimation; ii) different regularisation assumptions can

be adopted to overcome the ill-posed nature of the problem; iii) the techniques differ

as to whether relying on a single global brain analysis or a set of local calculations that

are integrated in a final step. In this work, a specific form of local regularisation has

been used, which has been shown to lead to high PD-estimation accuracy [37].

4.16.3 Myelin water imaging

Myelin water imaging uses multi-echo spin echo with short TE’s to image water protons

trapped within myelin layers. The signal produced by these protons contributes to

10–15% of the overall signal in a white matter voxel, referred to as myelin water fraction

(MWF). Since T2 relaxation time is related to the local environment with which the

imaged protons interact, more restricted or dense tissue microstructure will give rise

to shorter T2, due to the higher rate of dipole-dipole interactions. Within a single white

matter voxel, different compartments will present different ranges of T2, with prolonged

T2 as the tissue architecture becomes less geometrically restricted: myelin water (T2 ∼
10–50 ms)→ extra-cellular water (T2 ∼ 60–90 ms)→ free water (T2 ≥ 120 ms). In a

multi-echo spin echo sequence, signal in a thin slice is measured multiple times as it decays

away due to T2 relaxation effects: the observed signal is then fitted to a model of multiple

nonexchanging compartments with unique T2 values. MWF can then be quantified by

measuring the relative signal contribution of components with T2 < 50 ms to the overall

MR-signal. Extending this technique to multiple slices is however problematic due to

induced MT effects in neighbouring slices, which lead to confounding measurements.

Fast 3D volumetric imaging techniques are available, such as multicomponent driven

equilibrium single pulse observation of T1 and T2 (mcDESPOT), which however come

with limitations based on the complexity of the underlying models. Additionally, in spite

of the high correlation with myelination, the multi-exponential model does not take

into account exchange between compartments, and is only valid under the assumption
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that the duration of the measurements over the signal decay takes place at a timescale

much shorter than the rate of exchange. Given, however, the duration of a typical

measurement is within 64–128 ms, this assumption is likely unmet, which has been

demonstrated to lead to underestimation of MWF.

4.16.4 Susceptibility imaging

Susceptibility mapping exploits myelin susceptibility contrast to measure its distribution

in the CNS. Magnetic susceptibility is defined as the degree to which tissue is magnetised

by an external magnetic field and describes how the magnetic environment is perturbed

by the presence of the magnetised material, as tissue and materials with differing

susceptibility values influence local MR signal magnitude and phase. The phase of MR

signal encodes the precession of proton spins due to the local resonance frequency

offset: spins near diamagnetic regions (low relative susceptibility value) will precess

at a slightly lower frequency than the resonance frequency of the main magnetic field,

whilst spins near paramagnetic regions (high relative susceptibility value) will precess at

a slightly higher frequency, leading to different phase accumulation. Susceptibility field

inhomogeneities contribute to T ∗2 decay and can thus be probed by using gradient echo

sequences. Susceptibility weighted imaging (SWI) can be implemented by combining

and filtering magnitude and phase information together to enhance the contrast of

susceptibility differences in tissues. These differences are driven by a number of factors,

including the microstructural organisation and chemical composition of tissues: for

example, iron (paramagnetic) and myelin (diamagnetic) content in the CNS are known

to be major contributors to susceptibility contrast.

Unlike SWI, quantitative susceptibility mapping (QSM) seeks to quantify the suscept-

ibility shift in tissues, rather than simply enhancing contrast due to local susceptibility

differences. In spite of the strong correlations between QSM and white matter myelin,

it has been shown that the assumption of an isotropic, scalar susceptibility value within

white matter is not valid and values measured using QSM are influenced by the ori-

entation of the white matter fibres with respect to the main magnetic field. Tensorial

approaches must then be adopted (susceptibility tensor imaging, STI), which however

significantly increase acquisition times and costs. At the same time, it is known that

iron deposition occurs in MS and Alzheimer’s disease, and may represent a confounding

factor for myelin quantification via QSM or STI.
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4.17 Diffusion MRI

MRI enables to investigate different aspects of both the anatomical and functional

structure of the brain. For example, measuring the diffusion of water molecules along

axons due to thermal agitation allows to reconstruct the microstructural properties

and neuronal architecture that supports the brain connectivity and anatomical integrity.

Diffusion MRI is an extremely vast branch of MRI, characterised by a whole spectrum

of techniques and objectives: in this section, the very basic notions of diffusion MRI

will be explained, with a focus on the elements that had a specific role in this project.

4.17.1 Brownian motion

In 1827, the botanic Robert Brown observed through a microscope the motion of pollen

particles dispersed in water, but was unable to determine the underlying mechanism:

These motions were such as to satisfy me, after frequently repeated obser-

vation, that they arose neither from currents in the fluid, nor from its gradual

evaporation, but belonged to the particle itself. Philosophical Magazine

(1828)

This phenomenon was then described macroscopically by Fick twenty years later through

his two laws of diffusion, and then microscopically by Einstein in 1905. Nonetheless,

this random motion of particles in liquids or gas is referred to as Brownian motion.

In the context of NMR, water molecules diffusing through external field inhomogeneities

cause irreversible magnetisation dephasing that cannot be recovered via spin-echo

techniques due to its intrinsic randomness. The trajectory delineated by a single spin

as a result of diffusion can be expressed in the 1D case along the x-axis as a succession

of small steps λεi , with length λ and random direction, forward or backward, given by

εi = ±1, occurring every τd seconds. At each step i , the spin encounters a variation in

the local magnetic field (dBz/dx)λεi ' Gxλεi , where the magnetic field variation can

be approximated by a constant gradient Gx for small enough step size λ. The magnetic

field perceived by the spin after a number j of steps, and a time t = jτd is given by the

initial magnetic field Bz(t = 0) plus a field inhomogeneity term ∆Bz given by the sum

of the local field variations along the trajectory:

Bz(jτd) = Bz(0) + ∆Bz(jτd) = Bz(0) + Gxλ

j∑
i=1

εi (4.85)
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The amount of relative dephasing φk accumulated by the k-th spin along the diffusion

trajectory after N steps is then given by

φk = −
N∑
j=1

γτd∆Bz(jτd) = −γτdGxλ
N∑
j=1

j∑
i=1

εi (4.86)

When considering the entirety of the spin population, the central limit theorem can be

applied, and the spin dephasing can be described by a Gaussian probability distribution:

P (φ) =
e−φ

2/(2〈φ2
k 〉)√

2π〈φ2
k〉

(4.87)

with mean 〈φk〉 = 0 and variance for N � 1:

〈φ2
k〉 =

γ2τ2
dG

2
xλ

2N3

3
=
γ2G2

xλ
2t3

3τd
(4.88)

where t = Nτd allows to implicitly take into account diffusion time dependency9.With

reference to equation (4.29), this adds one more dephasing term to the complex

transverse magnetisation, given by the weighted sum of all the diffusing components:

Mdiff
+ =

∫
dφP (φ(t))e iφ =

1√
2π〈φ2

k〉

∫
dφe iφ−φ

2/(2〈φ2
k 〉)

=
e−〈φ

2
k 〉/2√

2π〈φ2
k〉

∫
dφe−(φ−i〈φ2

k 〉)
2/(2〈φ2

k 〉)

= e−〈φ
2
k 〉/2

∫
dφP (φ(t)− i〈φ2

k〉)

= e−γ
2G2

xλ
2t3/(6τd ) ≡ e−bD

(4.89)

where the integral of the probability distribution is, by definition, equal to unity, and

the variance has been expanded as in equation (4.88), with D = λ2/(2τd) being the

9Each step assumes random direction εi = ±1, thus 〈εi 〉 = 0, and 〈φk〉 = 0. For the variance:

〈φ2
k〉 ∝ 〈

[ N∑
j=1

j∑
i=1

εi

]2

〉 = 〈[ε1 + (ε1 + ε2) + (ε1 + ε2 + ε3) + ...]2〉 = 〈[Nε1 + (N − 1)ε2 + ...+ εN ]2〉

When expanding the square and calculating the average, the cross products vanish since each step is inde-

pendent from the others: 〈εiεj〉 = 〈εi 〉〈εj〉 = 0, i 6= j . This leaves only the sum of squares, with 〈ε2
i 〉 = 1:

〈φ2
k〉 ∝ N2〈ε2

1〉+ (N − 1)2〈ε2
2〉+ ...+ 〈ε2

N〉 =

N∑
p=1

p2 =
N(N + 1)(2N + 1)

6
→
N3

3
, forN � 1
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diffusion coefficient, and b = γ2G2t3/3 the b-value. By incorporating the diffusion

decay term, the complex transverse magnetisation in the resonant frame of reference

can thus be expressed as

M+(t) = M+(0+)e−t/T2Mdiff
+ = M+(0+)e−t/T2e−bD (4.90)

4.17.2 Diffusion Weighted Imaging

Diffusion weighted imaging (DWI) exploits the brownian diffusion process to reconstruct

the microscopical architecture of the imaged sample. DWI measures are usually

conducted using a bipolar pulsed-gradient spin echo (PGSE) sequence with EPI readout,

where a diffusion encoding gradient ~Gdiff = Gdiff r̂ = Gdiff
x x̂+Gdiff

y ŷ+Gdiff
z ẑ with duration

δ is applied before and after the π refocusing pulse, with a time interval ∆ between the

two applications. For a spin in position ~r1, the first gradient induces a dephasing

φ1 = −γ~r1 · ~Gdiffδ (4.91)

with ~r1 supposed to be constant during the duration δ of the gradient. The π refocusing

pulse inverts the accumulated phase, such that φ1 → −φ1. During the time ∆ between

the two gradient lobes, the spin diffuses within the sample, eventually reaching a position

~r2 when the second gradient is applied. This induces a rephasing

φ2 = −γ~r2 · ~Gdiffδ (4.92)

such that the total dephasing results in

φ = φ2 − φ1 = −γ(~r2 − ~r1) · ~Gdiffδ (4.93)

Effectively, the diffusion gradients act as extrinsic magnetic field inhomogeneity, and an

equation similar to (4.89) for the transverse magnetisation diffusion decay can be derived.

The exact solution, with the gradient pulse duration δ not being negligible compared

to the pulse interval ∆, has been first proposed by Le Bihan et al. (1985) [38] to be:

Mdiff
+ = e−γ

2(Gdiff )2δ2(∆−δ/3)D = e−bD (4.94)

with b = γ2(Gdiff)2δ2(∆− δ/3), which takes into account the PGSE sequence para-

meters, being the original definition of Le Bihan’s (hence the name) b-value.
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Diffusion in tissues is, however, not free, but either hindered or restricted depending

on the microscopic environment. Extra-cellular water is considered hindered by the

interactions of water molecules with different obstacles, such as macromolecules, fibres

and membranes. The diffusion coefficient D measured in each voxel appears therefore

lower, and is defined as apparent diffusion coefficient (ADC). Intra-cellular water is

considered restricted by being confined within the enclosed cellular environment. Unlike

hindered diffusion, the time evolution of the displacement of restricted water molecules

is not Gaussian and depends on the size and shape of the enclosing compartment;

the associated ADC decreases with the diffusion time ∆, and thus the b-value as well,

rather than being a constant property of the tissue, due to water molecules eventually

reaching and bouncing-off the cell membrane [39].

For stationary spins (~r2 = ~r1), or spins that diffused orthogonally to the direction of

the gradient ((~r2 − ~r1) ⊥ ~Gdiff), the dephasing induced by the first lobe is completely

recovered by the second one, and there is no diffusion encoding decay in the transverse

magnetisation. Otherwise, spins will experience a net dephasing as a function of the dif-

fusion trajectory relative to the direction of the gradient, with maximum magnetisation

diffusion encoding decay for (~r2−~r1) ‖ ~Gdiff . By applying ~Gdiff along different directions,

the signal produced by water moving along each direction decreases proportionally to the

water diffusivity along that direction, as the recovery of the magnetisation coherence

does not match the initial spoil. In case of water moving isotropically, diffusion weighted

signal is diminished uniformly along all encoded directions: this is the case of CSF,

tissues rich in cell bodies, and lesions; on the other hand, water trapped within a highly

oriented structure, such as a neuron axon, will be able to diffuse mainly along its principal

direction, that is anisotropically, and its signal will decrease accordingly only when the

diffusion encoding is applied parallel to that direction.

4.17.3 Diffusion Tensor Imaging

To take into account the directionality of the diffusion process, the water displacement

in each voxel and b-encoding can be expressed in terms of symmetric matrices [40]

called respectively diffusion tensor D and b-tensor b:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 , b =


bxx bxy bxz

byx byy byz

bzx bzy bzz

 (4.95)
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with the i j (i , j = x, y , z) terms coupling diffusion displacements along i-j directions,

and i j = j i due to symmetry. In particular, for a standard PGSE sequence with perfect

boxcar diffusion gradients, the bi j terms can be expressed as

bi j = γ2Gdiff
i Gdiff

j

[
δ2
(

∆−
δ

3

)]
(4.96)

but become more complex when taking into account transient times or non-constant

gradients. It is worth recalling that the diffusion tensor and its products, e.g. eigen-

values, are all voxel-wise quantities, even though the dependency on voxel position ~r

is left understood (e.g. D = D(~r)) for better readability.

The tensors in equation (4.95) result in a diffusion decay term:

Mdiff
+ = e−b�D = e−(bxxDxx+byyDyy+bzzDzz+2bxyDxy+2byzDyz+2bzxDzx ) (4.97)

where � denotes the Hadamard (i.e. element-wise) product and the matrix symmetry

has been taken into account when expanding it. From this it follows that at least six

non-collinear diffusion encoded measures must be acquired to reconstruct the diffusion

tensor in each voxel, plus one with no diffusion encoding, referred to as a b0-image.

This technique is thus called diffusion tensor imaging (DTI), and it is the simplest

model able to represent the directionality of diffusion in tissues.

The diffusion tensor defines a so called diffusion ellipsoid [41]: a 3D representation of

the distance covered by water molecules, in each voxel, over a certain diffusion time τD.

The eigenvalues of D — λ1, λ2, λ3 — can be intended as the local apparent diffusion

coefficients along the three orthogonal directions determined by the corresponding

eigenvectors, which define the orientation of the ellipsoid’s three axes of symmetry.

The ellipsoid can thus be expressed analytically as

x2
λ

2λ1τD
+

y 2
λ

2λ2τD
+

z2
λ

2λ3τD
= 1 (4.98)

where xλ, yλ, zλ are the coordinates in the reference frame generated by the eigen-

vectors. The diffusion tensor and its eigenvalues in each voxel can be used to compute

quantitative diffusion maps based on the following diffusion metrics.

Mean diffusivity (MD) measures the average ADC along all directions, and is therefore

invariant with respect to the ellipsoid orientation. It is used to highlight lesions in which

tissue microstructure has been disrupted, resulting in more isotropic diffusion, and
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Figure 4.8: From left to right: examples of a b0-image, MD and FA maps.

higher MD. It is defined as

MD =
Tr(D)

3
=
λ1 + λ2 + λ3

3
= 〈λ〉 (4.99)

Fractional anisotropy (FA) is an index of the degree of orientation coherence within

the tissue, being higher in voxels characterised by highly oriented structures, i.e. high

anisotropy, such as white matter tracts, and lower in voxels with no or disrupted

microstructure, such as CSF and lesions. It is defined as

FA =

√
3[(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2]√

2(λ2
1 + λ2

2 + λ2
3)

(4.100)

Examples of a b0-image, MD and FA maps are shown in Figure 4.8.

4.17.4 Advanced techniques

DTI metrics are inherently non-specific to tissue microstructure, and the DT-model

relies on the assumption of Gaussian displacement of the water molecules over time,

which fits free and hindered diffusion, but it is not met in the case of restricted diffusion.

Furthermore, because the geometric translation of the diffusion tensor is an ellipsoid,

DTI can only indicate the main diffusion direction in each voxel, which is acceptable in

regions where axons are coherently aligned along a single direction, but performs poorly

in case of crossing fibres. To overcome these limitations, more advanced techniques

have been developed over time.
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High angular resolution diffusion imaging (HARDI) [42] acquisitions employ high, pos-

sibly multiple b-values (or shells) and a large number of diffusion encoding directions

(with a minimum of 45 [43]) to compute fibre orientation density functions (ODF),

showed in Figure 4.9. Spherical deconvolution [44] and q-ball imaging [45] are examples

of the first methods to compute ODFs, however others have been proposed since then

with successful results. Multi-compartment models have been introduced to take into

account the microstructural properties of brain tissues in terms of microscopic environ-

ments, and overcome some of the limitations of DTI. Behrens et al. (2003) [46] were

among the first to propose an alternative to DTI in the form of a ball-and-stick model,

distinguishing between an intra-cellular compartment, modelled as a zero-radius cylinder

(stick), and an extra-cellular compartment defined by isotropic diffusion (ball). The

neurite10 orientation dispersion and density imaging (NODDI) technique, proposed by

Zhang et al. (2012) [47] greatly contributed towards clinically viable multi-compartment

tissue modelling, distinguishing between intra-cellular, extra-cellular, and CSF com-

partments. In the NODDI model, the intra-cellular compartment refers to the highly

restricted intra-neurite diffusion environment, modelled as sticks with different degrees

of orientation dispersion; the extra-cellular compartment refers to the space around the

neurites, occupied by glial cells and cell bodies (in grey matter), with water diffusion in

this environment being hindered and described by an anisotropic Gaussian model; finally,

the CSF compartment free water diffusion is modelled as an isotropic Gaussian model.

In this work, the more recent spherical mean technique (SMT) has been employed,

described in detail as follows.

4.17.5 Spherical Mean Technique

SMT is a recent multi-compartment method proposed by Kaden et al. (2016) [48, 49]

that aims to quantify the parameters regulating the per-axon diffusion process by relying

on the insight that, for a fixed configuration of the diffusion encoding gradients, that is

for a certain b-value, the spherical mean (SM) of the diffusion-weighted signal over the

gradient directions does not depend on the underlying neurite orientation distribution.

Once the SM of the signal over the diffusion encoding direction has been computed

for each b-value, the parameters of a multi-compartment microscopic diffusion model

(MCMicro) can be estimated by least-squares fitting the SM-version of the model

to the SM-signal. The MCMicro model separates between an intra-neurite and an

10Collective term for dendrites and axons.
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Figure 4.9: ODF overlayed onto an FA map. The image shows different tissue

architectures in the periventricular region: a) corpus callosum — highly oriented fibres

in the left-right direction; b) anterior thalamic radiation — highly oriented fibres in the

anterior-posterior direction; c) crossing fibres, given by the commixture of left-right and

anterior-posterior oriented fibres populations; d) CSF, characterised by diffusion isotropy.

extra-neurite component, where the former consists of dendrites and axons, and the

latter of neuronal bodies, glial cells and extra-cellular space. According to this model,

and using Kaden’s notation, the DW-signal hb(g, ω) for a given b-value and normalised

diffusion gradient direction g ∈ S2, with S2 being the unit sphere, generated by a

microscopic environment oriented along a direction ω ∈ S2, can be modelled as

hb(g, ω) = νinth
int
b (g, ω) + (1− νint)h

ext
b (g, ω) (4.101)

where hint
b and hext

b indicate the signal from the intra- and extra-neurite water pools

respectively, whilst νint denotes the intra-neurite volume fraction. Assuming that the

diffusion process within neurites can be modelled as within a zero-radius cylinder (i.e.

a stick), the transverse microscopic diffusion coefficient can be neglected and the

microscopic signal generated from the intra-neurite compartment becomes

hint
b (g, ω) = e−b〈g,ω〉

2λ (4.102)

where 0 < λ < λfree is the intrinsic diffusivity along the neurite axis, and 〈g, ω〉 ∈ [−1, 1]

indicates the spherical distance between ω and g. The upper bound λfree denotes the dif-

fusion coefficient in free-water, which is about 3.05 · 10−3 mm2/s at body temperature
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(37 °C). The extra-neurite signal can be expressed instead as

hext
b (g, ω) = e−b〈g,ω〉

2λe−b(1−〈g,ω〉2)λext
⊥ (4.103)

where the two factors on the right side of the equation model the diffusion process

in the neighbouring areas parallel and perpendicular to the neurites, respectively. λext
⊥

is the transverse extra-neurite microscopic diffusion coefficient, and is expressed as

(1− νint)λ according to the first-order tortuosity approximation.

Once the microscopic diffusion coefficients and compartments volume fractions have

been recovered, and the diffusion process modelled in each voxel, ODFs can be estimated

by means of spherical deconvolution. A summary statistics that can be extracted from

the neurite orientation distributions is the relative entropy H(p) of the ODF in each

voxel, defined as the Kullback-Leibler divergence of p(ω) = ODF with respect to a

uniform distribution q(ω) = 1/(4π),∀ω ∈ S2. Specifically:

H(p) =

∫
S2

p(ω) log
(p(ω)

q(ω)

)
dω (4.104)

H(p) ≈ 0 if p ≈ q, that is if the ODF in a certain voxel approaches the uniform

distribution, such as in areas of isotropic diffusion like the CSF. On the other hand,

in regions of high orientation coherence and diffusion anisotropy, such as the corpus

callosum, H(p)� 1, as the ODF is locally very different from the uniform distribution.

4.18 MRI in MS

Thanks to its noninvasiveness, versatility and sensitivity to different contrasts, MRI

plays a key role in the diagnosis and follow-up of MS patients. In this section, with

reference to the MRI principles and techniques described previously, some of the main

applications and limitations of MRI in the context of MS have been explored.

4.18.1 The clinico-radiological paradox

T2-weighted images constitute an essential tool in the MS diagnostic process, as they

can be acquired in less than 5 minutes, they are easy to interpret and enable clinicians to

quickly and precisely distinguish scarred regions from normal appearing tissue. However,

the number and volume of lesions explain only a small fraction of the diversity of

clinical disability in MS, and this mismatch has been defined as the clinico-radiological
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paradox [50, 51]. Furthermore, as described below, studies have shown that normal ap-

pearing tissues in MS patients present abnormalities otherwise invisible to conventional

qualitative MRI [3]. Variable degrees of normal appearing white matter alteration have

been in fact shown to precede new lesion formation, are detected in all MS phenotypes

(albeit with different strengths), correlate with the level of physical disability and cognit-

ive impairment, and are only modestly correlated with the total amount of macroscopic

lesions. It appears thus evident that, whilst conventional MRI is an important qualitative

diagnostic tool in MS, it lacks specificity in pinpointing widespread microscopic damage,

and that proper quantification of myelin content and tissue derangement in the CNS, in

addition to measures of lesion dissemination, is key for the diagnosis and prognosis of MS.

4.18.2 Relaxometry

Relaxometry, that is the measurement of relaxation times from MR images, represents

a fundamental quantitative tool for the characterisation of MS. Increase in T2 may

be caused by inflammation, demyelination and axonal loss, whilst reduced T2 may be

observed as a result of iron deposition (see section 4.4). Both histological and MRI

studies have shown the involvement of iron deposition in brain in neurologic diseases,

although it has a role in normal ageing as well, and it still unclear whether it is the

cause of the neuronal degeneration or a mere marker. Regions of reduced T2 due to,

presumably, ferruginated neurons have been observed in MS patients in grey matter,

particularly in deep grey matter structures including globus pallidus, putamen, caudate

and red nuclei, substantia nigra and thalamus [52]. T1 has also been shown to have a

role in the characterisation of MS, with quantitative T1 studies showing that alterations

in T1 can highlight damaged areas otherwise invisible on T2-weighted scans: increase

of T1 in normal appearing white matter and grey matter has been observed in MS

patients, with SPMS patients experiencing greater alterations compared to RRMS

ones. Furthermore, T1 prolongation in grey matter appears to significantly correlate

with physical disability, whilst increases in white matter do with brain atrophy. However,

although T1 is indeed sensitive to microscopic alterations, a change in measured T1 lacks

the specificity necessary to be used alone as a marker for the underlying pathology [53].

A different approach, which stirs away from quantitative MRI, consists of using qual-

itative T1-weighted and T2-weighted images to enhance myelin contrast in the brain.

Several studies have suggested that myelin content of cortical areas covaries with both

T1-weighted and T2-weighted intensities, but in opposite directions. In marmorsets,

strong positive correlation has been observed between T1-weighted intensities and
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histologically measured myelin content (regions with high concentration of myelin

appear hyperintense), whilst low T2-weighted intensities are observed in regions rich

in iron, strongly co-localised with myelin in the CNS [54]. As a result, myelin contrast

can be enhanced by calculating the ratio between the two maps. Fast scanning times

and conceptual simplicity make this technique well-suited for clinical investigations,

although T1-/T2-weighted ratio alterations observed in pathological cases may be not

only due to demyelination, but also inflammation, oedema, iron accumulation or atrophy.

Furthermore, it is worth noting that T1-/T2-weighted ratio is still a qualitative measure,

and can therefore be potentially characterised by intensity scale inconsistencies across

datasets despite the application of intensity calibration techniques, especially in case

of scans acquired with very different pulse sequences and in presence of disease [55].

4.18.3 Myelin

Demyelination in the CNS is one of the core symptoms associated to MS, thus quan-

tification of myelin content (see section 4.16) in clinics is instrumental for an accurate

understanding of MS pathophysiology and prediction of disability.

In MT-imaging, MTR has been shown to be highly sensitive to demyelination, with

reduced values being observed in enhancing lesions, followed by a rapid recovery in acute

ones, suggesting a clear correlation between demyelination and remyelination, and

MTR transient changes. Widespread reduced MTR has also been observed in normal

appearing tissues of MS patients, as well as prior to lesion formation [56]. MTR has

been shown to strongly associate with myelin content and residual axons in post-mortem

histological studies [57], as well as to robustly correlate with physical disability [58].

Despite being also influenced by inflammation and oedema [59] and not a direct measure

of myelin content, and thus caution should be employed when interpreting results, MTR

has represented an undeniably popular tool for indirect myelin mapping in clinical

research over the years. Similarly to MTR, MPF has been found to be significantly lower

in normal appearing tissues and lesions of SPMS patients compared to RRMS, which in

turn exhibit a lower MPF in normal appearing white matter and grey matter compared to

healthy controls. MPF has also been shown to correlate with clinical disability, and overall

outperform both MTR and quantitative T1 in the detection of tissue alterations [60].

Relatively new in the landscape of myelin imaging, MTV = 1−PD has recently started to

be employed in MS clinical research as an indirect measure for myelin content. Reduced

MTV values have in fact been observed in MS compared to healthy controls, both in
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lesions and normal appearing tissue, working synergistically with diffusion imaging and

T1 mapping [61], although with shorter acquisition times compared to MTR and from

routinely available MR-scans, making this modality highly appealing in clinical research.

Through the quantification of short-T2 component, MWF has also been reported as a

robust indicator of demyelination in MS: higher free water content and, in turn, reduced

MWF have been observed in normal appearing white matter of MS patients compared

to healthy control [62]. Although still potentially co-dependent on inflammation and

oedema, strong association with myelin content has however been shown in histopath-

ological studies [63], with reduced MWF in specific white matter functional systems

significantly correlating with clinical disability [64].

QSM studies have shown that reduction in myelin content (less diamagnetic) results in

a dramatic increase in white matter susceptibility, making susceptibility imaging a poten-

tially powerful tool for the quantification of demyelination in normal appearing tissues

and the anatomical reconstruction of demyelinating plaques. Like other MR-modalities,

QSM cannot however be taken as a direct index of myelin content, as similarly to

demyelination, iron deposition (more paramagnetic) causes increases in QSM local

values, and whilst increased iron deposits have been reported in MS concomitantly with

myelin loss, it has been also shown to correlate with ageing in healthy controls [65].

4.18.4 Microstructure

With microstructural alterations being at the core of neurodegenerative diseases, DWI

offers a key tool in probing MS pathophysiology in terms of axonal degeneration (see

section 4.17). Several diffusion-related techniques have in fact been employed in the

context of MS, with DTI being a popular choice in MS clinical research for its simplicity

and clinical viability: increased MD and decreased FA have been observed in MS-lesions

compared to healthy tissue, indicative of the microstructure disruption due to the

demyelination process, with similar behaviour being observed in normal appearing white

matter of MS patients as well [52]. Due to DTI inability to differentiate crossing-fibres

and correctly model tissue microstructural compartments, more advanced models have

been progressively employed instead.

NODDI has been used extensively, providing a clinically feasible method for mapping

neurite orientation dispersion and density. NODDI has provided evidence, across mul-

tiple studies, of reduced neurite density in lesions and in both brain and spinal cord

normal appearing white matter, as well as in spinal cord normal appearing grey matter, in
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MS patients compared with healthy controls. Contradictory results have been however

observed on the basis of ODI measurements, with high inter-study variability, making

the interpretation of NODDI results challenging [66].

More recently, SMT-derived parameters have been shown to be sensitive to different

degrees of brain tissue damage [67], working synergistically with DTI metrics in the

characterisation of MS lesions [68], with reduced intra-neurite volume fraction also

being observed in spinal cord normal appearing white matter of MS patients compared

with healthy controls [66]. The recent development of a multiband acquisition technique

has allowed to halve total scan time, reducing it to ∼10 min, making SMT a potentially

useful tool in MS clinical research.

4.18.5 Physiology

Alterations in neuronal physiology are ultimately the root of clinical disability. Different

MRI techniques have been developed in order to investigate and quantify the state of

cellular physiology and function in the context of MS.

Functional MRI (fMRI) assesses brain activation by measuring changes in blood-oxygen

level dependent (BOLD) signal, under the assumption that an increase in neuronal

activity corresponds to a proportional local haemodynamic response: this relationship

is called neurovascular coupling. The whole fMRI paradigm relies on the assumption

that such mechanism is intact. Pathology, including MS, might alter the neurovascular

cascade, for example by causing vasodilation and increasing cerebral blood flow, which

can then influence BOLD signal. In MS, perfusion imaging studies have shown a

cerebral blood flow decrease in normal appearing white matter in patients compared

to controls, together with an increase in lesion load, suggesting that the microcircu-

lation may be indeed influenced by inflammation [52]. In such cases, a correction step

might be needed for a correct interpretation of fMRI the results [69]. That being said,

fMRI has revealed the existence of adaptive processes limiting cognitive impairment,

acting through the recruitment of supplementary brain areas. Although the specific

mechanisms are still unknown, they are thought to respond to the damaged neuronal

circuits, compensating for tissue degeneration and preserving cognitive performance

within certain limits depending on the disease progression [70].

Given the fundamental role sodium ions provide in neuronal physiology, sodium imaging

offers a direct marker for neurons functional integrity. Quantitative sodium MRI allows

to measure tissue sodium concentration (TSC) in brain by calibrating the acquired spin
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density–weighted signal using the one produced by phantoms with known concentrations

of 23
11Na sodium ions (see section 4.9). Compared to other MRI techniques, it is still rel-

atively little used in MS clinical research, despite the renown physiological importance of

sodium in the brain for the propagation of action potentials. This is mainly due to the lim-

itations intrinsic to the measuring process: the very low concentration of sodium ions in

the brain compared to water (80 mM and 88 M respectively) and the shortT2 ∼ 0.5–5 ms

associated to 60% of the signal contribute to an inherently low signal to noise ratio. In

the last few years, interest in quantitative sodium MRI has been revived by the shortening

of acquisition time through ultra-short TE sequences and the increased resolution given

by better scanners, and applications to the MS field did not fail to emerge. Significant dif-

ferences in TSC have been in fact reported in both white matter and grey matter regions

between healthy controls and MS patients [71, 72]. Advances in sodium imaging have

also offered a unique chance to probe neuronal activation by accessing signal changes dir-

ectly linked to sodium ions flux across the cell membrane, rather than indirectly via BOLD

signal. A recent work by Gandini Wheeler-Kingshott et al. (2018) has shown that quant-

itative functional sodium imaging (fNaI) at 3T is potentially sensitive to sodium con-

centration changes during finger tapping in regions of the CNS linked to motor control,

suggesting that fNaI is sensitive to distributed functional alterations and may constitute a

powerful tool for the investigation of motor disability accrual during MS progression [73].

Outside of the imaging sphere, MR-spectroscopy has been used to measure the con-

centration of metabolites in the brain, reporting changes that appeared to correlate

with the degree of activity of MS lesions [74].
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Machine learning

All the presented techniques are but a small fraction of the spectrum of available MRI

methods, with new ones being constantly developed, each coming with its own intrinsic

limitations and assumptions to be met, and many requiring specialised pulse sequences,

often too long or expensive to be included in standard clinical protocols. In this landscape

of high-dimensional and complex data, machine learning represents a powerful set of

statistical tools for patient classification and the identification of those modalities, or

features of the acquired data, that best correlate with disease phenotypes: with quantit-

ative MRI offering a window into biological properties of tissues, this would enable to get

a better understanding of the disease itself. Machine learning general purpose and its po-

tential to learn from the data without the need for strong, prior assumptions has enabled

the permeation of artificial intelligence throughout all fields of medical imaging [75].

Whilst machine learning refers to the study and implementation of algorithms learning-

from-data as a whole, a subset of machine learning called deep learning, characterised

in particular by the use of neural networks, has emerged to extract useful information

directly from the image local contrast and topology. In the past few years, deep learning

has proven to be particularly suitable for image processing, revolutionising the field

of neurosciences, as it has been successfully used to automatise processes performed

until recently manually or semi-automatically, namely lesion segmentation, or to greatly

speed up post-processing pipelines, that would take hours to complete, to mere seconds.

In this chapter, elements of machine learning relevant to this work are described, mostly

with reference to Hastie et al. (2009) The Elements of Statistical Learning [76].
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5.1 Algorithm categorisation

Machine learning algorithms can be distinguished into different categories depending

on different factors, e.g. the data provided during the learning stage, objective, and

architecture. To follow, two main categorisations are presented.

5.1.1 Supervised vs unsupervised

To train a supervised algorithm, both input and output data are provided. The output

data type varies greatly depending on the learning task: it may be a categorical label

representative of the subject group (e.g. healthy control vs patient), a binary label

associated to an image voxel (e.g. normal tissue vs lesion), a continuous value (e.g.

probability map), or a combination of them. In any case, the objective of a supervised

algorithm is to learn the function mapping the input to the provided output, which acts as

ground truth, so that a prediction can be performed when applied to new input data. In

the case of MS, the ground truth may be provided by an expert, such as hand-drawn lesion

masks, or for example using clinical observations to assess the expanded disability status

scale (EDSS) to determine the patient’s MS subtype. The output may also be the result

of a traditional model fitting performed on the input data before training, in which case

the objective of the machine learning algorithm is to learn the fitted model and return

the output for new data in a fraction of the time. Examples of supervised algorithms

include support vector machines, random forests and various applications of neural

networks, described more in detail below, as they were used throughout this project.

Unsupervised algorithms are trained instead to find patterns in the input data without

providing a ground truth output during training, drawing inferences using similarity

metrics defined for the specific algorithms. A common example of unsupervised learning

is clustering analysis, which aims to divide the data into K clusters of elements closely

matched to each other. Clustering strategies include K-means, hierarchical clustering,

and mixed Gaussian model. A recently developed unsupervised algorithm, Subtype and

Stage Inference (SuStaIn), uses a mixture of linear z-score models, with the z-scores

calculated with respect to healthy controls, to categorise patients’ disease progression

into data-driven phenotypes, based on the patterns of biomarker temporal evolution [77].

SuStaIn provides a way to model phenotypic and temporal variation at once, whilst

traditional clustering methods can only focus on one at a time. SuStaIn has been

applied to Alzheimer’s disease data and, very recently, to MS as well [78].
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5.1.2 Classification vs regression

Algorithms that are trained to categorise the input into a certain group or class are called

classifiers. Support vector machines and random forests are also examples of supervised

classifiers, often used for patient classification. Neural networks may also fall in this cat-

egory, e.g. convolutional neural networks, described more in detail below, employed for

lesion segmentation, where the classification occurs at a voxel-wise level, and the classific-

ation task consists in assigning any given voxel to either the lesion or healthy tissue group.

If the output is instead a continuous value, the prediction task is called regression.

Machine learning model fitting, as well as techniques devised to improve image quality,

e.g. denoising, artifact correction, often using deep neural networks, are examples of

regression.

5.2 Performance scores

In the case of classifiers, three quantities are often adopted to describe performances:

accuracy is defined as the fraction of true positives and true negatives correctly classified;

sensitivity is the rate of true positives correctly classified, whilst specificity corresponds to

the true negative rate. All these scores assume values within [0, 1]. Accuracy alone works

well for balanced classification problems, that is tasks where all classes have the same

number of instances, with accuracy of 1 indicating perfect classification, and 0.5 corres-

ponding to random chance. However, in imbalanced problems, accuracy will be biased to-

wards the majority class, as the random chance value will rise to the relative size of the ma-

jority class over the total number of instances, and is therefore necessary to report sensit-

ivity and specificity as well, which makes interpretation of the results more cumbersome.

That being said, in binary classification — with classes being here defined as posit-

ive–negative — the prediction is often based on a continuous score X, often scaled

to represent the probability of an instance belonging to a certain group, which is then

compared to a threshold T to determine the hard classification output: if X > T , the

instance is classified as positive, and negative otherwise. Varying the value of T will

therefore change the prediction for any given instance, and thus alter the performance

scores. By plotting the true positive rate (TPR = sensitivity) against the false positive

rate (FPR = 1− specificity) at various threshold settings in a 2D [0, 1]× [0, 1] space,

it is possible to define a receiver operating characteristic (ROC) curve that describes

the classifier performance at different degrees of confidence. Different classifiers will
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produce different curves, with the diagonal indicating random chance, and curves closer

to the (FPR,TPR) = (0, 1) top-left corner indicating better performances. Two points

are however shared by all ROC curves:

(FPR,TPR) = (0, 0), for T = 1 : all instances are classified as negative.

(FPR,TPR) = (1, 1), for T = 0 : all instances are classified as positive.

Apart from these two points, a perfect classifier (or perfectly separated data) will

produce probability scores X = 0 for all negative-classified instances, and X = 1 for all

positive-classified ones: therefore (FPR,TPR) = (0, 1) ∀T 6= {0, 1}. A good classifier

(or highly separated data) will produce probability scores clustered around X ∼ 0 for

negative instances, and X ∼ 1 for positive ones: in most cases, varying T will not

change the hard classification, and most instances will therefore be correctly classified;

however, the hard classification for some instances classified with lower confidence

(e.g. X = 0.4 for a negative instance, or X = 0.6 for a positive one) will change

with T , producing a ROC curve overall below the (FPR,TPR) = (0, 1) ∀T 6= {0, 1}
perfect one. A random classifier (or heavily overlapping data) will produce an array

of probability scores for all instances distributed within X = [0, 1], with no discernible

clustering: hard classification will therefore change strongly with the value of T , with

(FPR,TPR) delineating the (0, 0)→ (1, 1) ROC diagonal.

The area under the curve (AUC) is a summary ROC performance score that encap-

sulates the information of accuracy, sensitivity and specificity within a single quantity.

It can be used in place of them, particularly in case of imbalanced binary classification

tasks, with AUC = 1 for a perfect classifier and AUC = 0.5 for random chance.

For regression, several norm and/or similarity functions quantifying the difference

between the predicted and expected outputs (e.g. L1 or L2 norm), already calculated

internally to the algorithm to drive the learning process, may be used.

5.3 Support Vector Machine

Support vector machine (SVM) is a popular architecture designed to solve binary clas-

sification tasks as a geometric problem consisting of separating two classes distributed

in the feature space Rp using a hyperplane, defined by

{x ∈ Rp : f (x) = x ··· β + β0 = 0} (5.1)
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where {β, β0} are the hyperplane parameters, and sign(f (x)) ∈ {−1, 1} returns the

binary classification for a data point x in the feature space. Given a set of linearly separ-

able data points composed of N pairs {(xi , yi), i = 1, ...N}, with feature vector xi ∈ Rp

and label yi ∈ {−1, 1}, the closest ones to the separating hyperplane are called support

vectors (whose set is hereby defined as S). The function f (x) can then be scaled so that

∀i : xi ∈ S, f (xi) = xi · β + β0 = 1, if yi = 1

∀i : xi ∈ S, f (xi) = xi · β + β0 = −1, if yi = −1
(5.2)

without altering (5.1). As a result, data points further away will be subject to

∀i : xi /∈ S, f (xi) = xi · β + β0 > 1, if yi = 1

∀i : xi /∈ S, f (xi) = xi · β + β0 < −1, if yi = −1
(5.3)

which can be summarised as

f (xi) = yi(xi · β + β0) ≥ 1,∀i = 1, ..., N (5.4)

In the feature space, equation (5.2) defines two supporting hyperplanes, each distant

1/‖β‖ from the hyperplane in (5.1), and 2/‖β‖ from each other. The goal of a SVM

algorithm is to maximise this distance, or margin, using convex optimisation or, equi-

valently, to minimise ‖β‖ under the constraint defined in equation (5.4), which ensures

that all data points are lying on or outside of the supporting hyperplanes, and not within

the margin.

In case the two classes overlap in the feature space, whether due to noise or imperfect

labelling, the data points are no longer linearly separable. One option is to still maximise

the margin between the supporting hyperplanes (or, equivalently, minimise ‖β‖), whilst

allowing some data points to be on the wrong side of the margin. This can be done by

introducing slack variables ξi ≥ 0, i = 1, ..., N for each data point, which represent the

amount by which the prediction expressed by f (xi) is on the wrong side of its margin,

and modify the constraint in equation (5.4) as

f (xi) = yi(xi · β + β0) ≥ 1− ξi ,∀i = 1, ..., N (5.5)

By bounding the sum of the slack variables to a constant K, it is possible to limit the

total amount by which predictions fall on the wrong side of the margin. This leads to

the definition of a generic SVM for a non separable dataset:
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min
β,β0,ξi

‖β‖, subject to


f (xi) = yi(xi · β + β0) ≥ 1− ξi ,∀i

ξi ≥ 0,∀i ;
N∑
i=1

ξi ≤ K
(5.6)

which can be re-expressed in the computationally equivalent form:

min
β,β0,ξi

1

2
‖β‖2 + C

N∑
i=1

ξi

subject to f (xi) = yi(xi · β + β0) ≥ 1− ξi ,∀i ; ξi ≥ 0,∀i

(5.7)

where the cost, or regularisation parameter C has the same role of the constant K in

equation (5.6), as it regulates the trade-off between the maximised margin and the

degree of misclassification. Equation (5.7) can be solved using Lagrange multipliers,

which leads to the solution for β in the form

β =

N∑
i=1

αiyixi (5.8)

with αi being nonzero only for those data points for which equality in the constraint

(5.5) is met, that is the support vectors. As a result, only support vectors contribute

to the characterisation of the solution, hence their name.

In more complex scenarios, data points are non-linearly separable in the feature space

because the relationship between features is inherently non-linear in the first place. This

relationship can be however linearised by enlarging the feature space usingM-dimensional

basis expansions {hm(x)}, m = 1, ...,M, such as polynomials, so that data points

mapped into the higher-dimensional space become linearly separable. The hyperplane

function expressed in equation (5.1) gets transposed in terms of a non-linear function

f (x) = h(x) · β + β0 (5.9)

where h(x) = (h1(x), h2(x), ..., hM(x)) is the feature vector expanded into the M-

dimensional basis. From equation (5.8), with h(x) taking the place of xi , f (x) can be

written as

f (x) =

N∑
i=1

αiyih(x) · h(xi) + β0

=

N∑
i=1

αiyiK(x, xi) + β0

(5.10)
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with K(x , x ′) = h(x) · h(x ′) or, more generally, K(x , x ′) = 〈h(x), h(x ′)〉 being defined

as kernel. Through this so called kernel trick, the optimisation problem does not

depend explicitly on h(x), and only the knowledge of the kernel function is required.

Popular kernels include dth-degree polynomials K(x , x ′) = (1 − 〈x , xi〉)d and radial

basis function (RBF) with Gaussian kernel K(x , x ′) = e−γ‖x−xi‖
2
, γ > 0.

5.4 Random forest

Random forest (RF) is a modification of bagging, or bootstrap aggregation: an en-

semble method that uses bootstrap samples of the dataset to train a collection of

classifiers, and then returns the average (for regression) or the majority vote (for

classification) prediction, thereby reducing the overall variance. This can be observed

by considering B independent and identically distributed (i.i.d.) random variables with

variance σ2: their average has variance σ̄2 = σ2/B, which tends to zero as B increases.

Decision trees represent ideal classifiers for bagging, since they can easily characterise

complex structures within the data, as long as they are deep enough. However, such

low bias also means that they are prone to overfit the training data, hence performing

poorly on unknown data points. Averaging (or taking the mode of the prediction in

the classification case) reduces not only variance of the prediction, but also the risk

of overfitting, increasing the degree of generalisability of the classifier.

However, bagging trees are not independent, but only identically distributed (i.d.) with

a positive pairwise correlation coefficient ρ. The variance of the average is therefore

σ̄2 = ρσ2 +
1− ρ
B

σ2 (5.11)

which tends to the first term as B increases. In other words, the non-independency of

the bagged trees sets a lower bound to the variance reduction.

RFs tries to compensate for that by reducing the correlation between trees, hence

decreasing ρ. This is done by using a randomly selected subset of features as candidates

for each splitting, instead of using all of them. In this way, each bagged tree is grown

from an independent set of features. For classification, the amount of features randomly

selected at each split is set in general to the square root of the total. At each node,

the best variable with associated split-point, among those selected, is the one that best

suits the splitting criterion. In classification tasks, it is usually either Gini index :
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K∑
k=1

pmk(1− pmk) (5.12)

or cross-entropy :

−
K∑
k=1

pmk log(pmk) (5.13)

They both measure nodes impurity, that is the amount p of observations of two or

more classes k = 1, 2, ...K within the same node m. For example, a node containing

observations belonging only to one class will have an impurity measure of 0, that is

the minimum, whilst a node with observations belonging to two classes in the same

proportion will have a maximum impurity of 0.5. Previous studies have shown that the

choice between Gini index and cross-entropy impurity measures has little to no effect

on the performance of the final classifier [79].

In addition to its robustness to overfitting, RF are particularly useful also for their

ability to automatically perform feature ranking, that is to assign to each feature a

score corresponding to their relative contribution to the classification. Such variable

importance score is defined by the improvement in the split-criterion attributed to the

feature, accumulated over all the trees in the forest. Variable importance is normalised

so that the sum of the importances across all features is equal to 1.

5.5 Neural Networks

Neural networks encompass a wide range of machine learning techniques employing one

or multiple processing layers, also called hidden layers, whose output is passed further

down the network and is not directly observed, hence the name. Each layer is composed

of neurons, that is mathematical functions that take the output from neurons in the

previous layers as input, and integrate them through a, usually, nonlinear1 activation

function. The output is then fed to the neurons in the next layer, following a hierarchical

structure that resembles the functional organisation of the primary visual cortex.

Perhaps due to this biological correlate and the uncanny feeling spread by media about

artificial intelligence, deep neural networks have taken over the machine learning scene,

1The non-linearity of activation functions is what effectively allows to build deep neural networks.

Without nonlinear activation functions, the entire network would behave as a single-layer perceptron

— a neural network whose input nodes are fed directly to the outputs — regardless of the number of hidden

layers, as the combination of multiple linear functions is still a linear function.
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both in terms of technical applications and popular perception. It is therefore useful

to remember, in this writer’s opinion, what has been noted by Hastie et al. (2009):

There has been a great deal of hype surrounding neural networks, making

them seem magical and mysterious. As we make clear in this section, they

are just nonlinear statistical models. [76]

5.5.1 Single hidden layer neural network

An example of a basic single hidden layer neural network is shown in Figure 5.1. Assuming

an input vector with L components X = [X1, ..., XL] and target with K components

Y = [Y1, ..., YK]2, the hidden feature vector Z = [Z1, ..., ZM] and predicted output

Ŷ = [Ŷ1, ..., ŶK] components can be modelled as:

Zm = σ(α0,m + αTmX), m = 1, ...,M

Ŷk = gk(β0,k + βTk Z) = gk(Tk), k = 1, ..., K
(5.14)

with {αm, βk} the unknown network parameters, or weights (the {α0,m, β0,k} intercepts

are referred to as bias), σ the activation function and gk the output function. The

activation function most used currently is the rectified linear unit (ReLU), defined as:

σ(x) = ReLU(x) =

x if x > 0

0 else
(5.15)

or, equivalently, ReLU(x) = max(0, x), due to its computational efficiency compared

to a sigmoid σ(x) = 1/(1 + e−x), which was the standard beforehand. Alternatively,

if setting the input equal to 0 for negative input values results in poor learning per-

formances, a leaky ReLU might be implemented instead as max(αx, x), with α being a

small scaling factor, e.g. α = 0.01. Potential advantages of leaky ReLU over standard

ReLU depend on the specific deep learning application, as no significant differences

in training performance between the two have been reported in general [80].

As output function, the identity gk(Tk) = Tk is usually chosen for regression; for

K-class probabilistic classification, the softmax function is often selected:

gk(Tk) =
eTk∑K
k=1 e

Tk
(5.16)

2E.g.: classification task with subject records composed of L clinical measurements classified into one

ofK groups; regression task with input and target MR-images composed of L andK voxels respectively.
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Figure 5.1: Single hidden layer neural network

from which a hard classification can be obtained by calculating argmaxk(gk(Tk)).

5.5.2 Back-propagation

The aggregate set of unknown weights θ, consisting of

{α0,m, αm = [α1,m, ..., αP,m];m = 1, ...,M}, M(P + 1) weights

{β0,k , βk = [β1,k , ..., βM,k ]; k = 1, ..., K}, K(M + 1) weights
(5.17)

can be determined by fitting the model to the training data. To do so, an objective,

or loss, function f (θ) is defined to quantify the distance between the network predicted

output and the target data, given the current set of parameters. Whilst the loss function

can assume any form that best suits the specific task, squared error 3 over training data

(X i , Y i), i = 1, ..., N can be used as a general example:

f (θ) =

N∑
i=1

f i(θ) =

N∑
i=1

K∑
k=1

(Y ik − Ŷ ik )2 (5.18)

Loss function minimisation (which in this case is reduced to a standard least-squares

problem) can be achieved via gradient descent, which in this context follows the so-called

back-propagation algorithm. The derivatives of each term f i(θ) with respect to the

weights are:

3Denoting the squared error as SE, other standard loss functions include mean squared error

MSE = SE/N, mean absolute error MAE =
∑N

i=1 |Y i−Ŷ i |and root mean squared error RMSE =
√

MSE.

MAE and RMSE are also sometimes referred to, improperly, as L1 and L2 loss, respectively.
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∂f i

∂βm,k
= −2(Y ik − Ŷ ik )g′k(βTk Z

i)Z im = δikZ
i
m

∂f i

∂αl ,m
= −

K∑
k=1

2(Y ik − Ŷ ik )g′k(βTk Z
i)βm,kσ

′(αTmX
i)X i

l = s imX
i
l

(5.19)

where the defined quantities δik , s im are the errors at the level of the output and hidden

layer, respectively. From their definition, the errors satisfy the relation:

s im = σ′(αTmX
i)

K∑
k=1

βm,kδik (5.20)

called back-propagation equation. In the general case of a neural network with

p = 1, ..., P layers, equation (5.20) is still valid, as it applies to any given (p − 1)→ p

pair of connected layers. The back-propagation equation enables therefore to recursively

express the error at level (p − 1) as a function of the error at the p-th level and thus,

once the error at the level of the P -th layer is calculated, to efficiently4 back-propagate

the errors throughout all layers via simple, 1-to-1 local updates: this is the heart of

back-propagation.

5.5.3 Network fitting

Network fitting to the training data follows an iterative process that terminates on

convergence. Given the derivatives of the loss function, weights at the (r + 1)-th

iteration can be updated via gradient descent as

β
(r+1)
m,k = β

(r)
m,k − γ

(r)

N∑
i=1

∂f i

∂β
(r)
m,k

α
(r+1)
l ,m = α

(r)
l ,m − γ

(r)

N∑
i=1

∂f i

∂α
(r)
l ,m

(5.21)

where the update coefficient at the r -th iteration γ(r) is referred to as learning rate.

More sophisticated update rules can be implemented to further optimise the gradient

descent, such as gradient descent with momentum or adaptive learning.

The weight updates in equations (5.21) take into consideration the entire training set,

which is referred to as batch gradient descent. Whilst conceptually straightforward

4Notice how the use of ReLU activation reduces the derivative of the activation function in equation

(5.20) to σ′(x) = 0 if x < 0, and σ′(x) = 1 otherwise.
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and computationally stable, batch gradient descent is also computationally expensive

in terms of memory usage. Alternatively, updates can be performed on mini-batch

of N elements, called mini-batch gradient descent, or one training element at a time

(remove the summation symbols in equations (5.21)), until all elements in the training

set are picked: since elements are usually chosen at random, this method is called

stochastic gradient descent. The set of training iterations required to go through the

entire training set defines one training epoch. The learning rate for batch gradient

descent is usually a constant, whilst it is set to decrease — learning rate annealing

— for mini-batch and stochastic gradient descent (e.g. γ(r) ∝ 1/r), although more

advanced optimisation processes can do it internally.

Upon initialising the network weights5, the back-propagation method follows a two-pass

algorithm:

1. forward pass: use equation (5.14) to calculate Ŷ ik given the current weights;

2. backward pass: calculate the errors δik at the output layer and back-propagate

them via equation (5.20) to obtain the errors at all hidden layers; use the errors

to compute the gradients in equation (5.19), and use them to update the weights

via equation (5.21).

5.6 Convolutional neural network

Convolutional neural networks (CNN) are a class of neural networks that have revolu-

tionised the field of machine vision, that is the automatic recognition of elements and

patterns in images, through the use of stacked convolutional layers. The output of

each convolutional layer is a tensor g defined element-wise as the dot product between

the input tensor f and a sliding convolutional kernel, or filter, k centred on that element.

For a 3× 3 2D-filter kernel, this would be:

gi j = (k ∗ f)i j =

1∑
l=−1

1∑
m=−1

kl ,mf(i+l),(j+m), with k =


k−1,−1 k0,−1 k1,−1

k−1,0 k0,0 k1,0

k−1,1 k0,1 k1,1

(5.22)

5Weights can be initialised to random values, zeroes, or informed by previous learning. The latter

case is called pre-training, where a network trained on a similar, previous task is used as starting point

for the current task, referred to as fine-tuning. Generally speaking, using pre-trained networks for weight

initialisation for relatively different tasks is a form of transfer-learning.
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Figure 5.2: Example of basic CNN. In the convolutional layer, a sliding filter kernel is

convolved with the input tensor, producing a number of output channels equal to the

number of filters applied. The output of the convolutional layer is then down-sampled

through pooling. Additional convolutional/pooling layers can be added for deeper

networks. The output of the feature extraction block is then fed to a fully connected layer

to perform the learning task, e.g. classification. Figure from Phung & Rhee (2019) [81].

Through convolution (∗), the input image gets converted to a feature map defined

by the specific filter employed in the convolution. Multiple filters, each mapping a

different feature of the data, can be used within the same convolutional layer, resulting

in a number of output channels equal to the number of filter kernels applied. To learn

progressively more global, high-level features, the output is then reduced in size, or

down-sampled, throughout the network architecture by setting a kernel stride — the

step-size the kernel undergoes whilst sliding over the input image — greater than 1,

or using pooling layers to merge the information of neighbouring tensor elements into

one, usually through average- or max-pooling. The result of each layer is then fed to

next layer, which enables to process the data through levels of increasing abstraction.

An example of a basic 2D-CNN is shown in Figure 5.2.

The filter kernel weights are learned directly from the data through back-propagation,

upon opportunely adapting the updating rules to the CNN model. Each filter kernel

is therefore learnt to match a more or less abstract feature of the training data which is

particularly relevant for the specific task. In the context of image recognition, trained

kernels may reflect more or less complex topological structures such as lines, curves,

all the way up to abstract, archetypal patterns.
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5.7 U-Net

U-Net is an application of CNN for automatised biomedical image segmentation, first

proposed by Ronneberg et al. (2015) [82], and counting almost 20 thousand citations

at the time of writing. U-net uses a CNN encoding pathway to learn the high-level

features of the image, followed by a decoding pathway to bring the output back to

image space. Shortcut connections between the encoding and the decoding pathways

allow to recover the spatial information lost due to the down-sampling. For a more

detailed description of the U-Net architecture, see section 11.6.

5.8 Machine learning in MS

Machine learning algorithms have been proven a useful tool in the study of MS. Some of

the results obtained through the use of different methods and architectures are hereby

presented.

5.8.1 Support vector machine

The first study about machine learning on MS was published in 2012 by Bendfeldt et al.

(2012) [83]: a SVM was trained over a dataset of grey matter segmentation features

to distinguish MS patients at different disease stages (task I: early versus late), with

different white matter lesion loads (task II: low versus high) and MS types (task III:

benign versus non-benign). An accuracy of 85%, sensitivity of 82.3% and specificity of

88.2% was reached on task I; 83%, 85% and 80% respectively on task II; 77%, 76.9%

and 76.9% respectively on task III.

Similar studies with increasing features- and classification-complexity followed. In a

work published by Wottschel et al. (2015) [84], SVMs were applied to lesion-based

features, including lesion count, load, centrality, size profile and average proton density

and T2 intensity in the lesions to predict the conversion (or non conversion) of CIS

patients to clinically definite MS within 1 and 3 years from the first episode. The

classification at 1 year reached an accuracy of 71.4%, with a sensitivity of 77% and

a specificity of 66%, whilst performances at three years were respectively 68%, 60%

and 76%. The most relevant features for classification at 1 year were the type of

presentation, that is whether the CIS episode affected the spinal cord, the optic nerve or

other anatomical regions of the CNS, gender and lesion load; on the other hand, lesion
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count, PD average intensity in the lesions, lesions centrality, EDSS and age showed

the highest predictive power at 3 year. In particular, the distance of the lesions from

the vertical axis of the brain appeared to be an important predictor for conversion, with

a shorter distance being associated to more probable future attacks.

5.8.2 Random forest

A work by Eshaghi et al. (2016) [85], used the RF ensemble classification algorithm to

distinguish between MS patients and those experiencing neuromyelitis optica (NMO),

a condition causing inflammation and demyelination of the optic nerve and spinal cord,

whose clinical and MRI characteristics are very similar to MS.

The dataset was built around grey matter-based metrics obtained from MRI acquisitions

as part of a clinical protocol. They included thickness, volume and surface area of cortical

regions of interest (ROIs), and volume of basal ganglia, for a total of 157 features.

Furthermore, since the data were acquired in two different centres, an additional variable

centre was added to check whether the results were independent on the origin of the

data and, therefore, reproducible on different sites. The aim of the classifier was to

distinguish between MS versus NMO patients (task I), MS versus healthy controls (task

II) and NMO versus healthy controls (task III). For task I, an accuracy of 74%, sensitivity

of 77% and specificity of 72% were reached. For task II, performances were 92%, 94%

and 90% respectively, whilst for task III they were 88%, 89% and 88% respectively.

The volume of deep grey matter structures and the thickness of the insular cortex,

which appeared to be reduced in MS patients compared to NMO, showed the greatest

prediction power in task I. For task II and III, the volumes of the parahippocampal

gyri, the middle frontal gyrus (for task II) and the superior temporal gyrus (for task

III) showed the highest importance in the classification task. As expected, the variable

centre showed the lowest importance among all the features for all tasks.

5.8.3 Convolutional neural network

First proposed by Krizhevsky et al. (2012) [86] for ImageNet6 classification, it counts,

at the time of writing, more than 72 thousand citations. Applications in biomedical

imaging were delayed by a few years, due to the scarcity of similar large, publicly

available datasets at the time. A recent example in MS is the one proposed by Zhang

6A freely accessible visual database containing, to date, almost fifteen million labelled images [87]
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et al. (2018), using a 10-layers deep CNN for patients vs healthy control classification,

achieving an accuracy, sensitivity and specificity of 98% on all three accounts [88].

5.8.4 U-Net

In MS, Brosch et al. (2016) have published several lesion segmentation works between

2014 and 2016, the most recent of which used a 3D U-net which showed comparable

performances with the best state-of-the-art methods, and outperformed freely available

popular segmentation methods on a large MS clinical trial dataset [89].

5.8.5 Deep learning model fitting

On the regression front, a variety of deep learning model fitting algorithms have been

proposed. This can be virtually applied to any model fitting problem, with the trained

network substituting the traditional model fitting on new data. Whilst this process

does not add any new information, as the predicted output could be produced through

traditional model fitting anyway, and with the network performing at best just as well,

it is a great way to cut down on post-processing times if enough data variability is

provided during training.

A recent example that can be applied to MS is T2-fitting for the purposes of myelin

water imaging using neural networks, as done by Lee et al. (2020) [90]. Another deep

learning regression application is what has been defined by Alexander et al. (2017) as

image quality transfer (IQT), whose aim is:

To transfer the rich information available from one-off experimental med-

ical imaging devices to the abundant but lower-quality data from routine

acquisitions [91].

Whilst specifically applied to diffusion data, the IQT framework and basic concept can

be applied to any pair of images that are not explicitly related by an underlying model,

and is not limited only to a super-resolution task.

5.8.6 Other applications

Applied to a big dataset of MS patients (6322 for training, 3068 for testing), SuStaIn

has identified three MS subtypes based on different patters of tissue alteration over

time, defined by Eshaghi et al. (2021) as cortex-led, normal-appearing white matter-led,
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and lesion-led [78]. Patients in the lesion-led category have shown the highest risk of dis-

ability progression and relapse rate, as well as positive response to treatment in selected

trials. These results may be of particular interest not only for prediction of disability accu-

mulation, but also to define different MS categories that better reflect disease evolution.

In addition to MRI-based metrics, clinical scales and patients-reported outcomes have

been used as features in the classification task as well. A work by Fiorini et al. (2015) [92]

used questionnaires and anthropometric measures to train a linear classifier to distinguish

RRMS from progressive and benign MS forms. After a phase of feature selection, the clas-

sifier reached an accuracy of 78%, over a baseline of 63% for the same task. Despite this

last results are not exceptional, the inexpensiveness, non-invasiveness and ease of acquir-

ing such features make them worth to be considered as part of a more extended dataset.
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Introduction

The myelin relaxation — MyRelax — framework1 allows to extract quantitative relax-

ometry measurements, as well as indirect myelin content indicators, from routine qual-

itative images commonly used for lesion delineation and anatomical purposes through a

traditional model fitting approach. In this study, the MyRelax framework was used to ex-

tract quantitative proton density (PD), T2 and T1 maps, together with macromolecular

tissue volume (MTV) maps from PD-, T2- andT1-weighted qualitative scans, which have

represented for decades a staple in clinical MRI research. Being able to extract quant-

itative information from qualitative data would provide great statistical power through

the implementation of quantitative studies on readily available retrospective historical

datasets, as well as represent a key step towards the future of sustainable research.

The QuaSI- prefix (qualitative scans for indirect-) has been introduced to better distin-

guish quantitative data produced indirectly from qualitative scans (e.g. QuaSI-PD pro-

duced via MyRelax), from their counterparts acquired through dedicated MRI sequences.

For MyRelax validation, MyRelax was applied to a prospective cohort of healthy controls,

and the resulting QuaSI-PD, -T2, -T1 maps were compared with the respective maps

obtained by fitting data acquired through quantitative MRI sequences.

For MyRelax MS application, QuaSI-MTV maps and T1-/T2-weighted ratio maps, useful

indicators for brain myelin content, were compared with magnetisation transfer ratio

(MTR) maps on a retrospective dataset of both healthy controls and MS patients, to

assess whether qualitative scans can be used to produce surrogates for myelin imaging.

1Courtesy of Dr Francesco Grussu
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Methods

7.1 Cohort

For this study, two datasets were employed, both including qualitative PD-, T2- and

T1-weighted images acquired using identical scanner parameters.

7.1.1 Prospective cohort: MyRelax validation

The first dataset, of only healthy controls (HC), was composed of qualitative data

acquired with conventional sequences, and quantitative data acquired using gold stand-

ard sequences for PD and relaxometry measurement. It was used for the MyRelax

validation objective, and consisted of 3 HC (2 men, age: 27±2 years old), with one

repetition, acquired prospectively, i.e. specifically for this application. This dataset will

be referred to simply as MyRelax validation cohort.

7.1.2 Retrospective cohort: MyRelax MS application

The second, richer, dataset named GML02 cohort included both HC and MS patients. It

was already employed for several other studies — e.g. Pardini et al. (2016) [93] — and

is therefore composed of retrospective data. The MRI modalities used in this study were

qualitative PD-, T2- and T1-weighted scans, and MTR acquired via a standard sequence.

The cohort consisted of 34 HC (16 men, age: 38±11 years old) and 109 MS patients

(34 men, age: 48±11 years old) with different MS phenotype and disease duration. The

cohort included 2-years follow-up scans which were treated as independent acquisitions

to increase the dataset statistical power.
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7.2 MRI protocol

All MRI data were acquired on a 3T Philips Achieva scanner with a 32-channels head-coil.

This study was approved by the local ethical committee.

7.2.1 MyRelax validation protocol

For MyRelax validation, the qualitative scans included:

1. Qualitative scans:

(a) PD/T2. Dual-echo 2D PD-/T2-weighted turbo spin-echo (TSE).

(b) T1. 2D T1-weighted spin-echo (SE).

2. Anatomical scan: 3DT1. 3D sagittal T1-weighted MP-RAGE: magnetisation-

prepared rapid gradient echo (GRE).

The following gold standard specialised sequences were then acquired:

1. Quantitative PD ground truth:

(a) vFA-GRE. 3D spoiled GRE at two different flip angles.

(b) ME-GRE. Multi-echo 3D GRE.

(c) B1. Dual-TR flip angle map.

2. Quantitative T2 ground truth: ME-SE. Multi-echo 2D SE.

3. Quantitative T1 ground truth:

(a) IR-EPI. 2D echo-planar imaging (EPI) inversion recovery with non spatially

selective adiabatic inversion pulse, where slice shuffling mechanism and

single shot EPI readout were used to speed up the acquisition as in Clare

et al. (2001) [94].

(b) blip-up/down. 2D EPI images acquired with both phase-encoding blips

up and down to correct maps with EPI readout for susceptibility induced

distortions.

Details on the MyRelax validation MRI protocol are reported in Table 7.1.
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Table 7.1: MyRelax validation MRI protocol.
scan Res FOV

slices
slice

sequence
TE TR TI flip

time [mm] [mm] orientation [ms] [ms] [ms] angle[◦]

Qualitative scans

PD/T2 4:02

RL = 1 RL = 240

50 transverse TSE 19/85 3500 90AP = 1 AP = 240

FH = 3 FH = 150

T1 5:43

RL = 1 RL = 240

50 transverse SE 10 625 90AP = 1 AP = 240

FH = 3 FH = 150

Anatomical scan

3DT1 6:32

RL = 1 RL = 180

180 sagittal GRE 3.1 6.9 823 8AP = 1 AP = 256

FH = 1 FH = 256

Ground-truth

vFA-GRE ∼12:12

RL = 1 RL = 170

170 sagittal GRE 2.4 30 4/25AP = 1 AP = 240

FH = 1 FH = 256

ME-GRE 6:06

RL = 1 RL = 170

170 sagittal GRE

2.4−14.4

30 25AP = 1 AP = 240 ∆ = 2.4

FH = 1 FH = 256 6 TEs

B1 2:56

RL = 6 RL = 170

29 sagittal GRE 2.3 30/150 60AP = 4 AP = 240

FH = 4 FH = 256

ME-SE 19:25

RL = 1 RL = 180

50 transverse SE

14−112

3500 90AP = 1 AP = 240 ∆ = 14

FH = 3 FH = 150 8 TEs

IR-EPI ∼12:00

RL = 2.5 RL = 192

50 transverse EPI 34 12000

40−4000

90AP = 2.5 AP = 222 ∆ = 440

FH = 2.5 FH = 125 10 TIs

blip-

up/down
1:36

RL = 2.5 RL = 220

50 transverse EPI 42 8000 90AP = 2.5 AP = 220

FH = 2.5 FH = 125

7.2.2 MyRelax MS application protocol

For MyRelax MS application, the qualitative scans consisted of the same PD/T2 and

T1 reported above, which were used to produce QuaSI-MTV maps and T1w/T2w. A

3DT1 was also acquired for lesion-filling and tissue segmentation.

The magnetisation transfer protocol — MT — consisted of two dual-echo 3D-GRE,

with and without a MT saturation pulse, as described in Pardini et al. (2016):

High-resolution magnetisation transfer imaging using a 3D slab-selective

FFE sequence with two echoes: 1× 1× 1 mm3, repetition time = 6.4 ms,

echo time = 2.7/4.3 ms, α = 9° with and without sinc Gaussian-shaped

magnetisation transfer pulses of nominal α = 360°, offset frequency 1 kHz,
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duration 16 ms. A turbo field echo (TFE) readout was used, with an echo

train length of four, TFE shot interval 32.5 ms, giving a total time between

successive magnetisation transfer pulses of 50 ms, and scan time of 25

min. [93]

Details on the GML02 MRI protocol are reported in Table 7.2.

Table 7.2: GML02 MRI protocol.
scan Res FOV

slices
slice

sequence
TE TR TI flip

time [mm] [mm] orientation [ms] [ms] [ms] angle[◦]

Qualitative scans

PD/T2 4:02

RL = 1 RL = 240

50 transverse TSE 19/85 3500 90AP = 1 AP = 240

FH = 3 FH = 150

T1 5:43

RL = 1 RL = 240

50 transverse SE 10 625 90AP = 1 AP = 240

FH = 3 FH = 150

Anatomical Scan

3DT1 6:32

RL = 1 RL = 256

180 sagittal GRE 3.1 6.9 823 8AP = 1 AP = 256

FH = 1 FH = 180

Ground-truth

MT ∼25:00

RL = 1 RL = 256

180 sagittal GRE 2.7/4.3 6.4 823 9AP = 1 AP = 256

FH = 1 FH = 180

7.3 MyRelax validation

7.3.1 Preprocessing

For the MyRelax cohort, brain segmentation was performed on the anatomical 3DT1

using UCL software geodesic information flow (GIF) [95]. Registrations were per-

formed using the NiftyReg software package [96]. Data acquired with EPI readout was

corrected for susceptibility-induced distortions applying the FSL topup [97, 98] tool

to the blip-up/down pair of images. The FSL toolbox was extensively used throughout

all studies for data visualisation and general image manipulation. Preprocessing was

performed locally using MATLAB 2017b–2019b [99].

7.3.2 Image analysis: MyRelax framework

The MyRelax framework enables to calculate QuaSI-PD, -MTV and quantitative

QuaSI-T2 and -T1 maps voxel-wise from a set of three qualitative images with different
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Table 7.3: Average PD, T2, T1 in brain

PD[p.u.] [101] T2[ms] T1[ms]

GM 0.78-0.82 100 810

WM 0.70 90 680

CSF 1 3000 3000

MR-contrast (three TEs, two TRs) through a simple three-points fitting approach.

The fitting is performed analytically, rather than through traditional least-square op-

timisation, making it computationally inexpensive and fast to run. The framework was

initially implemented in Python 2.7, and subsequently adapted to Python 3 [100].

Bloch equations

QuaSI-PD, -T2, -T1 maps were computed from the PD/T2 TSE and T1 SE qualitative

scans by solving the associated Bloch equations in each voxel:

SPD = S0e
−TE1/T2(1− e−TR′1/T1) (a)

ST2
= S0e

−TE2/T2(1− e−TR′1/T1) (b)

ST1
= S0e

−TE3/T2(1− e−TR2/T1) (c)

(7.1)

whereSPD, ST2
andST1

represent PD-, T2- andT1-weighted MRI signal in any given voxel,

whilst S0, T2 and T1 are the unknown apparent PD, and quantitative transverse and

longitudinal relaxation times respectively, i.e. QuaSI-T2 and QuaSI-T1. The apparent

PD differs from a proper PD map because corrupted by the receiver bias field produced by

the spatial inhomogeneities in the receiver coil sensitivity profile (see section 4.9). The

framework also provides a means to correct for bias field, allowing to obtain quantitative

PD maps as well, i.e. QuaSI-PD. Typical values of PD, T2 and T1 in the grey matter

(GM), white matter (WM) and cerebrospinal fluid (CSF) at 3T are reported in Table 7.3.

TEi is the effective echo time1 associated to the i-th MRI contrast: TE1 = 19 ms,

TE2 = 85 ms, TE3 = 10 ms. TR′1 = TR1 − TF × ES corresponds to the effective

PD/T2 repetition time accommodated for the TSE acquisition, as defined by Rydberg

et al. (1995) [102], with TF = 10 being the TSE turbo factor, ES = 9.4 ms the echo

spacing, and TR1 = 3500 ms. The repetition time associated to the T1-weighted spin

echo, TR2 = 625 ms, did not require any adjustment for the lack of a turbo factor.

1In the case of TSE, the effective TE indicates the echo time corresponding to the central line of

the k-space (see section 4.15).
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QuaSI-T2

With reference to equation (7.1), T2 is analytically computed from equations (a) and

(b), which present the same TR:

T2 =
TE1 − TE2

log(ST2
/SPD)

(7.2)

QuaSI-T1

Once T2 is known, T1 can be calculated by numerically finding the convergence value

of the iterative function

T n+1
1 = −

TR2

log(1−m(1− e−TR1/T
n
1 ))

(7.3)

obtained by rearranging the ratio between equations (c) and (a), where n is the iteration

index, and

m =
ST1

SPD

e−(TE3−TE1)/T2 (7.4)

QuaSI-PD

S0 is then calculated by substituting equations (7.2) and (7.3) into any one of equations

(7.1) (a)–(c). In order to correct for the bias field, the apparent PD S0 can be expressed

as a function of the true PD and the receiver coil sensitivity profile (RP):

S0 = kRP · PD (7.5)

where k is a spatially invariant scaling constant. Receiver bias field correction was

performed as described by Volz et al. (2012) [103], using the T1 map calculated in

the previous step to take advantage of the linear correlation, frequently reported in

literature, between the inverse of T1 and PD:

1

PD
≈ A+

B

T1

(7.6)

This relationship holds only in normal appearing WM (NAWM) and GM, whilst it is

not generally true in CSF, and neither it has been proven to hold in MS lesions. For

this reason, both CSF and lesions were excluded from the following steps.
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The parameters A and B are calculated within a recursive algorithm composed by four

steps:

1. At each iteration i , a pseudo PD map (pPDi) is computed voxel-wise in NAWM

and GM using (7.6):

1

pPDi

= Ai +
Bi
T1

(7.7)

where A andB have been initialised to A0 = 0.916 andB0 = 436 ms, as described

in Volz’s paper. Forgoing the scaling constant in (7.5), an approximation of the

RF field is thus calculated as

RP′i =
S0

pPDi

(7.8)

2. Since RP′i values are calculated in NAWM and GM only, 3D polynomial fitting

is used to smooth the map over the whole brain, and obtain a new guess for the

RP map at each iteration, denoted as RPi .

3. A candidate for the true PD map is then calculated using equation (7.5) as

PDi =
S0

RPi
(7.9)

Since k in equation (7.5) is unknown, PDi is rescaled to the median CSF intensity

within the ventricles, so that the median value of PDi in the ventricles is 1.

4. Finally, Ai and Bi are linearly fitted from the values of PDi and T1 using (7.6).

The algorithm is iterated until Ai and Bi values converge, which usually happens within

about 5 to 7 iterations. The final RP and QuaSI-PD maps are the ones generated in

the last iteration.

7.3.3 Image analysis: ground truth

QuaSI-PD, -T2 and -T1 maps calculated using the MyRelax framework were correlated

to the corresponding ground truth, calculated as follows.

Quantitative T2

T2 maps were calculated by exponentially fitting the ME-SE data in each voxel:
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SME = ST1
0 e
−TE/T2 (7.10)

with respect to T2, where ST1
0 = S0(1 − e−TR/T1) is the T1-weighted apparent PD,

which was not used. The first echo was excluded from the fit in order to reduce the

effects of stimulated echoes.

Although skipping the first echo has been shown not to be the best adjustment for expo-

nential T2-fitting [104], and more sophisticated techniques should be employed instead,

such as extended phase graphs (EPG), ME-T2 mapping is not the main focus of the study,

and exponential fitting has shown to be sufficient for assessing the degree of reproducibil-

ity and correlation with QuaSI-T2 maps. Furthermore, when testing for the effect of EPG

for T2 fitting on a single subject, no particularly meaningful differences were observed

with the exponential fitting (differences were around 5% within tissue). Therefore, in the

assumption that the errors caused by the simpler fitting method are reproduced similarly

across subjects, exponential fitting was chosen to produce the ground truth T2 map.

Quantitative T1

Ground truth T1 maps were calculated from distortion-corrected IR-EPI images by

fitting the model

SIR = ST2
0 |1− 2e−TI/T1| (7.11)

with respect to T1, where TI is the inversion time, whilst ST2
0 = S0e

−TE/T2 is the

T2-weighted apparent PD, which was left unused.

Quantitative PD

PD was extracted from the vFA-GRE images by solving the Bloch equations in each voxel

SFA1
= S0e

−TE1/T
∗
2 (1− e−TR/T1)

sin(FA1)

1− cos(FA1)e−TR/T1

SFA2
= S0e

−TE1/T
∗
2 (1− e−TR/T1)

sin(FA2)

1− cos(FA2)e−TR/T1

(7.12)

with respect to T1:

T1 = TR/log
(cos(FA2)−m cos(FA1)

1−m

)
(7.13)

where FA1 and FA2 are the two effective flip angles, given by the product between the

nominal flip angles (4° and 25°) and the value of the B1 map in each voxel, and
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m =
SFA1

SFA2

sin(FA2)

sin(FA1)
(7.14)

T ∗2 can be calculated from the ME-GRE using exponential fitting and, once T1 and T ∗2

have been calculated, S0 can be computed in each voxel using either equation in (7.12).

After correcting for the receiver bias field as described previously, the ground truth PD

map can be extracted.

7.3.4 Statistical analysis

MyRelax and ground truth maps were rigidly registered onto 3DT1 space to use the

same high-resolution segmentation maps for all modalities. In order to correlate QuaSI-

PD, -T2 and -T1 maps obtained with the MyRelax method to the corresponding ground

truth, the histogram of each map in WM, pons, cortical and deep GM was interpolated

with a nonparametric kernel-smoothing distribution, and the peak value computed.

Linear fitting was run and Pearson correlation coefficient calculated.

The following MATLAB functions were employed:

• histfit, for nonparametric kernel-smoothing;

• fitlm, for linear fitting;

• corrcoef, for Pearson correlation coefficient calculation.

7.4 MyRelax MS application

7.4.1 Preprocessing

For the GML02 cohort, lesions were identified and semi-automatically segmented by

an experienced clinician2 on the PD-weighted images prior to segmentation, using

JIMv6.0 [105], and then linearly registered to anatomical 3DT1 space (see Pardini et

al. (2016) [93]). 3DT1 images were then lesion-filled [106]. Brain tissue segmenta-

tion was performed on the 3DT1 using the GIF package. Cross-modality non-linear

registration [107] to MNI [108] space at 2× 2× 2 mm3 resolution was performed for

voxel-wise statistical analysis. Lesion filling, brain segmentation and registrations were

run on the medical image data management tool XNAT [109], following standardised

pipelines for MS data post-processing.

2Courtesy of Dr Declan T. Chard.
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7.4.2 Image analysis

QuaSI-MTV and T1-/T2-weighted ratio (T1w/T2w) were calculated from the qualitative

scans and compared with MTR. Examples are shown in Figure 7.1.

QuaSI-MTV

QuaSI-PD maps were produced from the PD-, T2- and T1-weighted images using

MyRelax. QuaSI-MTV was then calculated as 1− PD.

T1-/T2-weighted ratio

T1w/T2w maps were calculated on each subject by simply performing the ratio between

the two maps voxel-wise.

MTR

MTR was used as the reference — indirect — metric for myelin content. For each

MT-scan, i.e. with and without the MT saturation pulse, the two echoes were averaged

to increase signal-to-noise ratio (SNR), producing a pair of images MTon and MToff,

respectively [93]. MTR maps were then calculated voxel-wise as

MTR =
MToff −MTon

MToff
(7.15)

A 1× 1× 3 mm3 mean-filter, matching the qualitative scans resolution, was applied

to further increase axial SNR, whilst preserving original resolution.

7.4.3 Statistical analysis

The degree of voxel-wise matching information between modalities was assessed by regis-

tering QuaSI-MTV,T1w/T2w and MTR maps of all subject to MNI space at 2×2×2 mm3

resolution. The similarity of patterns of alterations between HC and MS patients in

normal appearing tissue for each modality were assessed by performing voxel-wise t-test

between the two groups, excluding lesions and CSF. Pearson correlation coefficient

between MTR and, respectively, MTV and T1w/T2w across subjects was also calculated,

again excluding voxels within lesions and CSF. In both cases, Benjamini/Yekutieli false

discovery rate (FDR) correction [110] was implemented for multiple comparisons.

The following Python functions were used:
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Figure 7.1: Overview of the MRI modalities investigated for the MyRelax MS

application objective, with examples for one HC and one MS patient. MTV, T2 and

T1 maps were extracted from PD-/T2-weighted turbo spin-echo and T1-weighted

spin-echo qualitative scans. T1w/T2w maps were calculated as the voxel-wise ratio

between the qualitative T1- and T2-weighted images. MTR maps were produced from

the 3D gradient-echo images with and without MT-weighting.
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• stats.ttest ind, from the scipy package, for the t-test analysis;

• stats.pearsonr, from the scipy package, for the Pearson correlation coefficient

calculation;

• stats.multitest.multipletests, from the statsmodels package, for mul-

tiple comparisons correction.
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Results

In this chapter, results for the MyRelax validation and MyRelax MS application bottom-

up objectives are reported. The first section details the validation of the MyRelax

framework through the correlation of QuaSI- maps with their respective ground truth.

The second section reports the comparison between QuaSI-MTV, T1w/T2w and MTR

behaviour with respect to MS.

8.1 MyRelax validation

QuaSI-PD, -T2 and -T1 maps obtained through the MyRelax framework from the

qualitative PD-, T2-, T1-weighted scans and ground truth maps for a single subject

are shown in Figure 8.1. Correlation plots between MyRelax and ground truth regional

values are shown in Figure 8.2. Linear regression coefficients β0, β1, and Pearson

correlation coefficients r are reported in Table 8.1. Despite MyRelax regional values

not distributing identically as the ground truth ones, results were reproducible across

subjects and strong correlation (r ≥ 0.94) was observed. This suggests that qualitative

images are affected by weights and/or biases, perhaps scanner-dependent, that should

be incorporated into the Bloch equations to better fit the data. Given that the mismatch

between MyRelax and ground truth maps seems to be reproducible across subjects,

the mismatch could in fact be considered systematic, i.e. fixed for a given scanner and

acquisition protocol, meaning that it could alternatively be regressed out via calibration.

As a proof of concept, calibration was performed on each subject, using the remaining

three as calibration cohort to calculate the calibration function, e.g. using the linear re-

gression coefficients calculated on subjects 1, 1-rescan, and 2 to correct subject 3 maps.
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Figure 8.1: MyRelax validation. Top row: examples of QuaSI-PD, -T2, and -T1

maps for subject 3 of the MyRelax validation cohort. Middle row: same maps after

calibration, using subjects 1, 1-rescan and 2 as calibration cohort. Bottom row: ground

truth maps for the same subject. P.u.: percentage units within [0, 1].

The post-calibration maps for subject 3 are also shown in Figure 8.1, with the calibrated

regional values being reported in Figure 8.2 as well. The calibrated QuaSI-maps showed

indeed much closer similarity to the ground truth, with the calibrated QuaSI-regional

values distributing almost identically to their respective reference values.

8.2 MyRelax MS application

Tissue contrast in white matter and cortical grey matter appeared to be preserved across

modalities; the sub-cortical region appeared instead visibly hyper-intense in T1w/T2w,
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PD

β0 −0.52± 0.09

β1 1.50± 0.11

r 0.97

T2

β0 10.25± 5.29

β1 0.88± 0.07

r 0.96

T1

β0 223.79± 122.76

β1 1.14± 0.11

r 0.94

Figure 8.2 & Table 8.1: MyRelax validation. Top row: MyRelax QuaSI-PD, -T2 and -T1

maps compared with the corresponding ground truth images (each dot of a given colour

indicates one subject’s regional value). Bottom row: calibration proof of concept. Table:

regression (β0,1) and Pearson correlation (r) coefficients. cGM: cortical GM, dGM: deep

GM; the red line indicates y = x , the blue line indicates the linear fitting y = β0 + β1x .

but not in QuaSI-MTV and MTR maps. Examples of QuaSI-MTV, T1w/T2w, and

ground truth MTR for the same MS subject are shown in Figure 8.3.

Voxel-wise t-statistic maps between HC and MS are shown in Figure 8.4. Statistical

significance was assessed upon performing Benjamini/Yekutieli FDR correction for

multiple comparisons. Statistically significant alterations were observed in the principal

NAWM bundles — corpus callosum, optic radiations and corticospinal tracts — with

HC exhibiting overall significantly higher values than MS (i.e. positive t-statistic) for

all three modalities. Voxels with negative t-statistic values, showing the opposite trend,

were also observed in deep GM and internal capsule for T1w/T2w, but not — or not

as predominantly — in QuaSI-MTV or MTR.

This difference in local trends between HC and MS populations was further investigated

by inspecting the original t-statistic maps, prior to FDR correction and thresholding.

Clusters of negative correlation values were observed in deep GM, mainly localised

within thalamus, putamen and caudate nucleus, for both QuaSI-MTV and MTR, whilst

extending to the internal capsule WM tract for T1w/T2w. Whilst not satisfying the

requirements for statistical significance, this result suggests that MTR behaves more

similarly to QuaSI-MTV in terms of patterns of regional alterations, than to T1w/T2w.

This also seems to indicate that T1w/T2w might be co-dependent on one or more
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Figure 8.3: MyRelax MS application. Examples of QuaSI-MTV, T1w/T2w, and MTR

for the same patient. Relative hyper-intensity can be observed in the sub-cortical region

T1w/T2w. P.u.: percentage units within [0, 1]; a.u.: arbitrary units within [0,∞).

factors that otherwise do not affect QuaSI-MTV and MTR.

Voxel-wise Pearson correlation maps for MTR versus QuaSI-MTV, and MTR versus

T1w/T2w were also calculated, applying FDR correction as above for statistical sig-

nificance, as shown in Figure 8.5. Significant moderate positive correlation between

MTR and both QuaSI-MTV and T1w/T2w was observed in NAWM (r = 0.41± 0.10

and r = 0.43 ± 0.11 respectively). Significant moderate negative correlation (r =

−0.36± 0.08) was also observed in the internal capsule WM tract when correlating

MTR to T1w/T2w, but not to QuaSI-MTV. This result further points towards greater

similarity in behaviours between MTR and QuaSI-MTV, than T1w/T2w.
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(a) T-statistic maps after FDR correction.

(b) Original t-statistic maps.

Figure 8.4: MyRelax MS application. T-test between HC and MS groups for

QuaSI-MTV, T1w/T2w, and MTR maps. a) Statistically significant positive t-statistic

values (HC>MS) were observed for all three modalities in NAWM; statistically

significant negative t-statistic values (HC<MS) were observed in the claustrum WM

tract for T1w/T2w, but not QuaSI-MTV or MTR. b) Original t-statistic maps showed

similar patterns of alteration for QuaSI-MTV and MTR, but not for T1w/T2w.
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Figure 8.5: MyRelax MS application. Pearson correlation coefficient maps in normal

appearing tissue after FDR correction.
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Discussions

9.1 MyRelax validation

Through the MyRelax validation objective, it has been shown that it is feasible to

extract high-level quantitative information from qualitative data in a bottom-up way, via

traditional model fitting. Previous studies have shown the feasibility of this approach,

with qualitative images being used to extract quantitative information, limiting however

its applicability to T1 and T2 maps, and in particular using purposely acquired qualitative

data, that do not match the standard acquisition set-up [111, 112]. In this study, this

approach was extended to PD and MTV maps, providing a means to access myelin-

sensitive information, demonstrating that it works even with standard TSE/SE images.

9.1.1 Limitations

In addition to the small sample size, as it was already observed in section 8.1, using

conventional qualitative scans instead of specialised ones comes at the — predictable —

cost of quantitative maps that do not match the ground truth identically. It is likely that

the standard acquisitions are indeed affected by additional effects not fully described by

the MyRelax framework and specific to the MR-sequence employed, so different results

may be observed for qualitative scans acquired with different readouts, on different

MR-scanners.

Whilst a more complex system of equations tailored over the specifics of each MR-

protocol could be devised to obtain more accurate results, it is worth noticing that the

mismatch between QuaSI- maps and the respective ground truth images appears to be
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reproducible across the subjects, and could therefore be regressed out via calibration.

9.1.2 Calibration

The simplified calibration performed as proof of concept on one subject at a time, using

the remaining three as calibration cohort, produced very promising results, which is

particularly significant when considering the abundance of this kind of qualitative data

in pre-existing large historical datasets, currently used only for lesion segmentation and

anatomical analyses. Upon retrieving, or prospectively acquiring, if necessary, ground

truth data on a small calibration cohort, calibrated QuaSI-PD, -T2 and -T1 maps could

thus be obtained from any qualitative data acquired on the same scanner with the same

MR-sequence as the calibration cohort.

For definitive proof, a proper calibration study including both HC and MS patients data

acquired on different scanners, should be performed. That being said, calibration is

not strictly necessary when using MyRelax maps for group comparisons, since relative

differences between groups would be preserved regardless of linear scaling, as it was

done for the MyRelax MS application objective.

9.2 MyRelax MS application

The quantitative potential of retrospective qualitative datasets was further investigated

through the MyRelax MS application objective. The qualitative scans were used to

extract QuaSI-MTV maps via MyRelax, as well as T1w/T2w maps. Both sets were

compared to ground truth MTR to assess their behaviour with respect to MS pathology.

9.2.1 MTR vs QuaSI-MTV vsT1w/T2w

From the patterns of alteration observed when comparing HC to MS patients and the

correlation analysis, MTR showed closer matching information with QuaSI-MTV than

T1w/T2w, in particular in deep GM and internal capsule regions, where notably hyper-

intensity and negative correlation with MTR were observed. These results are compatible

with high concentration of iron deposition observed in MS in deep GM [52], which

causes reduced T2, and in turn increased T1w/T2w. The lack of a similar behaviour for

QuaSI-MTV and MTR suggests a lower co-dependency on similar confounding effects:

it is thus sensible to conclude that MyRelax does enable to produce QuaSI-MTV maps
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that, even when not calibrated, provide added value with respect to specificity to MS

compared to T1w/T2w maps, despite being both derived from the same qualitative data.

9.2.2 Limitations

In addition to the limitations already disclosed for the MyRelax framework in the previous

section, it is unfortunately impossible at this stage to conclude whether QuaSI-MTV is a

good, specific indicator for demyelination or not, as MTR itself, which was used as ground

truth, is not uniquely specific to myelin, but it is also influenced by other factors such as

inflammation and neurodegeneration. Nonetheless, MTR is still largely used in clinical

research and as outcome measure in clinical trials, as an indirect metric sensitive to

myelin, and surrogates for when MTR is unavailable or missing might be of potential use.

Summary

• MyRelax can be used to generate reproducible QuaSI-PD, -T2 and T1 maps from

qualitative data that well correlate with the respective ground truth maps.

• QuaSI-MTV was shown to behave similarly to MTR with respect to MS.

• Calibration could be implemented for more accurate results.

• Results suggest myelin content information could be extracted directly from

qualitative data as well.

• Whilst dedicated quantitative scans are to be preferred, MyRelax might still provide

a way to perform quantitative studies when these are unavailable or missing.
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Deep learning MTR

from qualitative images
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Introduction

Through the MyRelax validation and MyRelax MS application bottom-up objectives, the

MyRelax: myelin and relaxation imaging contribution has shown that QuaSI-MTV

maps produced from qualitative images behave similarly to MTR when testing for

differences between healthy controls and MS patients. The bottom-up hypothesis

of myelin-content information being present already within the qualitative data, and

therefore accessible via the proper mathematical methods despite the lack of an explicit

model, was thus further explored with a data-driven deep learning approach.

As part of the U-Net MS application objective, deep learning was employed to infer

such a model through the use of a 2D U-Net, defined and trained using PyTorch [113].

Mapping the qualitative PD-, T2- and T1-weighted scans to reference MTR maps

enabled generating QuaSI-MTR maps, learning the relationship between qualitative

and myelin imaging directly from the data.
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Methods

11.1 Cohort

A subset of the GML02 cohort (see section 7.2.1) of 48 subjects (20 men, age: 43±12

years old) was used, composed of 16 HC, 9 RRMS, 17 SPMS and 10 PPMS patients,

with no follow-up scans. Of these, 24 subjects were used for training, 12 for validation

and 12 for testing. The training set was composed of 8 HC, 3 RRMS, 9 SPMS and

4 PPMS patients. Validation and test set were both composed of 3 HC, 3 RRMS, 3

SPMS and 3 PPMS patients each. All sets were age and gender matched. This study

was approved by the local ethical committee.

11.2 Preprocessing

The preprocessing described for the MyRelax validation objective (see section 7.4.1)

applies for the U-Net MS application as well. In addition, the 1×1×3 mean-filtered

MTR maps (see section 7.4.2) were linearly registered onto the qualitative scans space

and used as the network target data. This enabled to focus the learning process solely

on QuaSI-MTR regression, being the central point of this objective, rather than a

deep-learning regression/registration hybrid model.

11.3 Training

The training was run on an Nvidia Quadro P2000 5GB GPU, which limited the batch

size to 12 before saturation. The set of batches required to exhaust all training data
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defined a training epoch. The input data per training iteration consisted therefore

of a batch of 12 sets of images, each set being composed of 3 volumes, or channels,

corresponding to the PD-, T2- and T1-weighted scans for the same brain axial slice,

with size 240×240. The target data consisted of 12 single-channel images, each

corresponding to the respective MTR slice.

In tensor terms, the input and target data consisted each of a tensor with size

12×3×240×240 and 12×1×240×240, respectively. In this context, the term slice

will refer to the i-th input/target tensor pair with size {input: 1×3×240×240; target:

1×1×240×240}, with i = 1, ..., 12. With this understood, channels will also be left

implied, referring to the slice size simply as 240×240.

11.3.1 Data selection

Slices containing less than 10% non-zero voxels were excluded to reduce spurious

learning, for an average of about 40 useful slices per subject. Each slice was cropped

down from its 240×240 original size to 224×224 to fit the network. Since the excluded

voxels were empty on all instances, the cropping did not lead to any loss of information.

For each batch, slices were picked at random, without repetition, across all subjects,

until all the slices of all the training set had been used.

11.3.2 Data normalisation

Being composed of qualitative data, with voxel values not bound within a certain

interval, the input data required normalisation. First, for each input slice X, outliers

were excluded using the interquartile range (IQR) method. Then, X was divided by

the updated maximum, such that X ∈ [0, 1]. Denoting the i-th percentile as Pi , this

can be expressed in pseudo-algorithm form as:

Q1 = P25(X)

Q3 = P75(X)

IQR = Q3 −Q1

X[X < (Q1 − 1.5 · IQR)] = Q1 − 1.5 · IQR

X[X > (Q3 + 1.5 · IQR)] = Q3 + 1.5 · IQR

X = X/max(X)

(11.1)
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Notice X is a 3×224×224 sized tensor, so the normalisation is conducted on all three

channels jointly to ensure the PD-, T2- and T1-weighted images are scaled by the same

quantity.

Since MTR is, by definition, defined within [0, 1], no normalisation was required for the

target slices.

11.3.3 Data augmentation

Slices were rotated in plane, as they were loaded, by an angle randomly sampled from

a normal distribution with centre 0° and standard deviation 10° to artificially increase

training data variability. The rotation was performed using the ndimage.rotate from

the scipy package.

11.3.4 Loss function

The loss function f (y ′, y) quantifying the distance between the prediction y ′ and the

target y was defined as the sum of three objective functions:

f (y ′, y) = RMSE(y ′, y) + RMSE(G(y ′),G(y)) + DSSIM(y ′, y) (11.2)

• RMSE(y ′, y) is the root mean square error between the prediction and the target1.

By minimising this term, the difference in the overall contrast between the two

images is also minimised.

• RMSE(G(y ′),G(y)) is the root mean square error between prediction and target

edge maps. The minimisation of this term aims to preserve the edge sharpness

of the predicted image and minimise blurriness.

Edge detection was performed using the Sobel operator

G =
√

G2
x + G2

y (11.3)

where Gx,y represent approximations of gradient operators along the x , y direc-

tions, respectively. The operation consists of a 3×3 kernel convolution with the

input tensor A such that:

1NaN errors were observed during training, which resulted in the script to crash. It was discovered this

to be caused by the torch.sqrt (PyTorch tensor square root) function producing NaN during gradient

back-propagation when 0 was presented as the function argument. The substitution
√
x →

√
x + ε, with

ε = 10−15, was thus performed on all instances of torch.sqrt.
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Gx(A) =


1 0 −1

2 0 −2

1 0 −1

 ∗ A; Gy(A) =


1 2 1

0 0 0

−1 −2 −1

 ∗ A (11.4)

The Gx,y filtering was computed via the filter.SpatialGradient function,

imported from the kornia package [114].

• DSSIM(y ′, y) = [1− SSIM(y ′, y)]/2, is the structural dissimilarity index, derived

from SSIM, the structural similarity index. SSIM is a perception-based metric

assessing the degree of matching information between two images x and y ,

depending on three measurements:

luminance: l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1

contrast: c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2

structure: s(x, y) =
σxyµy + c3

σxσy + c3

(11.5)

with:

– µx,y the average of x , y respectively;

– σx,y the variance of x , y respectively;

– σxy the covariance of x and y ;

– c1,2 = (k1,2L)2, c3 = c2/2 variable stabilising the division, where:

∗ k1 = 0.01 and k2 = 0.03 by default;

∗ L the value range of the input images, which in the case of data nor-

malised within [0, 1] is L = 1.

Luminance, contrast and structure are then weighted together, such that:

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (11.6)

As in most applications, the default values of α = β = γ = 1 have been used,

which result in the SSIM reduced form:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(11.7)
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Figure 11.1: Adam pseudo-code [116]. The term ε is used to avoid divisions by zero.

SSIM was computed using the ssim function from the pytorch-msssim pack-

age [115].

11.3.5 Optimisation

Adaptive moment estimation — or Adam [116] — was chosen as optimisation algorithm.

Adam is an extension of stochastic gradient descent that automatically adapts learning

rates for each network weight (see section 5.5) from estimates of exponential moving

averages of the gradient (1-st moment) and the squared gradient (2-nd raw moment,

or uncentered variance). With its almost 75 thousand citations at the time of writing,

Adam is de facto the current default optimiser for most deep learning tasks.

1-st moment

With reference to Adam pseudo-code in Figure 11.1, the exponential average of the

gradient at the iteration t over the past iterations with weight β1 ∈ [0, 1)

mt = (1− β1)(gt + β1gt−1 + β2
1gt−2 + ...+ βt−1

1 g1)

= (1− β1)

t−1∑
t ′=0

(βt
′

1 gt−t ′)
(11.8)

124



Chapter 11. Methods

acts as an heuristic measure of momentum, averaging out sudden changes in the object-

ive function slope sign along any given direction, effectively dampening oscillations in

the parameter space along that direction, and promoting descent along the direction of

monotone gradient. The exponential weighting ensures that recent gradient updates are

favoured over past ones to quickly adapt to changes in the gradient overall behaviour2.

2-nd raw moment

The exponential average of the square of the gradient νt , with weight β2 ∈ [0, 1),

inherited from the RMSprop optimisation method, is conceptually opposite, but works

in concert with the 1-st moment estimate: due to the square, oscillating gradient

updates will not cancel out, but rather stack additively. This acts as a metric for the

overall magnitude of the gradient, with steep slopes contributing towards a high 2-nd

raw moment estimate, regardless of the sign. By dividing the learning rate α by
√
νt , the

average squared gradient acts as a brake on the effective update step-size in parameter

space ∆t = α · mt/
√
νt , reducing it when in proximity of steep gradients, whilst its

magnitude stays bounded, in most scenarios, by the learning rate setting, i.e. |∆t | ≤ α.

Bias-correction

Since the moments are initialised to vector of 0’s, their estimations will be biased towards

zeroes in the initial steps of the optimisation. This can be compensated by computing

bias-corrected estimates m̂t and ν̂t after each update, as shown in Figure 11.1.

Implementation

Optimisation was implemented via the torch.optim.Adam function, using default

β1 = 0.9, β2 = 0.999 hyperparameters. Although not strictly necessary, given how

Adam internally adapts the effective learning rate for each weight, the upper-bound

learning rate was still set to gently anneal with the number of epochs n at a 0.99 rate:

αt = 0.001 · 0.99t , initialised at α0 = 0.001 as recommended.

The AMSGrad variant was chosen (by setting amsgrad=True), which has been shown

to improve convergence of Adam optimisers by using the maximum of past squared

2The usual metaphor is that of a ball rolling down a steep ravine with a gently sloping river valley at

the bottom. In standard stochastic gradient descent, the ball will oscillate back and forth along the two

river banks, making little progress along the direction of the river, since descent is greater along steep

gradient slopes. By using the exponential average of the gradient instead, oscillations will soon cancel

out after a few iterations, progressing along the river flow.
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gradients instead of a moving exponential average [117].

11.4 Model selection and testing

At the end of each epoch, the trained model was applied to the entire validation set and

the average validation loss was recorded3 for the purposes of selecting the best model,

i.e. the model with the lowest validation loss over all epochs. The training/validation

was iterated until validation loss stabilised, which occurred within 100 epochs.

The best model was then applied to the test set. The difference map between the

predicted QuaSI-MTR and ground truth MTR was calculated.

11.5 ResNet encoding

With reference to section 5.7, a residual neural network (ResNet) [118] has been used

for the encoding arm of the U-Net employed in this work, specifically models.resnet18

blocks imported from the torchvision package. Like U-Net, ResNet is also a class

of convolutional neural network (CNN, see section 5.6) that makes use of shortcut

connections to connect otherwise non-consecutive layers. The basic block of the

network, as shown in Figure 11.2, is defined by a CNN arm — the residual — and an

identity arm, added together. Down-sampling can be implemented by setting a kernel

stride of 2 or more, which determines the scaling factor; a 1× 1 convolutional layer

with the same stride needs to be added to the shortcut connection to preserve tensor

size coherence with the residual pathway.

The training consists therefore in optimising the residuals rather than the entire un-

derlying mapping. This has been shown to mitigate the degradation problem that

accompanies deeper architectures in the form of vanishing gradients, by providing,

through the skip connection, an alternative and simple pathway for the gradient to

propagate. The advantage of this architecture is evident when considering the extreme

example of the network trained to fit an identity mapping since, as pointed out by He

et al. (2016) in the ResNet original paper:

It would be easier to push the residual to zero than to fit an identity mapping

by a stack of nonlinear layers. [118]

3The average training loss over all training batches was also recorded every epoch, although only

to monitor the network learning performances and it was not used to inform model selection in any way.
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Figure 11.2: ResNet building blocks. The basic block is composed of a CNN residual

pathway and a shortcut connection added together. Down-sampling by a factor of

2 is implemented by using a kernel stride of 2. Further feature encoding is implemented

as part of the down-sampling by increasing the number of output channels. See section

11.6 for details on batch normalisation and ReLU activation.

11.6 Network architecture

The network architecture is shown in Figure 11.3, with its building blocks being described

as follows.

1. 12×3×224×224. Tensor size at each stage has been reported as batch size ×
number of channels × image height × image width.

As the data is processed through the encoding, or contracting, pathway of the

network, the batch size is preserved, the number of channels increases as a result

of feature encoding, and the image gets down-sampled.

In the decoding, or expanding, arm of the network, the data gets up-sampled to

native size, whilst the number of features is condensed to ultimately one output
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channel, corresponding to the QuaSI-MTR map.

2. Conv 3×3. 2D convolutional layer with 3×3 kernel size; other kernel sizes used in

the network are 1×1 and 7×7. Implicit zero-padding of 1 and 3 was set for the 3×3

and 7×7 convolution layers, respectively. Padding and (1, 1) kernel stride ensure

input tensor size is preserved at the layer output. On the other hand, higher kernel

stride values produce down-sampled output, as the kernel jumps over the input

tensor, skipping elements. Down-sampling by a factor of 2 was implemented as

part of some convolution layers via (2, 2) kernel stride (see Down-sample block).

2D convolution was chosen for being computationally less expensive, whilst also

reflecting the PD/T2 and T1 scans 2D acquisition method, with each axial slice

being acquired independently from the others.

3. ReLU. Rectified linear unit (ReLU) activation function (see section 5.5).

4. Batch Norm. Batch normalisation is used to re-centre and re-scale tensors

between layers, by setting the mean to 0 and standard deviation to 1. This

operation has been shown to improve numerical stability and network efficiency,

and is a standard step in most deep-learning applications.

5. Max Pool. 2D max-pooling layer. Pooling is a form of non-linear down-sampling

where the input data is divided into partitions, and the values within each partition

are aggregated into a single value. The partitioning can be implemented using

a sliding kernel with stride equal to the kernel size for non-overlapping partitions,

or less for partial overlapping. As for the convolutional layer, the kernel stride

determines the down-sampling factor. For max-pooling, the maximum over each

partition is selected.

6. Basic Block. ResNet basic block as shown in Figure 11.2.

7. Down-sample. ResNet down-sample block as shown in Figure 11.2.

8. Up-sample. 2D up-sampling layer, using bi-linear interpolation to up-sample the

input layer by a factor of 2.

9. Concat. Tensor concatenation along the channel dimension. It was used to

merge the information carried by shortcut connections into the network expanding

pathway.
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Figure 11.3: U-Net architecture with ResNet18 encoding.
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Results

Examples of synthetic QuaSI-MTR produced through U-Net from qualitative PD-, T2-,

and T1-weighted images, together with ground truth MTR and residual maps for four

subjects belonging to the test-set, are shown in Figure 12.1. QuaSI-MTR maps are

qualitatively similar to ground truth MTR, with contrast between tissues being visually

comparable. Positive and negative residuals appeared homogeneously distributed across

the brain, with no clear emerging patterns suggestive of systematic misrepresented

brain structures.

Mean QuaSI-MTR in NAWM, cortical GM, deep GM, and lesions correlated well with

the respective MTR regional values, for all subjects in the test-set, as shown in Figure

12.2. Mean regional errors were contained within ±5% of the ground truth MTR, and

did not show any particular trend associated to tissue or patient group. Higher spread

(one standard deviation within MTR±10%) was however observed for low MTR values,

which incidentally correspond to cortical GM areas and some lesions.

12.1 Residuals

Possible causes for increased residual variance at low MTR values include:

• Low signal-to-noise ratio. Higher variance in the regression error for low MTR

values can be explained by the lower signal-to-noise ratio, which makes low-

intensity regions inherently more noisy, and thus more difficult to learn.

• Misregistration. An important component contributing to errors in cortical GM

or, in general, sharp high-contrast borders is misregistration, with the interface
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Figure 12.1: Examples of synthetic QuaSI-MTR, ground truth MTR, and error map

for four different test-subjects. Highlighted: lesion (circle); possible bias field artifact

affecting ground truth MTR (arrow). P.u.: percentage units within [0, 1].
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Figure 12.2: Correlation plot shows agreement between QuaSI-MTR and ground truth

MTR regional values in the test-set. Residuals distributed symmetrically around 0, with

higher spread for low-MTR values, corresponding to cortical GM and some lesions. Ver-

tical lines indicate±1 standard deviation; cGM: cortical GM, dGM: deep GM, les: lesions.

between brain tissue and CSF representing a prominent example of sharp high-

contrast borders. CSF interface is abundant in the GM gyri and sulci, which can

be challenging to correctly align when registering brain images from different

modalities. Misregistrations can affect training by producing blurry images, as

well as causing positive/negative residuals to emerge in the error map due to the

misalignment between regressed and reference images. An example of this can

be observed in Figure 12.3, where the ridges of positive and negative residuals

have been caused by the imperfect alignment between the reference MTR map

and the PD/T2 and T1 images, and thus the resulting QuaSI-MTR, rather than

by an inherent regression error.

• Under-representation. Another source of error variance for cortical GM and

some lesions, may be the limited representation of these tissues within the dataset,

not only in terms of volume, but also data variability. This is especially incisive in

the case of lesions, as they not only affect MS patients alone and in small regions,

but they are also characterised by different pathophysiology depending on the

specific MS phenotype. On the other hand, whilst not scarce with respect to

the total intracranial volume, brain cortex is highly heterogeneous due to partial

volume effects with both CSF and WM.
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Figure 12.3: Effects of misregistration between QuaSI-MTR and reference MTR maps

on the residual maps. P.u.: percentage units within [0, 1].

12.2 Field inhomogeneity effects

Finally, with reference to Figure 12.1, error maps in some subjects also exhibited low-

frequency patterns suggestive ofB0 field inhomogeneity (arrow) near air-tissue interfaces

(e.g. sinus) [119], which however did not occur for all subjects. The diverse incidence of

this effect in the test-set can be observed in Figure 12.4, where reference MTR maps for

two test-set RRMS subjects are shown: subject 1 does not present any visible inhomo-

geneity effects, whilst they are strong for subjects 2 (same subject shown in Figure 12.1).
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Figure 12.4: Inhomogeneities in ground truth MTR maps, manifesting as hyperintense

regions in proximity of air-tissue interfaces (e.g. sinus). Both subjects 1 and 2 belong

to the RRMS group, although inhomogeneities are observable only in subject 2 (subject

2 being the one shown in Figure 12.1). QuaSI-MTR maps do not seem to present

the same artifact. P.u.: percentage units within [0, 1].
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Discussions

The U-Net MS application objective aimed to offer surrogates for MTR using deep

learning. Unlike deep learning model fitting applications, popular in medical imaging for

using neural networks to replicate and speed-up model fitting, positive results were not

granted. In deep learning model fitting, the network target output y is calculated from

the input X a priori through a pre-existing model: y = f (X); the aim of the training

process is therefore to map the fitting function f in terms of neuron weights rather than

least-squares, and thus the network will produce, eventually, results virtually identical to

the traditional least-squares fitting ones. In this case there was no a priori certainty that

a relationship between qualitative images and MTR could be found, and it was rather

hypothesised based on MyRelax validation and MyRelax MS application objective results.

This hypothesis was corroborated as, despite the reduced training-set (24 subjects for

training, 12 for validation, and 12 for testing), QuaSI-MTR produced through deep

learning from qualitative images did exhibit strong similarity with the ground truth MTR.

13.1 Limitations

This approach faced particular challenges that do not otherwise affect deep learning

model fitting: sub-voxel misregistrations between target MTR and input qualitative

images, the inherent noise affecting MTR, coupled with the small-sample size, contrib-

uted to the slight blurring of the QuaSI-MTR and increased error spread in hypointense

or sharp-contrast areas, e.g. cortical GM. Additional data would certainly help reducing

the error variance due to under-representation in the training-set, such as lesions or

cortical GM interfaces with CSF and WM, although will not necessarily eliminate effects
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due to random noise and misregistration.

Additional data would also be required to further investigate the bias field–like artifact

observed in some reference MTR images, specifically withB0 andB1 mapping performed

simultaneously to the MT-acquisition. Proper bias field mapping and correction would

be necessary to assess in what amount this effect is due biological variability, rather

than bias field itself. With respect to the former, more training data would certainly

be required to ensure the U-Net is exposed to a sufficient amount of examples of MTR

variability, whilst with respect to the latter, that is in the hypothesis that this is mainly

a field inhomogeneity effect, supported by the sparsity across the dataset independent

of HC or MS status, this method would allow to generate QuaSI-MTR maps free of

bias field effects without the need for post-processing corrections.

13.2 Generalisability

Additional multi-centre data would be necessary to assess how well this method fares

with qualitative images acquired with different MR-scanners and protocols. Worse

results are to be expected if using the same U-Net trained on the current data to

regress QuaSI-MTR maps from qualitative scans acquired with very different acquis-

ition parameters and on different machines, and whilst a rich multi-centric training-set

encompassing a wide range of TEs and TRs, and scanner manufacturers might be a

solution, it might not be the best one for the niche this method aims to fill.

This method is not intended to act as a one-for-all solution for surrogate MTR mapping

from any set of qualitative data, but to provide each research centre the opportunity to

perform MT-analyses by training their own network tailored to the specific qualitative

data available to them. Different research centres might have large datasets of qualitat-

ive data acquired with different protocols, on different MR-scanners, through different

scanner upgrades, and a single network performing comparably well for any dataset might

be not only impractical, but also superfluous for any given centre having access to data ac-

quired in the same, or similar, conditions. One of the most important limitations of deep

learning approaches in general is in fact their generalisability to data not explicitly repres-

ented in the training-set, but a greatly generalised network is still not going to perform

better, on any given dataset, than a network specifically trained for that dataset alone.
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Figure 13.1: QuaSI-MTR use case. In case of corrupt MTR data, QuaSI-MTR can be

employed to recover MTR information from qualitative images, rather than discarding

the entire subject entry. P.u.: percentage units within [0, 1].

13.3 Fine-tuning

After having identified an archive of qualitative images suitable for this analysis, similarly

to the calibration step described for the MyRelax validation objective, a small cohort

of subjects with both MTR and qualitative data acquired in the same conditions can be

gathered from different projects, or prospectively acquired if necessary, and used to train

a network optimised to produce QuaSI-MTR maps from those particular qualitative

images. A pre-trained network, like the one resulting from this study, can be used as

starting point, with the new training-set being used to fine-tune the new network to the

particular data at hand. So whilst additional data from multiple centres could greatly

help in generating a strong and versatile pre-trained network, fine-tuning would enable

to tailor the network to the study specifics.

13.4 Missing data

In addition to retrospective, historical datasets of qualitative images, this method could

also be applied to new MT-studies, with missing or corrupted MTR maps. Using Figure

13.1 as an example, one can see that instead of discarding the entire subject entry,

which might include multi-modal acquisitions and clinical assessment information, and

thus took time and resources to gather, QuaSI-MTR could be employed to recover
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MTR information from the qualitative scans, using the remaining, correctly acquired

data to train (or fine-tune) a network for this purpose.

Summary

• Deep learning can be used to produce QuaSI-MTR that well correlates with

ground truth MTR.

• QuaSI-MTR might provide a way to perform MTR studies when dedicated

MT-scans are unavailable or missing.
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Introduction

Given the high-dimensional landscape of MRI modalities, being able to identify those that

are most likely to provide meaningful information for any given task, and are thus worth

clinical optimisation and adoption, is key for an accurate and efficient understanding of

MS mechanisms and prognosis of disease progression. Whilst the previous contributions

offered possible ways to enrich a dataset by extracting quantitative information from

qualitative images, this study aimed, through the top-down objective, to decompose

an already rich, multi-modal dataset to the constituent MRI features that are most

likely to be biophysically meaningful with respect to the MS phenotypes.

A multi-modal dataset of healthy controls (HC), subjects affected by a clinically isolated

syndrome (CIS) and clinically defined MS patients with relapsing remitting (RRMS) and

secondary progressive (SPMS) MS-phenotypes has been used. The dataset was used to

train and test support vector machine (SVM) and random forest (RF) machine learning

algorithms in order to explore the correlation between MRI features and MS subtypes.
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Methods

15.1 Cohort

The top-down study cohort, called CIS2014, consisted of a total of 123 subjects: 29

HC (10 men, age: 35±10 years old), 18 CIS (6 men, age: 47±10 years old), 63 RRMS

(15 men, age: 47±8 years old), 13 SPMS (4 men, age: 48±8 years old) patients with

same disease duration of 15 years after the first CIS. CIS patients did not manifest any

new MS-related symptom over the same 15 years time period.

15.2 MRI protocol

MRI data were acquired on a 3T Philips Achieva scanner. This study was approved

by the local ethical committee.

The acquisition protocol included:

1. PD/T2. Dual-echo 2D PD-/T2-weighted turbo spin-echo (TSE).

2. T1. 2D T1-weighted spin-echo (SE).

3. DWI. Multi-shell diffusion-weighted EPI.

4. Na. Sodium 3D-cone gradient echo (GRE).

5. 3DT1. 3D sagittal T1-weighted MP-RAGE — magnetisation-prepared rapid

GRE.

Details about the sequences are summarised in Table 15.1. Details about the DWI
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shells are reported in Table 15.2.

Two 4% agar phantoms with sodium concentration of 40 mM and 80 mM were placed

near the subject’s head during the sodium acquisition for calibration purposes. The 3DT1

scan was used for brain tissue segmentation purposes. Anatomical and DW-images

were acquired using a 32 channel head coil, whilst sodium imaging was performed using a

single channel transmit-receive volume head coil (Rapid Biomedical, Rimpar, Germany).

Table 15.1: CIS2014 MRI protocol details.
scan Res FOV

slices
slice

sequence
TE TR TI flip

time [mm] [mm] orientation [ms] [ms] [ms] angle[◦]

PD/T2 04:02

RL = 1 RL = 240

50 coronal TSE 19/85 3500 90AP = 1 AP = 250

FH = 3 FH = 150

T1 05:43

RL = 1 RL = 240

50 coronal SE 10 625 90AP = 1 AP = 240

FH = 3 FH = 150

3DT1 06:32

RL = 1 RL = 256

180 sagittal GRE 3.1 6.9 823 8AP = 1 AP = 256

FH = 1 FH = 180

DWI 16:34*

RL = 2.3 RL = 220

60 coronal EPI 82 13846* 90AP = 2.3 AP = 220

FH = 2.5 FH = 150

Na ∼40:00

RL = 3 RL = 240

80 coronal
3D cone

-GRE
0.22 120 90AP = 3 AP = 240

FH = 3 FH = 240

* Nominal, actual time depending on heart rate; TR = 12 beats.

Table 15.2: DWI shells.

b-value [s/mm2] Directions

DWI

300 8

711 15

2000 30

15.3 Image analysis

15.3.1 Preprocessing

The preprocessing was performed on the medical image data management tool

XNAT [109]. The preprocessing included lesion delineation and filling, registration and

brain segmentation as described in section 7.4.1.
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Figure 15.1: Examples of QuaSI-PD, -T2 and -T1 maps for HC, CIS, RRMS and SPMS

subjects. Periventricular lesions in RRMS and SPMS patients are clearly recognisable

as hyperintense regions in all modalities. P.u.: percentage units within [0, 1].

15.3.2 Relaxometry: MyRelax

Relaxometry maps were computed using the MyRelax framework as described in section

7.3.2. Examples of quantitative QuaSI-PD, -T2 and -T1 maps for HC, CIS, RRMS,

SPMS subjects are shown in Figure 15.1.

15.3.3 Diffusion imaging: spherical mean technique

DWI analysis was performed using spherical mean technique (SMT), as described in

section 4.17.5. The SMT toolbox [120] was used to compute quantitative maps of

intra-neurite volume fraction νin (intra), intrinsic diffusivity λ (diff ) and orientation

entropy H(q) (entropy ). Example maps are shown in figure 15.2 for HC, CIS, RRMS

and SPMS subjects.
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Figure 15.2: Examples of intra-neurite volume fraction (intra), intrinsic diffusivity

(diff ) and neurite orientation entropy (entropy ) maps for HC, CIS, RRMS and SPMS

subjects. Periventricular lesions are visible in RRMS and SPMS patients as regions

of hypointense intra-neurite volume fraction, which is suggestive of disruption of the

tissue microstructure. No lesions were reported for the CIS subjects. P.u.: percentage

units within [0, 1]; a.u.: arbitrary units within [0,∞).

15.3.4 Sodium imaging

Total sodium concentration (TSC) was calculated by calibrating the 23
11Na MR-signal

in the brain over the one generated by two phantoms with known TSC placed near

the head of the subjects at the time of the scan [71]. The phantoms were segmented

automatically as described in Prados et al. (2016) [121].

An example of TSC maps for HC, CIS, RRMS and SPMS subjects is shown in Figure 15.3.
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Figure 15.3: Examples of total sodium concentration (TSC) maps for HC, CIS, RRMS

and SPMS subjects. No clear alterations can be spotted for MS patients. Notice the

presence of the calibration phantoms in the TSC maps.

15.4 Features

The extracted MRI features were regional measurements of

• relaxometry: QuaSI-PD, -T2 and -T1(the QuaSI- prefix may be omitted in graphs

or summaries for better readability);

• diffusion imaging:intra, diff, and entropy ;

• sodium imaging, i.e. TSC;

• atrophy, i.e. tissue volume.

Summary statistics for each metric were calculated in white matter (WM), cortical and

deep grey matter (GM), for a total of 24 features for each subject.

Summary statistics were calculated by first excluding outliers from the data distribution

in each region, following the IQR method described in equation (11.1) in order to

reduce artifacts and partial volume effects, and then computing the median value of the

resulting distribution. Volumetric features were calculated by counting the number of

voxels within each tissue mask, and dividing the result by the total intra-cranial volume,

accounting for head-size variability.

This process was repeated excluding lesions from the regional distributions: MS patients’

lesion masks were dilated with a 3×3×3 uniform kernel (i.e. by one voxel over all

dimensions) and subtracted from the tissue segmentation masks. Therefore, in addition

to the baseline dataset calculated over the whole brain, a lesion-free dataset calculated

over only normal appearing tissue was also produced. Volumetric features were kept

the same for the two datasets.
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15.5 Classification

The raw data consisted of a 123×24-sized matrix X containing the summary statistics

for the 24 brain ROIs for each of the 123 subjects, and a 123-long array y indicating the

subjects’ class target labels (HC = 0, CIS = 1, RRMS = 2, SPMS = 3). The dataset

was used to train and test SVM and RF algorithms, over different binary classification

tasks: HC vs MS (that is RRMS and SPMS), CIS vs MS, and all binary permutations

of HC, CIS, RRMS and SPMS. This was implemented using Python 3.7.4 [100] and

the scikit-learn (sklearn) package [122].

15.5.1 Data initialisation

X was standardised column-wise such that the data distribution in each column had

mean of zero and standard deviation of one. Depending on the classification task,

subjects not involved in the classification were excluded, and the remaining labels

binarised — e.g. in the HC vs {RRMS, SPMS} classification task, the rows of X and

elements of y corresponding to CIS subjects were excluded, and {RRMS, SPMS} labels

were set to 1: y = 2, 3→ y = 1. (X, y)t will refer to the standardised data and target

labels filtered for a given classification task t.

15.5.2 Support vector machine

For SVM classification, the svm.SVC function from the sklearn package was used, se-

lecting linear as the kernel of choice. Whilst polynomial and RBF kernels can in fact offer

improved fitting performances in general, they also come with increased chance of over-

fitting, which is a concern particularly in datasets with small sample-size. The cost para-

meter C and the number of features K actually used for the classification were treated

as hyper-parameters and learned through cross-validation (CV) via grid-search, with

C = 0.1, 1, 10

K = 1, 2, 3, 5, 7, 10, 12, 15, 18, 24
(15.1)

For each classification task t, a 10-fold CV is implemented to select 1/10 of the subjects

to be used for testing and the remaining 9/10 for training. The splitting is stratified,

ensuring approximately the same class-proportions both in the training and test sets.

This is iterated 10 times until the entire dataset is used both for training and testing,
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which in turn is repeated 10 times with different splitting orders, for a total of 100

iterations. For each i-th iteration, the splitting follows:

(X, y)t =

1
10

9
10

(Xtest, y test)ti

(Xtrain, y train)ti

i = 1, ..., 100 (15.2)

For each i-th iteration, the training set (which for clarity will be referred to as outer -

training set) is further split into validation and inner -training sets through 5-fold

stratified-CV. This process is again repeated 5 times, for a total of 25 inner-CV

j-iterations:

(X, y)t →
1

10

9
10

(Xtest, y test)ti

(X
out
train, y

out
train)ti →

1
5

4
5

(Xval, y val)tj

(X
in
train, y

in
train)tj

i = 1, ..., 100

j = 1, ..., 25
(15.3)

For each j-th iteration, an analysis of variance (ANOVA) is run on (X
in
train, y

in
train)tj to

rank the 24 features based on their ability to discriminate between the classes in the

task. A SVMc classifier is then trained on (X
in
train
k , y

in
train)tj for every combination of (c, k)

with c, k ∈ C,K as defined in (15.1), where SVMc indicates a SVM estimator with

regularisation parameter set to c, and X
in
train
k the dataset reduced to the first k most

discriminating features according to the ANOVA.

The trained model is then applied to the reduced validation set Xval
k , producing a

probability array for the predicted labels ŷ val. The classification performance is assessed

by comparing the prediction to the target labels y val via receiver operating characteristic

(ROC) area under the curve (AUC)1, with ROC AUC scores close to 1 indicating good

classification performance, and ROC AUC scores around 0.5 corresponding to chance

(see section 5.2).

The inner-CV is repeated over j = 1, ..., 25, and the average ROC AUC is calculated

for each combination of the grid-search, with the best hyper-parameter values (c̄ , k̄)

being the ones associated to the highest mean ROC AUC on the validation sets.

Once the best hyper-parameters have been found, a new ANOVA is then run on the

outer-training set, k̄-features are selected, and a new SVMc̄ estimator is trained on

(X
out
train
k̄

, y
out
train)ti . The trained model is applied to the reduced test set Xtest

k̄
, and the

1In order to calculate the ROC AUC, probabilistic prediction was used.
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ROC AUC score calculated between predicted ŷ test and target labels y test. The average

ROC AUC across the i = 1, ..., 100 iterations indicates the estimator classification

performance on the test sets.

In addition to svm.SVC, the following sklearn functions were employed:

• model selection.RepeatedStratifiedKfold, for the data-splitting;

• model selection.GridSearchCV, for the grid-search CV;

• feature selection.SelectKBest, for the ANOVA feature-ranking;

• metrics.roc auc score, for the ROC AUC score calculation.

15.5.3 Random Forest

For RF classification, the ensemble.RandomForestClassifier function from the

sklearn package was used, with the number of trees set to 1000. Due to RF robustness

against overfitting and internal feature selection, no model selection was required, with

the remaining parameters being left to default.

For each classification task, a 10-fold stratified CV with 10 repetitions was implemented

as described in (15.2). Unlike the SVM training, inner-CV loop for model selection was

not required, otherwise the RF training and testing followed the same pipeline. The

RF classification performance was given by the average ROC AUC score on the test

set across the i = 1, ..., 100 train/test iterations.

Variable importances were averaged across iterations, returning the mean feature

ranking for the task; this allowed to identify the features that most contributed to each

classification task, and thus are more likely to be biophysically meaningful with respect

to MS progression.

The same process was repeated for the lesion-free dataset as well to investigate the

effect of lesions (or their absence) on RF classification performances.

15.5.4 Dealing with imbalanced data

The different number of subjects within each group make this dataset imbalanced. For

this reason, ROC AUC has been used to estimate the classification performance instead

of accuracy, i.e. the ratio between the number of correctly classified subjects over

the total number of subjects classified. Accuracy alone would in fact over-estimate
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classification performances that favour indiscriminately the majority class. In these

circumstances, true positive rate, or sensitivity, and false positive rate, i.e. 1−specificity,

offer a more meaningful estimation of classification performances, which the ROC AUC

conveniently summarise within a single score.

Dataset imbalance has also a chance to affect the training, with the trained model

being exposed to more data points belonging to the majority class, which may lead to

predictions biased towards that class. This effect can be counteracted with re-sampling

to artificially balance data during training. In this study, two data re-sampling strategies

were explored with both SVM and RF classification, using the imblearn package [123]:

• Random under-sampling: it allows to randomly sub-sample the majority class

such that it matches the size of the minority class. This method effectively reduces

the amount of information available to the classifier during training, discarding po-

tentially useful data, which may cause reduction in performances. Under-sampling

was implemented using the under sampling.RandomUnder Sampler function.

• Synthetic minority oversampling technique (SMOTE): it allows to generate

synthetic data in the minority class such that it matches the size of the majority

class. Synthetic instances are generated by interpolating neighbouring data points

in the feature space, effectively performing data augmentation [124]. SMOTE has

being shown to perform better than over-sampling by replication with repetition,

however it could lead to poor classification performances in case of data char-

acterised by high within-class variance and between-class similarity, as the newly

generated data from the minority class may actually overlap with the majority

class in the feature space, a phenomenon known as over-generalisation. Variants

of the standard SMOTE (e.g. Borderline SMOTE) and/or hybrid re-sampling

strategies can be applied in these cases to improve classification [125]. SMOTE

was implemented using the over sampling.SMOTE function.

15.5.5 Randomisation

In order to assess the significance of the classification results, the SVM and RF classi-

fication pipelines as described in section 15.5.3 were repeated 100 times with randomly

permuted labels.

For each iteration r = 1, ..., 100 and any given task t, target labels y were randomly

permuted, with ỹr being the permuted labels, keeping the original data X. A classifier
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was then trained and tested on (X, ỹr)
t as described previously, and the average test

ROC AUC score for each iteration recorded. The distribution of the 100 mean ROC

AUC scores was then used as reference to calculate the p-value associated to the

classification performances on the original data.
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Results

In this section, the classification ROC AUC scores for SVM and RF algorithms are

reported for the different resampling methods (SMOTE, no resampling, and under-

sampling). The permutation test outcomes are then shown, followed by the comparison

between whole-brain and lesion-free datasets. Finally, the findings related to the MRI

feature ranking are presented.

16.1 Classification

Classification results for SVM and random forest RF algorithms on the test-set are

shown in Figure 16.1. Mean ROC AUC scores for the best model during validation are

also shown for SVM. Median ROC AUC scores for the test-set are reported in Table

16.1; interquartile range (IQR) [25th percentile – 75th percentile] is used as a measure

of uncertainty, as opposed to standard deviation, due to the asymmetry of the ROC

AUC score distributions.

For both SVM and RF algorithms, and all three resampling strategies, the best classi-

Table 16.1: ROC AUC test-scores.
SVM RF

Tasks SMOTE no resampling under-sampling SMOTE no resampling under-sampling

HC – RR 0.83 [0.72–0.96] 0.86 [0.72–0.95] 0.83 [0.71–0.94] 0.89 [0.75–1.00] 0.90 [0.77–1.00] 0.89 [0.76–1.00]

HC – SP 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00]

HC – MS 0.88 [0.81–0.96] 0.90 [0.81–1.00] 0.88 [0.81–0.95] 0.90 [0.81–0.95] 0.92 [0.81–1.00] 0.89 [0.79–0.96]

CIS – RR 0.83 [0.71–0.92] 0.83 [0.70–0.92] 0.86 [0.70–0.93] 0.83 [0.74–1.00] 0.85 [0.71–1.00] 0.83 [0.67–0.95]

CIS – SP 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00] 1.00 [1.00–1.00]

CIS – MS 0.88 [0.75–1.00] 0.88 [0.78–1.00] 0.88 [0.78–1.00] 0.88 [0.75–1.00] 0.88 [0.75–0.97] 0.88 [0.75–1.00]

RR – SP 0.69 [0.50–0.86] 0.83 [0.67–1.00] 0.79 [0.57–1.00] 0.83 [0.67–1.00] 0.83 [0.55–1.00] 0.83 [0.50–1.00]

HC – CIS 0.83 [0.67–1.00] 0.79 [0.67–1.00] 0.83 [0.67–1.00] 0.92 [0.67–1.00] 1.00 [0.67–1.00] 0.83 [0.67–1.00]

RR = RRMS; SP = SPMS; MS = RRMS, SPMS
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fication results were obtained when classifying HC or CIS against SPMS patients, with

median ROC AUC scores and IQR equal to 1.00 [1.00 – 1.00] for both. Lower and more

spread-out ROC AUC scores were recorded when classifying HC or CIS against RRMS

patients, with median ROC AUC scores of about 0.84 and IQR ' [0.72 – 0.98] for HC

vs RRMS using SVM, 0.89 and IQR' [0.76 – 0.98] using RF, and 0.84 [0.71 – 0.95] for

CIS vs RRMS with both algorithms. Classification against both MS-subtypes at once

fell in between. With regards to MS, both HC and CIS appeared to behave similarly,

with CIS performing marginally worse (more spread out IQR), suggesting some shared

traits with the MS groups, not observed in HC.

The worse classification performances were observed for SVM and the SMOTE res-

ampling method for the RRMS vs SPMS task, with median ROC AUC of 0.69 [0.50

– 0.86], showing signs of overfitting to the validation-set, likely due to the heaviest

class imbalance among the tasks (about 45 RRMS vs 8 SPMS in the inner training-set)

and the synthetic over-sampled examples possibly overlapping with the majority class.

Random under-sampling with SVM showed higher ROC AUC spread than no resampling,

but close median ROC AUC scores: 0.79 [0.57 – 1.00] and 0.83 [0.67 — 1.00] re-

spectively. Better results were observed for RF, with same ROC AUC median values

of 0.83, but different IQR depending on the resampling: [0.67 – 1.00] for SMOTE,

[0.55 – 1.00] for no resampling, [0.50 – 1.00] for under-sampling. The different results

obtained for SVM and RF indicate that the model selection step in the SVM pipeline

might exacerbate issues related to imbalanced datasets, particularly in cases of high

class imbalance like this classification task.

The classification of HC versus CIS showed interesting results, with median ROC AUC

scores of about 0.82 for SVM and 0.92 for RF, and IQR = [0.67 – 1.00] for both.

Despite the similar performances when classifying HC and CIS against MS, and CIS

subjects not having manifested any MS-related symptoms in the 15 years prior to the

acquisition, these results suggest long-term alterations might have accrued in the CIS

population following the initial clinically isolated syndrome, discriminating them from

HC on an asymptomatic level. A more conservative explanation revolves however on

the confounding effect of age differences between the two groups, with HC being,

on average, 12 years younger than CIS. These hypotheses and their implications are

discussed in detail in section 17.2.
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Figure 16.1: Classification results for SVM and RF algorithms, with no data re-sampling,

SMOTE and random under-sampling. Best-model mean ROC AUC validation scores are

shown for SVM for the three re-sampling methods; no model selection was implemented

for RF instead. HC vs SPMS and CIS vs SPMS ROC AUC scores are mostly 1.0.

16.2 Randomisation

Permutation test results for SVM and RF algorithms, and the three resampling strategies,

are shown in Figure 16.2. For each permutation iteration, the average ROC AUC

score was calculated over the test-set: the resulting distribution was used to assess

the p-value associated to the average ROC AUC score for each classification task. All

classification results fell below p < 0.01, except for the RRMS vs SPMS task, with

p < 0.05 for SVM and random under-sampling, and not significant results for SVM

with SMOTE — as expected given the overfitting.

Additionally, no-resampling appeared to produce skewed permutation distributions,

i.e. with tails towards high ROC AUC scores, and thus not symmetric around 0.50 as

expected for randomly permuted data. Upon further investigation, this issue was again

revealed to be caused by the data imbalance, coupled with model selection. This was

corroborated on a toy dataset of comparable sample-size as one of the classification

tasks exhibiting this behaviour, and exaggerated class imbalance ratio of 1:10 for

classes 0 and 1 respectively, with 1 being the majority class. The toy dataset was

generated using the make classification function from the sklearn.datasets

package. Upon training a SVM algorithm with no data resampling, following the same

pipeline used above, and applying it to a toy test-set of 10 normally distributed random
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Figure 16.2: Permutation test. Mean ROC AUC scores were compared to the

distributions of mean ROC AUC scores over 100 permutations. p < 0.01 was observed

for most tasks; not significant results were observed using SMOTE (over-fitting). No

resampling produced skewed permutation distributions due to the data imbalance. RF

did not show differences for the different resampling methods.
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data entries, classification probabilities of:

P (ŷ |1 : 10) = {0.74, 0.73, 0.73, 0.73, 0.73, 0.73, 0.73, 0.74, 0.73, 0.74} (16.1)

were obtained. When inverting the class imbalance ratio to 10:1, with 0 being now the

majority class, but keeping the rest unchanged, the opposite was observed:

P (ŷ |10 : 1) = {0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27} (16.2)

where P < 0.50 determines a prediction for class 0, or class 1 otherwise. In these

conditions, the SVM algorithm tends therefore to favour the majority class, which in turn

might translate into higher ROC AUC scores if the test-set is also equally imbalanced.

In the case of the dataset used in this study, the imbalance ratio was not as extreme

and, in fact, with the exception of SMOTE overfitting in the RRMS vs SPMS task, no

other important differences were observed in terms of SVM classification performances

between either of the resampling methods (SMOTE or random under-sampling) and no

resampling. This phenomenon only emerged when classifying randomly permuted data,

thus presumably only when an underlying relationship between classes could not be

found, and it was likely exacerbated by the model selection, given no such behaviour was

observed for RF. In light of these observations, only RF will be taken into consideration

for the following steps.

16.3 Lesions

The results reported so far were produced from a dataset of whole brain regional values,

which included lesions when calculating the median value for each tissue distribution.

RF classification results for data produced upon excluding lesions from the regional

distributions are shown in Figure 16.3. No major differences were observed between

the two sets of results.

Whilst the presence, number, location and characterisation of lesions are fundamental

features for MS diagnosis, lesions also affect often relatively few voxels and with sparsely

heterogeneous patterns across the MS population. These results suggest in fact the

effect of lesions might not be as prominent when analysing median regional values, as

their information might be lost when computing summary statistics, or overshadowed

by more macroscopic alterations (e.g. atrophy, see next section).
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Figure 16.3: Effect of lesions on classification. Similar results were obtained upon

excluding lesions prior to calculating regional values, compared to keeping them

included. RR = RRMS, SP = SPMS.

16.4 Biophysically meaningful features

For the purpose of investigating possible biophysically meaningful features with respect

to MS pathophysiology, RF variable importances were observed. Given the similar

classification performances between resampling methods and no resampling, in order

to reduce the likelihood of spurious results coming from synthetic over-sampling, and

information loss associated to under-sampling, no data resampling strategy was im-

plemented. Feature rankings and associated data distributions for each classification

task are shown in Figures 16.4 and 16.5. The features contributing to 50% of the

classification, i.e. the top ranked features whose combined importances amount to half

the total (0.5), have been highlighted.

Feature ranking distributions showed highest skewness for HC or CIS classification

against SPMS, which is compatible with the best classification performances across

the tasks, indicating fewer features contributing the most to the classification. With

respect to the top ranked features contributing to 50% of the classification process,

when classifying HC against MS patients, atrophy appeared to be the most relevant set

of features (↓vol in MS), particularly volume loss in deep GM. Entropy and intra-neurite

volume fraction, particularly in WM, also appeared to contribute when classifying

against RRMS, suggesting a higher relative incidence of microstructural alteration in

terms of reduced neurite orientation coherence and integrity with respect to SPMS,
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respectively (↓entropy, ↓intra). Similar atrophy contributions were observed when

classifying CIS against MS (↓vol), although with a higher incidence of microstructural

alterations described by reduced intra-neurite volume fraction in WM (↓intra), and the

emergence at lower ranks of relaxometry-related features, suggestive of inflammation,

as well as demyelination, particularly in WM (↑PD, ↑T2, ↑T1).

A different pattern of alteration was observed when classifying MS subtypes against

each other. No atrophy contribution emerged from the top-ranked features, which

instead included a strong component of diffusion-related microstructural alterations

Figure 16.4: Biophysically meaningful features. Atrophy appeared to be the most

important feature when classifying HC vs MS patients, with diffusion-related alterations

also contributing when classifying against RRMS. Continues to Figure 16.5.
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Figure 16.5: Biophysically meaningful features. Continued from Figure 16.4. Atrophy

contributed to CIS vs MS classification as well, with stronger incidence of diffusion-

and relaxometry-related alterations. Different patterns of alteration were observed

in the RRMS vs SPMS classification task, dominated by diffusion and relaxometry

alterations, but no atrophy, and HC vs CIS, characterised by cortical atrophy, diffusion

and sodium alterations, but no relaxometry. PD, T2, T1: quantitative QuaSI-PD,

-T2, -T1; intra, diff, entropy : intra-neurite volume fraction, intrinsic diffusivity, neurite

orientation dispersion entropy; Na: total sodium concentration; vol : tissue volume

(atrophy); cGM: cortical GM; dGM: deep GM.

given by lower intra-neurite volume fraction for SPMS patients compared to RRMS,

and increased T1 and T2 in cortical GM (↓intra, ↑T1, ↑T2 in SPMS with respect to

RRMS). Given the small sample-size and high class imbalance associated in particular

to this classification task, these results are likely to include spurious alterations, for
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example the reduced diffusivity in deep GM for SPMS compared to RRMS (↓diff ), and

thus more data would certainly be necessary to make any inference about the biological

correlates of the observed results. However, given the distinct pattern of alterations

observed for this classification task, dominated by diffusion and relaxometry metrics in

the top-ranking features, one could speculate that whilst RRMS and SPMS differ from

HC mostly in terms of structural alterations (atrophy), they appear to differ against

each other on a more microstructural and inflammation/demyelination-related level.

Finally, when classifying HC against CIS, yet another distinctively unique pattern of

alterations emerged. In addition to atrophy in cortical GM and diffusion-related al-

terations (↓vol, ↓entropy, ↑diff, ↑intra in CIS), total sodium concentration, both in

WM and cortical GM, appeared among the top-ranked features, with increased values

for CIS compared to HC (↑Na). This result is in line with studies showing increased

total sodium concentration in cortical GM being associated to cognitive impairment

in RRMS patients. The same caveat disclosed beforehand applies to this case as well:

the increased intra goes against the usual reduction in intra-neurite volume fraction

associated to MS, and thus could be spurious, however the fact that it emerged both

in deep GM and WM, and that 15 years stable CIS subjects are not indeed MS patients,

might be indicative of some other phenomenon worth investigating. The absence of

relaxation-related metrics in the top-ranked features is compatible with the lack of

pathology in the CIS population, whilst diffusion- and sodium-related alterations might

be suggestive, respectively, of long-lasting microstructural and functional alterations

accrued past the initial clinically isolated syndrome, despite the lack of symptoms. This

is also compatible with the different classification results and patterns of alterations

observed when discriminating HC against MS, with respect to CIS against MS. The

emergence of total sodium concentration among the possible biophysically meaningful

features is particularly interesting, since this is the only task where it showed a strong

contribution to the classification, and with sodium imaging being mostly a niche modality

in the MRI multi-modal landscape, it might be worth further investing.
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Discussions

The top-down study helped ranking MRI modalities with respect to different classific-

ation tasks, highlighting which ones might be biophysically meaningful in the context

of MS characterisation. The dataset included QuaSI-PD, -T2, and -T1 maps extracted

from qualitative data using the MyRelax framework, intra-neurite volume fraction,

intrinsic diffusivity and neurite orientation dispersion entropy diffusion metrics, atrophy,

and total sodium concentration in WM, cortical and deep GM. The cohort was com-

posed of HC, MS patients with RRMS and SPMS phenotypes with 15 years disease

progression, as well as subjects who did not manifest any new symptom suggestive of

MS in the 15 years following their initial clinically isolated syndrome (CIS).

17.1 Limitations

The interpretation of these results is conditional to the small sample-size, and the

different models used to fit the multi-modal MRI data, each coming with its own

limitations and assumptions. Possible age-confounders due to the average younger

HC population compared to CIS and MS patients might also influence the results, as

described in detail below.

Overall, these results do not aim to portray a comprehensive picture of the biophysical

alterations associated to the MS subtypes investigated, as this goes beyond the scope of

machine learning: what follows is intended to discuss where these findings fall within the

landscape of multi-modal MRI literature, and how they could help inform further research.
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17.2 Atrophy

Atrophy emerged as the most important feature in the classification of HC against MS

patients, with atrophy in deep GM scoring consistently higher than cortical GM or WM,

for both RRMS and SPMS. When classifying HC against SPMS specifically, atrophy

alone contributed to almost 50% of the classification process. This result is in line

with previous studies reporting not uniform atrophy within the brain in MS, in particular

deep GM showing the highest rate of tissue loss in relapsing-remitting and progressive

MS [126]. Deep GM significant involvement in MS neurodegeneration is well known

in the scientific community, however a consensus for the incorporation of global GM

volumetrics into clinical practice has only recently been reached, and the inclusion of

deep GM structures (e.g. thalami, basal ganglia) in particular is still debated [127, 128].

Further research is therefore recommended.

Similar result were observed when classifying CIS against MS, with comparable con-

tributions from WM and deep GM, and below-threshold importance in cortical GM

against RRMS. This suggests a certain degree of similarity in terms of cortical GM

volume loss exists between CIS and RRMS, compared with HC. Cortical GM volume

was in fact the most important feature when classifying HC against CIS, with deep GM

and WM volume scoring very low in the ranking distribution, which indeed indicates,

given the data at hand, cortical atrophy associated to the CIS phenotype.

The most conservative explanation revolves around age: it is known from the literature

that cortical volume loss is mildly correlated with age [129], and the HC population

used for this study had an average age 12 years lower than CIS, RRMS and SPMS,

whilst the CIS and MS populations were age-matched. Negative correlation was indeed

found within the HC population between both pre-standardised cortical and deep GM

volume, and age: slope β1 = −0.000484, p = 0.009 for cortical GM; β1 = −0.000066,

p = 0.006 for deep GM. Age-adjustment was performed, for each of these features, by

subtracting β1×age from the data. GM volume distributions before and after adjusting

for age are shown in Figure 17.1; t-test was also performed between all group pairs and

statistically significant p-values reported as well. The results show that the statistically

significant differences between cortical volume of HC vs CIS, and HC vs RRMS can

be explained by the age covariance, as the null-hypothesis is no more rejected after

correcting for age. This would explain why alterations in cortical GM were observed

between HC and both RRMS and CIS, but not between CIS and RRMS, as CIS and

RRMS are age-matched. All other comparisons, either for cortical or deep GM volume,
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stay however significant before and after age-adjustment, and thus we might deduce

that age has no significant effect on them, or changes due to MS are large enough to

overcome age-related atrophy. On the other hand, it is not possible to definitely dismiss

cortical GM volume loss in CIS and RRMS as an age confounder, as the age-adjustment

process comes with its own limitations:

• the correlation between GM volume loss and age might not be actually statistically

significant in the first place, if taking into account correction for multiple com-

parisons, e.g. Bonferroni p ≤ 0.05/n, with n = 24 features, then the threshold

for statistical significance would become p ≤ 0.002;

• the age-adjustment coefficient was calculated on HC, with age range [20 – 56]

years, and there is no guarantee it will adequately correct data from CIS or

RRMS patients with age range [33 – 65] years, e.g. the correction might over- or

under-estimate the effect of atrophy at older age and/or in presence of pathology;

• the observed cortical GM alterations affecting CIS and RRMS populations might

not be completely due to age, and slow-rate cortical GM volume loss due to

pathology might coexist with the age-related atrophy.

Overall, additional HC age-matched data would be required for further conclusive

evidence.

That being said, previous studies reported deep GM volume loss in CIS patients at

presentation, and in particular thalamic atrophy being associated with conversion to

clinically defined MS after 2 years [130, 131], which were not however observed in this

study. The findings reported in literature do not necessarily conflict with the observed

results, and might actually be complementary: it is worth recalling that the CIS subjects

analysed in this study present a 15 years-long stable clinical status, and are therefore

likely not to convert to MS, which explains why no deep GM atrophy has been observed,

whilst CIS subjects reporting deep GM atrophy at presentation had likely converted

in the same time period.

Finally, no strong atrophy contribution was observed when classifying MS subtypes

against each other, with cortical and deep GM volume loss scoring at the 50% cumu-

lative importance threshold. Whilst there are differences in terms of GM volume loss,

they do not seem to be as meaningful as other features when discriminating RRMS

against SPMS at 15 years follow-up.
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Figure 17.1: Correlation between GM atrophy and age. Top row: cortical GM; bottom

row: deep GM. Left column: original data (not standardised), HC used to calculate

the correction coefficient β1 (blue line: y = β0 + β1x); right column: age-adjusted

data. Age covariance explains the statistically significant differences in cortical GM

for HC vs CIS, and HC vs RRMS. *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001.

17.3 Diffusion-weighted imaging

Diffusion weighted imaging (DWI) metrics emerged in most classification tasks, sug-

gesting a widespread involvement of microstructural alterations in MS pathophysiology.

Against HC, MS patients exhibited higher fibre dispersion (lower neurite orientation

dispersion entropy) in WM, and intra-neurite volume fraction loss in WM and cortical

GM. Together with atrophy, although with lower relative importance, diffusion metrics

contributed to 50% of the classification process. This is in line with previous findings

in diffusion tensor imaging, reporting reduced fractional anisotropy (FA) in several WM

regions [132], compatible with reduced entropy, and increased density of transected

neurites, causing intra-neurite volume loss, in both cortical lesions and myelinated
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tissue [133] in MS. A very recent study by Johnson et al. (2021) on the same CIS2014

cohort used for this study has shown alterations in SMT intra-neurite volume fraction

and entropy in RRMS patients, with respect to HC, to correlate with the associated

DTI and NODDI metrics (see section 4.17.4), as well as with physical disability [134].

Similar results were observed in SPMS patients compared to RRMS, indicating a

correlation in the severity of microstructural alterations with MS subtype. Slightly

reduced intrinsic diffusivity was also observed in SPMS with respect to RRMS, which

cannot be easily interpreted: likely a spurious result due to the heavy class imbalance

(13 SPMS vs 63 RRMS in total), although there can be room for different explanations,

as discussed below.

Reduced intra-neurite volume fraction in WM and cortical GM was also observed when

classifying CIS against MS, but not entropy. As with cortical atrophy, this might indicate

the presence of microstructural alterations in both the CIS and MS populations but,

unlike cortical atrophy, this cannot be similarly explained in terms of age covariance,

since no significant correlation between neurite orientation dispersion entropy and age

could be found within the HC population (p > 0.47). Entropy in WM was indeed the

second most relevant feature when classifying HC against CIS, or the first if excluding

cortical GM volume as an age confounder, with reduced entropy being observed in CIS

subjects. This is also in line with published studies reporting evidence for structural

network alterations, namely but not limited to the thalamocortical network, involving

reduced FA not explained by WM lesions, in CIS and patients with early MS [135, 136].

Increased intrinsic diffusivity in cortical GM, which could be however explained by age

(β1 = 6 · 10−6, p = 0.04), and alterations in intra-neurite volume fraction were also

observed in CIS deep GM and WM with respect to HC, with no statistically significant

correlation with age for the latter (p > 0.15). Opposite to the reduction observed

for intra-neurite volume fraction in MS patients, and to what it would be expected

in the context of a neurodegenerative disease, increased values were observed in CIS

compared to HC. Given the small sample-size, this could also be explained as a spurious

result, however given the same behaviour observed both in WM and deep GM, and

the widespread contribution of diffusion metrics to the HC vs CIS classification, it is

reasonable to explore other options involving microstructural alterations as well.

Apparently counter-intuitive results are in fact not new in the context of DWI, for example

increased FA has been reported in both cortical lesions and normal appearing cortex,

positively correlating with disability in MS [137], as well as in deep GM nuclei of patients
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with Huntington disease [138]. This has been explained as selective neurites degenera-

tion with consequent dendritic arborisation loss which, together with increased microglia

activation, can cause increased relative orientation coherence, and thus higher FA [139].

At the same time, evidence for adaptive network reorganisation mechanisms has been

reported, compensating for early tissue damage in CIS subjects at presentation [140]: in-

creased intra-neurite volume fraction in WM and deep GM might therefore be the result

of structural connectivity reorganisation to limit the impact of the physiological changes

after CIS, e.g. on the thalamocortical network, whose effects are still visible 15 years after

the onset in those subjects who did not convert to clinically defined MS. Alternatively, it

could be an indicator of axonal swelling, which would increase the intra-neurite volume

fraction, arising as a byproduct of an adaptive physiological change: this interpretation

is particularly fitting when also considering the increased total sodium concentration

observed in the same regions, as it is further explored in section 17.5. Either way, histo-

logical evidence would be required to further determine the nature of these alterations.

That being said, it is important also to keep in mind the dependency of these findings

from the model used to fit the DW-data, and the relative assumptions. The SMT model

used in this work assumes the signal to be produced by an intra- and an extra-neurite

compartment that are impermeable to each other, and whose relative volume fractions

add up to 1. These or similar constraints are common in clinically available multi-

compartmental diffusion model, as they help keeping the model complexity and the data

required clinically feasible, however they might only partially hold in case of MS pathology.

The model does not account, in fact, for a myelin compartment, as the T2 associated

to the macromolecular water pool would be too short to produce a clinically measurable

signal, however the physical presence (or lack of thereof, in MS) of a myelin sheath

would still affect the interaction between intra- and extra-cellular volume fractions, as

their sum would not add up to 1 anymore, but rather be a function of myelin content.

Furthermore, the impermeability approximation is likely sensible in the case of healthy,

myelinated neurites, but might in fact not hold for unmyelinated neurites, as they lack

the insulating sheath provided by myelin. Due to the predominance of demyelination

in MS, these assumptions are likely to affect the fitted parameters, and thus, as the

SMT authors have also noted [49], results should be interpreted accordingly.
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17.4 Relaxometry

Relaxometry features extracted through the MyRelax framework from qualitative im-

ages emerged mainly when classifying CIS against MS patients, and RRMS against

SPMS, exhibiting a trend of increasing values correlating with the severity of the clinical

status. With respect to CIS, the RRMS population exhibited widespread WM alterations

in terms of all relaxometry features, that is increased QuaSI-PD, -T2, and -T1 regional

values. Increased QuaSI-PD in WM was also observed, at threshold, when classifying

RRMS against HC, although with a much lower relative importance than atrophy and

DWI-metrics. Increased QuaSI-T2 compared to CIS was also observed in cortical GM,

with a higher relative importance for SPMS. Alterations in cortical GM appeared to

be in fact particularly meaningful for the RRMS vs SPMS classification task, where

increased QuaSI-T1 and QuaSI-T2 were observed in the cortex.

The diffused involvement of WM alterations, particularly increased QuaSI-PD, indicate

a strong component of axonal demyelination typical of MS, that becomes especially

meaningful in classification tasks where differences in volumetric measurements are

not as pronounced. MS subtypes appear to share the same degree of WM alterations,

however prolonged relaxation times, particularly QuaSI-T1, in cortical GM in SPMS

compared to RRMS seem to indicate a progression in the tissue degeneration, and

a correlation between cortical involvement and clinical disability. These results and

relative interpretations are in line with published studies, reporting in MS patients:

• reduced myelin water fraction and MTR in normal appearing WM [53], indicative

of demyelination, which in turn causes increased PD;

• diffusively prolonged T2 not dependent on lesional tissue, also suggestive of

demyelination and/or inflammation [141];

• global increase in T1 with more marked effects observed in cortical GM associated

with clinical disability, with worse results in SPMS than RRMS patients [142].

No meaningful contribution of relaxometry features was observed in the HC vs CIS clas-

sification task, which is in line with the lack of clinical symptoms in the CIS population.

QuaSI-T2 in cortical and deep GM emerged at- and below-threshold: whilst the distribu-

tions for the two populations are largely overlapping, CIS exhibited, on average, slightly

lower QuaSI-T2 values than HC, opposite to theT2 increase observed in pathology, which

can be explained by the age difference between the two groups (β1 = −0.07, p = 0.005

for deep GM, β1 = −0.09, p = 0.0008 for cortical GM). This result is therefore likely
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due to age-related iron deposition, which shortens T2 relaxation time and has been

reported to accumulate in cortical and deep GM with age [143, 144] and not to MS.

Whilst these results are not new, it is worth recalling that these relaxometry maps

were not the result of specialised MR-protocols, but were extracted for free from

otherwise unused qualitative scans. The fact that QuaSI-PD, -T2, and -T1 maps on a

relatively small dataset managed to replicate clinical outcomes of dedicated quantitative

studies shows the utility of the MyRelax framework, and more importantly the often

underestimated potential of qualitative data.

17.5 Sodium imaging

Sodium imaging appeared to be particularly meaningful when classifying CIS against HC,

with high total sodium concentration observed for CIS subjects in WM and cortical GM,

as well as deep GM, although below-threshold. Increased values were also observed,

below-threshold, in MS when compared to HC, as well as SPMS to RRMS, although

providing a much lower contribution to the classification than other features. No

correlation with age was found in the HC population (p > 0.55), indicating this result

is likely not due to the different average age between groups.

Increased total sodium concentration in MS has been reported in literature, with modest

involvement at early stage and growing with disease progression [145]. It has been

associated with the over-expression and redistribution of sodium-potassium channels

from the Ranvier nodes to newly demyelinated membrane. This is an adaptive response

to the disruption of saltuatory conduction caused by demyelination, apt to preserve

action potential transmission, limit the onset of neurological deficits, and facilitate

recovery. This however also increases the axonal metabolism, as the proliferation of

the sodium-potassium active pumps comes with higher energy expenditure which, if

not satisfied, causes the accumulation of intra-cellular sodium, resulting in increased

values of total sodium concentration. In MS, the impaired trophic support from oli-

godendrocites and mitochondrial dysfunction contribute to energy under-production

which, coupled with the increased metabolic need, can lead to axonal degeneration due

to metabolic failure secondary to chronic energy deprivation [146].

The increased total sodium concentration observed in MS can thus be explained as

the byproduct of sodium channels over-expression which is still present over the 15

years disease progression. This interpretation could also indirectly explain the increased
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intra-neurite volume fraction observed in the CIS population, as failure of the sodium-

potassium pumps, with consequent intra-cellular accumulation of sodium, might induce

axonal swelling through osmosis [147]. Coupled with a reduction in the myelin com-

partment due to early demyelination, axonal swelling can result in the observed increase

of intra-neurite volume fraction. Osmotic swelling might eventually lead to axonal loss,

which results instead in reduced intra-neurite volume fraction, both of which have been

observed in clinically defined MS [148].

CIS presenting similar alterations to MS, seconded by the absence of sodium features

in the CIS vs MS classification, suggests the same neuroprotective mechanisms may

be at play in the stable CIS population, but, unlike MS, they do not lead to measurable

demyelination, axonal loss, other MS-related symptoms over the same time period.

One could speculate that, despite the 15 years-long stable CIS clinical status and the

absence of symptoms, these subjects did accrue silent long-lasting, if not irreversible,

microstructural and functional alterations, which sodium imaging would greatly help

further investigate. The ability to adapt to the increased metabolic demand without

succumbing to energy failure, or avoiding axonal degeneration by excessive osmotic

swelling, might be compensatory or even protective mechanisms, and as such key factors

in what determines conversion, or lack thereof, to clinically defined MS.

Summary

• Brain volumetrics offer a reliable indicator of MS pathology that is relatively

simple to compute and straightforward to interpret.

– Better discrimination power could be achieved by separating atrophy in deep

and cortical GM.

– Volumetric measurements might not constitute the most meaningful feature

when discriminating among MS subtypes, stable CIS against HC, or non

age-matched groups.

• DWI offers a wide breadth of classification markers, as microstructural alterations

are at the core of neurodegenerative diseases.

– DWI also comes with several limitations which should be taken into account:

∗ lengthy, specialised acquisition protocols;

∗ low-resolution maps, prone to artifacts (Gibbs ringing, Nyquist ghost);
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∗ dependency on the chosen model-fitting method;

∗ challenging interpretation of the results.

– DWI metrics might not constitute the most meaningful features when dis-

criminating between HC or CIS against MS, as atrophy could be equally or

more representative, but with fewer limitations.

• Relaxometry offers a well known indicator for axonal demyelination and inflam-

mation sensitive to MS severity.

– Relaxometry is particularly meaningful in classification tasks where atrophy

is not as important, either due to volume loss being equally present in both

groups, or absent.

– Relaxometry- and indirect myelin-features might not be as informative in

terms of microstructural damage as diffusion, however with MyRelax, or

equivalent bottom-up methods, they could be extracted from qualitative

data, providing additional value at no additional cost.

• Sodium imaging offers a specialised indicator for functional and microstructural

axonal integrity.

– Due to the dedicated MR-protocols and low-resolution maps, even lower

than DWI, sodium imaging might not represent the most fitting option for

classification tasks better defined by volumetrics, relaxometry or DWI.

– Sodium imaging might constitute a particularly meaningful feature when in-

vestigating silent (i.e. not associated to atrophy, lesions or other MS-related

symptoms) physiological alterations.
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Conclusions and future works

In this study, two converging approaches have been followed to investigate how to best

use the available MR-data for understanding the mechanisms of MS.

On one hand, qualitative data commonly used in clinical research as workhorse for lesion

count and anatomical purposes have been shown to carry quantitative information

that could be used to conduct myelin and relaxometry analyses on cohorts devoid of

dedicated quantitative acquisitions. This study arm, named bottom-up, as qualitative

information was up-converted to quantitative surrogate, was conducted on the basis

of three objectives:

1. MyRelax validation: to assess the accuracy and reproducibility of QuaSI-PD,

-T2, -T1 maps obtained from the qualitative scans using the MyRelax framework,

by comparing them with the quantitative PD, T2, T1 maps obtained using gold

standard quantitative MRI sequences.

2. MyRelax MS application: to evaluate the applicability of the MyRelax frame-

work to MS, with QuaSI-MTV maps produced using MyRelax being compared

to MTR, to test how much information attributable to myelin is shared by the

two modalities. T1-/T2-weighted ratio images (T1w/T2w) were also compared

to the MTR maps for the same reason.

3. U-Net MS application: to implement a deep learning network to extract MTR

information directly from the qualitative scans — QuaSI-MTR — bypassing

traditional model fitting.

On the other hand, when analysing multi-modal MR-data of healthy controls and subjects

with a different 15 years-long stable clinical status, different MR-features appeared to be
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meaningful with respect to specific classification tasks. The top-down study consisted

in using machine learning to reduce the dimensionality of the multi-modal MRI dataset

only to those feature that are more likely to be biophysically meaningful with respect

to characterising MS progression, informing future acquisitions and investigation.

Following these objectives, we have investigated, developed and presented an array

of options that, through advanced quantitative MRI and machine learning techniques,

build towards a more in-depth characterisation of MS pathophysiology and a more

efficient research environment. These findings can be summarised within three main

contributions, as detailed below.

18.1 MyRelax: myelin and relaxation imaging

The MyRelax framework provides a way to extract indirect myelin and quantitative

relaxometry indices from routinely acquired qualitative scans. The QuaSI-maps so

produced have been shown to correlate well with ground truth in a prospective cohort of

healthy controls, with QuaSI-MTV behaving similarly to MTR in a retrospective cohort

of MS patients as well. Furthermore, by employing MyRelax to produce QuaSI-PD,

-T2 and -T1 maps used as part of the Biophysically meaningful features for classi-

fication of MS phenotypes contribution, that would have otherwise lacked these

modalities without additional MRI data acquisitions, we have also presented a practical

example of how this method can supplement quantitative information when applied

to a multi-modal MRI study, at no added cost.

Additional, multi-centric data would be required in future works to estimate the gen-

eralisability of this framework, which represents the main limitation of this method.

The same results might in fact not be reproducible on data acquired with different MR-

protocols and/or on different MR-scanners, in which case a revision to the underlying

MyRelax model would be due. On this regard, a calibration step has been proposed

as a possible solution to inter-study variability, providing a way to tailor MyRelax maps

to the specific acquisition protocols for any given research centre. Future studies may

explore the implementation and use of similar frameworks to include and/or produce

different contrasts images, e.g. FLAIR, further optimising clinical acquisition protocols.

Overall, through the MyRelax validation and MyRelax MS application objectives, we have

shown that it is indeed possible to exploit, by means of traditional model fitting, routine

qualitative data for more than simple lesion delineation and brain tissue segmentation.
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Whilst more data is needed for further validation of these results, MyRelax holds

potential for providing new avenues for quantitative mapping when dedicated scans are

not available, paving the way to quantitative analyses of large, historical MS datasets.

18.2 Deep learning MTR from qualitative images

As a direct follow-up of the MyRelax: myelin and relaxation imaging contribution,

under the bottom-up hypothesis that qualitative scans contain quantitative information,

we showed through the U-Net MS application objective that deep learning can be indeed

used to extract indirect myelin content information directly from qualitative images,

with QuaSI-MTR maps well correlating with ground truth MTR in an MS cohort.

Additional data may be required, as well as a multi-centric dataset, to assess the gen-

eralisability of the method to different routine scans. Given however that the relatively

small dataset employed in this study was still enough to produce acceptable results,

it would be possible, for any given research group, to train a specific network tailored

to their own qualitative data, instead of relying on one generalised network. Future

works would focus on testing the feasibility of transfer learning to adapt this, or similar,

networks to qualitative data acquired with different MR-protocols and/or MR-scanners

via fine-tuning, compared to training a new model using varied, multi-centric data from

scratch. Future works may also include testing whether QuaSI-MTR can replicate

MTR clinical outcomes, e.g. from concluded clinical trials, on the same MS dataset

containing both qualitative and MT-data, as the clinical relevance of this method has

yet to be investigated. Finally, whilst specific to MTR in this particular case, this

contribution offers a framework for surrogate quantitative MRI mapping that could

be applied, virtually, to a wide variety of MRI modalities: future studies may investigate

what kind of quantitative information strictly requires dedicated scans to be accessed,

which MRI modalities could be otherwise extracted from qualitative images through

deep learning with comparable sensitivity to pathology, and everything in between.

Overall, in this study we have shown that deep learning can be employed to transfer

information from routine scans to quantitative maps, especially when an explicit physical

model mapping the former to the latter is not available, or traditional model fitting

approaches are otherwise not feasible. As with MyRelax, being able to access indirect

myelin information from qualitative data readily available in the form of QuaSI-MTR

maps would be be of great use for sustainable MS research.
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18.3 Biophysically meaningful featuresforclassification

of MS phenotypes

Machine learning has been shown to be an important tool in medical imaging for its

ability to highlight patterns of alterations in the highly-dimensional landscape of MRI

modalities. Through the top-down objective, we have investigated how different MRI

modalities currently available mostly only in the research setting behave with respect

to MS pathophysiology, highlighting which ones might be most meaningful in the

characterisation of specific MS phenotypes. Different patterns of alterations were in

fact observed for different classification tasks, with readily available features — such

as volumetric indices — exhibiting strong sensitivity to late-stage pathology, whilst

more specialised techniques — such as diffusion and sodium imaging — might be more

useful in the study of early or pre-symptomatic stages of MS.

After having highlighted the interaction between the different MRI modalities by means

of machine learning, it would be interesting to go back to the drawing board, and

focus on the integration of the different features within hybrid, cross-modality physical

models, able to delineate a more comprehensive and accurate picture of the MS-

related physiological alterations compared to the sum of the single modalities alone.

Future studies may, for example, incorporate MTV/MTR mapping — whether through

prospective dedicated scans or via MyRelax/U-Net from retrospective data — within

diffusion multi-compartment models to take the myelin/macromolecular compartment

into account, in addition to the intra- and extra-cellular environments. Similarly, studies

incorporating both sodium and diffusion MRI data within a single model, that is also

clinically viable, might provide a much more powerful tool for the characterisation of

neuronal physiology and microstructural integrity than diffusion or sodium imaging alone.

Due to MS multifaceted pathophysiology, larger datasets would be required to fully

represent MS variability during training, and thus improve classification performances.

Given the small cohort, age confounders, and the abundance of features, spurious

findings may be present within this study, with more data being required, together with

histopathological corroboration, for further confirmation. The dataset used for this study

had a very homogeneous cohort in terms of disease duration — all subjects being scanned

15 years after the initial clinical episode — however, due to the lack of longitudinal data,

these results are not intended to be used for prediction of MS progression. It can be

speculated that the observed alterations are the end point of a 15 years long evolution
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path that may still be traced back to the onset, and thus being informative to new

patients presenting with CIS based on how similar their MRI status is to the 15 years

stable subtypes: an investigation of the evolution over time of the MRI features emerged

in this study should follow in future works. Future studies accessing multi-modal MRI

datasets with significantly larger sample-size may also explore the emergence of data-

driven MS phenotypes (similarly to what has been done by SuStaIn, see section 5.8.6),

how they interact with the ones currently defined based on clinical criteria, and how they

would affect classification. Overall, this contribution provides numerous avenues for

investigation, both in terms of MRI research and computer science, and whilst we have

attempted to provide an interpretation for the observed results based on biophysical

correlates, these findings are not to be intended as proof of physiological alterations.

Similarly to the Deep learning MTR from qualitative images contribution, in this

study we provided an example of how machine learning could be of great use in MS

clinical research. Feature-ranking through artificial intelligence may in fact aid reducing

the wide spectrum of quantitative MR-modalities only to those that are more likely

to be meaningful to the task at hand, which might provide further insight for the

understanding of MS-related neurodegeneration, as well as direct future studies to

more targeted and efficient MR-acquisition protocols.

18.4 Closing statement

MRI is a fundamental tool in the diagnosis and prognosis of MS, with different MRI

modalities offering specific insights to MS pathophysiology. In the vibrant landscape of

MRI research, new and improved techniques are constantly proposed to progressively

broaden the spectrum of specialised options available to clinicians, but only few actually

reach fruition in the clinical environment. It is therefore important to investigate

which specialised modalities could add biophysically meaningful information to patient

characterisation that is worth the process of clinical optimisation, as well as the added

scan time and image processing, whilst at the same time taking full advantage of the

limited MRI modalities already established in the context of clinical trials. In this work,

we have proposed two different approaches — through traditional model fitting and deep

learning — to extract quantitative information from well established routine MR-scans,

and a machine learning framework to rank advanced MRI features given their involvement

in different MS phenotypes classification. Being able to exploit qualitative data for

indirect myelin and relaxometry imaging could pave the way to a new wave of quantitative

174



Chapter 18. Conclusions and future works

studies on large historical datasets that might not have been used for much more than

lesion counting and tissue segmentation. On the other hand, the MRI feature ranking

provided could inform the scientific community with evidence on the use of dedicated MRI

modalities for specific tasks that have not yet reached a consensus, e.g. the use of brain

sub-cortical volumetry in clinically defined MS, or sodium concentration measurements

in the early stages of the disease. Through these contributions, we hope to have made a

small step forward in the direction of a more targeted, as well sustainable MRI research,

able to provide direct answers to MS patients needs, in the most efficient way.
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[83] Bendfeldt, K., Klöppel, S., Nichols, T. E., Smieskova, R., Kuster, P., Traud, S.,

... & Borgwardt, S. J. (2012). Multivariate pattern classification of gray matter

pathology in multiple sclerosis. NeuroImage, 60(1), 400-408.

[84] Wottschel, V., Alexander, D. C., Kwok, P. P., Chard, D. T., Stromillo, M. L.,

De Stefano, N., ... & Ciccarelli, O. (2015). Predicting outcome in clinically

isolated syndrome using machine learning. NeuroImage: Clinical, 7, 281-287.

[85] Eshaghi, A., Wottschel, V., Cortese, R., Calabrese, M., Sahraian, M. A.,

Thompson, A. J., ... & Ciccarelli, O. (2016). Gray matter MRI differentiates

neuromyelitis optica from multiple sclerosis using random forest. Neurology,

87(23), 2463-2470.

[86] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems (pp. 1097-1105).

[87] ImageNet, http://image-net.org/index

184



Bibliography

[88] Zhang, Y. D., Pan, C., Sun, J., & Tang, C. (2018). Multiple sclerosis

identification by convolutional neural network with dropout & parametric ReLU.

Journal of computational science, 28, 1-10.

[89] Brosch, T., Tang, L. Y., Yoo, Y., Li, D. K., Traboulsee, A., & Tam, R. (2016).

Deep 3D convolutional encoder networks with shortcuts for multiscale feature

integration applied to multiple sclerosis lesion segmentation. IEEE transactions

on medical imaging, 35(5), 1229-1239.

[90] Lee, J., Lee, D., Choi, J. Y., Shin, D., Shin, H. G., & Lee, J. (2020). Artificial

neural network for myelin water imaging. Magnetic resonance in medicine, 83(5),

1875-1883.

[91] Alexander, D. C., Zikic, D., Ghosh, A., Tanno, R., Wottschel, V., Zhang, J.,

... & Criminisi, A. (2017). Image quality transfer and applications in diffusion

MRI. NeuroImage, 152, 283-298.

[92] Fiorini, S., Verri, A., Tacchino, A., Ponzio, M., Brichetto, G., & Barla, A. (2015,

August). A machine learning pipeline for multiple sclerosis course detection from

clinical scales and patient reported outcomes. In 2015 37th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

(pp. 4443-4446). IEEE.

[93] Pardini, M., Sudre, C. H., Prados, F., Yaldizli, Ö., Sethi, V., Muhlert, N., ... &
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