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Abstract: In practical building control, quickly obtaining detailed indoor temperature distribution
is necessary for providing satisfying personal comfort and improving building energy efficiency.
The aim of this study is to propose a fast prediction method for indoor temperature distribution
without knowing the thermal boundary conditions in practical applications. In this method, the index
of contribution ratio of indoor climate (CRI), which represents the independent contribution of each
heat source to the temperature distribution, has been combined with the air temperature collected by
one mobile sensor at the height of the working area. Based on a typical office model, the effectiveness
of using mobile sensors was discussed, and the influence of its acquisition height and acquisition
distance on the prediction accuracy was analyzed as well. The results showed that the proposed
prediction method was effective. When the sensors fixed on the wall were used to predict the
indoor temperature distribution, the maximum average relative error was 27.7%, whereas when the
mobile sensor was used to replace the fixed sensors, the maximum average relative error was 4.8%.
This indicates that using mobile sensors with flexible acquisition location can help promote both
reliability and accuracy of temperature prediction. In the human activity area, data from a set of
mobile sensors were used to predict the temperature distribution at four heights. The prediction
accuracy was 2.1%, 2.1%, 2.3%, and 2.7%, respectively. However, the influence of acquisition distance
of mobile sensors on prediction accuracy cannot be ignored. The distance should be large enough
to disperse the distribution of the acquisition points. Due to the influence of airflow, some distance
between the acquisition points and the room boundaries should be given.

Keywords: temperature distribution; prediction; CFD; contribution ratio of indoor climate (CRI);
mobile sensors

1. Introduction

As people spend about 90% of their time indoors [1], the indoor thermal environment
becomes very important to their daily lives. Therefore, many researchers have made con-
siderable efforts in creating comfortable indoor thermal environments to improve people’s
living conditions [2,3]. Meanwhile, the indoor thermal environment also has a significant
impact on buildings’ energy consumption, which is very important for sustainable de-
velopment. Existing studies have shown that the energy consumption from buildings in
China accounts for approximately 21% of the societal energy consumption, especially from
urban buildings (75%) [4]. To reduce the energy consumption of buildings while ensuring
thermal comfort, creating non-uniform indoor thermal environments has been consid-
ered. In this process, the buildings’ ventilation mode gradually changes from traditional
mixed ventilation (MV) to demand-oriented ventilation, such as displacement ventilation
(DV) [5,6] and stratum ventilation (SV) [7,8]. The change of ventilation mode means that
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the indoor thermal environment cannot be considered as perfectly mixed, and obtaining its
detailed temperature distribution becomes necessary. Computational fluid dynamics (CFD)
has been used as an effective tool for studies of indoor thermal environments, such as
airflow movement [9,10], heat transfer between indoor components [11,12] and pollutant
dispersion [13,14]. Indoor temperature distribution, however, is affected by various heat
sources, which are dynamically changing with time, hence difficult to obtain in practice.
This means that accurate boundary conditions could not be identified in advance to support
CFD simulation. Additionally, the requirements on both computational resources and time
for CFD are high. Even if the required dynamic boundary conditions can be determined
in advance, for example by supercomputers, the process still must set and calculate CFD
repeatedly to achieve dynamic calculation of the indoor thermal environment, which is
time-consuming. Considering the above, it is difficult to achieve real-time control of indoor
thermal environments by this method.

In this regard, several new methods have been proposed to replace CFD for quick
calculation of indoor temperature distribution. The CFD reduced-order method achieves
the reduction of the order of large-scale simultaneous equations in CFD, using grid number
as dimensions, and it can effectively increase the calculation efficiency with some sacrifice
in accuracy. Sempey et al. simplified the CFD model by solving only the energy balance
equation and reducing its order by proper orthogonal decomposition so that it can be
applied to real-time control applications [15]. To improve the problems of CPU-unfriendly
calculations as well as the complex meshing required, Cao et al. proposed applying
the momentum source to the Navier-Stokes equations to simulate the motion of human
bodiess/objects [16]. Fast fluid dynamics (FFD) is an intermediate approach between
nodal models and CFD, which decouples pressure and velocity to achieve fast prediction
of indoor airflow [17,18]. When integrating the models for HVAC systems with coupled
multizone and CFD simulations for airflows, Tian et al. have incorporated the FFD model
to improve computational efficiency [19]. Liu et al. have proposed an FFD-based joint
method to accelerate the indoor-environment inverse design process and evaluated the
effectiveness of four FFD models [20]. Contribution ratio of indoor climate (CRI) is an index
extracted from CFD calculation results, and it quantitatively represents the independent
contribution of each heat source on indoor temperature distribution. This index was first
proposed by Kato et al. in 1994 [21], and it was derived from Sandberg’s ventilation
efficiency [22] and Kato’s effectiveness of contamination exhaust [23]. Zhang et al. have
extended both the concept and the calculation method of CRI to the natural convection
airflow field [24]. Based on this, they further proposed a basic formula for calculating the
temperature distribution and combined it with network models to improve the accuracy
of long-term dynamic building performance simulation [25]. The accessibility, which is
similar in concept to CRI, describes the independent effect of supply air and contaminant
source on an arbitrary location within a finite time period [26]. Shao et al. have proposed
a concise expression for fast prediction of indoor non-uniform temperature distribution
using the accessibility and analyzed its reliability [27]. Additionally, Ma et al. further
defined three transient accessibility indices to reveal the transient effects of supply air,
contaminant source, and initial condition, respectively, and established a method predicting
the concentration distribution in transient states [28]. The low-dimensional model (LM)
uses the discrete method to greatly reduce the amount of high-resolution grid data in order
to save computational time [29]. To verify its reliability [30], Ren and Cao elaborated the
linear temperature model (LTM) to attain an LLTM (low-dimensional linear temperature
model)-based CRI model for fast and reliable calculation of complicated temperature
fields [31]. Although the methods noted above can accelerate the calculation of indoor
temperature distribution to a certain extent, they still need significant calculation time
in practical applications. For instance, although it has been reported that the calculation
speed of FFD is 20–50 times faster than that of CFD simulation [32] and could potentially
be accelerated with a graphic processing unit (GPU) and parallel computation [33,34],
its calculation time is still much longer than that is required by BES. More importantly,
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these methods were all derived from CFD itself, so the requirement to have pre-determined
indoor heat sources still exists, hence they are still difficult to use in practical applications.

To develop a temperature distribution prediction method suitable for practical control,
Sasamoto et al. have developed a method that can quickly predict indoor temperature
distribution using CRI and a finite number of air temperature measurements collected by
fixed sensors [35]. However, due to the limitation of the fixed sensors in both installation
location and installation number, its prediction accuracy needs to be improved. Therefore,
this study has proposed to use one mobile sensor at the height of working areas, instead
of fixed sensors, to collect air temperature, with the intention to get faster and more
accurate prediction of temperature distribution. Through establishing a typical office
model, the effectiveness of using mobile sensors instead of fixed sensors was explored and
discussed. Meanwhile, through a comparison on prediction accuracy, the influences of both
acquisition height and acquisition distance of this mobile sensor were further analyzed to
guide practical applications.

2. Method Development
2.1. Definition of CRI

Based on an assumption that heat transfer is linear in a steady airflow field, the CRI
index can be used to represent the independent contribution of each heat source to in-
door temperature distribution. This concept has been extended to the response factor of
heat sources in transient cases [36,37] and the evaluation of contaminant and moisture
distribution [23,38]. Its specific definition in a forced convection airflow field is the ratio of
temperature rise/drop at a location caused by one individual heat source to the absolute
value of uniform temperature rise/drop caused by the same heat source. It indicates
the range and degree of influence from each heat source within a steady airflow field,
and its value is a relative intensity, in which the actual temperature rise/drop caused by
each heat source is normalized by the absolute value of its own perfect mixing condition.
For example, a CRI higher/lower than 1.0 at a location means that the influence of that
heat source is higher/lower than that in the case of perfect mixing. The CRI of the heat
source i at the location Xj is defined by Equation (1):

CRIi(Xj) =
∆θi(Xj)

∆θi,o
=

θi(Xj)− θn

θi,o − θn
=

θi(Xj)− θn

qi/CpρF
(1)

In one example, the heat emission from the heat source i is 200 W, resulting in a
temperature rise of 0.8 ◦C at the location Xj. If heat diffuses uniformly through the whole
space, the uniform temperature rise will be 1 ◦C. According to Equation (1), the CRI of the
heat source i at the location Xj is 0.8, indicating that the heat source i has a smaller impact
than the average indoor environment at the location Xj.

For more information about the basic premises, definitions, calculation methods,
and mathematical meaning of CRI, please refer to Zhang et al., which gives a systematic
and comprehensive introduction of this term [39].

2.2. Prediction Algorithm

As the airflow field can be considered as stable, the CRI of each heat source can be
seen as constant. This means that if the heat emission or absorption from one heat source
increases by a factor of 3, the temperature rise/drop within the field will increase by a
factor of 3, regardless of location. Therefore, the CRI is an effective index for calculating
dynamic temperature distribution without repeating CFD calculations. That is, when the
heat emission or absorption from any heat source changes, the temperature change caused
by this heat source at any location could be calculated by multiplying the heat by its
CRI. A new temperature distribution can then be obtained by superimposing the effect
of all heat sources. Therefore, when there are m heat sources in a room dominated by
forced convection, the temperature rise/drop could be defined as ∆θi,o and the CRI of
heat source i to the location j as Cji, when the heat emission or absorption from each heat
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source uniformly diffuses throughout the entire room. The temperature rise/drop from the
neutral temperature at any location ∆θ(Xj) could then be expressed by Equation (2):

∆θ(Xj) = Cj1 · ∆θ1,o + Cj2 · ∆θ2,o + . . . + Cjm · ∆θm,o (2)

Generally, the m heat sources include not only directly convective heat sources but
also radiative heat sources, like walls. These radiative heat sources may not generate heat
themselves, but they gain heat from other heat sources by radiation and then transfer heat
to or absorb heat from indoor air by convection. Therefore, both directly convective heat
source sand radiative heat sources were considered as contributing to the temperature
distribution. For accurate prediction of temperature at any location, all CRI and the uniform
temperature rise/drop caused by them need to be calculated.

By rewriting Equation (2) into matrix form, Equation (3) is obtained:

∆θ(Xj) =
[

Cj1 Cj2 · · · Cjm
]


∆θ1,o
∆θ2,o

...
∆θm,o

 (3)

In practice, the thermal boundary conditions of indoor thermal environments are
generally dynamic and difficult to determine. Even if only steady-state calculations are-
considered, the intensity of each heat source still cannot be determined accurately. That is,
the uniform temperature rise/drop caused by all heat sources cannot be determined ac-
curately. Therefore, when calculating the uniform temperature rise/drop caused by each
heat source, one mobile sensor was used to collect air temperature at n arbitrary loca-
tions in space (defined as ∆θsi) and the measured temperature was then substituted into
Equation (3), as shown in Equation (4):

∆θ
′
s1

∆θ
′
s2

...
∆θ
′
sn

 =


C11 C12 · · · C1m
C21 C22 · · · C2m

...
...

. . .
...

C1m C2m · · · Cnm




∆θ1,o
∆θ2,o

...
∆θm,o

 (4)

According to Equation (4), in order to calculate ∆θi,o, it needs to multiply the inverse
matrix Cij on both sides of the equation. This requires that the number of air temperature
measurements collected within a space should be equal to the number of heat sources,
that is, n = m. The ∆θi,o could then be obtained by Equation (5):


∆θ1,o
∆θ2,o

...
∆θm,o

 =


C11 C12 · · · C1m
C21 C22 · · · C2m

...
...

. . .
...

C1m C2m · · · Cmm


−1

∆θ
′
s1

∆θ
′
s2

...
∆θ
′
sn

 (5)

By substituting Equation (5) into Equation (3), an expression for predicting tempera-
ture at any location can be obtained, as defined by Equation (6):

∆θ(Xj) =
[

Cj1 Cj2 · · · Cjm
]


C11 C12 · · · C1m
C21 C22 · · · C2m

...
...

. . .
...

C1m C2m · · · Cmm


−1

∆θ
′
s1

∆θ
′
s2

...
∆θ
′
sn

 (6)

According to Equation (6), the temperature distribution can be predicted through
calculating the CRI of each heat source in advance and collecting air temperature measure-
ments equal to the number of heat sources.
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2.3. Mobile Sensors

As noted earlier, Sasamoto et al. used some fixed sensors equal to the number of heat
sources to collect air temperature measurements in a space and then combined them with
CRI for temperature distribution prediction [35]. This method is suitable for practical appli-
cations without identified boundary conditions in advance. However, there are limitations
in terms of both installation locations and installation numbers. For example, when the
number of monitored data points increases, the number of fixed sensors also needs to
increase, leading to higher expense and bigger installation space needs. Additionally,
the installation locations of fixed sensors are not changeable and are usually far away
from the target control area, such as near air outlets, at high positions on the wall,
or where people cannot easily touch them. This means that the air temperature collected
for Equation (6) is location-dependent, so it may not be representative of the real situation
of each heat source.

With the development of mobile carriers in control engineering, mobile sensor tech-
nology has become a popular solution for controlling buildings’ indoor environment,
to overcome the limitations of fixed sensors. Xue and Zhai have developed a method using
mobile sensors to capture both spatial and temporal distributions of pollutant concentra-
tions in order to estimate the location of pollutant sources [40]. This method does not
consider thermal factors, especially the influence of a change in the heat source on the air-
flow field, and it also adopts the probability method to explore the most probable location
of pollutant sources, so it cannot achieve simple calculation of temperature at any location
within a space. However, using mobile sensors to monitor environmental information
provides a feasible and efficient idea for studies of indoor thermal environments.

Therefore, in this study, one mobile sensor (as shown in Figure 1) has been used to
replace fixed sensors when collecting air temperatures within a space. Mobile sensors
have the characteristics of variable acquisition height, diverse acquisition path, and flexible
acquisition location. They are adjustable according to actual requirements or prediction
demand to collect more suitable data with no restrictions, to achieve better temperature
distribution prediction by Equation (6).
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3. Case Study
3.1. Verification of CFD Simulation

In this study, both indoor airflow field and temperature field were simulated using
Ansys Fluent—a CFD tool that accounts for both indoor airflow and temperature distribu-
tion characteristics. The finite volume method was used to discretize the Reynolds aver-
aged Navier-Stokes equations and the averaged energy and mass conservation equations.
The standard k− ε model and the discrete ordinates (DO) model were used to simulate
both indoor turbulent flow and indoor radiation. The air materials adopted the Boussinesq
model to consider the buoyancy term, which treats air density as a constant value in all
solved equations, except for the buoyancy term in the momentum equation. The SIMPLE
algorithm was adopted to solve the pressure-velocity coupling problem, and the standard
scheme was applied for pressure discretization. The second-order upwind difference
scheme was used for momentum and energy. A linear under-relaxation iteration was used
to ensure convergence. The energy and other solutions were converged until the residuals
of all cells in the simulation domain reached within 10−8 and 10−4.

To validate the accuracy of simulation from ANSYS Fluent, a full-scale model was es-
tablished and its prediction results were compared with data collected from the experiment
done by Tian et al. [41], with a test chamber of 4.0 m (length) × 3.5 m (width) × 3.5 m (height),
as shown in Figure 2, with thermally insulated walls, floor, and ceiling. There was a desk,
a closet, a computer, and a thermal manikin in the test chamber, with three fluorescents
installed on the ceiling. The manikin and the three fluorescents led to a total cooling load
of 496 W, thus about 35 W/m2. After a grid-independence test, 643,585 grids were adopted
to balance accuracy and time. The air was supplied from a double grille diffuser located at
the height of 1.36 m above the floor while the air was exhausted through a left-wall-based
diffuser mounted at the height of 3.16 m above the floor. The ventilation rate of the chamber
was 2.2 air changes per hour (ACH). Comparisons between simulation and measurement
results along five sampling lines in the chamber are illustrated in Figure 3, showing good
agreement between the two datasets (with an error of less than 1 ◦C in temperature and
0.1 m/s in velocity). Therefore, this simulation method was considered as accurate and
usable in this study.
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Figure 3. Comparison between simulated and measured data at 5 heights at sampling lines 1–5
(remarks: measurement point X-Y m, where X is the number sampling line and Y is the heights of
0.1 m, 0.6 m, 1.1 m, 1.7 m and 2.3 m).

3.2. Description of the Model and Simulation

As shown in Figure 4, a typical office model has been established in this study, with
dimensions of 14 m (length) × 10 m (width) × 4 m (height). There were four air supply
inlets on the ceiling and four air exhaust outlets at the bottom of the two opposite walls.
The walls, the ceiling, and the floor of this office were all thermally insulated. There were
6 lamps and 24 working positions (each with a person and a computer) in the office.
To simplify the computational model, the radiative heat transfer of the walls and floor
were considered as one heat source. Similarly, the radiative heat transfer of the ceiling and
the heat emission from six lamps were considered as one heat source. This left the heat
emission from four adjacent working positions, which were considered as one heat source.
Therefore, there were a total of nine heat sources in this simulation work. The numerical
method for calculating the temperature distribution of this office has been described above,
and the specific boundary conditions are listed in Table 1. The neutral temperature in
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the office was assumed to be 25 ◦C. The office was discretized into 5,800,535, 7,784,596,
and 10,746,488 hexahedral control volumes. After a grid-independence test, the middle
definition was adopted to balance accuracy and time.

Table 1. Summary of numerical simulation conditions.

Surface Boundary Condition

Walls/Ceiling/Floor Wall; Adiabatic
Lamp Wall; Heat flux: 150 W/m2.
Person Wall; Heat flux: 45 W/m2

Computer Wall; Heat flux: 70 W/m2

Air supply Velocity-inlet; Velocity: 1.0 m/s. Temperature: 21 ◦C
Air exhaust OutflowBuildings 2021, 11, x FOR PEER REVIEW 9 of 27 
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Figure 4. A model for the office.

According to the coupled calculation results of both convective and radiative heat
transfers, the airflow field and the temperature field can be obtained. The cross sections
y = 1.0 m and z = 2.1 m were taken as examples, with the velocity distribution and the
temperature distribution are shown in Figures 5 and 6, respectively. The calculation results
showed that the air was supplied vertically from the inlet toward the floor, with observable
backflow along the floor and the walls. Simultaneously, the air supply directly reached
the working area, which could effectively take away internal heat emissions and diffuse
them to other places. Near the working positions, the air was warmed up significantly, so a
heat plume around them could be observed. Due to the effect of backflow and buoyancy,
the temperature distribution in the room was obviously stratified from bottom to top.

The sub-temperature distribution of each heat source was calculated with the airflow
field described above. Taking one working position as an example, its CRI distribution
obtained by Equation (1) is shown in Figure 7. The calculation results showed that the CRI
of the heat emission from one working position (with four people and four computers)
ranged between 0 and 4.67. It could be observed that near this heat source, the CRI was
greater than 1.0. However, with the increase in distance, the heat diffusion was weakened.
The CRI thus was less than 1.0 in most areas, meaning that the heat source had an obvious
effect on the area around it, but a relatively small effect at larger distances.
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4. Results
4.1. Comparison on Prediction Accuracy between Fixed Sensors and Mobile Sensors

In the comparison, 10 temperature prediction points in the plane with the height of
1 m, 2 m and 3 m, respectively, were selected. They were named as L-1 to L-10, M-1 to
M-10, and H-1 to H-10, respectively. It should be noted that in this study the locations of
all prediction points were only different in height, but with identical plane coordinates.
According to the requirements of the prediction algorithm, the number of collected air
temperature measurements needs to be equal to the number of heat sources. Therefore,
nine air temperatures were collected. The fixed sensor locations are shown in Figure 8.
It is worth noting that the acquisition location of the sensors has a great impact on the
prediction results. In other words, even if the number of sensors is the same, different
results and prediction accuracy will be obtained by using the proposed algorithm with
different acquisition locations. For example, in the study of Sasamoto et al. [35], the fixed
sensors were installed near each heat source, and the prediction accuracy was acceptable.
There are two reasons why fixed sensors were all installed on the walls in this study:
(1) This is more suitable for the actual situation; (2) The purpose of this study is to verify
the application disadvantages of fixed sensors. That is, taking the actual situation as
a reference, the limitations of fixed sensors are analyzed and further the solutions are
proposed. Meanwhile, a mobile sensor with the acquisition height of 1.2 m was used
to collect the air temperature at several locations in the space, also shown in Figure 8.
The above two groups of collected air temperatures were used to predict the temperature
of 30 points at the three heights, with their prediction results shown in Figure 9.
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When the air temperature collected by fixed sensors was used for prediction, according
to Table 2, the corresponding average relative errors were 5.7%, 10.8%, and 27.7% at the
heights of h = 1.0 m, h = 2.0 m, and h = 3.0 m, respectively, which were relatively large.
The reasons for the unsatisfactory results are considered as follows:

Table 2. Prediction of each point using fixed sensors and mobile sensors.

Average Relative Error Fixed Sensors Mobile Sensors

At the height of h = 1.0 m 5.7% 2.1%

At the height of h = 2.0 m 10.8% 3.3%

At the height of h = 3.0 m 27.7% 4.8%

First, the influence of the acquisition locations of the sensors on the prediction accuracy
noted above cannot be ignored. Second, we suppose that it is mainly related to the influence
of airflow distribution. The proposed prediction algorithm consists of two parts: the CRI
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matrix and the air temperature matrix. The assumption of a steady airflow field is the basic
premise for calculating CRI. Specifically, when the airflow field is dominated by forced
convection in the room, although the influences from other heat sources exist, the effect
is smaller than that of forced convection, and thus can be ignored. That is, the airflow
field can be considered as steady for a small variation range of supply air temperature and
velocity. However, this is an ideal assumption, which has deviation in practical applications.
For example, near the walls, air supply/exhausts, and local heat sources, due to the
influence of boundary layer, air backflow and heat plume, the airflow distribution in these
areas is complex and unstable, resulting in large errors in the calculation of CRI. In the
proposed prediction algorithm, the application of sensors used to collect air temperature
is combined with CRI to calculate the heat source intensity. Therefore, when using the
fixed sensors on the walls with unstable airflow distribution to predict the temperature
distribution, the inaccurate calculation of CRI at any sensor location was used repeatedly to
calculate the intensity of each heat source. This leads to the influence of each CRI calculation
error being superimposed and expanded, further affecting the prediction accuracy. This is
the main reason for the lower prediction accuracy when using fixed sensors to predict
temperature distribution.

Especially, Figure 9 showed that when using fixed sensors for temperature predic-
tion, obvious abnormalities occurred at some locations, such as L-7, L-8, H-1, and H-10.
In addition to the reasons noted above, we assume their locations also have an impact on
the prediction accuracy. L-7 and L-8 were located at the lower part of the wall and close
to the supply air, which was more vulnerable to the influence of air backflow after the
supply air meets the floor and other surfaces. Therefore, it will affect the CRI calculation of
each heat source here and further affect the prediction accuracy. Similarly, H-1 and H-10
were located at the higher part of the wall and close to the corner of the room. The airflow
distribution here is affected by many factors, such as air backflow near the adjacent walls,
heat plume above the heat source, etc. The prediction error thus also increases.
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When using the mobile sensors with flexible acquisition locations instead of the fixed
sensors for temperature prediction, the corresponding average relative errors were 2.1%,
3.3%, and 4.8%, respectively. This shows that the proposed temperature distribution
prediction method based on CRI and finite air temperature is reliable, which is consistent
with the research results of Sasamoto et al. [35]. Additionally, this indicates that due to
some restrictions in practical applications, using mobile sensors instead of fixed sensors to
predict the temperature distribution is appropriate. Besides, not in all cases, the prediction
results obtained by using the mobile sensors are satisfactory.

4.2. Analysis on the Impact of Mobile Sensors Acquisition Height on Prediction Accuracy

The height of the mobile sensor can be adjusted in the vertical direction according
to the actual situation and the prediction demand. Generally, the purpose of regulating
the indoor thermal environment is twofold: reduce energy consumption and maintain
comfortable conditions. Therefore, the air temperature within human activity areas is
usually the main controlled variable. To figure out the influence of the acquisition height of
mobile sensors on the prediction accuracy of this area, 10 prediction points at the heights
of h = 0.7 m, h = 1.0 m, h = 1.2 m and h = 1.5 m, named 1-P1 to 1-P10, 2-P1 to 2-P10, 3-P1
to 3-P10, 4-P1 to 4-P10 and 5-P1 to 5-P10, respectively, were selected, with identical plane
coordinates. Air temperatures obtained by the mobile sensor introduced in Section 4.1
was used to predict the air temperature at these points, with prediction results shown
in Figure 10.
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Figure 10. Prediction of different heights using mobile sensors.

Similarly, according to Table 3, the corresponding average relative errors were 2.1%,
2.1%, 2.3%, and 2.7% at the heights of h = 0.7 m, h = 1.0 m, h = 1.2 m, and h = 1.5 m, respec-
tively. Consequently, it can be concluded that in the human activity area, the acquisition
height of mobile sensors has little influence on the prediction accuracy.

Table 3. Prediction of different heights using mobile sensors.

Average Relative Error Mobile Sensors

At the height of h = 0.7 m 2.1%

At the height of h = 1.0 m 2.1%

At the height of h = 1.2 m 2.3%

At the height of h = 1.5 m 2.7%

4.3. Analysis on the Impact of Mobile Sensors Acquisition Distance on Prediction Accuracy

To better guide the application of mobile sensors in practical situations, it should
not only consider how to set the acquisition height of mobile sensors, but also consider
the acquisition distance of mobile sensors. To explore the impact from this aspect, given
a mobile sensor acquisition path (the acquisition height was 1.2 m), several acquisition
distances were designed, which were 1 m, 2 m, 3 m, 4 m and 5 m. In the case of each
acquisition distance, 3, 3, 3, 3, and 2 acquisition point distributions were given, respectively,
as shown in Figures 11–15. The selected prediction points were the same as those at the
1.2 m height discussed in Section 4.2, named 3-P1 to 3-P10.
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Figures 11–15 and Table 4 also show the prediction results and the corresponding
average relative errors of each prediction point under the various distributions of acquisi-
tion points noted above. The prediction results showed that smaller acquisition distances
would make the distribution of acquisition points more concentrated, hence leading to an
obvious reduction in prediction accuracy. As shown in MS1 and MS3 in Figure 11, MS7 in
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Figure 13, and MS10 in Figure 14, the corresponding average relative errors were 19.9%,
30.7%, 16.7%, and 9.2%, respectively. However, it also had the situation that the prediction
accuracy was relatively high with small acquisition distances, for example, the average
relative errors were 1.6% and 0.8% in the cases of MS2 in Figure 11 and MS6 in Figure 12,
respectively. This indicates that the uncertainty of temperature distribution prediction
using the air temperature collected by mobile sensors with smaller acquisition distance was
larger, and the prediction accuracy at this time cannot be guaranteed. When controlling
indoor thermal environments in practical applications, it must quickly and accurately
obtain temperature distributions. Therefore, it is necessary to give a design criterion for
selecting an acquisition distance of mobile sensors with lower uncertainty, higher accuracy,
and wider application scope. Through a careful comparison of the prediction results un-
der the distributions of acquisition points with various acquisition distances, as shown
in Figures 11–15, a conclusion was drawn that the acquisition distance should be large
enough to make the distribution of acquisition points more dispersed.

Table 4. Prediction of mobile sensors with different acquisition distances.

MS1 MS2 MS3 MS4 MS5 MS6

Average relative error 19.9% 1.6% 30.7% 2.7% 2.7% 0.8%

MS7 MS8 MS9 MS10 MS11 MS12

Average relative error 16.7% 0.9% 1.4% 9.2% 0.5% 2.0%

MS13 MS14

Average relative error 2.1% 2.3%

5. Limitations

Although the application of mobile sensors instead of fixed sensors to collect air
temperature in the area with stable airflow distribution can greatly improve the prediction
accuracy, the influence of air distribution on the method proposed in this study cannot
be easily ignored. An existing study has shown that the relationship between the sensor
acquisition point and the airflow direction would affect the prediction accuracy [40].

Carefully observing the acquisition point distributions in the cases of MS1 and MS3 in
Figure 11, MS7 in Figure 13, and MS10 in Figure 14, it can be seen that most of them were
close to wall surfaces, where the airflow distribution is relatively complex. When the mobile
sensor collects the air temperature near the boundary of the room, the prediction accuracy
thus cannot be guaranteed. Whereas in the case with identical acquisition distances,
with acquisition points that are located in the interior of the room and far away from the
boundary of the room, the prediction accuracy was improved. For example, the average
relative error of the acquisition point distribution shown in MS2 in Figure 11 is 1.6%,
which is far less than the average relative error of the acquisition point distribution shown
in MS1 and MS3 in Figure 11. Similarly, the comparison between the prediction results
obtained under the distribution of each acquisition point shown in Figure 13 also verifies
this conclusion. Therefore, to ensure the prediction accuracy, some distance between the
acquisition points and the room boundaries should be given.

Additionally, the more detailed relationship between the acquisition location of mobile
sensors and airflow distribution still needs to be further explored, which will be the focus
of a future study. The optimization of acquisition distance and acquisition path of mobile
sensors could be achieved to further reduce the time required for predicting temperature
distribution in practical applications.

6. Conclusions

Because of the complexity and dynamic nature of indoor thermal environments and
their impact on energy consumption, the control of indoor thermal environments has
always been an important research focus. In this circumstance, it is necessary to obtain the
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indoor temperature distribution rapidly and in detail. In this study, a method predicting
indoor temperature distribution has been proposed for the purpose of real-time prediction
and precise control of indoor thermal environments in practical applications. In this
method, the air temperature was collected by one mobile sensor at the working area height,
and combined with the contribution ratio of indoor climate (CRI) to realize the rapid
prediction of indoor temperature distribution. Through establishing a typical office room,
the reliability and effectiveness of using mobile sensors instead of fixed sensors for air
temperature collection for temperature distribution prediction has been verified through
accuracy comparison. Furthermore, several acquisition heights and acquisition distances
of mobile sensors were tested, and their impact on prediction accuracy was analyzed.
The main findings from this study are summarized as follows:

(1) Due to some restrictions in practical applications, using mobile sensors instead of
fixed sensors can realize the temperature distribution prediction of residential height
by reducing the number of sensors. If there are no restrictions, the application
of fixed sensors for prediction can also meet the requirements, but they are also
limited by the acquisition height and acquisition path. Under this condition, it is
possible that the combination of fixed sensors and mobile sensors can obtain higher
prediction accuracy.

(2) The acquisition height of mobile sensors has shown little impact on prediction accu-
racy in human activity areas. By comparing the prediction accuracy of mobile sensors
for temperature distribution at different heights, it was found that the difference
between them was not significant. Therefore, when using mobile sensors to predict
the temperature distribution in human activity areas, there is no need to specifically
set the acquisition height.

(3) The acquisition distance should be large enough to make the distribution of acquisi-
tion points more dispersed. By comparing the prediction accuracy of mobile sensors
with different acquisition distances, the results show that smaller acquisition distances
made acquisition points more concentrated, hence reducing prediction accuracy. Con-
sidering the influence of airflow distribution, the acquisition points should be not
very close to room boundaries.

From the above analysis, the method proposed in this study could be beneficial to the
rapid prediction of non-uniform temperature distribution in the perspective of satisfying
thermal comfort while improving energy efficiency. It will make outstanding contributions
to the control strategy based on real-time response to the thermal environment.
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Nomenclature

uj[m/s] air velocity
νt[kg/(m · s)] turbulent viscosity
t[s] time
Prt[J · s] turbulent Prandtl number
Cp[J/(kg ·K)] specific heat of indoor air
ρ[kg/m3] air density
q[W] heat emission and absorption of all heat sources
qi[W] heat emission or absorption of heat source i
Xj[m] component of the spatial coordinates (j = 1,2,3)
θ[◦C] air temperature
θn[◦C] air neutral temperature, i.e., indoor initial air temperature
∆θi[

◦C] temperature rise or drop caused by heat source i
θi,o[

◦C] uniform air temperature caused by heat source i

∆θi,o = θi,o − θn[◦C]
temperature rise or drop of the uniform air temperature caused by
heat source i from θn

θi(Xj)[
◦C] air temperature at the location Xj caused by heat source i

∆θi(Xj) = θi(Xj)− θn[◦C]
temperature rise or drop at the location Xj caused by heat source
i from θn

F[m3/s] volume of supply air
V[m3] room volume
m number of heat sources
n number of sensor points
Cji CRI of heat source i to location j
∆θ ′si temperature rise or drop collected by mobile sensors from θn
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