
HIV status alters disease severity1

and immune cell responses in beta2

variant SARS-CoV-2 infection wave3

Farina Karim1,2†, Inbal Gazy2,3†, Sandile Cele1,2†, Yenzekile Zungu1†, Robert4

Krause1,2†, Mallory Bernstein1, Khadija Khan1,2, Yashica Ganga1, Hylton Rodel1,4,5

Ntombifuthi Mthabela1, Matilda Mazibuko1, Daniel Muema1,2, Dirhona Ramjit1,6

Thumbi Ndung’u1,4,5,6, Willem Hanekom1,4, Bernadett I. Gosnell7, COMMIT-KZN7

Team §, Richard J. Lessells2,3,8, Emily Wong1,9, Tulio de Oliveira2,3,8,10,11,8

Mahomed-Yunus S. Moosa7, Gila Lustig8, Alasdair Leslie1,4‡, Henrik9

Kløverpris1,4,11‡, Alex Sigal1,2,6‡10

*For correspondence:
al.leslie@ahri.org (AL);
henrik.kloverpris@ahri.org (HK);
alex.sigal@ahri.org (AS)

1Africa Health Research Institute, Durban 4001, South Africa; 2School of Laboratory11

Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa;12

3KwaZulu-Natal Research Innovation and Sequencing Platform, Durban 4001, South13

Africa; 4Division of Infection and Immunity, University College London, London WC1E14

6BT, UK; 5HIV Pathogenesis Programme, The Doris Duke Medical Research Institute,15

University of KwaZulu-Natal, Durban 4001, South Africa; 6Max Planck Institute for16

Infection Biology, Berlin 10117, Germany; 7Department of Infectious Diseases, Nelson R.17

Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban 4001, South18

Africa; 8Centre for the AIDS Programme of Research in South Africa, Durban 4001,19

South Africa; 9Division of Infectious Diseases, University of Alabama at Birmingham,20

Birmingham, AL 35294, USA; 10Centre for Epidemic Response and Innovation, School of21

Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South22

Africa; 11Department of Global Health, University of Washington, Seattle, USA;23

11Department of Immunology and Microbiology, University of Copenhagen,24

Copenhagen 2200N, Denmark25

26

Abstract There are conflicting reports on the effects of HIV on COVID-19. Here we analyzed27

disease severity and immune cell changes during and after SARS-CoV-2 infection in 23628

participants from South Africa, of which 39% were people living with HIV (PLWH), during the first29

and second (beta dominated) infection waves. The second wave had more PLWH requiring30

supplemental oxygen relative to HIV negative participants. Higher disease severity was31

associated with low CD4 T cell counts and higher neutrophil to lymphocyte ratios (NLR). Yet, CD432

counts recovered and NLR stabilized after SARS-CoV-2 clearance in wave 2 infected PLWH,33

arguing for an interaction between SARS-CoV-2 and HIV infection leading to low CD4 and high34

NLR. The first infection wave, where severity in HIV negative and PLWH was similar, still showed35

some HIV modulation of SARS-CoV-2 immune responses. Therefore, HIV infection can synergize36

with the SARS-CoV-2 variant to change COVID-19 outcomes.37

38
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Introduction39

HIV is a prevalent infection in KwaZulu-Natal, South Africa (Kharsany et al. (2018)) which also has40

a high SARS-CoV-2 attack rate (Tegally et al. (2021b,a)). HIV depletes CD4 T helper cells (Dalgleish41

et al. (1984)) which are a critical part of the adaptive immune response and are also themain target42

of HIV infection. CD4 T cell death occurs after cellular infection with HIV (Westendorp et al. (1995)),43

or in bystander or incompletely infected cells due to activation of cellular defense programs (Doitsh44

et al. (2010, 2014)), and is halted and, to some extent, reversed by antiretroviral therapy (ART), even45

sub-optimal therapy (Jackson et al. (2018)).46

The loss of CD4 T cells leads to dysregulation of many aspects of the immune response, in-47

cluding germinal center formation and antibody affinity maturation, which requires help from the48

highly HIV susceptible CD4 T follicular helper cells (Okoye and Picker (2013); Pallikkuth et al. (2012);49

Perreau et al. (2013)). In association with this, HIV also causes B cell dysregulation and dysfunction50

(Moir and Fauci (2013)). Moreover, T cell trafficking, activation, and exhaustion profiles of both51

CD4 and CD8 subsets are also modulated by HIV infection (Day et al. (2006); Deeks et al. (2004);52

Mavigner et al. (2012)).53

Both antibody and T cell responses are critical for effective control and clearance of SARS-CoV-2.54

More severe COVID-19 disease correlates with lymphopenia and low T cell concentrations (Lucas55

et al. (2020); Sekine et al. (2020); Chen et al. (2020)), whilst mild disease correlates with a robust T56

cell response to SARS-CoV-2 (Grifoni et al. (2020); Sekine et al. (2020); Moderbacher et al. (2020);57

Mathew et al. (2020); Mateus et al. (2020); Liao et al. (2020); Chen and Wherry (2020a)). Neutral-58

izing antibodies and associated expansion of antibody secreting B cells (ASC) are elicited in most59

SARS-CoV-2 infected individuals (Woodruff et al. (2020); Robbiani et al. (2020);Quinlan et al. (2020)),60

and neutralizing antibody titers strongly correlate with vaccine efficacy (Khoury et al. (2021); Earle61

et al. (2021)), indicating their key role in the response to SARS-CoV-2 infection. In contrast, high62

neutrophil numbers are associated with more severe disease and an elevated neutrophil to lym-63

phocyte ratio (NLR) is often considered a risk factor for amore severe COVID-19 outcome (Liu et al.64

(2020a,b); Zhang et al. (2020)).65

Results fromepidemiological studies of the interaction betweenHIV and SARS-CoV-2 fromother66

locations are mixed. Several large studies observed that disease severity and/or mortality risk is67

increased with HIV infection (Boulle et al. (2020); Geretti et al. (2020); Bhaskaran et al. (2021);68

Tesoriero et al. (2021); Braunstein et al. (2021); Jassat et al. (2021a)) while others found no statis-69

tically significant differences in clinical presentation, adverse outcomes, or mortality (Huang et al.70

(2020); Sigel et al. (2020); Shalev et al. (2020); Vizcarra et al. (2020); Stoeckle et al. (2020); Dandachi71

et al. (2020); Haerter et al. (2020); Karmen-Tuohy et al. (2020); Richardson et al. (2020); Inciarte72

et al. (2020); Hadi et al. (2020)). Worse outcomes for PLWH tended to be in patients with low CD473

(Hoffmann et al. (2021a); Dandachi et al. (2020); Braunstein et al. (2021)) and low absolute CD474

count was a risk factor for more severe disease (Boulle et al. (2020)).75

HIV is known to interfere with protective vaccination against multiple pathogens (Avelino-Silva76

et al. (2016); Carson et al. (1995); Cooper et al. (2011); Fuster et al. (2016)), typically as a conse-77

quence of sub-optimal antibody responses. In line with this, results from a South-African phase IIb78

trial of the Novavax NVX-CoV2373 vaccine, which uses a stabilised prefusion spike protein, showed79

60% efficacy in HIV-uninfected individuals. However, overall efficacy dropped to 49% upon inclu-80

sion of PLWH (Shinde et al. (2021)), although it is important to note that the numbers of PLWH81

in the study were very small. Nonetheless, there were more breakthrough cases in PLWH in the82

vaccine arm than the placebo arm.83

An important consideration in infections in South Africa is the infecting variant, which in the sec-84

ond infection wave peaking January 2021 was predominantly the B.1.351 variant of concern (VOC)85

now designated as the beta variant. In the current third infection wave it is predominantly the86

B.1.617.2 delta variant. We and others have shown that the beta variant has evolved the ability to87

escape neutralization by antibody responses elicited by earlier strains of SARS-CoV-2 or by vaccines88
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based on those strains (Cele et al. (2021); Wibmer et al. (2021); Garcia-Beltran et al. (2021); Hoff-89

mann et al. (2021b)). Loss of vaccine efficacy of the AstraZeneca ChAdOx vaccine in South Africa90

was associated with this drop in neutralization capacity (Madhi et al. (2021)). The second infection91

wave driven by beta infections also showed increased mortality of hospitalized cases relative to92

the first infection wave (Jassat et al. (2021b)).93

What factors contributed to the evolution of the beta variant in South Africa is yet unclear. One94

possibility is intra-host evolution in immunosuppressed PLWH with advanced HIV who are unable95

to clear SARS-CoV-2 (Karim et al. (2021)). There is also evidence that variants evolved other adap-96

tations to the host in addition to those in the spike glycoprotein which lead to antibody escape97

and enhanced transmission. These include evolution of resistance to the host interferon response98

(Guo et al. (2021); Thorne et al. (2021)), as well as enhanced cell-to-cell transmission (Rajah et al.99

(2021)). Changes in the virus may make infection with some variants of concern (VOC) substan-100

tially different in disease course, transmission dynamics, and effect on PLWH relative to ancestral101

SARS-CoV-2 strains or possibly other variants.102

Herewe aimed to determine the effects of HIV on the immune response to SARS-CoV-2 infection103

in KwaZulu-Natal, South Africa. This is important because we need to better understand COVID-104

19 disease course and vaccine efficacy in this population, as well as the possible reasons for the105

emergence of the currently circulating variants which lead to immune escape from neutralizing106

antibodies. Our results indicate that infections in the beta variant infectionwave led tomore severe107

disease in PLWH relative to HIV negative participants. Higher severity was associated with a lower108

CD4 T cell count. Yet, the CD4 count recovered, indicating that these participants may not have109

had a low CD4 count when first exposed to SARS-CoV-2. In addition, there were changes in the110

response of immune cell subsets associated with SARS-CoV-2 infection in PLWH relative to HIV111

negative participants in the first infection wave, even in the absence of a statistically significant112

increase in disease severity, indicating that HIV infection may modulate the immune response to113

SARS-CoV-2.114

Results115

HIV infection is associatedwithhigher disease severity in thebeta variant infection116

wave117

We initiated a longitudinal observational cohort study to enroll and track patients with a positive118

COVID-19 qPCR test presenting at three hospitals in Durban, South Africa. Patients presented due119

to either COVID-19 symptoms or because they were known contacts of a confirmed COVID-19 case.120

All participants were initially admitted to a hospital facility, then discharged after varying peri-121

ods and followedup as outpatients. Enrollmentwas between June 2020 andMay 2021. Participants122

were followed up weekly for the first month post-enrollment, and at 3 month intervals thereafter.123

At each study visit, a blood sample and a combined nasopharyngeal and oropharyngeal swab was124

taken. The purpose of a combined swab was to maximize the detection probability by qPCR of125

SARS-CoV-2 in the upper respiratory tract. Blood was used to determine HIV status, HIV viral load,126

and cellular parameters such as the concentration of CD4 T cells and the NLR. We also tested the127

frequencies more specific immune cell subsets by flow cytometry (only available for infection wave128

1 samples).129

Up to May 2021, 236 participants were enrolled in the study, for a total of 986 study visits (Sup-130

plementary File 1). All participants are assumed to be vaccinated with BCG in infancy in accordance131

with South African national guidelines. The majority of participants were female, possibly reflect-132

ing better linkage to care. Enrollment was a median 11 days post-symptom onset (Supplementary133

File 2). De-identified participant data used here are available as a Source Data 1 included in the134

supplementary materials.135

Out of 236 study participants, 93 (39%) were PLWH (Table 1) and 89% of study participant were136

of African descent. PLWH were significantly younger than HIV uninfected participants. Hyperten-137
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Table 1. Participant Characteristics.
All (n=236) HIV- (n= 143, 60.6%) HIV+ (n=93, 39.4%) Odds Ratio (95% CI) p-value

Demographics
Age years, median (IQR) 45 (35 - 57) 49 (35 - 62) 41 (35 - 50) - 0.003∗

Male sex, n (%) 82 (34.7) 48 (33.6) 34 (36.6) 1.1 (0.7 – 2.0) 0.68
Current smoker, n (%) 13 (5.5) 4 (2.8) 9 (9.7) 3.7 (1.2 – > 10) 0.038
Comorbidity, n (%)
Hypertension#, n=235 57 (24.1) 42 (29.4) 15 (16.1) 0.5 (0.2 – 0.9) 0.023
Diabetes 42 (17.8) 32 (22.4) 10 (10.8) 0.4 (0.2 – 0.9) 0.024
Obesity#, n=221 91 (42.3) 64 (47.1) 27 (29.0) 0.6 (0.3 – 1.0) 0.086
Active TB 10 (4.2) 1 (0.7) 9 (9.7) >10 0.001
History TB 32 (13.6) 3 (2.1) 29 (31.2) >10 <0.0001
HIV associated parameters
HIV viremic, n (% of all HIV) - - 28 (30.1) - -
Years ART, median (IQR) - - 9.4 (3.9 - 13.2) - -
CD4 cells/�L median (IQR) n=221 633 (326 - 974) 887 (534 -1148) 464 (200 - 702) - <0.0001∗

CD4/CD8 1.2 (0.8 – 1.7) 1.6 (1.2 – 2.1) 0.8 (0.4 – 1.1) - <0.0001∗

Disease severity, n (%)
Asymptomatic 33 (14.0) 25 (17.5) 8 (8.6) 0.4 (0.2 – 1.0) 0.058
Ambulatory with symptoms 128 (54.2) 80 (55.9) 48 (51.6) 0.8 (0.5 – 1.4) 0.59
Supplemental oxygen 62 (26.3) 30 (21.0) 32 (34.4) 2.0 (1.1 – 3.5) 0.024
Death 13 (5.5) 8 (5.6) 5 (5.4) 1.0 (0.3 – 2.9) >0.99
COVID-19 treatment, n (%)
Corticosteroids 74 (31.2) 47 (32.9) 27 (29.0) 0.8 (0.5 – 1.5) 0.57
Anticoagulants 53 (22.5) 35 (24.5) 18 (19.4) 0.7 (0.4 – 1.4) 0.43
Symptom, n (%)
Sore throat 88 (37.3) 55 (38.5) 33 (35.5) 0.9 (0.5 – 1.5) 0.68
Runny nose 53 (22.5) 30 (21.0) 23 (24.7) 1.2 (0.7 – 2.3) 0.53
Cough 153 (64.8) 91 (63.6) 62 (66.7) 1.1 (0.7 – 2.0) 0.68
History of fever#, n=235 58 (24.7) 29 (20.3) 29 (31.2) 1.8 (1.0 – 3.3) 0.063
Shortness of breath 148 (62.7) 87 (60.8) 61 (65.6) 1.2 (0.7 – 2.1) 0.49
p-value calculated via 2-sided Fisher’s Exact test, except for * which was calculated via Mann-Whitney U
test. # Not including pregnancy or unable to be measured.

sion, diabetes and obesity, known risk factors formore severe COVID-19 disease (Zhou et al. (2020);138

Richardson et al. (2020)), were common: Hypertension and obesity were present in 24%, and 42%139

of study participants respectively, a similar prevalence to that reported in the province of KwaZulu-140

Natal where this study was performed (van Heerden et al. (2017); Malaza et al. (2012)). Diabetes141

prevalence in our study was 18%, compared to 13% reported for South Africa (Federation (2019)).142

Hypertension and diabetes were significantly lower in the PLWH group (Table 1). 28 or 30% of143

PLWHwere HIV viremic at any point in the study. For individuals on ART, median ART duration was144

9 years. ART regimen was determined by liquid chromatography with tandem mass spectrome-145

try (LC-MS/MS) and was predominately efavirenz (EFV) based, with some participants transitioning146

to a dolutegravir (DTG) based regimen. In addition, there was a small subset of PLWH on a riton-147

avir boosted lopinavir (LPV/r) as well as other ART combinations and about 12% of PLWH had no148

detectable ART despite a clinical record of ART, or were ART naive (Supplementary File 3). The ab-149

solute CD4 T cell count and the CD4 to CD8 T cell ratio was significantly lower in PLWH relative to150

HIV negative participants at enrollment. The incidence of active TB and the fraction of participants151

with a history of TB were much higher in the PLWH group (Table 1).152

A minority of study participants (14%) were asymptomatic and presented at the hospital be-153

cause of a close contact with a confirmed COVID-19 case. To include the asymptomatic participants154

in our analysis, we used time from diagnostic swab as our timescale, which was tightly distributed155

for symptomatic participants relative to symptom onset at a median of 3 to 4 days apart (Supple-156

mentary File 2).157

The majority of participants in the study (54%) had symptoms but did not progress beyond158
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Table 2. Characteristics by HIV status of participants requiring supplemental oxygen.
All (n=68) HIV- (n= 35, 51.5%) HIV+ (n=33, 48.5%) Odds Ratio (95% CI) p-value

Demographics
Age years, median (IQR) 51 (38 – 64) 62 (47 - 66) 41 (36 - 56) - 0.003∗

Male sex, n (%) 25 (36.8) 12 (34.3) 13 (39.4) 1.2 (0.5 – 3.3) 0.80
Current smoker, n (%) 2 (2.9) 1 (2.9) 1 (3.0) 1.1 (<0.1 – >10) > 0.99
Comorbidity, n (%)
Hypertension 26 (38.2) 18 (51.4) 8 (24.2) 0.3 (0.1 – 0.8) 0.026
Diabetes 17 (25.0) 13 (37.1) 4 (12.1) 0.2 (0.1 – 0.8) 0.025
Obesity#, n=57 23 (40.4) 11 (31.4) 12 (36.4) 1.8 (0.6 – 5.1) 0.42
Active TB 6 (8.8) 1 (2.9) 5 (15.2) 6.1 (0.9 – >10) 0.10
History TB 16 (23.5) 2 (5.7) 14 (42.4) 12.2 (2.7 – >10) < 0.001
HIV associated parameters
HIV viremic, n (% of all HIV) - - 9 (27.3) - -
Years ART, median (IQR) - - 11.6 (6.1 – 13.3) - -
CD4 cells/�L median (IQR) n=65 309 (170 - 545) 339 (227 - 592) 277 (134 – 461) - 0.072∗

COVID-19 treatment, n (%)
Corticosteroids 43 (63.2) 25 (71.4) 18 (54.5) 0.5 (0.2 – 1.3) 0.21
Anticoagulants 31 (45.6) 18 (51.4) 13 (39.4) 0.6 (0.2 – 1.6) 0.34
p-value calculated via 2-sided Fisher’s Exact test, except for * which was calculated via Mann-Whitney U
test. # Not including pregnancy or unable to be measured.

mild disease, defined here as not requiring supplemental oxygen during the course of disease159

and convalescence. 26% of participants required supplemental oxygen but did not die and 6%160

of participants died. Our cohort design did not specifically enroll critical SARS-CoV-2 cases. The161

requirement for supplemental oxygen, as opposed to death, was therefore our primary measure162

for disease severity.163

There was a significant difference in the frequency of participants requiring supplemental oxy-164

gen (without subsequent death) between HIV negative participants and PLWH (21% versus 34%165

respectively, odds ratio of 2.0 with 95% confidence intervals of 1.1-3.5, Table 1).166

Todetermine if the fraction of participants requiring supplemental oxygendiffered between the167

first infection wave and the beta variant dominated second infection wave, we compared disease168

severity between the first infection wave (Figure 1, Supplementary File 4), and the second infection169

wave (Figure 1, Supplementary File 5). In the first infectionwave, there was no significant difference170

in the fraction of participants requiring supplemental oxygen between HIV negative and PLWH par-171

ticipants (Supplementary File 4, p=0.5). However, significantly more PLWH required supplemental172

oxygen in the secondwave (Supplementary File 5, odds ratio of 4.0with 95%CI of 1.6-10.4, p=0.005).173

Comparing within the HIV negative and PLWH groups, there was only a moderate increase in the174

fraction of participants requiring supplemental oxygen between SARS-CoV-2 infection wave 1 and175

infection wave 2 in HIV negative participants (19% to 25%) which was not significant (Figure 1). In176

contrast, the number of PLWH participants requiring supplemental oxygen more than doubled177

from 24% to 57% (p=0.0025, Figure 1).178

To examinewhether the differences in the requirement for supplemental oxygen in PLWHwere179

because of differences in the level of HIV control between waves, we examined the fraction of180

timepoints where participants showed HIV viremia (we excluded low level viremia of unclear signif-181

icance and set the threshold at VL>200 HIV RNA copies/mL (Ryscavage et al. (2014)). Furthermore,182

we determined whether ART was detectable in the blood by LC-MS/MS. Second wave participants183

had approximately 2-fold higher fraction of timepoints where HIV viremia was detected (Figure 1-184

figure supplement 1A). In agreement with this, the fraction of participants with no detectable ART185

in the blood was also about 2-fold higher (Figure 1-figure supplement 1B). These observations are186

consistent with diminished suppression of HIV in second wave PLWH enrolled in this study. The187

specific HIV regimen had no discernible effect on disease severity (Figure 1-figure supplement 2).188
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We compared comorbidities and other characteristics between the PLWH and HIV negative par-189

ticipants on supplemental oxygen (Table 2). Strikingly, the median age of PLWH on supplemental190

oxygen was 21 years younger relative to HIV negative (41 versus 62, p=0.003). PLWH had signifi-191

cantly lower frequency of comorbidities which are usually associated with more severe COVID-19192

disease: both hypertension (p=0.03) and diabetes (p=0.03) were lower. In contrast, the median193

CD4 T cell count across all study visits was lower in PLWH (277 versus 339) although this difference194

did not reach statistical significance (p=0.07). There was no significant difference in the fraction of195

participants treated with corticosteroids (p=0.2).196

Interestingly, when comparingHIV negative participants requiring supplemental oxygen to those197

with not requiring supplemental oxygen (Supplementary File 6), those on supplemental oxygen198

were significantly older (62 versus 47 years, p=0.002), and had significantly higher frequency of hy-199

pertension (p=0.002) and diabetes (p=0.02). This differed from PLWH, where differences in age and200

comorbidities were not significant between PLWH requiring supplemental oxygen and those not201

(Supplementary File 7), although there was a trend to a higher frequency for hypertension (p=0.1).202

HIV viremic participants showed lower CD4 counts relative to HIV suppressed or HIV negative203

participants (Figure 1-figure supplement 3). Surprisingly, there was no difference in either the frac-204

tion of HIV viremic timepoints or fraction of timepoints where ARTwas not detected in the blood be-205

tween the group of PLWH requiring supplemental oxygen and the no supplemental oxygen group206

(Figure 1-figure supplement 4). We also analyzed the time of SARS-CoV-2 clearance as a function of207

CD4 count and HIV status and found that while a participants with a low CD4 count (< 200) showed208

a trend of longer time to SARS-CoV-2 clearance (p=0.11), HIV viremia had no effect (Figure 1-figure209

supplement 5). Hence, while the PLWH enrolled in the second wave had both worse control of HIV210

infection and had a higher fraction requiring supplemental oxygen, we did not observe that the211

PLWH requiring supplemental oxygen had a higher frequency of HIV viremia.212

SARS-CoV-2 has differential effects on CD4 count and the neutrophil to lymphocyte213

ratio between infection waves in PLWH214

We next determined whether the increased disease severity in PLWH in infection wave 2 was re-215

flected in the cellular immune response to SARS-CoV-2 infection. We therefore examined the CD4216

count and NLR, both known to be strongly associated with disease severity. We used a 3-point217

scale for disease severity, where 1: asymptomatic, 2: mild, and 3: supplemental oxygen (at any218

point in the study) or death. Death was merged with supplemental oxygen because of the small219

number of participants who died, and was not excluded in any of the subsequent analyses.220

As expected, we observed a significant decrease in CD4 T cell count at the highest severity221

which included disease that required administration of supplemental oxygen and/or resulted in222

death (Figure 2A, see Figure 2-figure supplement 1 for all data points and number of data points223

per graph).224

We then asked whether PLWH in infection wave 2 showed different CD4 T cell responses to225

SARS-CoV-2. Since decreased CD4 count could be due to HIV infection alone, we separated the226

data into timepoints when SARS-CoV-2 was detectable by qPCR and after SARS-CoV-2 was cleared.227

Upon SARS-CoV-2 clearance, the immune response of convalescent participants should start the228

return to baseline, and differences due to SARS-CoV-2 should decrease and reflect HIV mediated229

effects only.230

The CD4 counts in PLWH in infection wave 2 were lower during active SARS-CoV-2 infection231

relative to wave 1 (Figure 2B, median 172 versus 420 cells/�L, a decrease of 2.4-fold) and were232

below the 200 cells/�L clinically used threshold indicating a low CD4 count. However, CD4 counts233

for PLWH for both wave 2 and wave 1 recovered post-SARS-CoV-2 clearance (408 for wave 2 ver-234

sus 584 cells/�L for wave 1), consistent the low CD4 count in PLWH in wave 2 being SARS-CoV-2235

induced. CD4 counts for both groups were substantially above the 200 cells/�L threshold after236

SARS-CoV-2 clearance. HIV negative participants showed no or minor differences in CD4 counts237

between waves, although these minor differences showed significance due to the large number of238
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participant timepoints for this group (Figure 2C).239

The NLR had a remarkably similar pattern. An elevated NLR associated strongly with higher240

disease severity (Figure 2D). PLWH with active SARS-CoV-2 infection in wave 2 showed a 2-fold241

increase in the NLR relative to PLWH with active SARS-CoV-2 infection in wave 1 (Figure 2E). This242

difference declined to 1.2-fold once SARS-CoV-2 was cleared, consistent with differences in NLR243

being SARS-CoV-2 driven and not a result of other pathology in PLWH in wave 2. In contrast, the244

NLR was lower in HIV negative participants in wave 2 relative to wave 1 in the presence of SARS-245

CoV-2 (Figure 2F).246

The observed recovery of the CD4 count may result from improved access to ART due to the247

hospital visit in wave 2. We therefore checked whether the fraction of HIV viremic participants248

decreased upon convalescence and whether there was an associated decrease in the number of249

PLWHwith undetectable ART.We observed no significant differences in either viremia or fraction of250

PLWH with undetectable ART in either wave between timepoints which were SARS-CoV-2 positive251

and those that were negative (Figure 2-figure supplement 2). This indicates that the increase in252

the CD4 was not due to better linkage to care after the hospital visit but rather due to SARS-CoV-2253

clearance.254

Differences in the frequencies and associations of immune cell subsets in PLWH255

and HIV negative participants256

To examine differences in immune cell subset associations between HIV negative and PLWH partic-257

ipant groups, we conducted detailed phenotyping of immune cells using longitudinal fresh PBMC258

samples and correlated these to measured phenotypes and clinical parameters in both HIV nega-259

tive and PLWH groups (Figure 3; see Figure 3-figure supplement 1 for gating strategies). We used260

established approaches for gating of cell subsets (Sanz et al. (2019); Khodadadi et al. (2019)). This261

was only performed for the first wave participants, where cells were available for additional phe-262

notyping by flow cytometry.263

For HIV negative participants, there were significant negative and positive correlations between264

CD4 T cell parameters, and between these and the CD8 T cell count and phenotypes (Figure 3,265

yellow box). There were negative correlations between CD4 and the CD8 CCR7+ T cell phenotype266

andCD56+CD16+NK cells (purple box). The fraction ofNK cells positively correlatedwith the CXCR3267

fraction of CD4 T cells, with HLA-DR on CD8 T cells, and with PD-1 on both cell types (purple box).268

In addition, there were correlations between CD8 T cell count and CD19 B cell parameters, such269

as fractions of naïve and memory B cells (red box). Interestingly, disease severity as well as the270

CD4/CD8 ratio showed correlations with B cell parameters, including the frequency of antibody271

secreting cells (ASC), which were lost in PLWH (orange box).272

New correlations arose in PLWH, particularly involving CD8 T cells: CXCR3+ CD8 T cells were273

negatively correlated with disease severity but positively correlated with the CD4/CD8 ratio and274

the CD4 T cell count (Figure 3, black box). CD8 T cell activation (HLA-DR+) was correlated with275

several CD19+ B cell phenotypes (green box), and the plasma cell to plasmablast ratio, determined276

by CD138 expression, correlated with both CD4 and CD8 T cell phenotypes (blue box). In addition,277

CD8 T cell count showed negative correlations with CD8 PD-1 and NK cell phenotypes only in PLWH278

(turquoise box).279

Out of the set of markers examined, the combination of PD-1 and HLA-DR expression is linked280

to T cell activation (Sauce et al. (2007); Vollbrecht et al. (2010)), while CXCR3 expression is essential281

to recruitment of T cells to tissues (Groom and Luster (2011)). We therefore asked whether these282

markers showed differences between HIV negative and PLWH in the first infection wave during283

the time participants were positive for SARS-CoV-2, despite there being no significant differences284

in disease severity in this wave. In CD8 T cells, we observed a significant decrease in the fraction285

of CXCR3 expressing cells in the blood compartment in PLWH relative to HIV negative participants286

(Figure 4A). We also observed an increase in the fraction of PD-1+HLA-DR+ cells (Figure 4B). For287

CD4 cells, there was no significant decrease in the fraction of CXCR3+ cells although a decrease288
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was apparent (Figure 4C). Similarly to CD8 T cells, there was an increase in PD-1+HLA-DR+ CD4 T289

cells in PLWH (Figure 4D). There was no difference between PLWH and HIV negative participants in290

any cell/marker combination after SARS-CoV-2 clearance.291

Discussion292

We observed that in our cohort, COVID-19 disease severity was higher in PLWH, consistent with293

some of the larger epidemiological studies (Boulle et al. (2020); Geretti et al. (2020); Bhaskaran294

et al. (2021); Tesoriero et al. (2021); Braunstein et al. (2021); Jassat et al. (2021a)), although in this295

study differences were detected in the frequency of participants requiring supplemental oxygen296

and not in mortality. Our cohort may not be a typical ’hospitalized cohort’ as the majority of partic-297

ipants did not require supplemental oxygen. We therefore cannot discern effects of HIV on critical298

SARS-CoV-2 cases since these numbers are too small in the cohort. However, focusing on lower299

disease severity enabled us to capture a broader range of outcomes which predominantly ranged300

from asymptomatic to requiring supplemental oxygen. Understanding this part of the disease301

spectrum could be important since it may indicate underlying changes in the immune response302

which affect long-term quality of life and response to vaccines.303

We observed a higher fraction of PLWH requiring supplemental oxygen relative to HIV negative304

participants in the second, beta variant dominated SARS-CoV-2 infection wave in KwaZulu-Natal,305

South Africa. The odds ratio for requiring supplemental oxygen in the second wave for PLWH was306

4.0 relative to HIV negative participants. The 95% confidence intervals were wide at 1.6-10.4, re-307

flecting the relatively small number of participants. However, confidence intervals did not overlap308

one.309

Consistent with HIV infection leading to more severe SARS-CoV-2 infection outcomes in our310

study is the much younger age of PLWH requiring supplemental oxygen relative to HIV negative311

participants (41 versus 63 years). PLWH on supplemental oxygen also had lower frequencies of hy-312

pertension and diabetes. Age, hypertension, and diabetes are risk factors for more severe COVID-313

19 disease (Yang et al. (2020); Guan et al. (2020); Ambrosioni et al. (2021); Jassat et al. (2021a)),314

and their absencemay indicate that themore severe outcome is driven by another factor, with HIV315

infection being the simplest explanation.316

The cause of the difference between waves in PLWH may be because PLWH enrolled in the317

second infection wave had worse suppression of HIV with ART: both the fractions of timepoints318

where viremia was detected and where ART was absent were about 2-fold higher and indeed were319

very high at about 40%. We therefore expected that this showed a direct link between HIV viremia320

and the requirement for supplemental oxygen during COVID-19 disease in PLWH. However, there321

was no difference in the frequency of viremia between those requiring supplemental oxygen and322

those not.323

Furthermore, the substantial recovery of CD4 T cell counts in PLWH after SARS-CoV-2 clearance324

in wave 2 may be consistent with the beta variant having more impact on the CD4 count relative325

to the ancestral SARS-CoV-2 strain infections in the first wave. A similar pattern was seen in the326

NLR, which was higher in wave 2 relative to wave 1 in PLWH with active SARS-CoV-2 infection, but327

then decreased to similar levels upon convalescence. The role of the beta variant is supported by328

data showing extensive evolution, increasing the ability of beta to escape the interferon response329

and result in more efficient viral cell-to-cell transmission (Guo et al. (2021); Thorne et al. (2021);330

Rajah et al. (2021)). Beta variant hospitalizations also led to more deaths in South Africa Jassat331

et al. (2021b). Therefore, the effect of the variant on PLWH in addition to HIV suppression status332

should be considered.333

Our data detailing the SARS-CoV-2 response of more defined immune cell subsets in PLWH ver-334

sus HIV negative participants is limited by the data only being available for the first infection wave.335

However, even in samples from that wave, there weremultiple differences in correlations between336

cell subsets in PLWH relative to HIV negative participants, whichmay be another indication of differ-337

ences in the immune response to SARS-CoV-2. We cannot deduce from these associations whether338
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the differences could have an impact on disease severity. However, the fraction of CXCR3+ CD8 T339

cells decreased in the blood compartment and PD-1+HLA-DR+ CD8 and CD4 T cells increased. The340

increase in PD-1+HLA-DR+ T cells indicates T cell activation (Sauce et al. (2007); Vollbrecht et al.341

(2010)) which associates with worse COVID-19 outcomes (Chen and Wherry (2020b)). CXCR3 plays342

a key role in T cell homing to sites of inflammation and is activated by interferon-inducible ligands343

CXCL9, CXCL11, and CXCL10 (IP-10) (Groom and Luster (2011); Rodda et al. (2021)). A decrease in344

CXCR3 indicates either that T cells are less able to home to the site of infection, or that there ismore345

inflammation in PLWHduring SARS-CoV-2 infection and thereforemore homing of the CXCR3+ CD8346

T cells to tissues so that the fraction of CXCR3+ cells left in the blood decreases. Either way, the347

combination of these changes likely indicates either more pronounced SARS-CoV-2 infection or an348

impaired response in PLWH despite the similar infection outcomes in this wave.349

In summary, PLWH showed increased disease severity mostly restricted to the second infection350

wave, where the � variant was dominant. Increased severity was associated with low CD4 T cell351

counts and high NLR which stabilized post-SARS-CoV-2 clearance in second wave infected PLWH352

to close to wave 1 PLWH values, arguing for a synergy between SARS-CoV-2 and HIV to decrease353

CD4 T cell numbers and increase the NLR rather than the status of HIV infection alone determining354

these parameters. More work is required to understand how these HIV related immune perturba-355

tions influence long-term immunity to SARS-CoV-2 infection and whether vaccine response will be356

affected.357

Methods and Materials358

Ethical statement and study participants359

The study protocol was approved by the University of KwaZulu-Natal Institutional Review Board360

(approval BREC/00001275/2020). Adult patients (>18 years old) presenting at King Edward VIII,361

Inkosi Albert Luthuli Central, or Clairwood Hospitals in Durban, South Africa, between 8 June to 25362

September 2020, diagnosed to be SARS-CoV-2 positive as part of their clinical workup and able to363

provide informed consent were eligible for the study. Written informed consent was obtained for364

all enrolled participants.365

Clinical laboratory testing366

An HIV rapid test and viral load quantification was performed from a 4ml EDTA tube of blood at367

an accredited diagnostic laboratory (Molecular Diagnostic Services, Durban, South Africa) using368

the RealTime HIV negative1 viral load test on an Abbott machine. CD4 count, CD8 count, and a369

full blood count panel were performed by an accredited diagnostic laboratory (Ampath, Durban,370

South Africa). Depending on the volume of blood which was drawn, the CD8, CD4, and full blood371

count was not available for every participant, and numbers performed are detailed in the figure372

legends.373

qPCR detection of SARS-CoV-2374

RNA was extracted from combined oropharyngeal and nasophryngeal swabs from 140 �l viral375

transport medium using the QIAamp Viral RNA Mini kit (cat. no. 52906, QIAGEN, Hilden, Germany)376

according to manufacturer’s instructions, and eluted into 100 �l AVE buffer. To detect SARS-CoV-2377

RNA, 5 �l RNA was added to the TaqPath 1-step RT-qPCRmastermix. 3 SARS-CoV-2 genes (ORF1ab,378

S and N) were amplified using the TaqPath COVID-19 Combo Kit and TaqPath COVID-19 CE-IVD379

RT-PCR Kit (ThermoFisher Scientific, Massachusetts, United States) in a QuantStudio 7 Flex Real-380

Time PCR system (ThermoFisher Scientific). Data was analysed using the Design and Analysis soft-381

ware (ThermoFisher Scientific). For positive samples, Ct values are represented as the average of382

the Ct values of all three genes. A sample was scored positive where at least 2 out of the 3 genes383

were detected, and inconclusive if only 1 of the genes was detected.384
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PBMC isolation and immune phenotyping by flow cytometry385

PBMC were isolated by density gradient centrifugation using Histopaque 1077 (Sigma-Aldrich, St.386

Louis, Missouri, United States) and SepMate separation tubes (STEMCELL Technologies, Vancouver,387

Canada). For T cell and NK cell phenotyping, 106 fresh PBMCs were surface stained in 50 microliter388

antibody mix with the following antibodies from BD Biosciences (Franklin Lakes, NJ, USA): anti-389

CD45 Hv500 (1:100 dilution, clone HI30, cat. 560777); anti-CD8 BV395 (1:50 dilution, clone RPA-T8,390

cat. 563795); anti-CD4 BV496 (1:25 dilution, clone SK3, cat. 564651); anti-PD1 BV421 (1:50 dilution,391

clone EH12.1, cat. 562516); anti-CXCR3 PE-CF594 (1:25 dilution, clone 1C6/CXCR3, cat. 562451). The392

following antibodies were from BioLegend (San Diego, CA, USA): anti-CD19 Bv605 (1:100 dilution,393

cloneHIB19, cat. 302244); anti-CD16 Bv650 (1:50 dilution, clone 3G8, cat. 302042); anti-CD56 Bv711394

(1:50 dilution, clone HCD56, cat. 318336); anti-CD3 Bv785 (1:25 dilution, clone OKT3, cat. 317330);395

anti-CXCR5 FITC (1:25 dilution, clone J252D4, cat. 356914); anti-HLA-DR PE (1:50 dilution, clone L243,396

cat. 307606); anti-CCR7 PerCP-Cy5.5 (1:25 dilution, clone G043H7, cat. 353220); anti-CD38 PE-Cy7397

(1:25 dilution, clone HIT2, cat. 303516); anti-ICOS APC (1:25 dilution, clone C398.4A, cat. 313510)398

and anti-CD45RA AF700 (1:25 dilution, clone HI100, cat. 304120). PBMCs were incubated with399

antibodies for 20 minutes at room temperature. For B-cell phenotyping, the following antibodies400

were used: (all from BioLegend) anti-CD45 APC (1:25 dilution, clone HI30, cat. 304012); anti-CD3401

Bv711 (1:50 dilution, clone OKT3, cat. 317328), anti-CD14 Bv711 (1:25 dilution, clone M5E2, cat.402

301838); anti-CD19 Bv605 (1:50 dilution, clone HIB19, cat. 302244); anti-CD27 Hv500 (1:50 dilution,403

clone O323, cat. 302836); anti-CD38 PE-Cy7 (1:25 dilution, clone HIT2, cat. 303516) and anti-CD138404

BV785 (1:25 dilution, cloneMI15, cat. 356538). Cells were then washed twice in PBS and fixed in 2%405

paraformaldehyde and stored at 4oC before acquisition on FACSAria Fusion III flow cytometer (BD)406

and analysed with FlowJo software version 9.9.6 (Tree Star). Depending on the volume of blood407

which was drawn, full phenotyping was only available for participants where sufficient blood was408

available for the assay.409

Statistical analysis410

Data is described with the non-parametric measures of median and interquartile range, and sig-411

nificance determined using the non-parametric Mann-Whitney U test for pairwise comparisons,412

Fisher Exact test for pairwise comparisons of frequencies, and the Kruskal-Wallis test with multiple413

comparison correction by the Dunn Method for comparisons involved more than two populations.414

All tests were performed using Graphpad Prism 8 or Stata software.415
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Figure 1. Fraction of PLWH and HIV negative participants requiring supplemental oxygen during the
first and the � VOC dominated second infection waves. p=0.0025 by Fisher’s Exact test.
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Figure 3. Immune cell and clinical correlates in HIV negative and PLWH groups. Spearman rankcorrelation values (�) are shown from red (1.0) to blue (-1.0). p-values per correlation are *< 0.5; **< 0.01;***< 0.001. The number of matched pairs for HIV negative participants ranged from 77 to 229 and for PLWHfrom 48 to 164. Rectangles represent regions where a set of correlations is present in one group and absentin the other. Black dashed lines represent the divide between clinical and cellular parameters.
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Figure 1-figure supplement 1. Viremia and ART in PLWH in wave 1 versus wave 2. (A) HIV viremia wascalculated as the number of study timepoints in wave 1 or wave 2 with HIV RNA > 200 copies/ml divided by allmeasured timepoints for PLWH. (B) The fraction of timepoints with no detectable ART was calculated as thenumber of study timepoints in wave 1 or wave 2 where the concentration of none of the ART componentswas above level of quantification ivided by all measured PLWH timepoints. p-values are * <0.05; ** <0.01; ***
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Figure 1-figure supplement 4. Viremia and ART in PLWH requiring versus not requiring supplemental
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Figure 2-figure supplement 1. The differential effect of HIV on the CD4 count and neutrophil to
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Figure 3-figure supplement 1. Gating strategy. (A) Gating of T cell subsets. Live CD3+ cells were gated into CD4+ and
CD8+ subsets, which were further divided based on CXCR3, HLA-DR, and PD-1 for CD8 T cells and CXCR3, CCR7, HLA-DR, and
PD-1 for CD4 T cells. (B) Gating of B cell subsets. Live CD19+ cells were subdivided into memory, naive, and antibody secreting
cells (ASC) based on CD27 and CD38. ASC were further subdivided into plasma cells and plasmablasts based on CD138.

of


	Introduction
	Results
	HIV infection is associated with higher disease severity in the beta variant infection wave
	SARS-CoV-2 has differential effects on CD4 count and the neutrophil to lymphocyte ratio between infection waves in PLWH
	Differences in the frequencies and associations of immune cell subsets in PLWH and HIV negative participants

	Discussion
	Methods and Materials

