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Abstract—In this paper, we propose a compressive channel
estimation techniques for IRS-assisted mmWave multi-input and
multi-output (MIMO) system. To reduce the training overhead,
the inherent sparsity in mmWave channels is exploited. By
utilizing the properties of Kronecker products, IRS-assisted
mmWave channel estimation are converted into a sparse signal
recovery problem, which involves two competing cost function
terms (measurement error and a sparsity term). Existing sparse
recovery algorithms solve the combined contradictory objectives
function using a regularization parameter, which leads to a
suboptimal solution. To address this concern, a hybrid multi-
objective evolutionary paradigm is developed to solve the sparse
recovery problem, which can overcome the difficulty in the choice
of regularization parameter value. Simulation results show that
under a wide range of simulation settings, the proposed algorithm
achieves competitive error performance compared to existing
channel estimation algorithms.

I. INTRODUCTION

INTELLIGENT reflecting surface (IRS) is an emerging
technology to improve the spectrum efficiency of wireless

networkswith minimal energy consumption [1]–[3]. By jointly
adjusting the reflected signal amplitude and/or phase shift at
each of the IRS elements according to the dynamic wireless
channels, the signals reflected by IRS and propagated through
other paths can be constructively combined at the intended
receiver to enhance the received signal power. In addition,
since it is not equipped with any signal processing equip-
ments such as analog-to-digital, digital-to-analog converter and
modulator/demodulator, IRS is with low complexity and can
be easily deployed on urban commercial buildings, ceilings
or indoor spaces [3]. These significant advantages make IRS
passive beamforming as a green energy-efficient technique for
beyond 5G (B5G) cellular Internet of Things (IoT), and hence
it has been investigated in different communication scenarios
such as multi-cell cellular networks, secure massive MIMO
transmission, simultaneous wireless information and power
transfer (SWIPT) [4], [5] etc.

However, the implementation of IRS-Assisted millimeter-
wave (mmWave) MIMO communications is quite challenging
in practice. One of the key challenge is the efficient channel
estimation to acquire the CSI. A vast majority of the existing
works assume the availability of perfect CSI to design the
precoding vectors at the base station (BS) and phase shifts
matrix at the IRS. Nevertheless, this assumption is difficult to
realize in practice. In particular, as opposed to conventional

backscatter and relay-assisted communication systems, where
channels can be estimated using transmission/processing pilot
symbols, the IRS can only reflect signals without the ca-
pabilities of signal transmission/processing, and hence it is
practically difficult to estimate their channels.

It is worth mentioning that since millimeter wave channels
tend to have only a few significant paths and directional beam-
forming, a large number of antennas is essentially required to
mitigate the severe attenuation [6]. Therefore, the compressed
sensing (CS) techniques is applied for the mmWave channels
estimation, which can be leveraged to effectively estimate
mmWave channels in angular domain of massive MIMO
channels [7]–[9]. By exploiting the sparsity of mmWave
channels, some CS-based mathods have been proposed for
channel estimation, which can significantly reduce the required
pilot overhead [10], such as the least absolute shrinkage
and selection operator (LASSO) algorithm [11], [12]. It is
particularly beneficial to MIMO systems, in which the number
of pilot symbols increases linearly with the number of transmit
antennas.

However, existing CS-based model are effective only when
the number of transmit antennas is sufficiently large to guar-
antee the desired sparsity level. Such antenna configuration is
unrealistic when there are massive amount of low-rate devices
in the network. In addition, the performance of CS-based
recovery method is usually dependent on the regularization
parameter. Over the recent few years, various strategies for
choosing regularization parameter have been studied [13],
[14]. One possible method of avoiding the difficulties is to
convert the constrained optimization problem into multiob-
jective optimization problems (MOPs), and the corresponding
multiobjective evolutionary algorithms (MOEAs) is employed
to yield better results than the use of conventional single
objective optimization methods. It is worth noting that the
aforementioned works cannot be extended directly to IRS-
based mmWave channel estimation, due to the fact that the
mmWave channel with IRS will make the problem highly
complex and difficult to solve, which is one of the major
motivations to devote our endeavour to developing efficient
channel estimation strategies for IRS-assisted mmWave com-
munication MIMO systems.

In this work, we propose a sparse channel estimation scheme
that combines CS techniques and a hybrid multiobjective
evolutionary optimization method for IRS-assisted mmWave



massive MIMO systems. The key observation for the proposed
scheme are exploiting CS-based sparse channel estimation to
reduce the training overhead and to find an optimal tradeoff
between competing objective functions (sparsity and measure-
ment error) in CS-based sparse recovery model. According
to the MOPs, the final solution of the proposed channel
estimation is selected in the knee areas, which indicates the
best balance between the measurement error and the sparsity
constraint whilst providing the best performance in sparse
channel estimation.

The rest of this paper is organized as follows. In Section II,
the detailed description of CS-based channel estimation model
is proposed. Section III proposes a hybrid multiobjective
evolutionary approach for mmWave channel estimation. The
simulation results on the performance of the proposed method
are reported in Section IV. Section V concludes the paper.

Notations: The boldface lower-case and upper-case sym-
bols denote vectors and matrices respectively. vec(A) is a
vector obtained through the vectorization of a matrix A, and
vec−1(A) represents a matrix obtained by the inverse of
vectorization. ‖a‖p represents the p-norm of a, where ai is the
i-th component of a and p denotes an integer. The superscripts
(·)T , (·)H and (·)∗ represent the transpose, conjugate transpose
and complex conjugat respectively. The Kronecker product of
two matrices X and Y is denoted as X ⊗ Y. R and C denote
the set of real and complex numbers, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the IRS-assisted mmWave MIMO communi-
cation system is introduced. Then, we formulate the mmWave
channel estimation problem as a CS-based sparse recovery
problem in the following.

A. System Model

We focus on the downlink transmission of an IRS-assisted
mmWave MIMO system in Fig. 1, where an IRS is deployed
to assist the data transmission from the BS to a user equipment
(UE). Without loss of generality, it is assumed that the IRS
is a planar array with M reflecting elements and the signals
are reflected by the IRS once. The IRS is attached to the
facade of a building located in the LoS link of the BS.
The phase shifts of each reflecting element on the IRS are
configurable via a smart controller, which gets this information
from the BS over a backhaul link. The BS is equipped with
NBS antennas. Let R ∈ CNIRS×NBS be the channel from the BS
to the IRS, Hr ∈ CNUE×NIRS denotes the channel from the IRS
to the UE. This is a valid assumption as IRS is practically
used to mainly support UE without direct communication link
from the BS due to deep path loss or obstacle blockage.
Furthermore, a time-division duplexing (TDD) scheme is used
for the downlink CSI acquisition by utilizing the characteristic
of the channel reciprocity.

For the channel training scheme in the above mentioned
system, we suppose that each time frame contains T time slots
and the BS uses P different precoding vectors at P successive
time frame. At the receiver side, the UE employs a combining

Fig. 1: Illustration of the considered IRS-assisted millimeter-wave
MIMO communication systems.

vector w(t) ∈ CNUE to combine the received signal at time
slot t, then the signal received by the UE can be expressed as

yp(t) = wH(t)Hxp(t) + n(t), (1)

where n(t) ∈ CNUE is the additive white Gaussian noise with
zero mean and variance σ2, and H is the cascaded channel
matrix of the IRS that is given by

H = HrΘR, (2)

where Θ is diagonal phase-shifting matrix of the IRS, which
can be expressed as

Θ = diag
(
β1e

jθ1 , ..., βMe
jθM
)
, (3)

and θm ∈ [0, 2π), βm ∈ [0, 1] being the phase shift and
amplitude reflection coefficient associated with m-th reflecting
element of the IRS, respectively. To maximize the reflection
power of the IRS and simplify its hardware design, we
consider the same βm, ∀m for all the reflecting elements of
the IRS.

With regard to the total T time frames, the identical com-
biner W ∈ CNUE×Q is utilized by stacking wt with t = 1, ..., T ,
and thus the received matrix at the UE side can be written as

Y = WHHX + N, (4)

where W = [w1,w2, ...,wT ] is a NUE × Q combiner matrix,
Y = [y1, y2, ..., yT ] is a Q × T received matrix, X =
[x1,x2, ...,xT ] is a NBS × T beamforming matrix, N =
[n1,n2, ...,nT ] is a Q× T noise matrix by concatenating the
noise vectors, respectively.

B. Problem Formulation

Before formulating the channel estimation problem, the
channel model for the IRS-assisted mmWave MIMO commu-
nication system should be described first. By smartly adjusting
the phase shifts of all scattering elements, as illustrated in Fig.
1, the superposed signal arrived at the IRS will be directly
reflected towards the desired UEs without any additional



processing, and thus there is no signal processing delay.
According to the discussion above, we take into account the
cascade channel matrix H, which is divided into the BS-IRS
channel R and the IRS-UE channel p. The main challenge
is to estimate the BS-IRS channel and the IRS-UE channel
simultaneously.

To be specific, the BS-IRS channel can be modeled as [15]

R =

√
NBSNIRS

ρ

L∑
l=1

αlaIRS,1(ϕl, γl)aHBS(φl), (5)

where αl is the channel complex gain of the l-th path, L
denotes the scattering paths of BS-IRS link, ρ denotes the
path loss between the BS and IRS, ϕl(γl) denotes the azimuth
(elevation) angle of arrival (AoA), φl is the angle of departure
(AoD) of the l-th path; aIRS,1 and aBS denote the array response
vectors associated with the IRS and BS, respectively.

Due to the sparse scattering nature of mmWave channels,
the number of path L is small relative to the dimensions of
R. The corresponding R can be expressed as

R = (Fx ⊗ Fy)ΣαFHBS , FIRS,1ΣαFHBS, (6)

where Fx ∈ CMx×ML,x and Fy ∈ CMy×ML,y are similarly
defined with each of its columns having a form of ax(u) and
ay(v), respectively. Σα ∈ CML×NL is a sparse matrix with
L non-zero entries corresponding to the channel path gains{√

NBSNIRS
ρ αl

}
, FBS ∈ CNBS×NL is an overcomplete matrix

(NL ≥ NBS) and each of its columns has a form of aBS(φl),
with φl chosen from a pre-discretized grid.

Similar to the BS-IRS channel R, the IRS-UE channel can
be modeled as

Hr = FUEΣc(Fx ⊗ Fy)H , FUEΣcFHIRS,2. (7)

With the property of Khatri-Rao product, substituting (6)
and (7) into (2), the cascade channel model can be expressed
as

vec(H) = vec
(
FUEΣcFHIRS,2ΘFIRS,1ΣαFHBS

)
(a)
= (F∗

BS ⊗ FUE)
(
ΣT
α ⊗Σc

)
Du,

(8)

where (a) comes from u , [ejθ1 , ..., ejθM ]H ∈ CM and D =
FTIRS,1 ⊗ FHIRS,2.

Thus, the received signal y = vec(Y) in (4) can be written
as

y =
(
XT ⊗WH

)
vec(H) + vec(N)

(a)
= (Du)T ⊗

(
(XT ⊗WH)⊗ (F∗

BS ⊗ FUE)
)

h + vec(N),
(9)

where (a) is obtained by h , vec(ΣT
α ⊗Σc) and the property

of Khatri-Rao product.
Based on this result, the (9) can be further expressed as

y = Φh + n, (10)

where Φ , (DLu)T ⊗
(
(XT ⊗ WH) ⊗ (F∗

BS ⊗ FUE)
)

and
n = vec(N).

Based on the structure properties of (10), the channel
estimation is a classic CS-based sparse recovery problem [16],

and thus the CS theory can be employed to estimate h by
solving the following sparse recovery problem:

min
h

{
G(h) =

1

2
‖y−Φh‖22 + λ‖h‖p

}
, (11)

where λ is regularization parameter and p is usually set to 0
or 1.

It is found that two optimization objectives of the optimiza-
tion problem (11) are conflicting to each other. Especially, it is
difficult to choose the optimal λ, since different regularization
parameter λ in the problem (11) will yield different optimal
solutions. It is interesting that this deficiencies can be naturally
alleviated by employing MOEAs. Next, we will present a
hybrid MOEA and show how it can be used to solve the IRS-
assisted channel estimation problem.

III. MULTIOBJECTIVE EVOLUTIONARY APPROACH TO
CHANNEL ESTIMATION

In this section, considering the measurement error and
sparse constraint as two conflicting objectives, we transform
the single objective problem (11) to a bi-objective optimization
problem, and a hybrid evolutionary algorithm is proposed by
incorporating a IST-based local search to achieve multiob-
jective optimization model. Therefore, the CS-based sparse
recovery problem (11) can be formulated as a bi-objective
optimization problem

min
h

G(h) = min
h

(
f1(h), f2(h)

)
, (12)

where f1(h) = 1
2‖y−Φh‖22 denotes measurement error term

and f2(h) = ‖h‖0 denotes sparse constraint term.
A hybrid MOEA based on differential evolution (DE) is

presented to solve the above problem (12). The procedure of
the proposed algorithm is given in Algorithm 1. Let P t =
[h1,t,h2,t, ...,hN,t] be the current population with size of N
solutions, where hi,t denotes the i-th solution of the population
and t denotes the generation to which the population belongs.
P tmut and P tCro are the number of individuals for mutation and
crossover operators, respectively, which are obtained by the
corresponding mutation and crossover rates. The mutation and
crossover operators are applied to generate new individuals.
Then, an iterative soft-thresholding (IST)-based local search
operator is used to improve the performance of the algorithm.
If the termination condition is satisfied, the optimal Pareto
front (PF) of algorithm is obtained. For decision process,
the angle-based method is used to determine the knee points
of the problem. The detailed description about the complete
algorithm is summarized as follows.

A. Mutation and crossover operators

Mutation and crossover mean to generate the new indi-
viduals and the corresponding offspring solution controlled
by mutation factor and crossover parameter. The mutation
factor F and crossover factor C largely affect the searching
ability and premature convergence of algorithm. Therefore,
adaptive DE algorithm or its variations are exploited, e.g.,
self-adaptive DE (SaDE) [17]. In DE, the random value is



Algorithm 1 The hybrid evolutionary-based sparse channel
estimation

1: Initialization: t = 0, generate P t randomly and set the
stopping criterion.

2: Input: y, Φ
3: For: i = 1 to Nt.
4: Implementation of mutation operator: Select k individual

from population P t. The mutation operator is applied to
obtain the P tmut = Mutation(P t);

5: Implementation of crossover operator: Select k individual
from population P tmut. The mutation operator is applied
to obtain the P tCro = Crossover(P tmut);

6: Implementation of local search operator: Select individ-
ual from P tCro to generate P tcom according to IST-based
local search operation;

7: Implementation of selection operator: The number of
solutions dominated by (19);

8: End For
9: Implementation of the final solution: The maximum

slope of the Pareto plot is determined as the final solution;
10: Output: h

usually used in crossover operator to dynamically generate
its offspring. However, this random nature may lead to in-
stability of offspring solution. To address the concern, an
improved mutation and crossover operation is exploited to
generate promising solutions. We adopt a parameter-adaptive
mechanism for mutation operation, which is given as follows

vi,t = hi,t + F (hr2,t − hr3,t) , (13)

where the hr2,t, and hr3,t are randomly selected within the
current population P t and they are also different from hti. The
corresponding mutation factor F is used to scale the difference
vectors, that is

F =

{
F0, if iteration = 1
F0e−2t/Gmax otherwise

(14)

and F0 is the initial value and Gmax is the maximum iterations.
After the mutation operation, a crossover operator is carried

out on vi,t and hi,t to generate a trial vector, which is expressed
as follows

zi,t =

{
vi,t, if r ≤ C
hi,t otherwise

(15)

where r is a random number within the interval [0,1].

B. IST-based local search operator

In order to generate better new individuals, we develop
an additional step beyond crossover and mutation, where
the generated individuals are further perturbed using a local
search strategy improved from IST [11]. To be specific, we
introduce the IST algorithm in detail and then describe how the
local search strategy is incorporated within the unconstrained
optimization problem (11), which can be treat as a special case
of the following problem:

min
zi,t
{g(zi,t) = f1(zi,t) + λf2(zi,t)} , zi,t ∈ P tCro (16)

where f1(zi,t) is a smooth and convex function, f2(zi,t) is a
separable function but not necessarily smooth nor convex, and
λ is a Lagrangian multiplier that balances the tradeoff between
the measurement error and the sparse constraint term.

The optimization problem (16) is solved through a sequence
of iterations

{
z(k)i,t , k = 1, 2, ...,K

}
, where z(k+1)

i,t is obtained

from the previous solution z(k)i,t by optimizing the following
optimization subproblem:

zi,t = min
zi,t

1

2

∥∥∥zi,t − d(k)
i,t

∥∥∥2
2

+
λ

ρ
(k)
i

f2(zi,t), (17)

where the diagonal matrix ρ(k)i I is an estimation of the Hessian
matrix ∇2f1

(
z(k)i,t

)
and

d̂
(k)

i,t = z(k)i,t −
1

ρ
(k)
i

∇f1
(

z(k)i,t

)
. (18)

Accordingly, the iterative soft/hard thresholding [18] can be
used to solve the problem (18).

C. Selection operator

The selection scheme also differs from that of existing
DE algorithms. The solution of current population is selected
to generate the next population, and its corresponding trial
solution is given by using the following rule:

hi,t+1 =

{
si,t if g(si,t) ≤ g (zi,t) , p = 0
zi,t otherwise

(19)

where sti is the output result of local search operation.
By using the (19), each solution of the temporary (trial)

population is compared with its counterpart in the current
population. The tournament selection is carried out to select
the lower objective function value that will survive to the
population of the next generation. As a result, it is guaranteed
that all the solutions of the next generation are as well as or
better than the current generation. It is worth noting that trial
solution is not compared against all the solutions in the current
population, but only against its counterpart.

D. Acquisition of the final solution

In MOPs, the Pareto knee region provides promising trade-
off between the two conflicting objectives, and the near opti-
mal solution is chosen in this region. It proves that the Pareto
knee point can be regarded as a reasonable final solution [19].
Next, we choose the solution corresponding to the maximal
slope change as the Pareto knee point. The basic idea is to
determine the final solution by the maximum slope of the
Pareto plot at a given point. Thereafter, the solution with the
maximum of slope variance ∆φ value is considered as the
nearly optimal solution.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
channel estimation scheme for mmWave MIMO systems with
IRS. The performance of proposed hybrid evolutionary-based
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Fig. 2: NMSEs of respective algorithms versus the SNR (Nt = 196).

MOEA is experimentally compared to the existing channel es-
timation algorithms, i.e., orthogonal matching pursuit (OMP)
[9], two-stage estimation exploiting both sparsity and low
rankness (TSSR) [20]. The oracle LS scheme is considered
as our benchmark. For the benchmark mmWave systems, we
assume that the IRS is equipped with M = 32 reflecting
elements. The number of antennas at the BS is set to be
Nt = 256 to serve the UE. The carrier frequency is fc = 28
GHz. The distance between neighboring antenna elements is
set as the half-wavelength of the signal.

To evaluate the performance of channel estimation schemes,
we compare the considered CSI estimation techniques in terms
of both the normalized mean square error (NMSE). The NMSE
is considered to quantify the accuracy of channel estimation,
which is mathematically defined as

NMSE , 10 log10

∥∥∥h− ĥ
∥∥∥2
2

‖h‖22
(20)

where ĥ denotes the estimation for the true channel h with the
considered techniques. Apparently, when the value of NMSE
is smaller, the estimated channel ĥ is closer to the true channel
h. In other words, the result of NMSE is zero, which indicates
that ĥ is the perfect estimation of h.

In the first simulation, the performance gain of our pro-
posed strategy for channel estimation is studied, and some
benchmark schemes are introduced in the simulation based
performance comparison and analysis. In Fig. 2 and Fig. 3, we
compare the NMSEs of different channel estimation schemes
versus the SNR levels. It can be observed that the oracle
LS estimator provides the best achievable performance for
all channel estimation method. On the other hand, one can
note that, using the hybrid MOEA for IRS-based system, the
proposed algorithm can obtain significant NMSE improvement
compared with conventional OMP and TSSR algorithms. In
addition, one can observe that the proposed algorithm performs
remarkably with a small gap compared to the benchmark.
These results demonstrate that the IRS is a promising tech-
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Fig. 4: Relationship between NMSE, measurement error and the
sparsity of the solutions on PF and the position of knee regions.

nique to enhance the mmWave MIMO system.
In the following, we study the existence of a knee area

for the proposed algorithm. Fig. 4 shows the relationship
between the NMSE, the measurement error term and the
sparse constraint term in the corresponding solutions. The
corresponding left-hand column in Fig. 4 shows 3-D views
of the three variables together. The right-hand column of Fig.
4 depicts 2-D plots of the measurement error ‖y−Φh‖22 with
change in sparsity. Fig. 4(b) and Fig. 4(c) show the horizontal
position (sparsity axis) of knee points varies with different
sparse values. In particular, under the high SNR levels, we
can notice that the sparsity estimation rapidly deteriorates for
points to the right of the knee region, while providing a little
improvement in measurement error. It is indicated that the
optimal solution can be provided in the knee region. The
above results indicate that the solutions in the knee areas are
consistent with the true sparsity of the original channel.

In Fig. 5, we further analyze how the system achievable
spectral efficiency performance is affected by the number of
IRS elements in the mmWave communication system. It is
observed that the SE performance gains achieved by the IRS
scheme over the ‘without IRS’ scheme, especially for the large
number of phase shifters M . This is mainly due to the fact that
an additional strong link is reflected by the IRS, which can be
harvested by the UE. These results also demonstrate that the
IRS is effective in expanding the operational range of UEs. In
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addition, as expected, the performance of the method ‘without
IRS’ is not affected by the number of the IRS elements in the
system.

V. CONCLUSION

In this paper, we studied the mmWave channel estimation
problem for IRS-assisted MIMO systems. Under the proposed
framework, the cascade channel estimation approach is devel-
oped using the properties of Kronecker products. By exploiting
the inherent sparse structure of the mmWave channel, we
formulate the cascaded channel estimation problem into a CS-
based sparse recovery problem that can achieve a substantial
training overhead reduction. Under the CS-based channel
estimation problem, a multiobjective evolutionary paradigm
with DE is developed to achieve high resolution channel esti-
mation. Furthermore, we provide the convergence analysis for
the hybrid evolutionary-based channel estimation algorithm.
Simulation results were provided to verify the effectiveness of
our framework on mmWave channel.
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