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Abstract. We define a family of vertex colouring games played over a pair of

graphs or digraphs (G,H) by players ∀ and ∃. These games arise from work on

a longstanding open problem in algebraic logic. It is conjectured that there is a
natural number n such that ∀ always has a winning strategy in the game with

n colours whenever G ̸∼= H. This is related to the reconstruction conjecture

for graphs and the degree-associated reconstruction conjecture for digraphs.
We show that the reconstruction conjecture implies our game conjecture with

n = 3 for graphs, and the same is true for the degree-associated reconstruction
conjecture and our conjecture for digraphs. We show (for any k < ω) that

the 2-colour game can distinguish certain non-isomorphic pairs of graphs that

cannot be distinguished by the k-dimensional Weisfeiler-Leman algorithm. We
also show that the 2-colour game can distinguish the non-isomorphic pairs of

graphs in the families defined by Stockmeyer as counterexamples to the original

digraph reconstruction conjecture.

1. Introduction

An Ehrenfeucht-Fräıssé game is played over a pair of structures by two players, ∀
and ∃, who place matching pebbles on the two structures, and test their equivalence
with respect to a first-order language whose variables correspond to the pairs of
pebbles. In this paper, we investigate a similar game, where the two players have
k colours which are used (and may be reused) to paint sets of points from the
two structures, rather than placing pebbles on individual points. Section 3 defines
the game precisely, but we will sketch out the main idea here. We restrict our
attention to graphs, which may or not be directed. In the game Gk(G,H), the first
player ∀ is trying to prove that graphs G,H are not isomorphic, and ∃ is trying
to prevent this. In pursuit of these competing goals, the players take it in turns
to ‘paint’ sets of vertices of a graph using one of the k colours, with the second
player trying to match the move of the first as best she is able, in the other graph.
∀ wins the game if ∃ fails to match moves, either because there is a node painted
by a certain combination of colours in one graph but no such node in the other, or
because there is an edge in one graph, but no edge in the other graph matching the
colour combinations of source and target nodes, see Section 3 for the full definition
of the game. Versions of this colouring game, generalised from graphs to binary
structures, and also specialised to sets, are used in [5, 6] to prove some results in
algebraic logic (see Section 2 for a brief discussion of this).

At the moment, not much is known about this colouring game (which we refer to
as a Seurat game, in reference to pointillist painting), though there are some simi-
larities with Ehrenfeucht-Fräıssé style games for monadic second-order logic, which
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we discuss later. If ∀ can force a win, then the two graphs cannot be isomorphic,
as with isomorphic graphs ∃ may always perfectly mirror ∀’s moves. However, it is
not clear to what extent the converse holds. In other words, whether graphs exist
that are not isomorphic but where nevertheless ∃ can play indefinitely without los-
ing. Intuitively, ∀ should be able to win more easily with more colours available, as
he can force more complicated situations which must be mirrored between graphs.
For example, with only a single colour his ability to win is rather limited, and it
is easy to construct examples of non-isomorphic graphs where he does not have a
winning strategy (the graphs may even have different cardinalities). However, it is
currently not known whether there is some n such that ∃ being able to avoid losing
in Gn(G,H) always implies G ∼= H. In particular, we are not aware of any pair
of non-isomorphic graphs where ∃ can avoid losing in even the game with only two
colours. We can reformulate this as a conjecture as follows.

Conjecture 1.1. There is n ≥ 2 such that for all digraphs G,H, if G ̸∼= H then ∀
has a winning strategy in Gn(G,H).

This conjecture has a certain thematic similarity to the famous reconstruction
conjecture [36, p. 29], about which much has been written (see e.g. [26, 8, 32, 1, 18]
for exposition). This was pointed out to the second listed author by A. Dawar.
This connection is most explicit when the reconstruction conjecture is phrased in
the following way.

Definition 1.2. The reconstruction conjecture is that if G and H are non-
isomorphic (undirected) graphs with at least one having at least three vertices,
then there is a graph F such that the number of point-deleted subgraphs of G that
are isomorphic to F is not equal to the number of point-deleted subgraphs of H
that are isomorphic to F .

The multiset of point-deleted subgraphs (up to isomorphism) of a graph is known
as its deck, and so the reconstruction conjecture phrased this way says that we can
detect if two graphs with at least three vertices are not isomorphic by comparing
their decks, just as our conjecture above says that if two digraphs are not isomorphic
we can detect this in a certain game. There is a version of the reconstruction
conjecture for digraphs obtained by replacing ‘graph’ with ‘digraph’ everywhere in
Definition 1.2. The reconstruction conjecture for digraphs is known to be false, with
families of counterexamples provided in [30, 31]. The original graph reconstruction
conjecture, however, remains open.

While the reconstruction conjecture for digraphs is false, a related conjecture
does remain open. This is often referred to as the degree-associated recon-
struction conjecture for digraphs (see Definition 8.1 below), and is due to
Ramachandran [27, 28]. This conjecture is stronger than the reconstruction con-
jecture for graphs (if we view graphs as special kinds of digraphs), but weaker
than the reconstruction conjecture for digraphs (which, as mentioned previously, is
false). We show in Section 8 that if the degree-associated reconstruction conjecture
for digraphs is true then so is Conjecture 1.1, and similarly if the original recon-
struction conjecture is true then the version of Conjecture 1.1 for undirected graphs
holds (both with n = 3). It follows immediately that a counterexample to Conjec-
ture 1.1 or its graph analogue would disprove the degree-associated reconstruction
conjecture or the reconstruction conjecture, respectively.
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The bulk of this paper is devoted to investigating Seurat games. Section 2
describes the origin of these Seurat games in a problem to do with axiomatisations
of the class of representable relation algebra. The basic definitions of Seurat games
are provided in Section 3, along with several general results about strategy, and
comparisons with certain games for monadic second-order logic. To demonstrate
the power of these games to distinguish non-isomorphic graphs, and provide support
for Conjecture 1.1, we provide two main examples.

First, in Section 5 we study the graph constructions from [2, Section 6]. These
constructions were introduced to demonstrate that the k-dimensional Weisfeiler-
Leman algorithm (k-WL for short - see e.g. [16] for a summary) is not sufficient
to distinguish all non-isomorphic graphs for any k. Our result here is to use this
construction to produce, for each k, a pair of graphs that cannot be distinguished
by k-WL, but can be distinguished in the 2-colour Seurat game.

We also consider certain pairs of non-isomorphic digraphs from [31], which we
call Stockmeyer graphs. Stockmeyer proved that these pairs are not isomorphic
to each other but share the same deck. We describe these Stockmeyer graphs in
Section 6. Although these pairs share the same deck, we prove in Section 7 that ∀
has a winning strategy in the 2-colour Seurat game over them. Proving this is not
entirely straightforward, and to this end we define in Section 4 something called
a tally-sequence. This extends the notion of the degree sequence of a vertex,
and is related to the colour refinement algorithm (which is the k = 1 case of
k-WL). The benefit of computing tally-sequences over the more well known colour
refinement algorithm is that we can prove that ∃ must, in a technical sense to be
defined later, match tally sequences in her moves if she doesn’t want to lose. It is
by exploiting this constraint that we are able to prove that ∀ has a winning strategy
in the 2-colour game over any Stockmeyer pair. It is not currently known whether
∃ must also match colour refinement colours. This is discussed in more detail in
Section 4, particularly just after Lemma 4.4. As mentioned previously, further
support for Conjecture 1.1 is provided in Section 8, which contains a discussion of
the relationship between the reconstruction conjectures and our conjecture about
Seurat games.

2. Axiomatising the class of Representable Relation Algebras

Seurat games arise from a problem in Relation Algebra, which we outline in
this section. The material here is not required in order to read the rest of the
paper. A historical overview of Relation Algebra, whose origins go back to the
work of De Morgan in the mid 19th century, can be found in [24, 29], and also in
the introduction to [10]. We will content ourselves here with only a brief synopsis,
beginning our story in the early 1940s with Tarski’s proposal [33] for a specialized
calculus of binary relations. This calculus took the form of a kind of pared-down
formal logic, with axioms extending those for propositional logic, and two rules of
inference. The formal treatment of binary relations can of course be handled in a
fragment of first-order logic, with which Tarski was well familiar. However, Tarski
had a particular interest in an elegant formalization specific to binary relations, as
set theory is developed using a single binary relation, so by studying the logic of
binary relations he was, in a sense, studying set theory, and thus all of mathematics.

Over the course of the decade, Tarski and his circle investigated several algebraic
versions of his calculus, before settling on a form that appeared in print in [15, 3].
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In this abstract and paper, the modern definition of a relation algebra is set down.
This modern formulation defines relation algebras as a variety (i.e. equationally
defined class) of algebraic structures. The details are not important here, but a
relation algebra in Tarski’s sense is a Boolean algebra with additional operators in
which a finite number of additional equations hold. This turns out to be capable
of expressing all properties of binary relations involving at most three variables.

Since Tarski intended his calculus of relations to capture the logic of binary re-
lations, a natural question to ask is whether relation algebras as described here
successfully capture all and only the true properties of binary relations, or at least
those true properties of binary relations expressible with three variables. Unfortu-
nately, the answer to this question was fairly quickly discovered to be “no” [20].
We omit the details, but the root of the problem is that not every relation algebra
is isomorphic to a ‘concrete’ algebra of binary relations over a set. The relation
algebras which are so isomorphic are therefore distinguished from relation algebras
in general by being termed representable. The class of representable relation
algebras (RRA) is thus a strict subclass of the class of all relation algebras (RA),
and, rephrasing, the problem is that not every relation algebra is representable.

What is captured by RA can be summarized by the following two facts:

(1) Every equation in the language of relation algebras can be translated into a
first-order statement about binary relations involving at most three variables,
and conversely, every first-order statement about binary relations involving at
most three variables can be translated into an equation in the language of
relation algebras.

(2) An equation is true in all relation algebras if and only if its translation into
a first-order statement about binary relations is provable using at most four
variables.

According to historical remarks in [35, pp. 88–9] and [22, pp. 28–9, 529] (1) was
proved sometime in 1942–1943 and first published in [35, Theorems 3.9(viii)(ix)].
(2) was attributed to [23] by [35, pp. 92–3, 209] and first published in [21, Theorem
24]. Tarski’s choice of axioms for RA turns out to be essentially optimal for a finite
theory. The argument is too technical to go into here, but the result is that to
define relation algebras so that the statement obtained from (2) above by replacing
‘four’ with ‘five’ holds would require an infinite number of additional axioms. In
other words, while validity over RA does not capture all true properties of binary
relations that can be stated with three variables, it does capture, for classical proof
systems, all true three variable properties provable with four variables, and no finite
set of axioms can capture the true three variable properties classically provable with
five variables. It’s hard to find a precise statement of this fact in the literature, but
the argument can be reconstructed by reading [9, Section 6] and following up some
of the references to be found there.

From the point of view of ‘true properties of binary relations’ the class of main
interest is RRA, so it is natural to look for axioms for this class. It turns out that
RRA is also a variety [34], and is even recursively axiomatizable by equations [10,
Theorem 8.4], though axiomatizing it requires an infinite number of equations, as
mentioned above. Aside from this good news about the existence of an equational
axiomatization, most news about the axiomatizability of RRA turns out to bad. For
example, RRA is not even finitely axiomatizable in first-order logic [25], and it can’t
be axiomatized by equations using only a finite number of variables [14, Theorem



SEURAT GAMES ON STOCKMEYER GRAPHS 5

3.5.6], nor by any set of equations only a finite number of which are non-canonical
[11]. An outstanding question is whether it can be axiomatized in first-order logic
using only a finite number of variables. This is mentioned as Problem 17.4 in [10],
which also provides a strategy for a potential proof that no such axiomatization
exists (see page 625 of that book, and also the brief discussion in [29, p491]).
Unfortunately, the strategy as described there doesn’t quite work, in the sense that
solving the problem defined in the book does not lead to a proof that RRA has no
finite variable first-order axiomatization. Corrections to this problem are discussed
in [6], where the following is proved.

Theorem 2.1. Suppose there exist two finite digraphs graphs G and H such that,

1. ∃ has a winning strategy in Gk(G,H) ,
2. every partial homomorphism {(i, j), (i′, j′)} where i ̸= i′ ∈ H of H to itself

extends to a full homomorphism on H, and
3. there are i ̸= i′ ∈ G and j, j′ ∈ H such that {(i, j), (i′, j′)} is a partial homo-

morphism that does not extend to a homomorphism G→ H.

Then RRA has no (k − 3)-variable first-order axiomatization.

A condition that suffices to establish part (3) in the cases of interest is that there
is no homomorphism from G to H. This condition does not imply (3) for all graphs,
because if G is complete and H is edgeless then there is no homomorphism, yet (3)
fails since there are no partial homomorphisms of size two. However, if we assume
(1), this exceptional case is excluded, and so the absence of a homomorphism does
imply (3).

[5] also uses Seurat games to prove another negative result about axiomatizations
of RRA, namely that any first-order axiomatization requires sentences of arbitrary
quantifier depth.

Note that from the point of view of Theorem 2.1 we hope Conjecture (1.1) is
false, as it is ∃ we wish to have a winning strategy in games over pairs of non-
isomorphic graphs. However, it follows from our results here that the falsity of
(1.1) would disprove the degree-associated reconstruction conjecture, so we do not
expect this to be simple. But, more optimistically, thinking about the colouring
game could potentially provide insight leading to a disproof of one or both of the
reconstruction conjectures, if indeed one or both are false.

3. Seurat games

A Seurat game Gk(G,H) is played by two players, ∀ and ∃, using a set Col of
k colours (where k ≥ 1), over a pair of graphs (G,H). We assume that all graphs
are finite, and we allow self-edges (loops), but disallow multiple edges. A position
(g, h) in the game consists of a pair of functions g : Col → ℘(G), h : Col → ℘(H)
(here and elsewhere we identify a graph with its set of nodes). There are ω rounds
in a play of the game. In each round, if the current position is (g, h), ∀ chooses a
colour c ∈ Col, either graph G or H, and a subset of the nodes of his chosen graph,
player ∃ chooses a subset of the nodes of the other graph. The new position at the
end of the round is (g′, h′) where g′, h′ are identical to g, h (respectively) on colours
other than c, and g′(c) ⊆ G, h′(c) ⊆ H are given by the two chosen sets. Note that
reusing a colour erases its first use, so, for example, if ∀ colours set S of vertices
of G red, and then later colours a set T of vertices of G red, the vertices in S are
no longer red, unless they are also in T . At the end of each round, each vertex of
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G and H will be coloured with between 0 and k colours. A palette is a subset of
Col. When we talk about the palette of a vertex we mean the set of colours applied
to it (which could be empty). Given a palette P of colours we define the range
of P in G, which we denote PG, to be the set of vertices of G whose palette is P ,
and we define the palette of P in H, denoted PH , similarly. The game opens with
round 0. We say that ∀ wins in round n if at the beginning of that round, any of
the following conditions is satisfied:

(C1) There is a palette P such that PG is empty and PH is not, or vice versa.
(C2) There are palettes P1 and P2 such that there is an edge from PG

1 to PG
2 but

no edge from PH
1 to PH

2 , or vice versa.

Initially, all colours colour the empty set of nodes, so it is impossible for ∃ to
lose in round 0, though if we used a variation of the game allowing other starting
configurations then this would not necessarily be the case. Observe that the rules
of the Seurat game apply equally well to directed and undirected graphs. Now,
∃ cannot win outright, but we say she has a winning strategy if she can play
in such a way that she never loses (i.e. so that (C1) and (C2) are never true).
Alternatively, ∀ has a winning strategy if he can guarantee that he will win in a
finite number of rounds. Note that, as a consequence of König’s Tree Lemma [17],
exactly one player has a winning strategy in each game.

Clearly, if G ∼= H, then ∃ has a winning strategy in Gk(G,H) for all values of
k, as she can just copy ∀’s moves. It is not known for what values of k, if any, the
converse is true. In other words, is there a value of k such that whenever ∃ has a
winning strategy in Gk(G,H) it is necessarily the case that G ∼= H? If so, then

clearly for all k′ ≥ k if ∃ has a winning strategy in Gk′
(G,H) then she also has a

winning strategy in Gk(G,H) as we remarked before, hence G ∼= H. Thus, if the
converse implication holds for some k then it also holds for all k′ ≥ k. On the other
hand, there are no known examples of G and H with G ̸∼= H but where ∃ has a
winning strategy in Gk(G,H) for even k = 2.

The case k = 1 with a single colour is rather straightforward, however. For
the one colour game, observe in each round that the colour is deleted from both
graphs before being reassigned, so the game effectively restarts from the beginning.
Hence if ∃ has a strategy to ensure surviving just one round then she has a winning
strategy for the ω length game. Suppose G and H are edgeless graphs with two
or more vertices. In any round the set of nodes chosen by ∀ (in either graph) has
either no nodes (empty), all nodes, or some but not all nodes of the graph included.
Provided ∃ chooses a set of nodes of the other graph correspondingly including
none, all, or some but not all nodes, she will survive. So there are plenty of pairs
of non-isomorphic graphs that cannot be distinguished by the one colour game.

Some of the work in [6] implicitly adds some winning conditions for ∀ to the
Seurat game for graphs, though this is not immediately apparent as in that paper
Seurat games are defined for binary structures (i.e. relational structures with one
or more binary relations). We call the result of adding these conditions the strong

Seurat game, and denote by Ĝk(G,H) (for k colours). This is exactly like the
Seurat game just described, but with the following additional winning conditions
for ∀.
(C3) There are palettes P1 and P2 such that every vertex in PG

2 is the target of
an edge out of PG

1 , but there is a vertex in PH
2 that is not the target of any

edge out of PH
1 , or vice versa switching G and H.
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(C4) There are palettes P1 and P2 such that every vertex in PG
1 is the origin of

an edge into PG
2 , but there is a vertex in PH

1 that is not the origin of any
edge into PH

2 , or vice versa switching G and H.

For the work in [6] with binary structures, conditions (C3) and (C4) are not
needed explicitly as a graph can be augmented with an additional binary relation
corresponding to ‘missing’ edges. In these augmented graphs, if (C3) or (C4) is
triggered for edges then (C2) is triggered for ‘missing’ edges, so the extra conditions
add nothing.

For ordinary graphs, the strong Seurat Ĝk(G,H) game is obviously at least as
powerful as the Seurat game Gk(G,H) for distinguishing G and H, but it is not
clear whether it is strictly more powerful for k ≥ 2, as we do not currently know
of any non-isomorphic graphs that cannot be distinguished by G2(G,H). When
k = 1, Example 3.2 below demonstrates that the strong game is strictly more
powerful. We also have the following result indicating that Gk is, at worst, not far
behind Ĝk.

Lemma 3.1. If ∀ has a strategy for winning by round n in Ĝk(G,H), then ∀ also
has a strategy for winning by round n+ 1 in Gk+1(G,H).

Proof. ∀’s strategy is to play as in his strategy for Ĝk(G,H) using the first k
colours. If this strategy wins by either (C1) or (C2) then he has nothing more to
do. Alternatively, if his strategy wins by (C3) then there are palettes P1 and P2

and, without loss of generality, a vertex v of PH
2 that is not the target of any edge

coming out of PH
1 in H, while every vertex in in PG

2 is the target of an edge out of
PG
1 . In his next move, ∀ colours v with the as yet unused (k+1)th colour. Then ∃

must respond by colouring a vertex of PG
2 , or else she violates (C1), but then she

loses by (C2) anyway. The (C4) case is similar. □

Example 3.2. Here we present an example demonstrating that the strong game
with one colour Ĝ1 is strictly stronger than the standard game G1. Note first
that when there is only one colour, after that colour has coloured some non-empty
subset of a graph, there are exactly four possible ‘edge types’ in the graph. If
we let c stand for coloured, and u stand for uncoloured, these edge types are
(c, c), (c, u), (u, c), (u, u). This produces a total of 24 = 16 possible ‘edge type’ com-
binations in a given graph, though not every graph can witness every combination.

Let G and H be as in Figure 1. So G is the disjoint union of two 3-vertex chains,
and H is similar but with the addition of a disjoint 2-vertex cycle. A tedious check
reveals that a non-empty set of nodes in G or H can witness precisely the same
12 out of the possible 16 edge type combinations (the omitted combinations being
{(u, u)}, {(c, u)}, {(u, c)} and ∅). Thus ∃ has a winning strategy in G1(G,H),
as whatever move ∀ makes she just plays a move witnessing the same edge type
combination.

However, in a play of Ĝ1(G,H), if ∀ colours the 2-vertex cycle in H, then ∃ must
respond by colouring a non-empty set of vertices in G such that every coloured vertex
is the target of an edge from another coloured vertex, else she will trigger (C3). But

this is impossible, so ∀ has a winning strategy in Ĝ1(G,H).

Similar games have been studied in the context of monadic second-order logic.
Let m, k < ω, and let G,H be graphs. Then MSOk

m(G,H) is a game played over
G and H between players ∀ and ∃ using k colours and m pairs of pebbles. The
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G H

Figure 1. The graphs G and H

rules of are similar to those of Gk. Each round begins with ∀ choosing either a
colour or a pebble pair. He then either colours a set of vertices of either G or H
with his chosen colour, or places one of his chosen pebbles on a single vertex of
either G or H. In response, ∃ must either colour a subset of the other graph with
the same colour, as in the Seurat game, or place the other pebble from the pair
on a single vertex. Colours are interpreted as instantiations of monadic predicates.
In this game, ∀ wins in round n if, at the start of that round, the partial map
induced by matching pairs of pebbles is not an isomorphism (taking into account
the predicates induced by the colours, as well as the edge relation). It is known that

MSOk
m captures expressibility in monadic-second logic for relational structures

with k second-order and m first-order variables (see e.g. [19, Section 7]). The
following proposition makes explicit a connection between the monadic second-
order games and the Seurat games.

Proposition 3.3. Let k,m < ω, and let G,H be graphs. Then:

(1) If ∀ has a winning strategy for the strong Seurat game Ĝk(G,H), then he

also has a winning strategy for MSOk
2(G,H).

(2) If ∀ has a winning strategy for MSOk
m(G,H) and k +m ≥ 2, then he also

has a winning strategy for the ordinary Seurat game Gk+m(G,H).

Proof. Suppose first that ∀ has a winning strategy for Ĝk(G,H). His strategy for

MSOk
2(G,H) is as follows. Initially, every round he plays with colours exactly as

he would in Ĝk(G,H). Since he is playing according to a winning strategy, at some
point one of (C1)-(C4) will be triggered. If (C1) is triggered, then, without loss of
generality, there’s a palette P such that PG is empty and PH is not. ∀ then plays a
pebble move using one of the vertices in PH . Since PG is empty, wherever ∃ places
the partner pebble, the induced map cannot be an isomorphism, and so she loses.

Alternatively, if (C2) is triggered then, without loss of generality, there are
palettes P1 and P2 such that there’s an edge from PG

1 to PG
2 but no edge from

PH
1 to PH

2 . Here ∀ chooses u ∈ PG
1 and v ∈ PG

2 where (u, v) is an edge. First he
plays a pebble move using u, and ∃ must respond by placing the partner pebble on
some u′ ∈ PH

1 . Then he plays a pebble move using the remaining pebble pair and
the vertex v, and ∃ must respond by placing the partner pebble on some v′ ∈ PH

2 .
But now she loses, as the map induced by the pebbles cannot be an isomorphism,
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as there’s an edge (u, v) but no edge (u′, v′). The arguments for (C3) and (C4) are
similar to the one for (C2), so we omit them for brevity. This proves (1).

For (2), note that it follows trivially from k +m ≥ 2 and Proposition 3.7 (S1)
below that if ∀ colours a single vertex in Gk+m(G,H), then ∃ must respond by
colouring a single vertex too, otherwise ∀ can force a win. So, if ∀ uses the first
k colours of Gk+m(G,H) (call these c1, . . . , ck) to correspond to the k colours of

MSOk
m(G,H), and the m additional colours (call these ck+1, . . . , ck+m) to corre-

spond to the pebble moves (i.e. by colouring single vertices), a sequence of moves

in MSOk
m(G,H) corresponds directly to a sequence of moves in Gk+m(G,H). So

∀ can just use his strategy for MSOk
m(G,H) without modification (unless ∃ breaks

the correspondence by colouring more than one vertex in response to a ‘pebble’
move, in which case ∀ forces a win as discussed above). We need only check that

a win for ∀ in MSOk
m(G,H) translates into a win in Gk+m(G,H). Suppose then

that ∀ wins in MSOk
m(G,H) due to the placement of pebble pairs 1, . . . ,m on

u1, . . . , um in G, and on u′1, . . . , u
′
m in H, so that ui 7→ u′i (1 ≤ i ≤ m) is not an

isomorphism with respect to colours {c1, . . . , ck} and the edge relation.
There are two cases. Suppose first, for some 1 ≤ i ≤ m, that ui is coloured by a

different combination of colours from {c1, . . . , ck} than u′i. Then since ui, u
′
i are the

unique points coloured with ck+i, (C1) must be triggered, so ∀ wins Gk+m(G,H).
Alternatively, suppose that the {c1, . . . , ck}-colour combinations of ui and u

′
i match

for all 1 ≤ i ≤ m, but the induced map is not an isomorphism due to there being
an edge (ui, uj) in G, but no edge (u′i, u

′
j) in H or vice versa (for some 1 ≤ i, j ≤ t).

Then, ck+i only colours ui and u
′
i, and ck+j only colours uj and u′j , so (C2) must

be triggered, and ∀ also wins Gk+m(G,H) in this case too. □

The 1-colour Seurat game is obviously fairly limited in its ability to distinguish
non-isomorphic graphs, as we saw. However, even the 1-colour game can detect
some differences, as we see in the next proposition. Recall that a directed graph is
weakly connected if for every pair of vertices u, v there is a path, of the symmetric
closure of the edge relation, from u to v, and it is strongly connected if it contains
a directed path in the edge relation from u to v and a directed path from v to u,
for every pair of vertices u, v.

Proposition 3.4. Let G and H be digraphs. Then ∀ has a winning strategy in
G1(G,H) in all the following situations:

(1) When G has exactly one vertex and H has more than one (or vice versa).
(2) When one of G or H is strongly connected but the other is not.
(3) When one of G or H is weakly connected but the other is not.
(4) When one of G or H has an irreflexive vertex but the other does not.
(5) When G and H are not isomorphic and each has at most two vertices.

Proof.

(1) Here ∀ just colours one vertex of H. Then H has both coloured and uncoloured
vertices, which ∃ cannot replicate in G.

(2) SupposeG is strongly connected butH is not. Let E∗
H be the reflexive transitive

closure of the edge relation of H, and for all v ∈ H define E∗
H(v) = {u ∈ H :

(v, u) ∈ E∗
H}. Then, as H is not strongly connected, there is v0 ∈ H such that

E∗
H(v0) ̸= H. So, in his first move ∀ colours E∗

H(v0). Now, ∃ must respond by
colouring a subset S of G. If S is not a proper subset of G then ∃ loses as there
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will be an uncoloured vertex of H but not of G. But if S is a proper subset of
G she will also lose, as then there will be a coloured-to-uncoloured edge in G,
but not in H.

(3) Suppose G is weakly connected but H is not. The argument is similar to that

used for (2), but this time we start with the relation ÊH on the vertices of H

by ÊH(u, v) if and only if either EH(u, v) or EH(v, u).
(4) Here ∀ just colours an irreflexive vertex in the graph which has an irreflexive

node. If ∃ plays the empty set she loses by (C1), if she plays a non-empty
subset of the (reflexive) nodes of the other graph she loses by (C2).

(5) Suppose G,H are not isomorphic and both have one or two vertices. Cases
where the cardinalities are different are covered by part (1), the case where
both graphs have a single node (reflexive in one case irreflexive in the other) is
covered by (4), so suppose each graph has two nodes. ∀ colours an arbitrary
single node {g} where g ∈ G, let the other node of G be g′ say. If ∃ does not
colour a single node of H, she loses by (C1), so suppose she colours {h} where
h ∈ H and let the other node of H be h′. Since the map {(g, h), (g′, h′)} is not
an isomorphism, ∃ must lose by (C2).

□

In the 2-colour game and beyond, ∀ has much more power to force a win, and ∃’s
play must satisfy many constraints if she intends to stave off defeat. We will describe
some of these in Proposition 3.7 below, but first we introduce some terminology
and notation.

Definition 3.5 (τ , σ, σ+). Let G = (V,E) be a digraph with vertices V and edges
E ⊆ V × V , let v be a vertex of G and X,Y ⊆ V .

in(v), out(v) are the in- and out-degrees of v(1)

in(v) = |E ∩ (V × {v})|
out(v) = |E ∩ ({v} × V )|
τ(v) = (in(v), out(v)) is the tally of v(2)

inY (v) = |E ∩ (Y × {v})|(3)

outY (v) = |E ∩ ({v} × Y )|(4)

τY (v) = (inY (v), outY (v)), the tally of v relative to Y(5)

σ(X) = {τ(x) : x ∈ X}(6)

σY (X) = {τY (x) : x ∈ X}(7)

σ+(X) is the multiset of pairs τ(x) with x ∈ X(8)

σ+
Y (X) is the multiset of pairs τY (x) with x ∈ X.(9)

The definitions for τ , σ and σ+ can be adapted for undirected graphs. Given a
graph G and v ∈ G, in this case τ(v) is just the degree of v, and σ+(G) is essentially
the degree sequence of G.

Definition 3.6. Given a subset S of a graph G define:

• ηO(S) = S ∪ {v ∈ G : ∃u ∈ S and (u, v) is an edge}.
• ηI(S) = S ∪ {v ∈ G : ∃u ∈ S and (v, u) is an edge}.

If s̄ = (s1, . . . , sn) is a sequence where si ∈ {I,O} for each i, we use ηs̄(S) to denote
ηsn ◦ ηsn−1

◦ . . . ◦ ηs1(S). If 0 < k < ω we may write e.g. ηkO(S) for ηs̄(S) when
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s̄ = (s1, . . . , sk) and si = O for all i ≤ k. We can extend the notation to cover
k = 0 by setting η0O(S) = S.

Proposition 3.7. In G2(G,H) with colours {red, blue}, if ∃ is pursuing a winning
strategy her moves must satisfy the following constraints:

(S1) If ∀ colours a set S, and T is the set coloured by ∃ in response, we must have
|S| = |T |.

(S2) If ∀ makes a move colouring a single vertex v, then ∃ must respond by colouring
a single vertex w so that τ(v) = τ(w).

(S3) If ∀ colours a set of vertices S, then ∃ must respond by colouring a set T such
that σ(S) = σ(T ).

(S4) If ∀ colours a set of vertices S, then ∃ must respond by colouring a set T such
that σ+(S) = σ+(T ).

(S5) If ∀ colours a set S0 red, and T0 is the set coloured red by ∃ in response, then
if in his next move ∀ colours S1 = ηO(S0) blue, ∃ must colour T1 = ηO(T0)
blue in response. The analogous result holds for ηI .

(S6) If ∀ colours a set S, and T is the set coloured by ∃ in response, then whenever
s̄ = (s1, . . . , sn) is a sequence where si ∈ {I,O} for each i, we must have
|ηs̄(S)| = |ηs̄(T )|.

Proof.

(S1) Suppose ∀ colours a set S0 = S of vertices of G red, and ∃ responds by
colouring a set T0 = T of vertices of H red. Suppose without loss of generality
that n = |S0| < |T0|. Then ∀ chooses arbitrary v0 ∈ T0, defines T1 = T0 \{v0},
and colours T1 blue. Then ∃ must choose S1 ⊂ S0 and colour it blue. Note
that the inclusion must be strict, to avoid (C1).

Now, ∀ continues by choosing v1 ∈ T1, defining T2 = T1\{v1}, and colouring
T2 red. Again, ∃ must respond by choosing S2 ⊂ S1 and colouring it red.
Repeating this process would produce a chain T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Tn,
where |Tn| = |T0| − n > 0. If ∀ has not won before this point, there would
be a corresponding chain S0 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sn, but this is impossible, as
|Sn| ≤ |S0| − n = 0, and so Sn is empty. Since Sn is empty but Tn is not, ∃
must lose.

(S2) Suppose ∀ colours the vertex v of G red, and ∃ responds by colouring the
vertex w of H red (we know she must respond by colouring a single vertex).
Without loss of generality, suppose in(v) < in(w). Since if one of {v, w} is
reflexive and the other is not ∃ loses immediately, we can assume that they
are either both reflexive, or both irreflexive. Let S be the set of vertices of G
that have no outgoing edge to v.

Suppose first that S is empty. Then every vertex of G has an outgoing edge
into v. Since in(v) < in(w) by assumption, it follows that H has more vertices
than G (since we are assuming v is reflexive if and only if w is). Thus ∀ could
win using (S1), and so ∃ could not pursue a winning strategy anyway.

Suppose then that S ̸= ∅, and that ∀ colours S blue. Then ∃ must respond
by colouring a set T of vertices ofH blue, and, by (S1), we must have |S| = |T |.
But, as in(v) < in(w), there must be a vertex u in T such that (u,w) is an
edge in H. Thus ∃ loses the game, as there is an edge from a blue vertex to
a red vertex in H, but no such edge in G.
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(S3) Suppose ∀ colours the set S of vertices of G red, and ∃ responds by colouring
the set of vertices T of H the same colour. By (S1) we can assume |S| = |T |.
Suppose σ(S) ̸= σ(T ). Suppose without loss of generality that there is v ∈ S
such that τ(v) ̸= τ(w) for all w ∈ T . Suppose ∀ colours v blue. Then ∃ must
respond by colouring a vertex of T blue, as otherwise there will be no vertex
with palette {red, blue} in H. Suppose ∃ colours the vertex u ∈ T blue. Then
τ(v) ̸= τ(u), by choice of v, and so ∃ will lose by (S2).

(S4) Suppose ∀ colours the set S of vertices of G red, and ∃ responds by colouring
the set of vertices T of H the same colour. By earlier work we can assume
that |T | = |S|, and also that σ(T ) = σ(S). Suppose that σ+(T ) ̸= σ+(S).
Suppose without loss of generality that there is (m,n) ∈ ω2 such that there
are strictly more vertices in S whose tally is equal to (m,n) than there are
vertices in T with that property. Let S′ = {x ∈ S : τ(x) = (m,n)}. Suppose
∀ colours S′ blue. Then ∃ must respond by colouring some subset T ′ of T
blue, and she must have |T ′| = |S′|. But as there are not enough vertices with
the right tally in T , we will have σ(T ′) ̸= σ(S′), and so the result follows from
(S3).

(S5) Claim 1: ∃ must ensure that T1 ⊇ ηO(T0). Proof: note first that by (C1)
we must have T0 ⊆ T1. So, if ηO(T0) ̸⊆ T1 then there will be a red-blue to
uncoloured edge in H, while no such edges exist in G, as in G all vertices
connected to T0 by outgoing edges are coloured blue. This triggers (C2),
proving Claim 1.

Claim 2: Whenever ∀ colours a set S and ∃ responds by colouring a set
T , she must ensure that |ηO(S)| = |ηO(T )|. Proof: without loss of generality,
suppose |ηO(S)| < |ηO(T )|. Then ∀ can colour ηO(S) blue, and by Claim 1,
∃ must colour in response a superset of ηO(T ). Since the size of the superset
must necessarily be greater than |ηO(S)|, this violates (S1). This proves Claim
2.

Now, returning to the main proof, we established in Claim 1 that ∃ must
ensure that T1 ⊇ ηO(T0). Also, by (S1) and Claim 2 we have must have
|T1| = |S1| = |ηO(S0)| = |ηO(T0)|. So T1 must be a superset of ηO(T0) with
the same size. In other words, T1 = ηO(T0) as claimed. A similar argument
works for ηI .

(S6) Suppose ∀ colours S ⊆ G red and ∃ colours T ⊆ H red in response. Given
s̄ = (s1, . . . , sn), suppose ∀ plays by colouring the sets S = S0, S1, . . . , Sk

in sequence (alternating between red and blue appropriately), where Si =
ηsi(Si−1) for all i ∈ {1, . . . , n}. Then ∃ must respond by colouring a sequence
T = T0, T1, . . . , Tk. By induction and (S5) we must have Ti = ηsi(Ti−1) for
all i ∈ {1, . . . , n}, so if |ηs̄(S)| ≠ |ηs̄(T )| she loses by (S1).

□

Note that it follows easily from Proposition 3.7(S1) that, if |G| ≠ |H|, then ∀ has
a winning strategy in G2(G,H). (S6) can be improved to take tallies into account,
but we postpone this argument till Corollary 4.7, where we will prove something
stronger. We also have the following easy lemma giving us a rough and ready upper
bound on the number of colours ∀ needs to guarantee a win.

Lemma 3.8. Let G and H be digraphs with |G| = |H| = n ≥ 2 but G ̸∼= H. Then
∀ has a winning strategy in G⌈log2 n⌉(G,H).
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Proof. With ⌈log2 n⌉ colours ∀ can give each vertex in G a unique palette, and to
avoid losing ∃ will end up colouring H so that each of its vertices has a unique
palette. But now she loses anyway, because G ̸∼= H. □

In the 3-colour game we can get a version of constraint (S4) from Proposition
3.7 for σ+

S (X), as we make precise in the following result.

Proposition 3.9. In the 3-colour game played over a pair of digraphs (G,H) with
colours {red, blue, green}, if ∃ is pursuing a winning strategy then, at any stage in
the game, if S and X are the subsets of G coloured red and blue, respectively, and
T, Y are the subsets of H coloured red and blue, respectively, then we must have
σ+
S (X) = σ+

T (Y ), and σ+
X(S) = σ+

Y (T ).

Proof. The idea is to copy the format of the proof of Proposition 3.7, by proving
analogues of (S2), (S3), building up to the analogue of (S4) that is the statement
that ∃ must ensure that σ+

S (X) = σ+
T (Y ). By symmetry it follows she must also

ensure that σ+
X(S) = σ+

Y (T ). The strategy in each case is also essentially the same
as in the proof of Proposition 3.7, just using the third colour to ‘relativize’. To
illustrate the technique, we provide the proof that ∃ must ensure τS(u) = τT (v).
We leave the rest to the reader.

So, suppose that at some point in the game S and {u} are coloured, respectively,
red and blue in G, and T and {v} are coloured red and blue in H. Suppose that
τS(u) ̸= τT (v), and suppose without loss of generality that

|{s ∈ S : (s, u) is an edge in G}| < |{s ∈ S : (x, v) is an edge in H}|.

We can also assume that u is reflexive if and only if v is. Let S′ be the set of vertices
in S that do not have an outgoing edge to u. If S′ were empty, every vertex in S
would have an outgoing edge to u. By the assumed inequality, it would follow that
|S| < |T |, and thus ∃ would not be following a winning strategy, by (S1).

Suppose then that S′ is not empty, and that ∀ colours S′ green. Then ∃ must
respond by colouring a subset T ′ of T with |T ′| = |S′| green, and from elementary
cardinality considerations it follows that there is a red/green to blue edge in H,
but not in G. □

4. Tally-sequences

In this section we introduce the concept of a tally-sequence. This provides a
means to partition the vertices of a graph. The approach is similar to that of colour
refinement, but the induced partition is coarser. The advantage of tally sequences
is that ∃ must preserve them in her responses as part of any winning strategy in
G2 (see Corollary 4.5), but it is not known whether the same is true for colour
refinement colours. We will exploit the fact that ∃ must preserve tally-sequences
many times in our results on Stockmeyer graphs in Section 7.

Definition 4.1. Given a digraph G, a vertex v of G, and a set X of vertices of G,
we define for each vertex v of G the sequence (tv0, t

v
1, . . .) of pairs of natural numbers

recursively as follows:

tv0 = τX(v).

If 0 ≤ k and (tv0, t
v
1, . . . , t

v
k) has been defined for every vertex v of G then

tvk+1 = τXv
k
(v) where Xv

k = {u ∈ X : (tu0 , t
u
1 , . . . , t

u
k) = (tv0, t

v
1, . . . , t

v
k)}.
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In other words, tvk+1 is the tally of v relative to the set of vertices u in X for which
(tu0 , . . . , t

u
k) is the same as (tv0, . . . , t

v
k). For every n < ω, we use τ⃗nX(v) to denote the

sequence (tv0, . . . , t
v
n), and τ⃗X(v) denotes the sequence (tv0, t

v
1, . . .) described above.

We call τ⃗X(v) the tally-sequence of v relative to X, and if X is the set of all
vertices of G we just write τ⃗(v) and speak of the tally-sequence of v.

As with Definition 3.5, the concept of a tally-sequence can be trivially adapted
for undirected graphs. For undirected graphs, the concept is very similar to that
underlying colour refinement, also known as the Weisfeiler-Leman algorithm
in one dimension (see e.g. [7, Section 3.5.1]), but it is not the same. The k-
dimensional WL algorithm is known to be closely associated with the logic Ck+1,
which is first-order logic restricted to k + 1 variable symbols but extended by so-
called counting quantifiers (see e.g. [7, Section 3.4.2]). Indeed, it is known that
two relational structures are indistinguishable by the k-WL algorithm if and only if
they agree about all Ck+1 sentences of the corresponding signature ([12], or see e.g.
[7, Theorem 3.5.7]). It is easy to show that if two vertices of an undirected graph G
are assigned the same colours by colour refinement, then they also have the same
tally sequences. The converse does not hold in general, so the colour refinement
colours provide a more refined partition of vertices than the equivalence classes
induced by tally sequences. This relative lack of refinement surprisingly turns out
to be an advantage for finding winning strategies for ∀ in Seurat games, which is
why we define tally sequences rather than simply adapting the well known colour
refinement process to directed graphs. This point will be elaborated after Lemma
4.4, but the basic idea is that in a winning strategy in the Seurat game with 2
colours, ∃ must in her moves match the tally sequences of vertices involved in the
move made by ∀.

As with colour refinement colour, the tally-sequence of a vertex eventually stabi-
lizes. To see this, observe that in the construction of τ⃗X(v), if Xv

i = Xv
i+1 for some

i then, tk = ti+1 for all k > i, and Xv
k = Xv

i for all k ≥ i. As Xv
i+1 ⊆ Xv

i for all
i < ω, the sequence must therefore stabilize eventually, as G is finite. So the size of
the graph G induces an upper bound on the number of elements in the interesting
parts of the tally-sequences of its vertices. We call the initial part of a tally-sequence
τ⃗X(v) before repetition begins the significant part of the tally-sequence.

Definition 4.2. Define the tally-spectrum of a digraph G to be the multiset
of tally-sequences for its vertices. If X is a set of vertices of G, define the tally-
spectrum of X in G to be the multiset of tally-sequences of vertices in X relative
to G.

A naive algorithm for computing the (significant part of) the tally spectra of a
graph G can easily be shown to run in polynomial time in the number of vertices.
We note that the k-dimensional Weisfeiler-Leman algorithm can be implemented
in O(nk+1 log n) time, where n is the number of vertices [13]. The following trivial
proposition holds, since all graph properties defined by the edges and vertices are
preserved under isomorphism.

Proposition 4.3. Suppose f : G→ H is an isomorphism. Then, for all vertices v
of G we have τ⃗(v) = τ⃗(f(v)).

The next lemma says, essentially, that the 2-colour game can ‘see’ tally-sequences.
In particular, if ∀ colours a single element, ∃ must respond by colouring an element
with the same tally-sequence. This will be extremely useful in Section 7.
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Lemma 4.4. Suppose G and H are digraphs, and let n < ω. Suppose in G2(G,H)
that ∀ colours a set X of vertices of G red. Suppose there is a sequence s =
(s0, s1, . . . , sn) of pairs of natural numbers such that for all x ∈ X we have τ⃗n(x) =
(s0, . . . , sn). Then, as part of a winning strategy, ∃ must respond by colouring a set
Y with the same size as X, and where, for all y ∈ Y , we have τ⃗n(y) = (s0, . . . , sn).

Proof. That Y must be the same size as X is Proposition 3.7(S1). We will prove
the rest by induction on n. The base case follows immediately from Proposition
3.7(S3). For the inductive step, suppose the result is true for n. Define G′ to be the
subgraph generated by set of all vertices v of G such that τ⃗n(v) = (s0, . . . , sn), and
define H ′ analogously. By the inductive hypothesis, if ∀ restricts his play to G′ and
H ′, then so too must ∃, if she does not want to lose. Suppose ∀ colours a set X of
vertices of G red, and suppose that for all x ∈ X we have τ⃗n+1(x) = (s0, . . . , sn+1).
Then, by the above considerations, without loss of generality, we can consider this
to be a move in the 2-colour game played over (G′, H ′).

So, suppose ∃ colours the set Y of vertices of H ′ red in response, and suppose
also there is u ∈ Y with τ⃗n+1(u) = (s0, . . . , sn, s

′), and s′ ̸= sn+1. Note that to say
that τ⃗n+1(u) = (s0, . . . , sn, s

′) is to say that τH′(u) = s′. Then ∀ can continue by
colouring u blue. Now, ∃ must respond by colouring some vertex w of X blue. By
choice of X we have τG′(w) = sn+1, but, for this to be part of a winning strategy
for ∃ in G2(G′, H ′), she must ensure τG′(w) = s′. Since sn+1 ̸= s′, by assumption,
∃ must lose G2(G′, H ′), and thus G2(G,H) too. □

Note that it is crucial in the proof above that when computing the next step in
the tally sequence of a vertex, only the vertices whose tally sequences are equal up to
that point are involved. This allows the inductive step to go through as described.
It follows that this argument does not work for colour refinement colours, and we
do not know if the analog of Lemma 4.4 for colour refinement colours holds. Lemma
4.4 can be strengthened as follows.

Corollary 4.5. In G2(G,H), if ∀ colours a subset X of G red then ∃ must respond
by colouring a subset Y of H red, and the tally-spectrum of Y in H must be the
same as the tally-spectrum of X in G.

Proof. Suppose ∃ colours Y and the tally-spectrum of Y in H is not the same
as that of X in G. Then there is a sequence s = (s0, s1, . . .) of pairs of natural
numbers such that the number of elements of X whose tally-sequence is s is not
the same as the number of elements of Y whose tally-sequence is s. Without loss of
generality, suppose there are more elements of X with this tally-sequence. Then ∀
can colour these elements blue, and, by Lemma 4.4, ∃ must, if she doesn’t want to
lose, respond by colouring the same number of elements of Y with tally-sequence s
blue, but this is impossible. □

Corollary 4.6. If digraphs G and H do not have the same tally-spectra then ∀ has
a winning strategy in G2(G,H).

Proof. This follows immediately from Corollary 4.5. □

We can also generalize Proposition 3.7 (S6).

Corollary 4.7. In G2(G,H), if ∀ colours a set S, and T is the set coloured by ∃,
then whenever s̄ = (s1, . . . , sn) is a sequence where si ∈ {I,O} for each i, the tally
spectra of ηs̄(S) and ηs̄(T ) must be the same, or else ∀ can force a win.
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Proof. Suppose that after S and T are coloured by ∀ and ∃ respectively, ∀ colours
the sets S1, . . . , Sn, alternating between red and blue appropriately, where S1 =
ηs1(S) and Si = ηsi(Si−1) for all i > 1. Then ∃ must respond by colouring sets
T1, . . . , Tn. By induction and Proposition 3.7 (S5), ∃ must play T1 = ηs1(T ), and
Ti = ηsi(Ti−1) for i > 1, otherwise ∀ can win. So Sn = ηs̄(S), and Tn must be
ηs̄(T ). Thus if these sets have different tally spectra, we know from Corollary 4.5
that ∀ can force a win. □

As discussed above, the proof of Lemma 4.4 does not work for colour refine-
ment colours, and we do not know if ∃ has to match a set of nodes all with some
colour refinement, with a corresponding set of the same size with the same colour
refinement, in order to survive the game. If this were true, we could then prove:

(*) two graphs distinguishable by colour refinement can be distinguished by
the Seurat game G2.

Noting the fact that graphs G and H are distinguishable by colour refinement if and
only if there is a sentence ϕ in the logic C2 (first-order logic restricted to 2 variable
symbols but extended by counting quantifiers) with G |= ϕ and H ̸|= ϕ ([12], or see
e.g. [2, Section 5] or [7, Theorem 3.5.5]), we would then have the following sequence
of implications for graphs G and H:

There exists a C2-sentence ϕ such that G |= ϕ and H ̸|= ϕ

⇐⇒ colour refinement distinguishes G and H

=⇒ ∀ has a winning strategy in G2(G,H) (by assumption (*))

=⇒ ∀ has a winning strategy in MSO2
2(G,H) (by Proposition 3.3)

⇐⇒ There is a 2nd-order sentence ψ with up to 2 monadic and 2 first-order

variables such that G |= ψ and H ̸|= ψ.

A pebble game capturing C2 equivalence is described in [2, Section 4.1] (see also
[7, Fact 3.4.15]), so assumption (*) is equivalent to saying that whenever ∀ has
a winning strategy in this pebble game for graphs G and H, he also has one in
G2(G,H). We do not see why this should be true, but we do not have a proof that
it is not. We note that finding graphs G and H that are not C2-equivalent but such
that ∀ does not have a winning strategy in G2(G,H) seems difficult, as currently
we do not know of any non-isomorphic graphs where ∀ does not have a winning
strategy in the 2-colour Seurat game.

Returning to tally-spectra, we have the following obvious result.

Corollary 4.8. If G and H are isomorphic they must have the same tally-spectra.

This Corollary follows from Corollary 4.6, but holds trivially since all graph
properties defined by edges and vertices are preserved by isomorphism.

The converse to Corollary 4.8 does not hold, as demonstrated by the following
example, which is also well known as an example of a situation where the colour
refinement algorithm fails to distinguish non-isomorphic graphs. However, ∀ does
have a strategy in the corresponding 2-colour Seurat game.

Example 4.9. Given a pair of non-isomorphic regular graphs, if the vertices of both
graphs have the same in- and out-degrees, then the pair cannot be distinguished by
looking at their tally-spectra. However, we do not know whether ∀ must have a
winning strategy in the 2-colour Seurat game over such a pair. We provide an
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example where ∀ can win the 2-colour Seurat game over the pair. Let G and H be
the (undirected) graphs in Figures 2 and 3 respectively. Then the tally-sequence of
the central vertex in both graphs is (6, 0, 0, . . .), and the tally-sequences of the other
vertices are all (3, 2, 2, . . .). However, the graphs are not isomorphic, because G
contains a cycle of length 6 not passing through the central vertex, but H does not.

Moreover, ∀ has a strategy in G2(G,H), because he can colour one of the 3-cycles
of exterior vertices of H red, and the other blue. ∃ must lose, as in H there will
be no edge connecting red and blue, but if she follows the necessary principles of
winning play by matching set sizes (see Proposition 3.7(S1)), there will inevitably
be such an edge in G.

• •

• • •

• •

Figure 2. G

• •

• • •

• •

Figure 3. H

In Example 4.9, we notice that something that makes G different from H is
that the subgraph of G composed of vertices whose tally-sequence is (3, 2, 2, . . .) is
connected, being isomorphic to the 6-cycle C6, while the corresponding subgraph
of H is the disjoint union of two copies of C3, and so is not. We might wonder
if we could obtain a kind of converse to Corollary 4.8 by ruling out this kind of
counterexample by, for example, demanding subgraphs induced by tally-sequences
also be isomorphic. Unfortunately, this doesn’t work, as we demonstrate in Example
4.11. First we will make a definition to clarify the idea of a ‘subgraph induced by
a tally-sequence’.

Definition 4.10. Let G be a digraph, let n < ω and let s = (s0, s1, . . .) be a
sequence of ordered pairs of natural numbers. Define Gn

s to be the subgraph of G
induced by the set of vertices v of G such that τ⃗n(v) = (s0, . . . , sn).

Example 4.11. We present two non-isomorphic digraphs G and H that have the
same tally-spectra, and where, in addition, for each tally-sequence s and for each
n < ω the induced subgraphs Gn

s and Hn
s are isomorphic. This example occurs in

[27], in a slightly different context, just before Theorem 2. Let G and H be the
tournaments described by the adjacency matrices in Figures 4 and 5 respectively.
The significant parts of their tally-spectra are given in Figures 6 and 7.

Note that ∀ still has a strategy in the 2-colour game played over these graphs.
This is because he can colour v5 red, in which case ∃ must respond by colouring w3

red, to match tally-sequences. Then ∀ can colour v4 blue, and ∃ must respond by
colouring w4 blue, for the same reason. But now there is a blue to red edge in G,
but no such edge in H, and so ∃ loses anyway.

The graphs in this example are a counterexample to the reconstruction conjecture
for digraphs (see [27]). Thus we see that, like the Stockmeyer graphs to be discussed
later, we have a pair of digraphs that cannot be distinguished by comparing decks,
but can be distinguished in the Seurat game with only two colours.
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v0 v1 v2 v3 v4 v5
v0 0 1 1 1 1 0
v1 0 0 1 1 1 0
v2 0 0 0 1 1 1
v3 0 0 0 0 1 1
v4 0 0 0 0 0 1
v5 1 1 0 0 0 0

Figure 4. The adja-
cency matrix of G

w0 w1 w2 w3 w4 w5

w0 0 1 1 1 1 0
w1 0 0 1 1 1 0
w2 0 0 0 1 1 0
w3 0 0 0 0 1 1
w4 0 0 0 0 0 1
w5 1 1 1 0 0 0

Figure 5. The adja-
cency matrix of H

vertex sig. part of τ⃗(vertex)
v0 ((1,4), (0,0))
v1 ((2,3), (0,1), (0,0))
v2 ((2,3), (1,0), (0,0))
v3 ((3,2), (0,1), (0,0))
v4 ((4,1), (0,0))
v5 ((3,2), (1,0), (0,0))

Figure 6. The tally-
spectrum of G

vertex sig. part of τ⃗(vertex)
w0 ((1,4), (0,0))
w1 ((2,3), (1,0), (0,0))
w2 ((3,2), (0,1), (0,0))
w3 ((3,2), (1,0), (0,0))
w4 ((4,1), (0,0))
w5 ((2,3), (0,1), (0,0))

Figure 7. The tally-
spectrum of H

5. Seurat games and the k-WL algorithm

In this section we describe the construction of pairs of non-isomorphic graphs
which are not distinguished by the k-dimensional Weisfeiler-Leman algorithm, for
k < ω. This family was introduced, and the result about k-WL was proved, in [2,
Section 6]. The new result here is that all these pairs of graphs are distinguishable
in the Seurat game G2. A diagram of one of these constructions can be found in
[7, p85], and we provide the formal details now.

Given a graph G, let E(G) denote the set of edges of G. We will assume here
that G is undirected and irreflexive, and that every node has degree at least one.
If v is a node of G, we will use d(v) to denote the degree of v. Given a node v ∈ G,
the gadget Xv is the graph with nodes

{i(v, S) : S ⊆ {(v, w) : (v, w) ∈ E(G)}, |S| is even} ∪ {a(v, w), b(v, w) : (v, w) ∈ E(G)}.
Note that here i(v, S), a(v, w), b(v, w) are names nodes, and i, a, b are not meant to
be understood as functions. The left set contains 2d(v)−1 nodes, and the right set
contains 2d(v) nodes. Nodes of the former type are called internal, those of the
latter type are called external. The set of edges of the gadget Xv is

{(i(v, S), a(v, w)) : (v, w) ∈ S} ∪ {((i(v, S), b(v, w)) : (v, w) ∈ E(G) \ S}.
Thus each internal node is linked to exactly half the externals of its gadget, and
similarly each external is linked to exactly half of the internals in its gadget. The
graph Γ(G) is obtained by taking the disjoint union of all gadgets Xv where v ∈ G,
and for each v ̸= w ∈ G, adding edges

{(a(v, w), a(w, v)), (b(v, w), b(w, v)) : (v, w) ∈ E(G)}
between gadgets.
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Γ̃(G) is obtained from Γ(G) by picking an arbitrary edge (v, w) and replacing
the two edges

{(a(v, w), a(w, v)), (b(v, w), b(w, v))}
by the twist

{(a(v, w), b(w, v)), (b(v, w), a(w, v))},
so node degrees are unchanged. By [2, Lemma 6.2], provided all nodes have degree
at least two, up to isomorphism it does not matter which edge (v, w) is chosen.

As in [2, Definition 6.3], we define a separator of G to be a subset S ⊂ G
such that the subgraph of G induced by deleting the nodes in S has no connected

component with more than |G|
2 vertices.

Theorem 5.1. Given n < ω, let Kn be the complete graph with n vertices. Then:

(1) If n ≥ 3 then Γ(Kn) is not isomorphic to Γ̃(Kn)

(2) If n ≥ 1, then Γ(K2n+1) cannot be distinguished from ˜Γ(K2n+1) by the n-
dimensional WL algorithm.

(3) If n ≥ 4, then ∀ has a winning strategy in G2(Γ(Kn), Γ̃(Kn)).

Proof. (1) follows immediately from [2, Lemma 6.2]. (2) follows from the proof of
[2, Theorem 6.4], as K2n+1 contains no separator with fewer than n + 1 vertices.
For (3), we describe a winning strategy for ∀ as follows.

Note first that, according to the definition, each gadget in Γ(Kn) and Γ̃(Kn) has
2n−2 internal, and 2(n − 1) external nodes. Each internal node thus has degree
n − 1, and each external node has degree 2n−3 + 1. Now, in the initial round, ∀
colours

R = {i(v, ∅) : v ∈ Kn} ⊂ Γ(Kn)

red. Then ∃ must respond by colouring red exactly one internal node from each

gadget of Γ̃(Kn), as we now demonstrate.

First, denote the set coloured by ∃ in her response by R̃. As n ≥ 4, by con-
sideration of degrees and Proposition 3.7 (S4), |R̃| = n (as |R| = n), and R̃ can

contain only internal nodes. Suppose R̃ contains two nodes from the same gadget.

Then there must be another gadget of Γ̃(Kn) where no internal nodes are coloured.

Suppose ∀ colours the set of internal nodes of this gadget blue (call this set B̃′).

Then |B̃′| = 2n−2, and so ∃ must respond by colouring a set B′ of 2n−2 previously
uncoloured internal nodes of Γ(Kn). As exactly one node of each gadget of Γ(Kn)

is coloured red, ∃ can’t let B′ be the internal nodes of a single gadget. Now, η(B̃′) is

the union of B̃′ with the external nodes of its gadget. So |η(B̃′)| = 2n−2+2(n−1).
Moreover, 2n−2 ≥ n, as n ≥ 4, so |B′| ≥ n, and so ∃must colour at least as many in-
ternal nodes as there are gadgets. Any distinct pair of internal nodes from the same
gadget must have at least n neighbours, because it is impossible for two internal
nodes to share all of the same external neighbours, and each internal node is neigh-
bour to exactly n− 1 external nodes — half the external nodes in its gadget. Any
pair of internal nodes from different gadgets must have 2(n−1) distinct neighbours.
So ∃ cannot hope to make |η(B′)| less than 2n−2 + n+ (n− 1) > 2n−2 + 2(n− 1).

I.e. |η(B′)| > |η(B̃′)|, conflicting with Proposition 3.7 (S6). Thus, if ∃ does not
colour exactly one internal node from each gadget in response to ∀’s opening move,
∀ can force a win.
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Returning to the main game, ∀ proceeds by colouring

B = {a(v, w) : v ̸= w ∈ Kn} ⊂ Γ(Kn)

blue. In other words, ∀ colours every a type external node of every gadget in Γ(Kn).

Then ∃ must respond by colouring B̃ ⊂ Γ̃(Kn), and B̃ must consist of exactly one
node from each pair (a(v, w), b(v, w)) for each v ̸= w ∈ Kn. To see why, note first
that Proposition 3.7 (S4) says she must colour exactly n(n− 1) external nodes. If
she coloured both nodes in a pair (a(v, w), b(v, w)), then, as every internal node
in a gadget is the neighbour of either the a or the b node in each external pair of

that gadget, this would result in there being a blue—red edge in Γ̃(Kn). Since no
such edge exists in Γ(Kn), this would trigger trigger (C1). So we may assume she

colours blue exactly one out of each pair (a(v, w), b(v, w)) in Γ̃(G).

We can assume without loss of generality that R̃ = {i(v, ∅) : v ∈ Kn}, and that

B̃ = {a(v, w) : v ̸= w ∈ Kn}. This amounts to assuming the internal node coloured
by ∃ is i(v, ∅) in each gadget, and switching the labels within each (a, b) external
node pair appropriately. This assumption is safe because the graph obtained by

adding an even number of twists to Γ̃(Kn) is isomorphic to Γ̃(Kn), via an isomor-
phism induced by the relabeling described here (see [2, Lemma 6.2]).

In the third round, ∀ reuses red to colour all the internal nodes of Γ(Kn), and in

response ∃ must colour red all the internal nodes on Γ̃(Kn) (appealing to Proposi-
tion 3.7 (S4)). Now, in Γ(Kn), the (external) nodes in B have as neighbours only
the red coloured internal nodes of their own gadget, and a blue coloured external
node from a neighboring gadget. In particular, there are no blue—uncoloured edges

in Γ(Kn). However, due to the twist, there is an edge like this in Γ̃(Kn), so ∃ loses
anyway. □

The result above produces, for each k ≥ 4, a pair of graphs that cannot be
distinguished by the k-WL algorithm, but can be distinguished in G2. We do not
currently know whether there are non-isomorphic graphs that can be distinguished
by k-WL, but not by G2, or even if there are any non-isomorphic graphs that G2

cannot distinguish.

6. Stockmeyer graphs

In this section we describe some graph constructions of P.K. Stockmeyer. The
constructions come in pairs, and were originally used to demonstrate that there
are non-isomorphic directed graphs that cannot be distinguished comparing decks.
The reason we describe them here is that in the next section we will prove that
they all can be distinguished by G2. We use the approach taken in [31], with some
minor notational differences. Given 0 < k < ω, we define the tournament Tk with
vertices {v1, . . . , v2k}. The edge relation of Tk is defined by there being an edge
from vi to vj if and only if odd(j − i) ≡ 1 mod 4, where odd(z) is the result of
dividing an integer z by the largest possible power of 2. Note that Tk is irreflexive
and for distinct vertices i, j exactly one of (i, j) and (j, i) is an edge, hence it defines
a tournament.

Following Stockmeyer, we will describe six families of pairs of graphs. The graphs
involved will be disjoint unions of Tm and Tn, for 0 ≤ n < m, with additional edges



SEURAT GAMES ON STOCKMEYER GRAPHS 21

between Tm and Tn defined according to a system to be described shortly. We will
need the following definition.

Definition 6.1 (Mm,n). For natural numbers 0 ≤ n < m, let p = 2m + 2n, and
define the p× p matrix Mm,n as follows (w, x, y, z will appear as variables).

• If 1 ≤ i, j ≤ 2m, or if 2m + 1 ≤ i, j ≤ p, set Mm,n[i, j] = 1 if odd(j − i) ≡ 1
mod 4, and Mm,n[i, j] = 0 otherwise.

• If 1 ≤ i ≤ 2m and 2m + 1 ≤ j ≤ p, set Mm,n[i, j] = w if i + j is even, and
Mm,n[i, j] = x otherwise.

• If 1 ≤ j ≤ 2m and 2m + 1 ≤ i ≤ p, set Mm,n[i, j] = y if i + j is even, and
Mm,n[i, j] = z otherwise.

Thus Mm,n contains a copy of the adjacency matrix of Tm in its upper left part,
a copy of the adjacency matrix of Tn in its lower right part, a pattern of alternating
xs and ws in its top right part, and a pattern of alternating ys and zs in its lower left
part. This is best illustrated by the example of M3,2 described in Figure 8 below.
Note that this is [31, Figure 1], where it is called M12 due to minor notational
differences.

0 1 1 0 1 1 0 0 w x w x
0 0 1 1 0 1 1 0 x w x w
0 0 0 1 1 0 1 1 w x w x
1 0 0 0 1 1 0 1 x w x w
0 1 0 0 0 1 1 0 w x w x
0 0 1 0 0 0 1 1 x w x w
1 0 0 1 0 0 0 1 w x w x
1 1 0 0 1 0 0 0 x w x w
y z y z y z y z 0 1 1 0
z y z y z y z y 0 0 1 1
y z y z y z y z 0 0 0 1
z y z y z y z y 1 0 0 0

Figure 8. M3,2

Given 0 ≤ n < m, we obtain a digraph with vertices {v1, . . . , v2m+2n} when we
set each of w, x, y, z to either 0 or 1, and use Mm,n as the adjacency matrix in the
obvious way. Following [31], we define six families of pairs of digraphs by specifying
the values of w, x, y, z as described in Figure 9. Note that the family of pairs from
[30] arise here as (Dm,0, D

∗
m,0).

7. The tally-spectra of Stockmeyer graphs

It was shown in [31] that if Z ∈ {A,B,C,D,E, F}, and 0 ≤ n < m then the
pair (Zm,n, Z

∗
m,n) constitutes a counterexample to the reconstruction conjecture for

digraphs, in other words, they are not isomorphic, but they cannot be distinguished
by comparing decks. We omit the proofs, as they can be found in the original ar-
ticle. We will show in this section that (Zm,n, Z

∗
m,n) can always be distinguished

in the 2-colour Seurat game G2(Zm,n, Z
∗
m,n). In other words, ∀ always has a win-

ning strategy. Though the exact reasons for this vary to some extent between the
families, the arguments here come down to examining tally-spectra, and we will



22 ROB EGROT AND ROBIN HIRSCH

need some analysis of the tally-sequences of vertices in these digraphs. With that
in mind, we proceed to a technical lemma and some corollaries.

Lemma 7.1. In the graph Tn, the tallies of the first 2n−1 vertices must all be
(2n−1−1, 2n−1), and the tallies of the second 2n−1 vertices must all be (2n−1, 2n−1−
1).

Proof. By [30, Lemma 1(b)], which we essentially generalize as Lemma 7.9 below,
the out-degree of the first 2n−1 vertices is 2n−1, and the out-degree of the second
2n−1 vertices is 2n−1 − 1. Moreover, by elementary number theory, between every
pair of distinct vertices in Tn there must be exactly one edge. So, for each vertex v
of Tn, we must have in(v)+out(v) = 2n−1, and the result follows immediately. □

Corollary 7.2. In the graph with adjacency matrix Mm,n, the tallies of the vertices
are described in the table in Figure 10.

Proof. This follows from Lemma 7.1. The vertices with indices from {1, . . . , 2m}
form a copy of Tm, and so the lemma tells us the in- and out-degrees for these
elements with respect to each other. The definition of Mm,n tells us that each
element gets an additional 2n−1y+2n−1z to its in-degree, and an additional 2n−1w+
2n−1x to its out-degree. Similarly, the vertices with indices from {2m+1, . . . , 2m+
2n} form a copy of Tn, which tells us the in- and out-degrees of these elements
relative to each other, and each vertex gets an additional 2m−1y + 2m−1z to its
in-degree, and 2m−1w + 2m−1x to its out-degree. □

Digraph w x y z
Am,n 1 0 0 0
A∗

m,n 0 1 0 0

Bm,n 0 0 1 0
B∗

m,n 0 0 0 1

Cm,n 1 0 1 0
C∗

m,n 0 1 0 1

Dm,n 1 0 0 1
D∗

m,n 0 1 1 0

Em,n 1 1 1 0
E∗

m,n 1 1 0 1

Fm,n 1 0 1 1
F ∗
m,n 0 1 1 1

Figure 9. Six families

vertex index tally
{1, . . . , 2m−1} (2m−1 + 2n−1y + 2n−1z − 1 , 2m−1 + 2n−1w + 2n−1x)

{2m−1 + 1, . . . , 2m} (2m−1 + 2n−1y + 2n−1z , 2m−1 + 2n−1w + 2n−1x− 1)
{2m + 1, . . . , 2m + 2n−1} (2n−1 + 2m−1w + 2m−1x− 1 , 2n−1 + 2m−1y + 2m−1z)
{2m + 2n−1, . . . , 2m + 2n} (2n−1 + 2m−1w + 2m−1x , 2n−1 + 2m−1y + 2m−1z − 1)

Figure 10. The tallies of the vertices in the graph with adjacency
matrix Mm,n.
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Corollary 7.3. Let 0 ≤ n < m, and let G be a graph with adjacency matrix Mm,n

such that w, x, y, z ∈ {0, 1} (e.g. one of the Stockmeyer graphs from Figure 9). For
convenience, we assume the vertices of G are the numbers {1, . . . , 2m+2n}. Let u be
a vertex from {1, . . . , 2m}, and let v be a vertex from {2m +1, . . . , 2m +2n}. Then,
if n ≥ 1, u and v have the same tally if and only if both the following conditions
hold:

(i) u ∈ {1, . . . , 2m−1} and v ∈ {2m+1, . . . , 2m+2n−1}, or u ∈ {2m−1+1, . . . , 2m}
and v ∈ {2m + 2n−1, . . . , 2m + 2n}.

(ii) y + z = 1 and w + x = 1.

If n = 0 the Tn part of G has a single node so v = 2m + 1 is odd. Then u and v
have the same tally if and only if one of the following holds:

(i) u ∈ {1, . . . , 2m−1} and u+ v is even (i.e. u is odd) and w = 0, x = 1, y = 1
and z = 0.

(ii) u ∈ {1, . . . , 2m−1} and u+ v is odd (i.e. u is even) and w = 1, x = 0, y = 0,
and z = 1.

(iii) u ∈ {2m−1 + 1, . . . , 2m} and u + v is even (i.e. u is odd) and w = 1, x = 0,
y = 0 and z = 1.

(iv) u ∈ {2m−1 + 1, . . . , 2m} and u + v is odd (i.e. u is even) and w = 0, x = 1,
y = 1 and z = 0.

Proof. Suppose first that n ≥ 1. If u ∈ {1, . . . , 2m−1} then the in-degree of u is odd,
and the in-degree of v is odd if and only if v ∈ {2m + 1, . . . , 2m + 2n−1}. Similarly,
if u ∈ {2m−1+1, . . . , 2m} then its in-degree is even, and v’s in-degree is even if and
only if v ∈ {2m + 2n−1, . . . , 2m + 2n}. Thus we have the necessity of (i).

Suppose then that (i) holds, and let u ∈ {1, . . . , 2m−1} and v ∈ {2m+1, . . . , 2m+
2n−1}. Then the in-degree of u is 2m−1 + 2n−1y + 2n−1z − 1, and the in-degree of
v is 2n−1 + 2m−1w + 2m−1x− 1. Noting that n < m, we have

2m−1 + 2n−1y + 2n−1z − 1 = 2n−1 + 2m−1w + 2m−1x− 1

⇐⇒ 2m−n + y + z = 1 + 2m−nw + 2m−nx

⇐⇒ y + z − 1 = 2m−n(w + x− 1),

and this occurs if and only if y + z = 1 and w + x = 1 (remember that w, x, y, z
can be only 0 or 1). Moreover, if this property holds then it’s easy to check the
out-degrees will also be the same. The argument for u ∈ {2m−1 + 1, . . . , 2m} and
v ∈ {2m + 2n−1, . . . , 2m + 2n} is essentially the same.

Finally, if n = 0, then v = 2m+1 and exactly half of the elements of {1, . . . , 2m}
have even sum with v. So the tally of v is (2m−1w + 2m−1x, 2m−1y + 2m−1z).

Suppose first that u is odd. Then the tally of u must be either (2m−1 + y −
1, 2m−1 + w), when u ∈ {1, . . . , 2m−1}, or (2m−1 + y, 2m−1 + w − 1), when
u ∈ {2m−1+1, . . . , 2m}. Suppose first that τ(u) = (2m−1+y−1, 2m−1+w). Then
to have τ(u) = τ(v) we must have y = 1 and w = 0. It then follows that we must
have x = 1 and z = 0. Thus in this case τ(u) = τ(v) if and only if w = 0, x = 1,
y = 1 and z = 0, as claimed. Similar reasoning applies to the remaining case when
u is odd, and to the two cases where u is even. □

Corollary 7.4. Let Z ∈ {C,D}, and let G be either Zm,n or Z∗
m,n for 0 < n < m.

Let u ∈ {1, . . . , 2m}, and let v ∈ {2m + 1, . . . , 2m + 2n}. Let S be the half of
{1, . . . , 2m} containing u (so S = {1, . . . , 2m−1} or {2m−1+1, . . . , 2m}), and define
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S′ to be the half of {2m + 1, . . . , 2m + 2n} containing v. Suppose τ(u) = τ(v).
Then the subgraph of G generated by S ∪S′ is isomorphic to either Z(m−1),(n−1) (if
G = Zm,n) or Z∗

(m−1),(n−1) (if G = Z∗
m,n).

Proof. Assume first that S = {1, . . . , 2m−1}. By Corollary 7.3, we must have
S′ = {2m + 1, . . . , 2m + 2n−1}. Now, S and S′ are isomorphic to Tm−1 and Tn−1

respectively, and the pattern of edges between S and S′ in G is the same as for
Tm−1 and Tn−1 in either Z(m−1),(n−1) or Z∗

(m−1),(n−1), depending on what G is.

The argument for when S = {2m−1 + 1, . . . , 2m} is essentially the same. □

Note that, by Corollary 7.3, the assumption that τ(u) = τ(v) in the result above
excludes the possibility that Z ∈ {A,B,E, F}. We are now in position to build up
some facts about tally-spectra in our families of graphs.

Lemma 7.5. For all n ≥ 0, the tally-sequences of the elements of Tn are distinct.

Proof. This follows by iterating the argument from the proof of Lemma 7.1, noting
that by dividing the vertices of Tn into two halves as in that proof we get two copies
of Tn−1. □

Note that it follows immediately from the lemma above and Proposition 4.3 that
Tn has only the identity automorphism. This is [30, Lemma 1(c)], and the argument
given there amounts to showing the tally sequences of the vertices are all different.

Lemma 7.6. Let m ≥ 1 and let 0 ≤ n < m. Then for all Z ∈ {A,B,E, F}, there
is no u in the Tm part of Zm,n and v in the Tn part of Zm,n such that the tally of
u is the same as the tally of v. The same is also true for Z∗

m,n.

Proof. This follows immediately from Corollary 7.3. Specifically, note the values of
w, x, y, z from Figure 9. □

Lemma 7.7. Let m ≥ 1 and let 0 ≤ n < m. Then for all Z ∈ {A,B,C,E, F}, the
tally-sequences of vertices of Zm,n are all distinct, and the same is true for Z∗

m,n.

Proof. For Z ∈ {A,B,E, F} this is straightforward: By Lemma 7.6, no element of
the Tm part of Zm,n can have the same tally-sequence as an element from the Tn
part of Zm,n, and the same goes for Z∗

m,n. Moreover, using Corollary 7.2, it’s easy
to see that the first half of the Tm part of Zm,n all have the same tally, t1 say, as
do the second half, t2 say, and t1 ̸= t2. The same applies to the Tn part of Zm,n.
Now, by Lemma 7.5, the tally-sequences of the elements of the Tm parts and the
Tn parts must all be distinct from each other, and so every element of Zm,n has a
unique tally-sequence. The same argument applies to Z∗

m,n.
For Z = C we need to use Corollary 7.3. If n = 0 then the Tn part of Cm,n

contains only a single vertex, v say, and the corollary tells us that v cannot have
the same tally as any vertex of the Tm part of Cm,n. The claim then follows by the
same argument we used in the first part.

Suppose then that n > 0, let u be a vertex of the Tm part of Cm,n, and let v be a
vertex of the Tn part of Cm,n. Suppose for a contradiction that τ⃗(u) = τ⃗(v). Define
S0 to be {1, . . . , 2m}, which contains u, and define S′

0 to be {2m +1, . . . , 2m +2n},
which contains v. Define S1 to be the half of S0 containing u, and define S′

1 to be
the half of S′

0 containing v. Now, assuming n− 1 ≥ 1, we can define S2 and S′
2 to

be, respectively, the halves of S1 and S′
1 containing u and v. Provided n − 2 ≥ 1

we can define S3 and S′
3 similarly. In general, assuming we have defined Si and S

′
i
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and that n − i ≥ 1, we define Si+1 and S′
i+1 to be, respectively, the halves of Si

and S′
i containing u and v. The crucial observation, which we will shortly prove, is

that the tally-sequences of every element in Si+1 and S′
i+1 agree for the first (i+1)

steps (i.e. τ⃗ i(w) = τ⃗ i(w′) for all w ∈ Si+1 and w′ ∈ S′
i+1).

To see why this is true, we use induction on i, starting with i = 0. The base
case follows immediately from Corollary 7.2. For the inductive step, suppose the
claim is true for i = k, and also that Sk+1 and S′

k+1 are both defined (i.e. that
n− k ≥ 1). By Corollary 7.4, the subgraph generated by Sk ∪ S′

k is isomorphic to
C(m−k),(n−k). Moreover, if u′ ∈ Sk+1 and v′ ∈ S′

k+1, then the (k + 1)th term of
their tally sequences will be their tallies in this subgraph. By Corollaries 7.2 and
7.3 these are the same, which gives the result.

Suppose then that we have constructed Sn and S′
n. At this point S′

n contains
only a single element, and Sn is a copy of T(m−n). Let G be the graph generated by
Sn ∪ S′

n. By the argument that proves the n = 0 part of Corollary 7.3, the tallies
of u and v relative to G cannot be the same, and thus τ⃗(u) ̸= τ⃗(v) after all.

Since we have now proved that no element of the Tm part of Cm,n can have the
same tally-sequence as an element from the Tn part, the fact that every element has
a distinct tally-sequence now follows by the argument used for Z ∈ {A,B,E, F}
earlier. The argument for C∗

m,n is similar.
□

Lemma 7.7 seems to only be occasionally true forD∗
m,n andDm,n, and at different

times for D and D∗. To get round this problem we have do a bit more work.

Lemma 7.8. Let m ≥ 1 and let 0 ≤ n < m. Let i ∈ {1, . . . , 2m + 2n}, and let v
and w be the corresponding vertices in Dm,n and D∗

m,n respectively (recall that we
define the pairs of Stockmeyer graphs using identically labeled sets of vertices, and
this defines a correspondence). Then the tally-sequences of v and w agree in their
first n places. In other words, τ⃗n−1(v) = τ⃗n−1(w).

Proof. This is proved by applying Corollaries 7.2 and 7.4 repeatedly, using the fact
that in both Dm,n and D∗

m,n exactly one in each pair (w, x) and (y, z) is 1. At
stage k we are effectively working with D(m−k),(n−k) and D∗

(m−k),(n−k), and the

logic holds up till k = n. □

We will need the following purely number theoretic result. It is essentially a
corollary of [30, Lemma 1(b)].

Lemma 7.9. Let 1 ≤ x, n < ω. Let X = (x1, . . . , x2n) be defined by xi = x+2(i−1)
for all i ∈ {1, . . . , 2n}. Then elements from (x1, . . . , x2n−1) dominate 2n−1 elements
from X, and are dominated by 2n−1 − 1 elements from X, and elements from
(x2n−1+1, . . . , x2n) dominate 2n−1−1 elements from X, and are dominated by 2n−1

elements from X.

Proof. First, let i, j ∈ {1, . . . , 2n}. Then

odd(xj − xi) = odd(x+ 2(j − 1)− (x+ 2(i− 1)))

= odd(j − i).

Thus for i, j ∈ {1, . . . , 2n}, domination between xi and xj is the same as domination
between i and j. So it suffices to prove that elements from {1, . . . , 2n−1} and
{2n−1+1, . . . , 2n} dominate and are dominated by, respectively, 2n−1 and 2n−1−1,
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and 2n−1 − 1 and 2n−1 elements from {1, . . . , 2n}. This is essentially what [30,
Lemma 1(b)] says, but for convenience we provide the details.

Let j′ = 2i− j mod 2n. Then j′ is either 2i− j or 2i− j ± 2n. So odd(j′ − i) is
either odd(i− j), or odd(i− j±2n), which, by Lemma 7.10 below, is also odd(i− j)
when working modulo 4, unless i− j ∈ {0,±2n−1}.

It follows that for fixed i ∈ {0, . . . , 2n−1}, for each j ∈ {1, . . . , 2n}\{i, i±2n−1}
we either have i dominating j, and being dominated by j′, or vice versa. Thus from
the pairs (j, j′) where i− j /∈ {0,±2n−1} we see that i dominates and is dominated
by 2n−1 − 1 elements of {1, . . . , 2n} \ {i, i± 2n−1}.

Finally, if i ≤ 2n−1 then i + 2n−1 ∈ {1, . . . , 2n}, and odd(i + 2n−1 − i) =
odd(2n−1) = 1 ≡4 1, and so i dominates i + 2n−1 (which is not included in the
previous count). On the other hand, if i > 2n−1, then i− 2n−1 ∈ {1, . . . , 2n}, and
odd(i − 2n−1 − i) = odd(−2n−1) = −1 ≡4 3, and so i is dominated by i − 2n−1

(which is again not previously counted). Thus, when i ≤ 2n−1 it dominates an
additional number, and when i > 2n−1 it is dominated by an additional number.
This gives the result. □

Lemma 7.10. For all i, j ∈ {0, . . . , 2n − 1}, if j − i /∈ {0,±2n−1}, then
odd((j − i)± 2n) ≡4 odd(j − i).

Proof. Suppose j − i = 2kq for some k < ω and some odd q. Then, as j − i is
neither 2n−1 nor −2n−1, we must have k ≤ n− 2, because |j− i| is bounded by the
possible choices of i and j. So

odd(j − i± 2n) = odd(2kq ± 2n)

= odd(2k(q ± 2n−k))

= odd(q ± 2n−k)

= q ± 2n−k

≡4 q,

with the final modular equality holding because n− k ≥ 2. □

Lemma 7.11. Let m ≥ 1 and let 0 ≤ n < m. Then the tally-spectra of Dm,n and
D∗

m,n are not the same.

Proof. Suppose first that n = 0, and let v and w be, respectively, the lone vertices
in the Tn parts of Dm,n and D∗

m,n. Then, as noted in the penultimate paragraph of

the proof of Corollary 7.3, the tallies of both v and w are (2m−1, 2m−1). Corollary
7.3 also tells us that the vertices of Dm,0 with that tally are even numbers in
{1, . . . , 2m−1}, and the odd numbers in {2m−1 + 1, . . . , 2m}, and that the vertices
ofD∗

m,n with that tally are the odd numbers in {1, . . . , 2m−1}, and the even numbers

in {2m−1 + 1, . . . , 2m}.
We considerDm,0 first. DefineX0 to be the set of even numbers from {1, . . . , 2m−1},

define Y0 to be the set of odd numbers from {2m−1+1, . . . , 2m}, and define G0 to be
the subgraph induced by X0∪Y0∪{v}. If m = 1 then X0 and Y0 are both empty, so
we will assume that m ≥ 2. Let x ∈ X0. Then x dominates exactly 2m−2 numbers
from Y0, and is dominated by the other 2m−2 (by the definition of domination).
Moreover, by Lemma 7.9, if x ∈ X0 ∩ {1, . . . , 2m−2} then x dominates 2m−2 num-
bers from X0, and is dominated by 2m−2−1, and if x ∈ X0∩{2m−2+1, . . . , 2m−1}
then x dominates 2m−2 − 1 numbers from X0, and is dominated by 2m−2. Similar
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arguments apply to y ∈ Y0. Moreover, in G0 there is an edge from v to every vertex
in X0, and an edge from every vertex of Y0 to v. Putting all this together, a little
calculation reveals that the tallies of the vertices of G0 relative to G0 are as follows:

vertex tally
X0 ∩ {1, . . . , 2m−2} (2m−1, 2m−1)

X0 ∩ {2m−2 + 1, . . . , 2m−1} (2m−1 + 1, 2m−1 − 1)
Y0 ∩ {2m−1 + 1, . . . , 2m−1 + 2m−2} (2m−1 − 1, 2m−1 + 1)
Y0 ∩ {2m−1 + 2m−2 + 1, . . . , 2m} (2m−1, 2m−1)

v (2m−1, 2m−1)

We can now define

X1 = X0 ∩ {1, . . . , 2m−2},

Y1 = Y0 ∩ {2m−1 + 2m−2 + 1, . . . , 2m} = Y0 ∩ {2m − 2m−2 + 1, 2m},
and

G1 = X1 ∪ Y1 ∪ {v}.
Using the same logic as before, we see that, relative to G1, the vertices in X1 ∩
{1, . . . , 2m−3} and Y1 ∩ {2m − 2m−3 + 1, . . . , 2m} are the ones whose tallies agree
with that of v. In general, we define Xk to be the even members of {1, . . . , 2m−k−1},
and we define Yk to be the odd members of {2m − 2m−(k+1) + 1, . . . , 2m}. We can
continue in this way till we reach Gm−2 = Xm−2 ∪ Ym−2 ∪ {v}, which contains
precisely those elements u of Dm,0 such that τ⃗m−2(u) = τ⃗m−2(v). At this point
Xm−2 is just {2}, and Ym−2 is just {2m−1}. Now, v dominates 2, and is dominated
by 2m − 1, and 2 dominates 2m − 1, so each vertex of Gm−2 has tally (1, 1) relative
to Gm−2. Thus their tally-sequences start repeating here, and so are equal.

Taking stock, we have proved that if m = 1, then v is the only vertex of Dm,0

with its tally-sequence, and if m ≥ 2 then the vertices with the same tally-sequence
as v are precisely {v, 2, 2m−1}. We can now run a similar argument on D∗

m,0 and w.
As before, if m = 1 then w is the only element with its tally-sequence, so, assuming
m ≥ 2, we define X∗

0 and Y ∗
0 to be, respectively, the elements of {1, . . . , 2m−1} and

{2m−1 + 1, . . . , 2m} with the same tally as w. In this case X∗
0 turns out to contain

precisely the odd numbers, and Y ∗
0 precisely the even numbers. Aside from the

parity flip, the argument can now be run in the same way as before, till we obtain

G∗
m−2 = X∗

m−2 ∪ Y ∗
m−2 ∪ {w} = {1, 2m, w}

as the set of vertices of D∗
m,0 whose tally-sequences agree with that of w in their

first m − 1 places. But now there is a change, because w dominates 1 and is
dominated by 2m, but 2m dominates 1, so w has tally (1, 1) relative to G∗

m−2, but
2m dominates 1, and so 1 and 2m have tallies (2, 0) and (0, 2) respectively. So w is
the only vertex of D∗

m,0 with its tally-sequence, and this starts repeating when it
gets to (0, 0), which it does immediately after (1, 1).

Now, it’s easy to see that τ⃗m−2(v) = τ⃗m−2(w), and it follows from the discussion
above that these tally-sequences disagree after this point. Moreover, we showed that
every vertex of Dm,n whose tally-sequence had agreed with that of w up to this
point (the vertices {v, 2, 2m − 1}) has the same tally-sequence as v. Thus the tally-
spectra of Dm,0 and D∗

m,0 must be different when m ≥ 2, as there is no vertex of
Dm,n with the same tally-sequence as w. Finally, a direct check reveals the same
is true when m = 1.
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Now, to continue, suppose n > 0. We will reduce this to the n = 0 case. It follows
from Corollary 7.3 that given v in the Tn part of Dm,n, the graph generated by
the set of vertices u of Dm,n such that u ̸= v and τ⃗n−1(u) = τ⃗n−1(v) is isomorphic
to Tm−n. Consequently, depending on the parity of v, the graph G of vertices of
Dm,n whose tally-sequences agree with that of v in their first n places will either
be isomorphic to Dm−n,0 (when v is odd), or D∗

m−n,0 (when v is even). Moreover,
this isomorphism will be an order isomorphism on the poset induced on the graphs
by thinking about the sizes of numbers. The same is also true for w, where w is
the correspondent of v in the Tn part of D∗

m,n, giving us a graph G∗ isomorphic as
a graph and order isomorphic to either Dm−n,0, or D

∗
m−n,0. The only difference is

that G ∼= Dm−n,0 ⇐⇒ G∗ ∼= D∗
m−n,0.

So, to find a vertex of D∗
m,n with the same tally-sequence as v we must find a

vertex of G∗ with the same tally-sequence as v (considered as a vertex of G). But
we know from the n = 0 case that there is no such vertex. □

Theorem 7.12. Let 0 ≤ n < m. Then for all Z ∈ {A,B,C,D,E, F}, ∀ has a
winning strategy in G2(Zm,n, Z

∗
m,n).

Proof. By Lemma 7.11, the tally-spectra of Dm,n and D∗
m,n are not the same, so the

result for Z = D follows from Corollary 4.6. Suppose then that Z ∈ {A,B,C,E, F}.
By Lemma 4.4, if ∀ colours an element of Zm,n red, then ∃ must respond by

colouring an element of Z∗
m,n red, and the two elements must have the same tally-

sequences. Note that, as Zm,n ̸∼= Z∗
m,n, matching elements by tally-sequence cannot

be an isomorphism.
Define the map h : Zm,n → Z∗

m,n by sending vertices of Zm,n to the unique
vertex of Z∗

m,n with the same tally-sequence. If h is not well defined then ∀ has
a strategy by Corollary 4.6, so assume h can be defined like this. By Lemma 7.7
h is a bijection, but it cannot be an isomorphism as Zm,n ̸∼= Z∗

m,n. So there must
be a pair of vertices u, v of Zm,n such that h restricted to the subgraph generated
by {u, v} is not an isomorphism onto the subgraph generated by {h(u), h(v)}. It
follows that ∀ can win by colouring u red, then colouring v blue, because ∃ must
respond by colouring h(u) red and h(v) blue to match tally-sequences, but then
there will be a disagreement about edges between colours. □

8. The reconstruction conjectures

Consider first the degree-associated reconstruction conjecture, which for our pur-
pose is most conveniently stated in the following form.

Definition 8.1. The degree-associated reconstruction conjecture for di-
graphs is that if G and H are non-isomorphic digraphs, and if at least one of them
has at least three vertices, then there is a pair (x, y) ∈ ω×ω, and a digraph F such
that if

S = {u ∈ G : τ(u) = (x, y) and G \ {u} ∼= F}
and

T = {v ∈ H : τ(v) = (x, y) and H \ {v} ∼= F},
then |S| ≠ |T |.

The data of the deck of a digraph along with the in-degree, out-degree pair for
each of the deleted vertices is often known as its degree-associated deck.
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Theorem 8.2. If the degree-associated reconstruction conjecture for digraphs is
true, then whenever G and H are digraphs with G ̸∼= H, there is a winning strategy
for ∀ in G3(G,H).

Proof. Let G and H be digraphs with G ̸∼= H. By Proposition 3.4(5) and Proposi-
tion 3.7(S1), we can assume that |G| = |H| ≥ 3. So, assuming the degree-associated
reconstruction conjecture is true, we can choose a pair (x0, y0) ∈ ω × ω and a di-
graph F0 satisfying the conditions from Definition 8.1. Let S0 and T0 be as in that
definition, so

S0 = {u ∈ G : τ(u) = (x0, y0) and G \ {u} ∼= F0}
and

T0 = {v ∈ H : τ(v) = (x0, y0) and H \ {v} ∼= F0},
and suppose without loss of generality that |S0| > |T0|. Consider the following
strategy for ∀. First he colours S0 red. Now ∃ must respond by colouring some
subset Y0 of H red, and the tallies of vertices in this set must all be (x0, y0),
otherwise ∀ can force a win, by Corollary 4.5. By assumption, there must be some
u0 ∈ Y0 with H \ {u0} ≁= F0.

For his next move, ∀ then colours H \ {u0} blue. Then ∃ must respond by
choosing v0 ∈ S0 and colouring G \ {v0} blue. Define G1 = G \ {v0}, and define
H1 = H\{u0}, note that these are proper subgraphs. Then, by assumption, we have
G1

∼= F0 ̸∼= H1, and so, again by assumption of the degree-associated reconstruction
conjecture, we have a pair (x1, y1) ∈ ω × ω and a digraph F1, such that, if

S1 = {u ∈ G1 : τG1(u) = (x1, y1) and G1 \ {u} ∼= F1}
and

T1 = {v ∈ H1 : τH1(v) = (x1, y1) and H1 \ {v} ∼= F1},
then |S1| ≠ |T1|.

Note that both G1 andH1 are coloured blue, so ∀ can repeat his play as described
above, mutatis mutandis, with the other two colours, this time restricting himself
to G1 and H1. Since ∃ must restrict her responses to G1 and H1 too, this produces
G2 ⊂ G1 and H2 ⊂ H1, both coloured green say, with G2 ̸∼= H2. Repeating this
play with G2 and H2, and again with G3 ⊂ G2 and H3 ⊂ H2, and so on, ∀ will,
unless he wins before this point, eventually force a situation where there is Gk ⊂ G
and Hk ⊂ H both coloured blue say, with Gk ̸∼= Hk, and with |Gk| = |Hk| ≤ 4 = 22.
At this point he can force a win with the other two colours, as noted in Lemma
3.8. □

In Theorem 7.12 we proved that a Stockmeyer pair (Z,Z∗) is not a counterex-
ample to Conjecture 1.1, because ∀ has a winning strategy in G2(Z,Z∗), but the
proof took some work. It might be tempting to try to use a strategy similar to that
used in the proof of Theorem 8.2 to obtain the same result, or at least the similar
result for G3, more easily by exploiting the fact that the degree-associated decks of
Z and Z∗ are known to be different. However, such a proof would not work without
the assumption of the degree-associated reconstruction conjecture. Using the fact
that the degree-associated decks are different, we could obtain G1

∼= F0 ̸∼= H1, but
we would need the degree-associated reconstruction conjecture to find a suitable
F1 and continue. In other words, it is not enough that the degree-associated decks
of (Z,Z∗) differ, we would also need to know that the degree-associated decks of
various non-isomorphic pairs of subgraphs also differed.



30 ROB EGROT AND ROBIN HIRSCH

Theorem 8.2 has an analogue for the version of Conjecture 1.1 obtained by
replacing digraphs with undirected graphs.

Theorem 8.3. If the reconstruction conjecture is true, then whenever G and H
are graphs with G ̸∼= H, there is a winning strategy for ∀ in G3(G,H).

Proof. This is essentially the same as the proof of Theorem 8.2. □

Using the connection between k-colour Seurat games and monadic second-order
logic with k second-order and 2 first-order variables, we obtain the following easy
corollary.

Corollary 8.4. If the reconstruction conjecture is true, then given graphs G and
H with G ̸∼= H, there is a sentence ϕ of monadic second-order logic with up to 3
second-order and up to 2 first-order variables such that G |= ϕ and H ̸|= ϕ.

Proof. By Proposition 3.3, if ∀ has a winning strategy in G3(G,H) then he also has
one in MSO3

2(G,H). The result follows immediately, as Theorem 8.3 states that
if the reconstruction conjecture is true, then ∀ has a winning strategy in G3(G,H)
whenever G ̸∼= H. □

It is known that no fixed finite number k of variables is sufficient to distinguish all
non-isomorphic graphs in the first-order counting logic Ck [2], but we do not know
of any similar result for monadic second-order logic, though this logic has been
studied extensively in the context of graph theory (see e.g. [4]). If such a result
existed it would, by the above corollary, disprove the reconstruction conjecture.

We do not know if converses hold for either Theorem 8.2 or Theorem 8.3. In
other words, if either Conjecture 1.1 or its undirected analogue are equivalent to
the degree-associated reconstruction conjecture or the reconstruction conjecture,
respectively. Suppose for the sake of argument that we want to prove the converse
to Theorem 8.3. We might reason as follows. We are assuming that ∀ has a
winning strategy in G3(G,H) whenever G ̸∼= H, and we want to prove that the
reconstruction conjecture follows from this. So, in other words, we want to prove
that if G ̸∼= H, then the decks of G and H are different. By our assumption we
can suppose that ∀ has a winning strategy in G3(G,H), so if we could prove that ∀
having such a strategy implies the decks must be different then we would have have
our proof. However, this seems to be easier said than done. Indeed, we know it
is false in the case of digraphs, because we have seen that the Stockmeyer families
produce pairs of graphs where ∀ has a winning strategy in the 2-colour game (hence
he also has a winning strategy in the 3-colour game), but which nevertheless have
the same decks (though different degree-associated decks).

The exact relationship between the strength of looking at decks or degree-
associated decks and the existence of a winning strategy for ∀ in some k-colour
game as a means of distinguishing non-isomorphic graphs is also unclear. We saw
in Section 7 that there are graphs with the same deck that can be distinguished in
the 2-colour game, but beyond this we are currently in the dark.
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