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Abstract

This thesis focuses on two recent examples of non-equilibrium quantum

phase transitions. In the first part we discuss discrete time crystals (DTCs),

which are defined by the fact that they spontaneously break discrete time-

translation symmetry. In early realizations of DTCs, many-body localization

(MBL) played a crucial role in preventing the periodic drive from heating

the system to infinite temperature, which would preclude any possibility

of symmetry-breaking. This thesis explores the possibility that dissipation

may play an equivalent role, allowing for the possibility of time-translation

symmetry-breaking without MBL. We describe the results of an experiment

exploring DTC order in a doped semiconductor system with significant

dissipation, and a potential description of the interplay of driving, dissipation

and interactions using a central spin model.

In the second part we discuss measurement-induced phase transitions, where

the steady-state entanglement can undergo a phase transition as a function

of the measurement rate. First we explore the role of the underlying unitary

dynamics in the nature of the phase transition. Previous work has revealed an

apparent dichotomy between interacting and non-interacting systems, where

interacting systems have a phase transition from volume-law to area-law

entanglement at a finite critical measurement rate 𝑝, whereas the volume-

law for non-interacting systems is destroyed at any 𝑝 > 0. We study this

transition for MBL systems, and find an interpolation between these extremes

depending on the measurement basis. We discuss the relevance of the
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emergent integrability characteristic of MBL and how this intersects with

the measurements. Next we study the critical properties of this transition

in random 1+1D and 2+1D Clifford circuits, aiming to explore connections

with percolation. We utilize a graph-state based simulation algorithm,

which provides access to geometric properties of entanglement. We find

bulk exponents close to percolation, but possible differences in surface

behaviour.



Impact Statement

Many of the potential applications of quantum mechanics, such as in com-

puting, communication, and metrology, require the creation and control of

quantum states away from thermal equilibrium. Some of the key challenges

in these fields are related to the fact that in many cases thermalization seems

inevitable. But in recent years it has been realized that there are some mech-

anisms by which we can robustly avoid thermalization and its limitations.

This thesis explores some novel phases and phase-transitions that are enabled

by this move away from thermal equilibrium. Some of these phases may

have near-term technological applications — discrete time crystals could

potentially play a role in metrology, given their robust subharmonic response

— but as with many aspects of fundamental physics, the most impactful

applications may not yet be apparent. More generally, this thesis provides

a small contribution to our collective exploration into the new world of

non-equilibrium phases of matter.
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Chapter 1

Background

The study of phases of matter has traditionally focused on those that can

exist in systems at thermal equilibrium. At finite temperature this amounts

to studying equivalence classes of thermal states,

𝜌 =
𝑒−𝛽𝐻

tr
[
𝑒−𝛽𝐻

] , (1.1)

while at zero temperature the focus is on ground states. Precisely how the

equivalence relation is defined depends on the systems in question. For

gapped phases of matter, a popular choice is equivalence under finite-time

evolution of a local Hamiltonian [1].

This focus on thermal equilibrium is not unreasonable, given that a wide

variety of many-body systems are seen to converge rapidly to equilibrium.

This can happen even in closed systems without coupling to an external heat

bath, provided one only insists that the system looks locally like a thermal state

— this is the content of the eigenstate thermalization hypothesis [2–4].

There is an extraordinary richness in the phases of matter that can be

realized in this way, but nonetheless the requirement of thermal equilibrium

places some restrictions on the types of order that can exist. For example,

the Mermin-Wagner-Hohenberg theorem [5–7] prohibits the spontaneous
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breaking of continuous symmetries in systems with short-range interactions

at finite temperature in spatial dimensions 𝑑 ≤ 2, and for different reasons it is

also widely believed that topological order cannot exist at finite temperature

in 𝑑 ≤ 2 [8].

Given these considerations, if it were possible to somehow avoid thermal

equilibrium (without fine-tuning), then there could be new non-equilibrium

phases of matter. Some of these may have equivalent equilibrium phases,

but in principle there could also be genuinely new phases that can only be

realized out of equilibrium.

Discrete time crystals (DTCs) are significant in being perhaps the prototypical

example of a non-equilibrium phase that provably cannot exist in thermal

equilibrium. They are characterized by the fact that they spontaneously break

discrete time-translation symmetry. Momentarily leaving aside precisely

how this is defined, the history of DTCs is instructive in illustrating their role

as an exemplar of a non-equilibrium phase.

The idea of a time crystal was first proposed in 2012 by Frank Wilczek [9],

who had in mind the continuous time version: the generator of the system

dynamics has continuous time-translation symmetry, but the ground state

spontaneously breaks this symmetry to some discrete subgroup. More

concretely, Wilczek’s proposed ground state consisted of a soliton rotating

periodically around a ring — the periodic fluctuations of the particle density

would break the time-translation symmetry. However, it was quickly pointed

out that this was not actually the correct ground state for the model he

proposed; in fact, the true ground state had no such rotating soliton, and so

did not spontaneously break the time-translation symmetry [10–12]. It was

later proved in more generality that spontaneously breaking time-translation

symmetry is impossible in the ground state or thermal state of a local

Hamiltonian [13–15].



1.1. Absence of continuous time-translation symmetry breaking 5

1.1 Absence of continuous time-translation sym-

metry breaking
To explain the absence of continuous time-translation symmetry breaking

(TTSB) in thermal equilibrium, let us first fix a precise definition of continuous

TTSB. We follow the definition given in Ref. [13]. Suppose we have a collection

of local observables {𝐴𝑖}, where 𝑖 labels position, and 𝐴𝑖 is supported on

an 𝒪(1) region around site 𝑖. To detect symmetry breaking of the symmetry

𝒢, the observables 𝐴𝑖 should transform non-trivially under 𝒢. We could

then define spontaneous symmetry breaking of 𝒢 in the state 𝜌 as long-range

order in the correlation function

lim
|𝑖−𝑗 |→∞

⟨𝐴𝑖𝐴 𝑗⟩𝜌 ≠ 0, (1.2)

where as usual ⟨Φ⟩𝜌 = tr[Φ𝜌].

Equivalently, we can define a macroscopic observable 𝐴 by

𝐴 =
1
𝑉

∑
𝑖

𝐴𝑖 , (1.3)

where 𝑉 is the system volume. As an example, one could take 𝐴𝑖 = 𝜎𝑧
𝑖

to be

the local magnetization, so that 𝐴 is the net magnetization.

Long-range order in the state 𝜌 could then be defined as the existence of a

macroscopic observable 𝐴 with a nonzero value of the limit

lim
𝑉→∞

⟨𝐴𝐴⟩𝜌 ≠ 0. (1.4)

To generalize this to spontaneous breaking of continuous time-translation

symmetry, we then require that this limit is not only nonzero, but is a

non-trivial function of time, i.e.
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lim
𝑉→∞

⟨𝐴(𝑡)𝐴⟩ = 𝑓 (𝑡), (1.5)

where 𝐴(𝑡) is the time-evolved version of 𝐴 in the Heisenberg picture.

Let us now prove that this is impossible if the expectation value is taken with

respect to a thermal state as in Eq. (1.1). The result we are about to show

holds at all temperatures [14], but to show that requires a more complicated

proof, so for simplicity we will just focus on states satisfying the following

condition on the fast decay of correlations. In 𝑑 spatial dimensions, this

means that we consider states 𝜌 which satisfy

��tr[𝜌𝐴𝑖𝐵 𝑗

]
− tr[𝜌𝐴𝑖]tr

[
𝜌𝐵 𝑗

] �� ≤ ∥𝐴𝑖 ∥∥𝐵 𝑗 ∥ 𝑓 (|𝑖 − 𝑗 |), (1.6)

where 𝐴𝑖 and 𝐵 𝑗 are local observables supported at sites 𝑖 and 𝑗 respectively,

and the decay function satisfies 𝑓 (𝑟) ∈ 𝑜(𝑟−𝑑/polylog 𝑟). This assumption is

satisfied in thermal states at all finite temperatures in 𝑑 = 1 [16] and above a

finite critical temperature in 𝑑 > 1 [17].

Given this assumption, we will show the following theorem, which implies

that any possible time-dependence of the expectation value tr[𝜌𝐴(𝑡)𝐵] must

vanish in the thermodynamic limit 𝑉 → ∞, thus demonstrating the ab-

sence of spontaneous symmetry breaking of the continuous time-translation

symmetry of the Hamiltonian.

Theorem (Huang [15]). Let 𝜌 be a stationary state with correlation decay 𝑓 (𝑟) ∈
𝑜(𝑟−𝑑/polylog 𝑟), and consider the ‘macroscopic operators’ 𝐴 = 1

𝑉

∑
𝑖 𝐴𝑖 and

𝐵 = 1
𝑉

∑
𝑗 𝐵 𝑗 . At any time 𝑡 ∈ R,

|tr[𝜌𝐴(𝑡)𝐵] − tr[𝜌𝐴]tr[𝜌𝐵]| ∈ 𝒪(1/𝑉), (1.7)

where 𝐴(𝑡) = 𝑒 𝑖𝐻𝑡𝐴𝑒−𝑖𝐻𝑡 is the time-evolution of 𝐴 in the Heisenberg picture. 𝐴

and 𝐵 do not have to be translationally invariant, and 𝐻 does not need to be a local
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Hamiltonian.

Proof. We assume without loss of generality that tr[𝜌𝐴𝑖] = tr
[
𝜌𝐵 𝑗

]
= 0 for

any 𝑖 , 𝑗. If not we can simply transform 𝐴𝑖 → 𝐴𝑖 − tr[𝜌𝐴𝑖]1 and similarly for

𝐵 𝑗 .

Let {|𝐸1⟩, |𝐸2⟩, . . . } be a complete set of eigenstates of 𝐻 with energies

satisfying 𝐸1 ≤ 𝐸2 ≤ · · · , and let 𝑋𝑗𝑘 = ⟨𝐸 𝑗 |𝑋 |𝐸𝑘⟩ be the matrix element of the

operator 𝑋 in this basis. Writing out the matrix elements in Eq. (1.7), we have

|tr[𝜌𝐴(𝑡)𝐵]| =

������∑𝑗𝑘 𝜌 𝑗 𝑗𝐴 𝑗𝑘𝐵𝑘 𝑗𝑒
𝑖(𝐸𝑗−𝐸𝑘)𝑡

������ ≤ ∑
𝑗𝑘

𝜌 𝑗 𝑗 |𝐴 𝑗𝑘 | |𝐵𝑘 𝑗 | (1.8)

≤
√∑

𝑗𝑘

𝜌 𝑗 𝑗 |𝐴 𝑗𝑘 |2 ×
∑
𝑗
′
𝑘
′
𝜌 𝑗

′
𝑗
′ |𝐵𝑘

′
𝑗
′ |2 (1.9)

=

√∑
𝑗

𝜌 𝑗 𝑗(𝐴𝐴†)𝑗 𝑗 ×
∑
𝑗
′
𝜌 𝑗

′
𝑗
′ (𝐵†𝐵)𝑗′ 𝑗′

=

√
tr

[
𝜌𝐴𝐴†]tr

[
𝜌𝐵†𝐵

]
.

The first step used the fact that 𝜌 is a steady-state of the Hamiltonian,

[𝜌, 𝐻] = 0, so we can choose the energy basis such that 𝜌 is diagonal. The

second step is the triangle inequality, and the third step is the Cauchy-Schwarz

inequality applied to the inner product ⟨𝐴, 𝐵⟩ ≡ ∑
𝑗𝑘 𝜌 𝑗 𝑗𝐴 𝑗𝑘𝐵𝑘 𝑗 defined on the

space of Hermitian matrices.

Now, considering the first factor,

tr
[
𝜌𝐴𝐴†] = 1

𝑉2

∑
𝑖 ,𝑖

′
tr

[
𝜌𝐴𝑖𝐴

†
𝑖
′

]
=

𝒪(1)
𝑉2

∑
𝑖 ,𝑖

′
𝑓 (|𝑖−𝑖′ |) ≤ 𝒪(1)

𝑉

∑
𝑖∈Z𝑑

𝑓 (|𝑖 |) = 𝒪
(

1
𝑉

)
,

(1.10)

where we used the fact that the operators 𝐴𝑖 have 𝒪(1) norm, and that the

fast decay properties of 𝑓 (𝑟) ∈ 𝑜(𝑟−𝑑/polylog(𝑟)) guarantee that
∑

𝑖∈Z𝑑 𝑓 (|𝑖 |)
converges to 𝒪(1). We finish by noting that tr

[
𝜌𝐵†𝐵

]
can similarly be upper

bounded by 𝒪(1/𝑉).
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More generally, one may wonder why it is impossible to spontaneously

break time translation symmetry in equilibrium, given that, for example, it is

possible to spontaneously break spatial translation symmetry. The resolution

is that, compared with other symmetries, time plays a privileged role in

equilibrium statistical mechanics, because the time direction defines what

we mean by ‘equilibrium’.

1.2 Discrete time-translation symmetry break-

ing
Given the results of the previous section, one might be tempted to conclude

that any form of time-translation symmetry breaking (TTSB) is impossible.

It turns out, however, that a weaker form of TTSB is possible, provided

one moves the focus away from states in thermal equilibrium. Instead of

breaking continuous time-translation symmetry, it turns out to be possible to

spontaneously break discrete time-translation symmetry. The most natural

scenario in which this occurs is in periodically-driven (Floquet) systems,

where the periodic drive imposes a discrete 𝐺 = Z symmetry on the system.

That symmetry can then be spontaneously broken to some discrete subgroup

𝐻 — in the simplest case, 𝐻 = 2Z, i.e. there is period-doubling.

1.2.1 Definitions of discrete TTSB

We give two definitions of TTSB, both proposed by Else et al. in Ref. [18],

which we follow as a reference in this section. Each definition has its own

merits, with one providing a direct link with experiment, while the other

proves helpful for mathematical analysis. Formally they are equivalent, as

we will discuss. They apply to systems which are periodically driven, so their

Hamiltonians have a discrete time translation symmetry, i.e. 𝐻(𝑡 + 𝑇) = 𝐻(𝑡)
for some period 𝑇. Let ℒ 𝑓 , the ‘Floquet Liouvillian’, denote the generator

of time-evolution by one period, i.e. 𝜌(𝑡 + 𝑇) = exp(ℒ 𝑓𝑇)𝜌(𝑡). We define

short-range correlated states 𝜌 to be those that satisfy cluster decomposition,
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i.e.
��tr[𝜌𝐴𝑖𝐵 𝑗

]
− tr[𝜌𝐴𝑖]tr

[
𝜌𝐵 𝑗

] �� → 0 as |𝑖 − 𝑗 | → ∞. Then, for any infinite

system, we can define TTSB as follows.

Definition (TTSB-1): TTSB occurs if, for every time 𝑡 and every short-range

entangled state 𝜌(𝑡), there is an observable Φ such that

tr[𝜌(𝑡 + 𝑇)Φ] ≠ tr[𝜌(𝑡)Φ].

Physically, this means that in a system which has discrete TTSB, we can drive

the system with some frequency Ω and yet there will be some observables

which respond at a frequency different to Ω. Systems which spontaneously

break discrete time-translation symmetry are termed ‘discrete time crystals’

(DTCs).

We can also define TTSB in terms of long-range correlations:

Definition (TTSB-2): TTSB occurs if all of the eigenstates of the Floquet

operator ℒ 𝑓 are long-range correlated.

This is similar to the definition of conventional SSB, except that instead

of symmetry-invariant equilibrium states, we consider Floquet eigenstates

(which are invariant under the same discrete time-translation symmetry as

the Liouvillian).

The definitions TTSB-1 and TTSB-2 focus on different aspects of symmetry

breaking, but formally they are equivalent. TTSB-2 implies TTSB-1 because,

if all the eigenstates of the Floquet operator ℒ 𝑓 are long-range correlated,

to get the short-range correlated states which TTSB-1 applies to, we need to

consider superpositions of Floquet eigenstates with different eigenvalues.

These short-range correlated states will then not exhibit𝑇-periodicity because

applying the Floquet operator (which corresponds to time evolution by a time
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𝑇) will not result in the same state, and hence TTSB-1 is satisfied. Conversely,

TTSB-1 implies TTSB-2 because Floquet eigenstates are invariant under time

evolution by multiples of 𝑇 by definition, which means that if TTSB-1 occurs,

none of these short-range correlated states can be a Floquet eigenstate, and

hence we have TTSB-2.

1.2.2 Robustness to perturbations

Now, these definitions of TTSB, though precise, leave out one or two key

properties of conventional SSB that we might hope to see replicated in TTSB.

In particular, in conventional SSB, we expect the symmetry breaking states to

be robust against weak perturbations to the Hamiltonian. In other words, we

don’t expect SSB to require ‘fine-tuning’ of the Hamiltonian. For example, if

one applies a small perturbation to an atom arranged in a crystal lattice, it

will still return to its equilibrium position as long as the perturbation isn’t

too large.

It turns out that there are some models of TTSB that have this property of

robustness [19]. However, let us first explore a simple system that seems

to obey these definitions of TTSB, but does not have the desired robustness

against perturbations.

Consider a system of qubits, and suppose they are driven by a two-pulse

protocol given by

𝐻non−int(𝑡) =


−(1 + 𝜖) 𝜋2𝑡1

∑
𝑖 𝜎

𝑥
𝑖
, 0 ≤ 𝑡 mod 𝑇 ≤ 𝑡1;

Δ
∑

𝑖 𝜎
𝑧
𝑖
, 𝑡1 ≤ 𝑡 mod 𝑇 ≤ 𝑡1 + 𝑡2,

(1.11)

where 𝑇 = 𝑡1 + 𝑡2 is the overall period of the Hamiltonian. For 𝜖 = 0, the

spins will flip over the times 0 ≤ 𝑡 mod 𝑇 ≤ 𝑡1, and then will remain constant

over the times 𝑡1 ≤ 𝑡 mod 𝑇 ≤ 𝑡1 + 𝑡2. We can think of 𝐻non−int(𝑡) as having

a Z time-translation symmetry, corresponding to translations by integer

multiples of the drive period 𝑇. On the other hand, any observable of the
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(a) 𝜖 = 0
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(b) 𝜖 > 0

Figure 1.1: An example of how the subharmonic peak at 𝜈 = 𝜈drive/2 is not robust
against pulse errors for a non-interacting system. This behaviour should
appear for many order parameters, but for concreteness one could look
at the Fourier spectrum of 𝜎𝑧 for one of the spins.

system will not possess this symmetry, because the spins have to be flipped

twice to return to their original states. Experimentally, the way one looks

for time-translation symmetry breaking is to take some observable, say 𝜎𝑧

for one of the spins, and calculate the Fourier spectrum of its expectation

value. For 𝜖 = 0, there is a strong peak at 𝜈drive/2, as shown in Fig. 1.1a,

where 𝜈drive = 𝑇−1 is the drive frequency. In this way, the time-translation

symmetry group is spontaneously broken from Z to 2Z.

However, suppose now that, instead of perfectly flipping the spins, there

is some pulse error 𝜖 ≠ 0 so that the spins aren’t perfectly flipped. For

the simple non-interacting Hamiltonian 𝐻non−int(𝑡), any nonzero 𝜖 causes

beating in the correlation functions of observables1, which manifests itself in

a splitting of the Fourier peak at 𝜈 = 𝜈drive/2, as shown in Fig. 1.1b. What

is non-trivial about time crystals is that the Fourier peak remains pinned at

𝜈drive/2, even for nonzero pulse error 𝜖.

1.2.3 The issue of heating

While the move to Floquet systems allows us to avoid the no-go theorems

that prevent the possibility of continuous TTSB in equilibrium systems, it

1One can get some intuition for this by considering the case of a single qubit governed by
the Hamiltonian in Eq. (1.11), and visualizing the motion of the qubit’s state on the Bloch
sphere. In the absence of fine-tuning, beating occurs due to the combination of oscillations
around the 𝑥- and 𝑧-axes. The beating disappears when 𝜖 = 0 because then the spin is
aligned along the 𝑧-axis at all times, and so is unaffected by the rotation around the 𝑧-axis
caused by the Δ𝜎𝑧 term.
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brings with it its own challenges. In particular, there is the problem of heating.

Once we break continuous time-translation symmetry, energy is no longer

conserved. The question is then what happens to the system as a result of the

energy input from the drive. The answer and possible resolutions depend on

whether the system is closed or not.

For closed quantum systems, it has been argued that ‘generically’ — ‘generic’

here meaning the system obeys the eigenstate thermalization hypothesis —

the periodic drive will result in the system heating up to infinite temperature

in the steady-state [20], where no symmetry-breaking is possible. Therefore

to have a hope of symmetry-breaking, one must have a way of avoiding this

heating effect. In a closed system, there are two known ways this can happen

without fine-tuning: via many-body localization (MBL), where the system

avoids heating up for infinite time, or via pre-thermalization, where the

system avoids heating up for an exponentially large time dependent on the

drive frequency and the local interactions. Early proposals for discrete time

crystals largely focused on closed systems, and so relied on these mechanisms

of MBL [18, 21] and pre-thermalization [22].

In open quantum systems, it is well known that the combination of driving

and dissipation to a heat bath can result in the system being driven to a

non-trivial steady state [23–25]. The focus of this part of the thesis will be

on whether this can be utilized to realize discrete time-translation symmetry

breaking.

1.3 Experimental evidence of a many-body

localized time crystal
As explained in Section 1.2.3, many-body localization has been proposed

as one possible mechanism by which a closed quantum system can avoid

indefinitely heating up when driven, and hence have a chance at displaying

time-translation symmetry breaking. An experiment was soon done by the
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Monroe group in Maryland aiming to explore this possibility [26]. This

experiment used a 1D array of 10 trapped ions, a number small enough

that they were able to precisely control the drive applied to each ion. This

precision helped them to be confident that they were applying conditions

sufficient for many-body localization. The ions they used were 171Yb+,

and they focused on the effective two-level system generated by the 2S1/2

|𝐹 = 0, 𝑚𝐹 = 0⟩ and |𝐹 = 1, 𝑚𝐹 = 0⟩ hyperfine ‘clock’ states, which are split

by 12.642 831 GHz.

Their drive protocol consisted of three stages, illustrated in Fig. 1.2, which

were periodically repeated. The first and second stages correspond to the

usual spin-flip and interaction phases that are common in models of DTCs.

The third phase consisted of applying local disorder to each ion; this is

necessary to produce many-body localization. This drive protocol can be

described mathematically by

𝐻(𝑡) =


𝐻1 = 𝑔(1 − 𝜖)∑𝑖 𝜎

𝑦

𝑖
, 0 ≤ 𝑡 mod 𝑇 < 𝑡1;

𝐻2 =
∑

𝑖 𝑗 𝐽𝑖 𝑗𝜎
𝑥
𝑖
𝜎𝑥
𝑗
, 𝑡1 ≤ 𝑡 mod 𝑇 < 𝑡1 + 𝑡2;

𝐻3 =
∑

𝑖 𝐷𝑖𝜎𝑥
𝑖
, 𝑡1 + 𝑡2 ≤ 𝑡 mod 𝑇 < 𝑡1 + 𝑡2 + 𝑡3,

(1.12)

where 𝑇 = 𝑡1 + 𝑡2 + 𝑡3 is the drive period, 𝑔 is the Rabi frequency such that

𝑔𝑡1 = 𝜋/2, 𝐽𝑖 𝑗 is the spin-spin interaction strength between sites 𝑖 and 𝑗, and

𝐷𝑖 is a local random field chosen uniformly from the interval [0,𝑊].

One important thing to note is that they were able to control the range of the

spin-spin interaction strength 𝐽𝑖 𝑗 . More precisely, the spin-spin interactions

were generated by spin-dependent optical dipole forces, which resulted in

an interaction strength that falls off algebraically as 𝐽𝑖 𝑗 ∝ 𝐽0/|𝑖 − 𝑗 |𝛼. The

exponent 𝛼 is a controllable parameter which can be tuned from 0 to 3 by

varying the laser detuning or the trap frequencies. For their published results,

they used 𝛼 = 1.5, which in a 1D spin chain corresponds to a short-range

interaction, and hence we still expect MBL to persist [27, 28].
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Figure 1.2: An overview of the drive protocol used in the MBL trapped ion experi-
ment. Figure taken from Ref. [26].

In Fig. 1.3 we include a brief overview of their results. Their results match

well with theoretical expectations: for weak interactions and no disorder, as

shown in Fig. 1.3a, they do not observe a robust subharmonic peak, whereas

for strong interactions and strong disorder, as shown in Fig. 1.3c, the peak

becomes stable to nonzero rotation errors. Fig. 1.3b shows that disorder (and

hence MBL) alone is not sufficient to produce DTC order; in this case it is

only the combination of disorder and spin-spin interactions that leads to a

stable discrete time crystal.

1.3.1 Echoing out the disorder

While the experiment described in the previous section was initially received

as one of the first experimental realizations of an MBL discrete time crystal,

it was later pointed out that there was an issue with how they had attempted

to realize MBL in their Floquet system [29, 30]. Specifically, the disorder

required to realize MBL was predominantly present in the local magnetic

fields 𝐷𝑖 . In an undriven system this would be fine, but the problem arises

in the intersection with the Floquet drive. The magnetic field term is odd



1.3. Experimental evidence of a many-bodylocalized time crystal 15

(a) 𝑊𝑡3 = 0, 𝐽0𝑡2 = 0 (b) 𝑊𝑡3 = 𝜋, 𝐽0𝑡2 = 0 (c) 𝑊𝑡3 = 𝜋, 𝐽0𝑡2 = 0.036

Figure 1.3: An overview of the main results of the experiment with MBL trapped
ions in Ref. [26], from which these figures have been adapted. Here 𝜖 is
the rotation error, 𝑊 controls the strength of the disorder, and 𝐽0 controls
the strength of the spin-spin interactions. All figures have a fixed nonzero
rotation error of 𝜖 = 0.03. (a) No disorder and no interactions results
in a subharmonic peak which is unstable to rotation errors. (b) Having
disorder but no interactions also does not result in a stable subharmonic
peak. (c) Only the combination of disorder and interactions results in a
stable subharmonic peak.

under the Ising symmetry enacted by the spin-flip phase of the Floquet

drive. This means that the protocol effectively enacts a ‘spin-echo’, such that

the magnetic field term is approximately averaged to zero. This removes

the dominant disorder from the system, and in the original experiment the

residual disorder in the interaction terms 𝐽𝑖 𝑗𝜎𝑥
𝑖
𝜎𝑥
𝑗

was not sufficient to realize

MBL. It was subsequently argued that the DTC order seen in this system

was not MBL but rather prethermal DTC order, as evidenced by the strong

dependence of the long-time dynamics on the initial state.

To realize an MBL DTC in a trapped ion system like this, it is therefore

important that the disorder is introduced in a term which is even under the

Ising symmetry. The obvious candidate is the interaction term 𝐽𝑖 𝑗𝜎𝑥
𝑖
𝜎𝑥
𝑗
, and

indeed this has been the focus of a recent experiment [31], which is otherwise

quite similar to the experiment previously described.





Chapter 2

Dissipative discrete time crystals

While early realizations of discrete time crystals (DTCs) focused on closed

quantum systems, it is natural to ask whether it is possible to spontaneously

break discrete time-translation symmetry in an open system. This provides a

natural route to avoiding the ‘heating problem’ by coupling to a heat bath,

rather than through the mechanisms of many-body localization (MBL) or

pre-thermalization that seem necessary for DTCs in closed quantum systems.

This is advantageous partly because realizing the conditions for e.g. MBL

may be out of reach for many natural physical systems, such as those with

long-range interactions [27].

In this chapter, we will discuss an experiment performed at UCL using

phosphorous-doped silicon which may provide an example of a dissipative

discrete time crystal [32]. There has also been an experiment which observed

a DTC in a system of nitrogen-vacancy centres in diamond [33], and an NMR

experiment in a spatially ordered crystal which obtained similar results [34].

These systems are also not expected to be MBL, but we omit them here for

the sake of brevity.

2.1 DTCs in phosphorous-doped silicon
The experiment with phosphorous-doped silicon in Ref. [32] was done with

silicon isotopically purified to 99.995% 28Si, which has zero nuclear spin, with
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the spin-1/2 nuclear spins of the residual 29Si contributing to dissipation

rates. The strongest coherent interaction is between the electronic spins of

the phosphorus dopants. These interactions are dipole-dipole interactions,

whose strength falls off with their separation 𝑟 as 𝑟−3. Hence in 3D these

interactions are long-ranged, and there is good evidence to suggest that

long-range interactions can lead to the delocalization of a system [27, 28].

In addition, the dissipation due to the residual 29Si could also delocalize

the system [35, 36]. To summarise, this system is not expected to display

many-body localization.

As usual, the system was periodically driven, in this case with a two-stage

pulse protocol, as outlined in Fig. 2.1. In words, the experimental procedure

was roughly as follows. The spins were initially all aligned in the 𝑧-direction

using a large magnetic field of 0.34 T. Then, at the start of the experiment, a

𝜋/2-pulse was applied to rotate the spins into the 𝑥-𝑦 plane. With the spins

initialized, a sequence of 𝑁 Floquet unitaries was applied, each consisting

of two pulses. The first was a long ‘spin-locking’ pulse which enabled the

spins to interact with each other. Then a global rotation of the spins by an

angle 𝜙 = (1 + 𝜖)𝜋 was performed using a protocol known as ‘BB1’ in the

NMR literature [37]. It consists of a simple 𝜙 rotation pulse, followed by

a 𝜋(𝜃) − 2𝜋(3𝜃) − 𝜋(𝜃) series of corrective pulses, where the phase of the

rotation pulse 𝜋(𝜃) is 𝜃 = arccos(−𝜙/4𝜋). The purpose of this protocol is to

enable extremely spatially uniform rotations, which is important given that

the DTC protocol involves monitoring the effect of deliberating introducing

some error 𝜖 into the spin rotation. Without the corrective pulse, the spatial

variation is ∼ 10% across the sample due to variations in the microwave

frequency magnetic field generated by the split ring cavity used for driving

and detection. Finally, after the sequence of Floquet unitaries, the spins were

rotated back to the 𝑧-plane with another 𝜋/2-pulse, after which they were

read out using a Hahn echo.

It is important to note here that the direct interaction strength is in some sense
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Figure 2.1: An overview of the pulse protocol for the experiment with phosphorous-
doped silicon outlined in Ref. [32], from which this figure is adapted.
The main part of the drive protocol, outlined in dashed lines, consists of
two stages: a ‘spin-locking’ stage where the spins are free to interact, and
a 𝜋-pulse, where the spins are flipped using the BB1 protocol to ensure
spatially uniform rotations.

fixed at the point of sample production, since the interaction strength depends

only on the distance between spins, and hence the density of phosphorous

dopants, which is fixed for a given sample.

There was disorder in this system, which resulted from two sources. The

spin-spin interaction strength depends on the distance between the spins,

and this varies from spin to spin (it can be controlled by varying the density

of phosphorous dopant spins). There was also a magnetic field applied to

the sample, and the linewidth in this field resulted in disorder in the local

field experienced by each spin.
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Figure 2.2: Experimental data showing a comparison between the normalized
Fourier spectra for the trivial phase (a) and the DTC phase (b), for
a fixed rotation error of 𝜖 = 0.01. Whereas the subharmonic peak splits
for any nonzero 𝜖 in the trivial phase, in the DTC phase the subharmonic
peak is fixed at 𝜈𝐹/2 for small but nonzero 𝜖. The DTC phase corresponds
to 𝜏lock = 100𝜏flip, while the trivial phase corresponds to 𝜏lock = 10𝜏flip.

2.2 Experimental observations
The main observable in the experiment was the net magnetization, which can

be read out using a Hahn echo sequence. The magnetization is monitored

stroboscopically at the end of every Floquet period, up to 𝑛 = 200 periods.

The resulting time series is then Fourier-transformed, and we monitor for

the presence of a robust subharmonic peak at half the drive frequency 𝜈𝐹.

Increasing the duration 𝜏lock of the spin-locking pulse lengthens the Floquet

period and hence reduces the Floquet frequency 𝜈𝐹. Since the axes in the phase

diagrams are measured in units of 𝜈𝐹, this allows us to explore regions of the

phase diagram with effectively stronger interactions and dephasing.

Fig. 2.2 shows some experimental data comparing the resulting Fourier

spectra between the trivial and DTC phases. In both plots the rotation error

is fixed at 𝜖 = 0.01. For the trivial phase, this results in the subharmonic

peak immediately splitting, as a result of beating induced by the imperfect

spin-flip. However, in the DTC phase the subharmonic peak is robust against

imperfections in the Floquet drive, and as a result remains unsplit for small

but nonzero 𝜖, indicating the robustness of the discrete time-translation
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Figure 2.3: A comparison between experiment and theory of the splitting of the
subharmonic Fourier peak as a function of the rotation error 𝜖. Whereas
in the DTC phase the subharmonic peak remains fixed at half the Floquet
frequency in a finite window around 𝜖 = 0, in the trivial phase it splits
immediately for any 𝜖 ≠ 0. The DTC phase corresponds to 𝜏lock = 100𝜏flip,
while the trivial phase corresponds to 𝜏lock = 10𝜏flip. The asymmetry of
the trivial phase data around 𝜖 = 0 is discussed in the main text.

symmetry breaking.

To experimentally probe the phase boundary, we sweep the rotation error

𝜖, and monitor the positions of the ‘left’ and ‘right’ peaks around 𝜈𝐹/2.

In the DTC phase, both of these peaks will be fixed at 𝜈𝐹/2, but once we

enter the trivial phase the peaks will move apart with increasing 𝜖. Fig. 2.3

shows a comparison between experiment and theory (see Section 2.3.1) of

the predicted phase boundary as a function of 𝜖 in both the DTC and trivial

phases. As predicted, in the DTC phase the left and right peaks in the Fourier

spectrum remain fixed at 𝜈𝐹/2 for a finite window of 𝜖 before eventually

splitting at sufficiently large 𝜖, i.e. for a sufficiently large perturbation. On

the other hand, in the trivial phase the peaks immediately move apart for
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any nonzero 𝜖. One might notice that for the trivial phase data, the collected

data is not symmetric around 𝜖 = 0. This is not a physical effect, but rather is

a reflection of the fact that during the experiment collecting this data, there

was some variation in the duration of the rotation pulse required for a perfect

spin-flip, and as a result data was effectively only collected in the interval

𝜖 ∈ [−0.02, 0.08]. This could possibly be due to small variations in the pulse

amplifier power output. At any rate, the splitting effect for nonzero 𝜖 in the

trivial phase remains clear.

2.3 Theoretical model
Discrete time crystals can be characterized by their robust subharmonic

response to a periodic drive. Intuitively, the dissipation can cancel out any

small perturbations to the state or the drive which might otherwise break the

subharmonic response. What is more non-trivial is whether this dissipation-

stabilized subharmonic response can persist in the presence of destabilizing

interactions. In this section we map out the phase diagram of a discrete time

crystal (DTC) with competing dissipation and interactions, and numerically

show that a dissipation-driven DTC is indeed stable to weak interactions.

Further, we explore the opposite regime, where strong interactions stabilize

the DTC, and show that this regime is stable to weak dissipation.

In the experiment outlined in Sections 2.1 and 2.2, we explore the strong

dissipation/weak interaction regime of this phase diagram, and find that

our observations align with the theoretically predicted phase boundary

(see Figs. 2.3 and 2.4a). At the other extreme, the weak dissipation/strong

interaction regime could be probed by looking at samples with higher

concentrations of phosphorus dopants.

To map out the phase diagram of the dissipative DTC as a function of

dissipation strength and interaction strength, we use two different probes

— they agree in their predictions for the DTC phase boundary. First, we

use the experimentally-relevant probe of calculating the dynamics of local
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observables and whether or not they exhibit stable subharmonic peaks in

their Fourier spectra (Fig. 2.4a). Second, we look at the 𝜋-gap of the Floquet

Liouvillian (Fig. 2.4b), which we define in Section 2.3.2. The 𝜋-gap was first

introduced in Ref. [38] to study emergent symmetries in many-body localized

DTCs, but here we generalize it to Liouvillian systems.

2.3.1 Description of the model

To produce the phase diagram, we focus on the driven central spin model

(CSM) coupled to a dissipative bath. The CSM has been successful as a

semiclassical effective model for describing decoherence in solid state systems

[39–47]. In the experiment described in Sections 2.1 and 2.2, the strongest

coherent interaction is between the electronic spins of the phosphorus dopants,

which form the spins in the CSM. However, in the dephasing-dominated

regime relevant to this experiment, we do not expect the spatial interaction

structure to be important, and view the infinite-range central spin model as

an approximation to the long-range dipolar interactions of the phosphorus

spins. This theoretical approximation has been validated for describing the

decoherence of donor spins in experiments [48–51]. Finally, nuclear spins

from residual 29Si contribute to dissipation rates, and provide a small source

of random field for the electron spins.

To have a notion of competing interactions and dephasing, we use 𝜎𝑦𝜎𝑦

interactions and 𝜎𝑧 dephasing, which in principle should produce DTC-like

phenomena in 𝜎𝑦 and 𝜎𝑧 respectively. Interestingly, in the weakly interacting

case, we find that strong 𝜎𝑧 dephasing can also stabilize a DTC-like response

in 𝜎𝑦 .

The Hamiltonian of the central spin model with 𝜎𝑦𝜎𝑦 interactions is given

by

𝐻CSM =

𝑁∑
𝑖=1

𝐽0𝑖𝜎
𝑦

0 𝜎
𝑦

𝑖
+

𝑁∑
𝑗=0

ℎ 𝑗𝜎
𝑧
𝑗 , (2.1)
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where the central spin has index 0, and the outer spins have indices 1 to

𝑁 . 𝐽0𝑖 and ℎ 𝑗 are modelled as random variables taken from the uniform

distributions over [−ℎ, ℎ] and [−𝐽𝑦 , 𝐽𝑦] respectively. To incorporate the

driving, the Hamiltonian follows a two-stage protocol given by

𝐻(𝑡) =


𝐻CSM, for time 𝜏lock;

(1 + 𝜖) 𝜋
2𝜏flip

𝑁∑
𝑖=0

𝜎𝑥
𝑖 , for time 𝜏flip.

(2.2)

For 𝜖 = 0, the second stage of the pulse protocol exactly flips the spins. The

discrete time crystal phase can be defined operationally by its robustness

against nonzero rotation errors 𝜖.

In addition to the interactions present within the central spin model, we

model the effects of external dephasing using the Lindblad master equation

given by

d𝜌
d𝑡 = −𝑖[𝐻(𝑡), 𝜌] + 𝜅1

𝑁∑
𝑖=0

(
𝜎𝑧
𝑖 𝜌𝜎

𝑧
𝑖
† − 1

2

{
𝜎𝑧
𝑖
†𝜎𝑧

𝑖 , 𝜌
})
. (2.3)

Note that this dissipation model enacts XY-dephasing, i.e. it draws the state

of a single qubit to the 𝑧-axis of the Bloch sphere. This can be seen as being in

competition with the 𝜎𝑦𝜎𝑦 interactions present within the central spin model

[Eq. (2.1)].

In the experiment, 𝑇1𝜌 was measured to be 193 µs for the higher density

sample, giving 𝜅1 ∼ 2.3 kHz, while 𝐽 and ℎ can be estimated from the

phosphorus concentration and are of the order 300 Hz and 10 Hz respectively.

Hence we expect XY-dephasing to dominate the dynamics of the experimental

system.
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2.3.2 Order parameters for the DTC phase diagram

2.3.2.1 Fourier spectra of local observables
In an experiment, a DTC is typically detected by measuring the time-

dependence of local observables (or averages thereof), and looking for

oscillations at an integer fraction 1/𝑛 of the drive frequency 𝜈𝐹 which are

robust against perturbations. This robustness can be detected by looking

at the Fourier spectra of these local observables; the DTC phase will have a

strong peak at 𝜈𝐹/𝑛 which remains unsplit for a finite window of rotation

errors. To use this to produce a phase diagram, we fix a nonzero rotation

error 𝜖, and then for each set of parameters calculate the Fourier spectrum of

⟨𝜎𝑧
0⟩ in the driven-dissipative central spin model (see Section 2.3.1), assign

a value of +1 if the peak is split and 0 if not, and average the result over 10

disorder realizations.

In the strong dephasing limit, both the central and the outer spins exhibit

robust period-doubling. The same is also true in the strong interactions limit,

where interestingly the outer spins have Fourier spectra which split for larger

values of 𝜖 than the central spin.

2.3.2.2 𝜋-gap
Consider a periodically-driven, or ‘Floquet’, system. If its dynamics are

unitary, then time-evolution at integer multiples of the drive period 𝑇

can be generated using the Floquet unitary 𝑈𝐹 = 𝒯 exp(−𝑖
∫ 𝑇

0 𝐻(𝑡)d𝑡/ℏ) ≡
exp(−𝑖𝐻𝐹𝑇/ℏ), where 𝒯 denotes time-ordering, and 𝐻𝐹 is an effective Floquet

Hamiltonian. If instead its dynamics are non-unitary, we can make an

analogous statement: time-evolution at integer multiples of the drive period

𝑇 can be generated using the exponential of the Floquet Liouvillian exp(ℒ𝐹𝑇) ≡
𝒯 exp(

∫ 𝑇

0 ℒ(𝑡)d𝑡), where ℒ(𝑡) is the Liouvillian at time 𝑡.

One can analyze the stroboscopic dynamics of the system by looking at the

spectrum of the Floquet Liouvillian ℒ𝐹. The imaginary part of the spectrum

describes the oscillatory modes, while the real part describes the decay modes.
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In the Z2 DTC phase, 𝜋-pairing occurs, where the eigenvalues come in pairs

with imaginary parts separated by 𝜋. Provided the initial state has significant

overlap with these 𝜋-paired states, the subsequent dynamics will exhibit

period doubling. The 𝜋-gap Δ𝜋 provides a measure of the extent of 𝜋-pairing

across the spectrum of ℒ𝐹, and is defined as

Δ𝜋 = E
[��Im(

𝜆𝑖+𝒩/2 − 𝜆𝑖

)
− 𝜋

��] . (2.4)

Here the 𝜆𝑖 are the eigenvalues of ℒ𝐹, ordered according to their imaginary

parts, 𝒩 is the total number of eigenvalues, and the average E is taken

uniformly across the spectrum of ℒ𝐹. For an order parameter, we look at

Δ𝜋/Δ0, where Δ0 = E[|Im(𝜆𝑖+1 − 𝜆𝑖)|] is the mean nearest-neighbour spacing,

which provides a relevant scale to compare against. The Z2 DTC phase

corresponds to Δ𝜋/Δ0 ≪ 1.

2.3.3 Analysis of the phase diagram

The 𝜋-gap has the advantage that it can probe the DTC transition for arbitrary

observables. For our purposes, this means we can simultaneously analyze

DTCs with i) strong dissipation and weak interactions, and ii) weak dissipation

and strong interactions. Fig. 2.4b shows that there are two clear transitions

which occur: one at weak interactions upon increasing the dephasing strength,

and one at weak dephasing upon increasing the interaction strength. Further,

the positions of these transitions are stable against finite interactions or

dissipation respectively.

The experiment described in Section 2.2 probes the dephasing-driven DTC

transition. The detail to Fig. 2.4a shows experimental Fourier spectra for

experiments with 𝜏lock = 10𝑡𝜋 and 𝜏lock = 100𝑡𝜋. Increasing 𝜏lock lengthens

the Floquet period and hence reduces the Floquet frequency 𝜈𝐹. Since the

axes in the phase diagrams are measured in units of 𝜈𝐹, this allows us to

explore regions of the phase diagram with effectively stronger interactions

and dephasing. These experimental Fourier spectra thus probe either side of



2.3. Theoretical model 27

10 4 10 3 10 2 10 1 100

YY interaction strength Jy / F

10 2

10 1

100

z  d
ep

ha
sin

g 
ra

te
 

z /
 

F

0.0

0.2

0.4

0.6

0.8

1.0

Probability that 
z Fourier peak is split

0.4 0.5 0.6
Frequency / F

0.0

0.5

1.0

Fo
ur

ie
r a

m
pl

itu
de

0.4 0.5 0.6
Frequency / F

0.0

0.5

1.0

Fo
ur

ie
r a

m
pl

itu
de

(a)

10 4 10 3 10 2 10 1 100

YY interaction strength Jy / F

10 2

10 1

100

z  d
ep

ha
sin

g 
ra

te
 

z /
 

F

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
/

0

10 2 10 1 100
z dephasing rate z / F

10 3

10 1

101

/
0

10 410 310 210 1 100

YY interaction strength JY / F

10 2

10 1

100

101

/
0

(b)

Figure 2.4: Phase diagram of the discrete time crystal with competing dissipation
and interactions, using two different order parameters. Fig. 2.4a includes
experimental data exploring the strong dissipation/weak interaction
phase boundary. (a) Phase diagram from the Fourier spectrum of ⟨𝜎𝑧

0⟩,
calculating using the driven central spin model coupled to a dissipative
bath. The DTC phase corresponds to the dark region, where ⟨𝜎𝑧

0⟩ has a
stable peak at half the drive frequency. Unlike the 𝜋-gap phase diagram,
there is no dark region in the bottom right because we are looking at 𝜎𝑧 ;
in this region 𝜎𝑦 exhibits period doubling instead. The red and white
stars and corresponding Fourier spectra correspond to experiments with
𝜏lock = 10𝑡𝜋 and 𝜏lock = 100𝑡𝜋 respectively. (b) 𝜋-gap phase diagram
of the discrete time crystal as a function of dephasing rate and 𝜎

𝑦

𝑖
𝜎
𝑦

𝑗

interaction strength. The DTC phase corresponds to Δ𝜋/Δ0 ≪ 1 (dark
regions). The two plots at the bottom are slices through the phase
diagram, the left at weak interactions and the right at weak dissipation.
Both slices show a clear transition in the 𝜋-gap, though this is more
pronounced for the dissipation-driven transition. Parameters: 𝜖 = 0.01,
ℎ = 10 Hz, 𝑁 = 5, 10 disorder realizations; Fourier transforms calculated
over 0 ≤ 𝑛 ≤ 200 Floquet periods. Phase diagram axes are in units of the
Floquet frequency 𝜈𝐹.

the dissipative DTC phase boundary, and demonstrate that the dissipative

DTC is stable in the predicted region, even with potentially destabilizing

interactions.
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2.4 Comment on the crystalline fraction as a probe

for DTC order
When observing a discrete time crystal (DTC) in an experiment, one of

its characteristic features is the robustness of the subharmonic peak in its

Fourier spectrum against perturbations. In the simplest case where the

symmetry is broken from Z→ 2Z, this manifests itself in a robust peak in the

Fourier spectrum at half the drive frequency 𝜈𝐹. The crystalline fraction was

introduced in Ref. [33], one of the first experimental reports of DTC order,

as an easy measure to probe for the presence of DTC order. It is defined in

terms of the Fourier transform 𝑆(𝜈) as

𝑓 =
|𝑆(𝜈 = 𝜈𝐹/2)|2∑

𝜈 |𝑆(𝜈)|2
, (2.5)

giving the fraction of the Fourier amplitude localized at the subharmonic

peak. The idea is that one introduces a deliberate error 𝜖 into the spin-flip

phase of the Floquet drive, and then measures the 𝜖-dependence of the

crystalline fraction 𝑓 . Ref. [33] argued that in the DTC phase there would

be a ‘plateau’ feature in the plot of 𝑓 vs 𝜖, where in some finite window

of 𝜖 centred around zero, the crystalline fraction would be approximately

constant, thereby giving some indication of robustness. An example of this

plateau feature is shown in Fig. 2.5.

The crystalline fraction is clearly an attractive tool, given the ease with which

it can be calculated in an experiment. However, although a true DTC would

indeed likely give rise to a ‘plateau’, it is important to distinguish this from

other possible causes. In this vein, we give experimental and numerical

evidence that it is possible that spatial inhomogeneities in the spin-flip applied

to spins across the sample can also result in a plateau, even in systems we

do not expect to be in the DTC phase. Such spatial inhomogeneity can be

quite common in experimental platforms, and can be non-negligible — in
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Figure 2.5: The dependence of the crystalline fraction 𝑓 on the rotation angle
𝜃 = (1 + 𝜖)𝜋 in an experiment aiming to observe DTC order in a system
of NV centres in black diamond [33]. Here 𝜖 = 0 corresponds to a perfect
spin-flip. The claim is that the data with the longer interaction time
𝜏1 = 275 ns corresponds to the DTC phase, as evidenced by the ‘plateau’
dependence of 𝑓 on the rotation angle near 𝜃 = 𝜋. The red diamonds
are a rough indication of the phase boundary.

the experiment described here, without correction the spatial variation in the

rotation angle is ∼ 10% across the sample due to variations in the microwave

frequency magnetic field used for driving and detection. This is certainly a

large effect, given that even in the DTC phase the subharmonic response can

break down at around 5% rotation error (see Fig. 2.3).

In Fig. 2.6a is data from the experiment on phosphorous-doped silicon

described in Section 2.1. There the presence of spatial inhomogeneity in

the rotation pulse can be largely corrected for by using the BB1 protocol.

The data with BB1 shows the crystalline fraction decaying smoothly as the

rotation error increases, indicating we are in the trivial phase. However, if we

remove BB1, thereby reintroducing spatial inhomogeneity, we find that the

crystalline fraction is roughly constant over a wide range of rotation error.

We note in passing that the subharmonic oscillations of the Floquet cycles

without BB1 also decayed much faster than the oscillations with BB1. A

longer duration for the rotation pulse of 300ns in the BB1 data vs 200ns for

the non-BB1 data, causing more dephasing and weaker signal, may account

for the lower overall crystalline fraction of the BB1 experiment.
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Figure 2.6: The effect of nonuniform rotations on the crystalline fraction. (a) Compar-
ison of the crystalline fraction against rotation error of the same sample
with and without BB1 pulses turned on. The non-BB1 pulse sequence
appears to have a flattened peak, while the BB1 crystalline fraction has no
indication of a plateau. (b) Simulations of the crystalline fraction using
the driven-dissipative central spin model using nonuniform rotation
pulses. For a given disorder realization, the rotation error 𝜖 is drawn
from a Gaussian distribution with mean 𝜖̄ and variance 𝜎2, clipped at
10% to model the finite extent of the sample. We observe that large
values of 𝜎 result in a distinct flattening of the crystalline fraction curve,
consistent with our experimental observations in Fig. 2.6a.

To support this analysis, in Fig. 2.6b we show numerical simulations of the

driven-dissipative central spin model, where the rotation error applied to

each spin is drawn individually from a Gaussian distribution. For a given

mean rotation angle 𝜖, we vary the variance 𝜎2 of the distribution to vary the

amount of spatial inhomogeneity. The maximum deviation from the mean is

fixed at 10% to model the finite extent of the sample. As the data for 𝜎 = 10−10

shows, we are using dissipation and interaction parameters that put us in
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the trivial phase, where for spatially homogeneous rotations the crystalline

fraction decays smoothly with the rotation error. However, upon increasing

the rotation variance, we observe a flattening of the crystalline fraction curve,

consistent with the experimental observations in Fig. 2.6a. This provides

an example of where spatial inomogeneity can produce a spurious ‘plateau’

signature in the crystalline fraction, which should therefore not be taken as a

definitive indication of DTC order.

2.5 Conclusion
In this chapter we have discussed the results of an experiment in a driven

system of phosphorous-doped silicon in which signatures of discrete time

crystalline order were observed. Since dissipation was strong in this system,

we modelled it with a driven-dissipative central spin model, and found good

agreement between experiment and theory, particularly in the location of the

phase boundary. This provides an example where dissipation may play a key

role in stabilizing DTC order. We also studied the𝜋-gap, a spectral measure of

the pairing of eigenstates, and found a transition in the 𝜋-gap that coincided

with the DTC transition, providing a similarity with MBL time crystals. In

the future it would be interesting to further explore the novel possibilities

for phases of matter in non-equilibrium systems, of which discrete time

crystals are but an early example. It is not yet clear to what extent one

could aim for a classification of these phases in the same vein as the current

program in classifying topological phases of matter. One direction could be

to develop a notion of how non-equilibrium phases are ‘equivalent’, such as

by generalizing quasiadiabatic continuation [52] to non-unitary systems. For

local systems this will likely also involve some version of a Lieb-Robinson

bound applicable to non-unitary time evolution [17].
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Chapter 3

Background

3.1 Entanglement scaling
Given a pure quantum state |𝜓⟩, the von Neumann entanglement entropy 𝑆𝐴

of a subsystem 𝐴 is defined as 𝑆𝐴 = −tr
[
𝜌𝐴 log 𝜌𝐴

]
, where 𝜌𝐴 = Tr𝐴𝑐 [|𝜓⟩⟨𝜓 |]

is the reduced density matrix of𝐴. One can also consider a slightly generalized

quantity, the 𝑛-Rényi entropy

𝑆𝑛,𝐴 =
1

1 − 𝑛
log tr

[
𝜌𝑛
𝐴

]
, (3.1)

where 𝑛 ∈ [0,∞]. This is a whole family of entropies, which recovers the

von Neumann entropy in the limit 𝑛 → 1. For the rest of this section, I will

mostly refer to the von Neumann entropy as ‘the entanglement entropy’, and

will not write the Rényi index 𝑛 unless specified otherwise.

In many-body quantum physics, we are often interested in the behaviour

of various quantities in the limit of many degrees of freedom, dubbed the

‘thermodynamic limit’. In this limit, the entanglement entropy often exhibits

a scaling form. One possibility is a volume-law, where to leading order

𝑆𝐴 ∝ |𝐴| + · · · is proportional to the number of degrees of freedom |𝐴| in 𝐴.

Another possibility is an area-law, where 𝑆𝐴 ∝ |𝜕𝐴| + · · · is proportional to

the number of degrees of freedom |𝜕𝐴| in the boundary of 𝐴.
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These scaling forms occur naturally in various scenarios. For example, a

volume-law is ‘typical’, in the sense that a random pure state has volume-law

entanglement with probability one in the thermodynamic limit [53]. Volume-

laws also emerge in the steady-state of different types of quantum dynamics,

including chaotic dynamics, such as in random quantum circuits or chaotic

Hamiltonian time evolution [4], as well as time evolution by many-body

localized (MBL) Hamiltonians [54–58]. The origin of the volume-law is quite

different in these two classes of dynamics: for the chaotic systems it is a

consequence of local thermalization, where in the steady-state local reduced

density matrices are close to thermal states at an effective temperature 𝑇eff set

by the energy density, a statement known as the eigenstate thermalization

hypothesis [3] (𝑇eff = ∞ for systems without energy conservation). In MBL

systems the steady-state is non-thermal, but nonetheless has a volume-law

for a large class of initial states as a result of dephasing between the emergent

local integrals of motion present in the MBL phase.

On the other hand, area-laws occur in the ground states of gapped Hamil-

tonians, a statement proved in 1D [59] and conjectured to hold in higher

dimensions (see e.g. [60]). In as much as many of the ordered phases studied

by physicists are controlled by these gapped ground states, the subspace of

area-law states is sometimes referred to as the ‘physical corner of Hilbert

space’. This identification has been particularly fruitful in 1D, where area-

law states can be efficiently classically parameterized by matrix product

states with constant bond dimension (strictly speaking, the requirement

is for an area-law in the (𝑛 < 1)-Rényi entropies—an area-law in the von

Neumann entropy is not sufficient [61]). This has lead to highly effective

classical variational algorithms for finding the ground states of 1D gapped

Hamiltonians [62].

There are other possibilities for the scaling of entanglement than volume- or

area-laws. For example, in 2D conformal field theories (CFTs) the entangle-

ment entropy scales logarithmically, 𝑆𝐴 ∝ log |𝐴| + · · · [63]. This is relevant
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for continuous phase transitions in 1+1D quantum systems, where the critical

point often exhibits conformal symmetry. This logarithm is special to two

dimensions—higher dimensional CFTs are expected to obey an area-law to

leading order [63, 64].

3.2 Entanglement phase transitions
An entanglement phase transition is a type of phase transition at which the

qualitative scaling behaviour of the entanglement entropy changes. This

should really be understood as a new class of phase transition, distinct

from more familiar classes such as thermal phase transitions, ‘quantum’

phase transitions (i.e. ground state phase transitions), or dynamical phase

transitions [65].

Entanglement phase transitions are a relatively recent addition to the cadre

of phase transitions. Probably the most well known example is the many-

body localization (MBL) transition (though it is not always discussed in

these terms). This is a transition at which the eigenstate thermalization

hypothesis (ETH) breaks down. In the simplest case, the transition occurs as a

function of a ‘disorder strength’ parameter, such as the variance of a random

on-site magnetic field in a Hamiltonian. On the weak-disorder, ’ergodic’,

side, the energy eigenstates have volume-law entanglement, consistent with

the volume-law of thermal states as dictated by the ETH. However, on the

strong-disorder side of the transition, the energy eigenstates are only area-

law entangled. This can be seen as a consequence of the locality of the

emergent integrals of motion which characterize the MBL phase [57]. Thus

the MBL transition can be seen as an entanglement transition in terms of the

entanglement of energy eigenstates.

3.3 Measurement-induced transitions
In this report we will be concerned with a novel mechanism for driving

entanglement phase transitions, namely quantum measurements. As a minimal
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model, first consider a local random unitary circuit. Starting from a local

product state, the random unitaries will create entanglement locally, causing

the overall entanglement of some extensive region to grow linearly in time

before saturating to a volume-law. We now imagine modifying this unitary

circuit by randomly introducing quantum measurements in between the

layers of unitary gates. In the simplest case we can take these measurements

to be single-site projective measurements in some fixed basis, and for each

site to have a probability 𝑝 of being measured at each timestep. This will

create a competition—the unitaries generate entanglement (locally), while

the measurements destroy entanglement (potentially non-locally).

As a result of this competition, what scaling behaviour should the steady-

state entanglement have? We can understand the limits fairly easily. At

𝑝 = 0 we recover the random unitary circuit, which results in volume-law

entanglement in the steady state. At 𝑝 = 1 every spin is being measured at

every timestep, so the steady-state will be some trivial product state with zero

entanglement. Hence there should be some sort of transition between volume-

and area-law entanglement as a function of 𝑝. What is interesting is that this

transition turns out to be sharp, in the sense that it is a continuous phase

transition at which scaling laws and universality emerge. Part of the work in

this report will be focused on trying to understand this universality.

Although I have introduced this concept by reference to random unitary

circuits [66–86], it is worth noting that these measurement-induced transitions

occur in a wide variety of models, including Hamiltonian systems [87–95],

and measurement-only models [78, 96–98]. In the spirit of universality,

many of these models may fall into the same universality class, despite the

differences in their underlying dynamics. However, that is not to say that all

of these models are in the same universality class—there appear to be some

differences in e.g. certain critical exponents for some models. We will explore

this issue further in Sec ().
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3.4 Transitions in the Rényi entropies
One can also ask about the transition for different Rényi entropies. Do they

all transition at the same critical measurement probability 𝑝𝑐 , or can 𝑝𝑐 be

different for different Rényi entropies? This is relevant for implications about

classical simulability, where in 1D an area-law in the (𝑛 < 1)-Rényi entropies

guarantees an efficient representation of the state in terms of constant bond

dimension matrix product states.

One can significantly constrain answers to this question by using a few basic

properties of the Rényi entropies. For example, by differentiating with respect

to 𝑛 the formula in Eq. (3.1) for the 𝑛-Rényi entropy, one can show that

d𝑆𝑛,𝐴
d𝑛 =

−1
(1 − 𝑛)2𝐷(𝜎 ∥ 𝜆), (3.2)

where 𝐷(𝜎 ∥ 𝜆) =
∑

𝑖 𝜎𝑖 log(𝜎𝑖/𝜆𝑖) is the relative entropy, taken between

the probability distributions 𝜆 = {𝜆𝑖}, given by the eigenvalues of 𝜌𝐴, and

𝜎 = {𝜆𝑛
𝑖
/∑𝑗 𝜆

𝑛
𝑗
}. As a consequence of the non-negativity of the relative

entropy, this implies that

d𝑆𝑛,𝐴
d𝑛 ≤ 0. (3.3)

In other words, the 𝑛-Rényi entropies are non-increasing as a function of 𝑛. In

terms of the measurement-induced transition, this has the consequence that

an area-law in the 𝑛-Rényi entropy implies an area-law in the (𝑚 > 𝑛)-Rényi

entropies, and a volume-law in the 𝑛-Rényi entropy implies a volume-law in

the (𝑚 < 𝑛)-Rényi entropies. Note however that we don’t necessarily have the

converse, which would imply that 𝑝𝑐 is equal for all Rényi entropies.

However, we do have the converse for 𝑚, 𝑛 > 1. This is a consequence of the

following inequality, valid only for 𝑛 > 1,
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𝑆∞ ≤ 𝑆𝑛 ≤ 𝑛

𝑛 − 1𝑆∞, (3.4)

which implies that all the (𝑛 > 1)-Rényi entropies must have the same scaling

behaviours. This inequality can be proven by using monotonicity of the Rényi

entropies and the fact that 𝑆∞,𝐴 is simply the largest eigenvalue of 𝜌𝐴.

3.5 Analytically tractable limits
To definitively determine the universality class of a phase transition, it is

useful to be able to treat it analytically. For measurement-induced transitions,

such treatments are currently available only in a few limits. In this section

we will describe two approaches for the measurement-induced transition

where the underyling unitary dynamics are generated by Haar-random

local unitaries. One applies only to the (𝑛 = 0)-Rényi entropy, while the

other applies to all the (𝑛 ≥ 1)-Rényi entropies but requires a limit of large

local Hilbert space dimension. Both reveal an interesting connection to

percolation.

3.5.1 Transition in the (𝑛 = 0)-Rényi entropy
The (𝑛 = 0)-Rényi entropy 𝑆0 is equal to the logarithm of the number of

nonzero eigenvalues of the density matrix. This means that it might be

considered unphysical, since it can change discontinuously under arbitrarily

small perturbations to the density matrix. Nonetheless, it admits a particularly

simple treatment in terms of the ‘minimal cut’ formalism. This formalism

was initially developed to provide a ‘coarse-grained’ picture for entanglement

growth in local random unitary circuits (viewed as effective minimal models

for chaotic quantum dynamics).

To illustrate this approach, consider first a 1+1D local random unitary circuit.

Suppose we wanted to calculate the entanglement entropy of a contiguous

subsystem 𝐴 at time 𝑡. One can think of the random circuit as a tensor

network, which needs to be contracted to calculate the final state of the
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Figure 3.1: A schematic of the minimal cut formalism for calculating the (𝑛 = 0)-
Rényi entropy. Figure taken from Ref. [68].

system. The minimal cut prescription involves drawing a line through the

spacetime bulk of the quantum circuit which connects the two endpoints of

the region 𝐴. The ‘cost’ 𝑆cut of this cut is defined as the number of legs of the

tensor network which are crossed by the cut. The ‘minimal’ cut is then the

one with the lowest cost. This cut is a useful quantity to consider because it

gives a partition of the circuit tensor network into two halves, call them 𝐿

and 𝑅, which can then be used to perform a Schmidt decomposition of the

overall quantum state,

|𝜓⟩ =
𝑞𝑆cut∑
𝑖=1

√
𝜆𝑖 |𝜇𝑖⟩𝐿 |𝜈𝑖⟩𝑅 (3.5)

where the Schmidt rank (i.e. number of terms in the sum) of this decomposi-

tion is given by the cost 𝑆cut of the cut and the local Hilbert space dimension

𝑞. One of these halves will correspond to subsystem 𝐴 by virtue of the

fact that the cut connected the endpoints of 𝐴. Since the eigenvalues of the

reduced density matrix 𝜌𝐴 are determined by the Schmidt coefficients, and

the (𝑛 = 0)-Rényi entropy 𝑆0 simply counts the logarithm of the number of
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nonzero eigenvalues, we have the upper bound

𝑆0 ≤ 𝑆cut, (3.6)

provided we use the convention that logs are measured base 𝑞. This bound

is valid for any cut connecting the endpoints of 𝐴, but the minimal cut will

provide the tightest bound. In fact, owing to the monotonicity of the Rényi

entropies, this inequality is valid for all Rényi entropies,

𝑆𝑛 ≤ 𝑆cut. (3.7)

This inequality is useful in itself, but the minimal cut formalism becomes

particularly powerful in certain limits where it exactly gives the entanglement

entropy, rather than just an upper bound. This reduces the calculation of

entanglement to a geometric optimization problem (readers familiar with

holography will notice the similarity with the Ryu-Takayanagi formula for the

entanglement of a boundary region in terms of a ‘minimal’ surface through

the bulk). It is shown in Ref. [86] that, in the case of Haar-random unitaries,

the (𝑛 = 0)-Rényi entropy is given exactly by the minimal cut prescription

with probability one—it is this limit we will consider.

Although this formalism was originally developed for solely unitary circuits,

projective measurements are easy to incorporate. Since a projective measure-

ment collapses a spin to a single basis state, we no longer have to contract

over the leg of the tensor network where the measurement occurred. This

means that this leg becomes ‘free’, and doesn’t contribute to the cost of the

cut. In other words, measurements can be modelled by picturing them as

‘cutting’ legs of the tensor network.

It should now be clear where the connection to percolation comes from.

Starting from a dense lattice of links corresponding to legs of unitary gates,
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(a) Volume-law (𝑝 < 𝑝𝑐). (b) Criticality (𝑝 = 𝑝𝑐). (c) Area-law (𝑝 > 𝑝𝑐).

Figure 3.2: Schematics for the calculation of the (𝑛 = 0)-Rényi entropy in the minimal
cut formalism. The various entanglement phases correspond to different
phases of classical percolation in the spacetime bulk of the quantum
circuit, where measurements cut a fraction 𝑝 of the links. Figure taken
from Ref. [68].

projective measurements randomly remove a fraction 𝑝 of these links. The

minimal cut then has to percolate through the spacetime bulk of the circuit

between the two endpoints of the region for which we want to calculate

the entanglement. The volume-law phase corresponds to the percolating

phase of the links, since the minimal cut has to cut through some extensive

number of links (see Fig. 3.2a), whereas the area-law phase corresponds to

the non-percolating phase of the links, where the minimal cut can traverse

through the spacetime bulk at 𝒪(1) cost (see Fig. 3.2c). At criticality, owing

to the scale-invariant distribution of clusters, to reach the infinite percolating

cluster in the bulk from the boundary the cut has to traverse through a series

of clusters whose size progressively increase by some 𝒪(1) factor, culminating

in 𝑆0(𝐿) ∼ log 𝐿 scaling in 1D (see Fig. 3.2b).

This logarithmic entanglement scaling at criticality is reminiscent of the

behaviour of conformal field theories in 2D. This is to be expected, since the

mapping outlined above indicates that the entanglement transition in the

(𝑛 = 0)-Rényi entropy in Haar-random circuits is in the universality class of

2D percolation, which indeed has conformal symmetry at the critical point.

The critical measurement probability 𝑝𝑐 = 1/2 is fixed by this mapping as

the critical probability for bond percolation on a 2D square lattice. Numerics

also confirm critical exponents consistent with this universality class, such as
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𝜈 = 4/3 for the exponent controlling the correlation length 𝜉 ∼ |𝑝−𝑝𝑐 |−𝜈.

One nice feature of the minimal cut formalism is that it readily extends

to higher dimensions, suggesting here that in 𝑑 spatial dimensions, the

entanglement transition in the (𝑛 = 0)-Rényi entropy in Haar-random circuits

is in the universality class of (𝑑 + 1)-dimensional percolation, with the time

coordinate of the quantum circuit providing the additional spatial coordinate

in the percolation model.

3.5.2 Transition in the (𝑛 ≥ 1)-Rényi entropies
The minimal cut formalism outlined in the previous section gave an intuitive

physical picture for the entanglement transition in the (𝑛 = 0)-Rényi entropy

in terms of classical percolation. However, it turns out that this simple picture

does not describe the generic transition, e.g. in the other Rényi entropies, or

in circuit models with unitaries drawn from a different distribution than the

Haar measure. An easy way to see this is to note that numerics demonstrate

that the critical measurement probability 𝑝𝑐 seems to be different for the

(𝑛 > 0)-Rényi entropies compared with the value 𝑝𝑐 = 1/2 for the (𝑛 = 0)-
Rényi entropy. For example, in 1D Haar-random circuits 𝑝𝑐 ≈ 0.16 for the

generic transition, with a similar value for 1D random Clifford circuits (in both

cases the numerics are on qubits). This value appears to be approximately

independent of 𝑛, provided 𝑛 > 0.

This begs the question of whether it is possible to determine the universality

class of the transition in the (𝑛 > 0)-Rényi entropies. The approach outlined

in this section will provide some answers to this question for the (𝑛 ≥ 1)-
Rényi entropies, but only in the limit of large local Hilbert space dimension

𝑞 → ∞. The calculation is more complex than in the previous section, so I

will only outline a skeleton of the argument, and will highlight some of its

key implications. For more details, see Ref. [75].

We are interested in calculating the 𝑛-Rényi entropy 𝑆𝑛,𝐴(|𝜓⟩) of a region 𝐴

in the steady state |𝜓⟩ of the quantum circuit. The starting point is to note
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that 𝑆𝑛,𝐴(|𝜓⟩) can be expressed using the ‘swap-trick’ as

𝑆𝑛,𝐴(|𝜓⟩) =
1

1 − 𝑛
log tr

[
(|𝜓⟩⟨𝜓 |)⊗𝑛𝒮𝑛,𝐴

]
, (3.8)

where the ‘swap operator’ 𝒮𝑛,𝐴 is defined as

𝒮𝑛,𝐴 =
∏
𝑥

𝜒𝑔𝑥 , 𝑔𝑥 =


(12 . . . 𝑛), 𝑥 ∈ 𝐴,

identity = 𝑒 , 𝑥 ∈ 𝐴𝑐 .

(3.9)

The permutation 𝑔𝑥 depends on the site 𝑥, and is given by the cyclic permuta-

tion (12 . . . 𝑛) if 𝑥 is in the region 𝐴, and is given by the identity 𝑒 otherwise.

𝜒𝑔𝑥 =
∑

[𝑖] |𝑖𝑔𝑥(1)𝑖𝑔𝑥(2) · · · 𝑖𝑔𝑥(𝑛)⟩⟨𝑖1𝑖2 · · · 𝑖𝑛 | is the representation of 𝑔𝑥 on the

𝑛-fold replicated Hilbert space. Strictly speaking this is a swap only for 𝑛 = 2,

where (12) ◦ (12) = 𝑒.

To proceed further we need to perform an average over circuit realizations 𝐶,

given by

𝑆𝑛,𝐴 = E𝐶

(
𝑆𝑛,𝐴

[
𝐶 |𝜓0⟩

∥ 𝐶 |𝜓0⟩ ∥

]
× tr

[
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†] ) . (3.10)

The normalization factor ∥ 𝐶 |𝜓0⟩ ∥ is necessary because the circuit operator

𝐶 is generically non-unitary due to the presence of measurements (note that

we average over measurement outcomes after calculating the entanglement

entropy, so along a given ‘quantum trajectory’ the state remains pure). The

factor of tr
[
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†] indicates that we are weighting each quantum

trajectory by its probability according to the Born rule. In the language of

disordered physics, this is a quenched average.

Using the swap trick to evaluate the Rényi entropy inside the average, we

get
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𝑆𝑛,𝐴 =
1

1 − 𝑛
E𝐶

[
log

(
tr

[
(𝐶 |𝜓0⟩⟨𝜓0 |𝐶†)⊗𝑛𝒮𝑛,𝐴

]
tr

[
(𝐶 |𝜓0⟩⟨𝜓0 |𝐶†)⊗𝑛

] )
× tr

[
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†] ] ,

= lim
𝑚→0

1
𝑚(1 − 𝑛)E𝐶

[((
tr

[(
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†

)⊗𝑛
𝒮𝑛,𝐴

] )𝑚
−

(
tr

[(
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†

)⊗𝑛] )𝑚)
× tr

[
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†] ] ,

= lim
𝑚→0

1
𝑚(1 − 𝑛)E𝐶

[
tr

[(
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†

)⊗𝑛𝑚+1 (
𝒮⊗𝑚
𝑛,𝐴

− 1

)] ]
,

where in the second line we introduced a replica index 𝑚 to handle the

logarithm using log 𝑥 = lim𝑚→0(𝑥𝑚 − 1)/𝑚. In a sense the swap trick treats

the Rényi index 𝑛 as another replica index, and here the combination of

these two uses of the replica trick culminates in the overall replica index

𝑄 = 𝑛𝑚 + 1, with the replica limit 𝑚 → 0 corresponding to 𝑄 → 1. If we

had not included the weighting by the Born rule probability then the replica

limit would instead be 𝑄 → 0, which is the relevant case for a closely related

entanglement transition in random tensor networks [99].

We can gain some physical intuition for this formula by defining the partition

functions

𝑍𝐴 = E𝐶

(
tr

[(
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†

)⊗𝑄
𝒮⊗𝑚
𝑛,𝐴

] )
, (3.11)

𝑍∅ = E𝐶

(
tr

[(
𝐶 |𝜓0⟩⟨𝜓0 |𝐶†

)⊗𝑄] )
, (3.12)

which correspond to fixing different boundary conditions: 𝑍∅ corresponds

to the identity permutation along the whole boundary, whereas 𝑍𝐴 replaces

the identity with the cyclic permutation in the region 𝐴.

Using the fact that 𝑍𝐴 = 𝑍∅ = 1 in the replica limit 𝑚 → 0, we can write the

expression for the entanglement entropy as a difference of free energies,
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Figure 3.3: The entanglement entropy is given by the free energy cost of inserting
a domain wall connecting the endpoints of the entanglement region 𝐴.
Figure taken from Ref. [100].

𝑆𝑛,𝐴 = lim
𝑚→0

𝐹𝐴 − 𝐹∅
𝑚(𝑛 − 1) , (3.13)

where 𝐹𝐴 = − log𝑍𝐴 and 𝐹∅ = − log𝑍∅. This free energy difference gives the

cost of inserting the domain wall associated with changing the boundary

conditions in the entanglement region 𝐴. Thus we have recovered a similar

physical interpretation to the minimal cut formalism: the entanglement

entropy corresponds to the free energy cost of a domain wall connecting the

endpoints of𝐴 through the bulk of a statistical model in 𝑑+1 dimensions.

Let us note that from Eq. (3.11) one can see that the emergent statistical

mechanical model has the symmetry group 𝐺 = (𝑆𝑄 × 𝑆𝑄) ⋉ Z2, where the

two factors of 𝑆𝑄 represent permutations of the 𝑄 replica copies of 𝐶 and 𝐶†

respectively, and the factor of Z2 represents swapping 𝐶⊗𝑄 and 𝐶†⊗𝑄 . The

semidirect product structure is a reflection of the fact that the Z2 action does

not commute with the 𝑆𝑄 × 𝑆𝑄 action. This symmetry group will be relevant

when discussing connections with percolation in the limit of infinite local

Hilbert space dimension 𝑞 → ∞.

Now, to calculate the free energy cost of the ‘entanglement domain wall’ we
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need to evaluate the ensemble average E𝐶
[
𝐶⊗𝑄 ⊗ 𝐶†⊗𝑄

]
in the replica limit

𝑄 → 1. It is here that the limit of large local Hilbert space dimension will

prove useful. Averaging over circuit realizations 𝐶 involves averaging over

both unitary gates and measurement Kraus operators. If the unitaries are

drawn from the Haar distribution, then there is sufficient structure to calculate

these averages exactly. More specifically, Schur-Weyl duality allows one to

connect properties of the unitary group to properties of the permutation

group. In practical terms, this means that the Haar-average over 𝑄 copies of

a unitary 𝑈 and its conjugate 𝑈† can be written (using graphical notation

borrowed from Ref. [75]) as

E𝑈 =
∑

𝑔1 ,𝑔2∈𝑆𝑄
Wg𝑞2(𝑔−1

1 𝑔2) , (3.14)

where 𝑆𝑄 is the permutation group on 𝑄 elements, 𝑞 is the local Hilbert

space dimension, 𝜒𝑔𝑖 is the representation of the group element 𝑔𝑖 defined

previously, and Wg𝑞2 is known as the Weingarten function. A similar average

can also be performed over suitably simple ensembles of Kraus operators

representing different measurement outcomes.

Performing averages over both the unitary gates and the measurement

outcomes thus converts the quantum circuit into a tensor network which,

when contracted, gives the Boltzmann weight for a particular configuration

of a statistical mechanical model. In general these weights can be negative.

This is not necessarily a problem—rather, it is a reflection of the fact that

the statistical mechanical model does not obey reflection positivity. This is a

condition which, roughly speaking, guarantees the unitarity of the quantum

field theory resulting from ‘Wick-rotating’ the statistical mechanical model.

But in general this does not need to be satisfied, and indeed there are

well-known examples of statistical mechanical models which do not display

reflection positivity, such as percolation or models with quenched disorder.
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Figure 3.4: (a) Geometry of the statistical mechanical model arising from averaging
over the unitary gates and the measurement outcomes. The circles
correspond to ‘spins’ which take values in the permutation group 𝑆𝑄 .
The values of the spins highlighted in red at the top are fixed by the
boundary conditions (either the cyclic permutation for 𝑍𝐴 or the identity
for 𝑍∅). (b) In the limit of infinite local Hilbert space dimension 𝑞 → ∞
the model reduces to a 𝑄!-state Potts model on a square lattice. Figure
taken from Ref. [75].

We can take this as a signal that, if there is a conformal field theory (CFT)

describing the critical point, it should be non-unitary. This can also be seen

another way. Recall that the central charge 𝑐 of a CFT provides a measure of

how the free energy changes when a finite scale is introduced. In this case,

since the partition function 𝑍𝐴 corresponding to the insertion of a domain

wall (thus providing a length scale ∼ |𝐴|) tends to 1 in the replica limit, same

as the case 𝑍∅ without a domain wall, we conclude that we should have

𝑐 = 0. It can be shown that the only unitary CFT with 𝑐 = 0 is the trivial CFT

containing only the vacuum state, so if there is a non-trivial CFT describing

the critical point then it should be non-unitary. Non-unitary CFTs with 𝑐 = 0

are also called logarithmic CFTs, which reflects the fact that they may have

logarithmic corrections to correlation functions which would otherwise scale

purely algebraically in a normal CFT.

Let us now return to the details of the statistical mechanical model describing

this entanglement transition. Averaging over the unitary gates and measure-
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ment outcomes results in a lattice model of ‘spins’ which take values in the

permutation group 𝑆𝑄 (see Fig. 3.4a). It turns out that the partition function

𝑍𝐴 corresponding to the insertion of a domain wall can be written in terms

of a sum over ‘triangle weights’ 𝐽𝑝 as

𝑍𝐴 =
∑

{𝑔𝑖∈𝑆𝑄}

∏
⟨𝑖 𝑗𝑘⟩∈▽

𝐽𝑝(𝑔𝑖 , 𝑔𝑗 ; 𝑔𝑘), (3.15)

where each triangle ▽ refers to a triangle in the lattice shown in Fig. 3.4a, and

the subscript 𝑝 in 𝐽𝑝 indicates that the weight depends on the measurement

probability 𝑝. Strictly in the limit of infinite local Hilbert space dimension

𝑞 → ∞, this weight is given by

𝐽𝑝(𝑔𝑖 , 𝑔𝑗 ; 𝑔𝑘) =
[
(1 − 𝑝)𝛿𝑔−1

𝑖
𝑔𝑘
+ 𝑝

] [
(1 − 𝑝)𝛿𝑔−1

𝑗
𝑔𝑘
+ 𝑝

]
, (3.16)

where we notice that the weight factorizes into two weights defined separately

on the links ⟨𝑖𝑘⟩ and ⟨𝑗𝑘⟩. Treating each group element 𝑔𝑖 ∈ 𝑆𝑄 as a separate

colour, this is precisely the weight for a 𝑄!-colour Potts model, where the

measurement probability 𝑝 controls the interaction strength. By tuning 𝑝,

the stat mech model undergoes a phase transition from an ordered phase

(small 𝑝) to a disordered phase (large 𝑝).

The link to percolation then comes from taking the replica limit 𝑄 → 1.

Since 1! = 1, we can use the fact that the 𝑛-state Potts model maps to

percolation in the limit 𝑛 → 1 to make the connection. This demonstrates

that the entanglement transition in the (𝑛 ≥ 1)-Rényi entropies is in the

2D percolation universality class in the limit of infinite local Hilbert space

dimension 𝑞 → ∞.

Interestingly however, it turns out that the finite 𝑞 case is expected to be

in a different universality class to percolation. The 𝑞 = ∞ case enjoyed an

artificially large symmetry: since the symmetry group of the 𝑛-state Potts
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model is 𝑆𝑛 , our model had a 𝑆𝑄! symmetry group, which is much larger than

the 𝑆𝑄 × 𝑆𝑄 symmetry of the model at finite 𝑞. One can examine the effect of

this explicit breaking of symmetry at finite 𝑞 by a field-theoretic approach. In

a renormalization group flow, typically all possible terms that are compatible

with the symmetry of the problem will appear after renormalization. It turns

out that the reduced symmetry of the finite 𝑞 model allows for an extra term

(the ‘two-hull’ operator of the Potts model) in the field theory which is relevant

at the percolation fixed point. This induces an RG flow away from percolation

to some new, currently unknown, fixed point. This demonstrates that we

should expect the entanglement transition in the (𝑛 ≥ 1)-Rényi entropies to

be in a different universality class from percolation in the case of finite local

Hilbert space dimension—which is of course the case relevant to experiments

and to numerics. It remains a key current challenge to determine what this

new universality class should be.

3.6 Numerical studies of universality
Almost all numerical studies of the entanglement transition have been

performed on qubits, for obvious reasons of computational tractability. Given

the result of the previous section, one would expect the universality class on

qubits (𝑞 = 2) to be different from percolation. Puzzingly, however, numerics

on 1+1D systems suggest critical exponents which are remarkably close to

those of 2D percolation, despite this being as far away as possible from the

𝑞 = ∞ case where the link to percolation should occur!

Ref. [72] is a helpful reference on this point. They study two models: one

where the unitary gates are drawn uniformly over the whole two-qubit

unitary group U(4), and the other where they are drawn uniformly over the

two-qubit Clifford group. The former corresponds to the model described in

the previous section which is most easily treated analytically, while the choice

of Clifford gates is useful in studying finite-size scaling because their efficient

classical simulability allows for the simulation of much larger systems than
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𝑛 1 2 5 ∞ 𝐶 𝑃

𝑝𝑐 0.168(5) 0.162(3) 0.168(4) 0.170(4) 0.154(4) 0.5
𝜈 1.2(2) 1.3(1) 1.4(1) 1.4(1) 1.24(7) 1.33
𝜂 0.19(1) 0.25(1) 0.26(1) 0.26(1) 0.22(1) 0.21
𝜂∥ 0.39(1) 0.49(1) 0.49(2) 0.49(2) 0.63(1) 0.67
𝜂⊥ 0.23(2) 0.31(2) 0.34(1) 0.34(1) 0.43(2) 0.44
𝛼(𝑛) 1.7(2) 1.2(2) 0.9(1) 0.7(1) 1.61(3) 0.55

Table 3.1: Critical properties of the measurement-induced transition in 1+1D quan-
tum circuits, reproduced from Ref. [72]. Here 𝑛 refers to the Rényi index,
and all results for 𝑛 = 1, 2, 5,∞ are for circuits with Haar-random gates.
For stabilizer states the Rényi entropies are independent of 𝑛: the results
for Clifford circuits are given in the column labelled ‘𝐶’. The column
labelled ‘𝑃’ gives the corresponding results for 2D percolation. 𝛼(𝑛)
refers to the coefficient of the logarithm controlling the scaling of the
entanglement entropy at criticality, 𝑆𝑛(𝐿) ∼ 𝛼(𝑛) log 𝐿.

the Haar-random case. Clifford dynamics are still sufficiently chaotic to

generate volume-law steady-state entanglement, so they provide a somewhat

reasonable stand-in for the full unitary group. The critical measurement

probability is very close between the two cases: 𝑝𝑐 ≈ 0.17 for Haar-random

gates, and 𝑝𝑐 ≈ 0.16 is slightly less for Clifford gates, reflecting the fact that

Clifford gates are slightly less chaotic than Haar-random gates. It is not a

priori obvious though whether this difference in gate set is reflected in the

universal properties—the value of 𝑝𝑐 is not expected to be universal, but the

other critical exponents could match, analogous to how percolation models

on different 𝑑-dimensional lattices have different percolation thresholds but

the same critical exponents. The results of Ref. [72], shown in Table 3.1,

indicate that there may be a difference in certain surface exponents (𝜂∥ and

𝜂⊥), but that the bulk exponents appear to be unaffected. At any rate, what is

particularly surprising is how close many of the bulk exponents are to the

corresponding values from 2D percolation. This could be an indication that

the RG fixed point at finite 𝑞 is ‘near’ to the percolation fixed point in some

generalized phase diagram.
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3.6.1 Diagnostics of the transition

In determining critical properties of a transition, it is extremely important

to have an accurate estimate of the location 𝑝𝑐 of the critical point, since

even small differences in 𝑝𝑐 can result in fairly large differences in result-

ing estimates of critical exponents. Given that much of the discussion of

measurement-induced transitions has concerned the transition in the en-

tanglement entropy, it seems natural for this to be used as a diagnostic of

the transition, and indeed it was used as such in some of the early work on

this transition. However, one key issue is that the entanglement entropy is

not scale invariant at the critical point, but rather seems to increase with

system size—for example, in 1+1D it seems to scale as 𝑆(𝐿) ∝ log 𝐿 with

subsystem size 𝐿. This means that to make a standard scaling ansatz for the

entanglement entropy, it is necessary to subtract off the critical contribution

to get a scale-invariant remainder. Concretely, one makes the ansatz

𝑆(𝑝, 𝐿) − 𝑆(𝑝𝑐 , 𝐿) ∼ 𝐹
[
(𝑝 − 𝑝𝑐)𝐿1/𝜈

]
, (3.17)

where 𝐹 is a single-parameter scaling function. Unfortunately, in practice

this ‘subtraction scheme’ tends to lead to a sort of ‘correlated uncertainty’,

where there is a large range of values of the critical point 𝑝𝑐 that lead to

similar qualities of fit to the data, and large variation in the critical exponent 𝜈

depending on the fitted value of 𝑝𝑐 . This also leads to correlated uncertainty

in other critical exponents.

To get around this issue, it is helpful to look for different diagnostics of the

transition from which one can more readily ‘read off’ the location of the

critical point. One such diagnostic, proposed in Refs. [72, 80], is the tripartite

information. Given a partition of the system into four subsystems 𝐴, 𝐵, 𝐶 and

𝐷, the tripartite information 𝐼3(𝐴 : 𝐵 : 𝐶) is defined as
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Figure 3.5: (a): Geometry used to calculate the tripartite information. (b): Spacetime
picture for calculating the tripartite information within the minimal cut
formalism, taken from Ref. [72].

𝐼3(𝐴 : 𝐵 : 𝐶) = 𝐼(𝐴 : 𝐵) + 𝐼(𝐴 : 𝐶) − 𝐼(𝐴 : 𝐵𝐶), (3.18)

where 𝐼(𝐴 : 𝐵) = 𝑆𝐴 + 𝑆𝐵 − 𝑆𝐴𝐵 is the mutual information. It it easy to show

that, if the system is in a pure state, given a partitioning into four subsystems,

the tripartite information does not actually depend on the choice of which

three subsystems are used to calculate it, so having fixed a partitioning we

will refer to this quantity simply as 𝐼3. The original proposal in Refs. [72,

80] focused on 1+1D systems with periodic boundary conditions, and used

the partioning shown in Fig. 3.5b. The authors argue that, for this particular

choice of geometry, the advantage of the tripartite information is that it

cancels out any ‘boundary terms’ (in a sense I will explain shortly), such that

the overall scaling is

𝐼3(𝑝, 𝐿) ∼


𝒪(𝐿), 𝑝 < 𝑝𝑐 ,

𝒪(1), 𝑝 = 𝑝𝑐 ,

0, 𝑝 > 𝑝𝑐 .

(3.19)

Importantly, the value at the critical point 𝑝 = 𝑝𝑐 is independent of system
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size 𝐿, so the value of 𝑝𝑐 can be read off by looking for a crossing point

between 𝐼3(𝑝, 𝐿) for different system sizes.

The argument for this scaling is based on the ‘minimal cut’ formalism de-

scribed in Section 3.5.1, in particular the connection it makes with percolation

in the spacetime bulk of the quantum circuit. As such, although this argu-

ment is exact for the (𝑛 = 0)-Rényi entropy in Haar-random circuits, for other

setups it is only a heuristic.

Recall that the minimal cut formalism dictates that the entanglement entropy

𝑆𝐴 of a contiguous region 𝐴 is given by the cost of a minimal length cut

through the tensor network comprising the quantum circuit generating the

final state: this can be pictured as a percolation problem in spacetime. A

typical minimal cut will consist of two components: a ‘bulk’ component 𝑎,

where the cut traverses through the largest ‘void’ in the bulk of the system

where measurements have created a cost-free section to move through, and a

‘boundary’ component 𝑙𝑖 , where the cut traverses from one of the boundary

points of 𝐴 to get to the bulk void (see Fig. 3.5a). Separating the contributions

to the entanglement entropy into these two components, we have

𝐼3 =𝑆𝐴 + 𝑆𝐵 + 𝑆𝐶 − 𝑆𝐴𝐵 − 𝑆𝐵𝐶 − 𝑆𝐴𝐶 + 𝑆𝐴𝐵𝐶 ,

=𝑙1 + 𝑙2 + min(𝑎, 𝑏 + 𝑐 + 𝑑) + 𝑙2 + 𝑙3 + min(𝑏, 𝑎 + 𝑐 + 𝑑)

+𝑙3 + 𝑙4 + min(𝑐, 𝑎 + 𝑏 + 𝑑) − 𝑙1 − 𝑙3 − min(𝑎 + 𝑏, 𝑐 + 𝑑)

−𝑙2 − 𝑙4 − min(𝑏 + 𝑐, 𝑎 + 𝑑) − 𝑙1 − 𝑙2 − 𝑙3 − 𝑙4 − min(𝑎 + 𝑐, 𝑏 + 𝑑)

+𝑙1 + 𝑙4 + min(𝑑, 𝑎 + 𝑏 + 𝑐),

=min(𝑎, 𝑏 + 𝑐 + 𝑑) + min(𝑏, 𝑎 + 𝑐 + 𝑑) + min(𝑐, 𝑎 + 𝑏 + 𝑑)

−min(𝑎 + 𝑏, 𝑐 + 𝑑) − min(𝑏 + 𝑐, 𝑎 + 𝑑) − min(𝑎 + 𝑐, 𝑏 + 𝑑) + min(𝑑, 𝑎 + 𝑏 + 𝑐).

Crucially, note that all the boundary terms 𝑙𝑖 cancelled out. These boundary
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terms are responsible for the log 𝐿 scaling of the entanglement entropy at criti-

cality, so removing this contribution results in the 𝐼3(𝑝 = 𝑝𝑐 , 𝐿) ∼ 𝒪(1) scaling

which makes the tripartite information a useful probe of the critical point. A

similarly judicious choice of geometry was used by Kitaev and Preskill [101]

to expose the ‘topological term’ in the area-law entanglement entropy of 2D

topologically ordered systems—for this reason the tripartite information was

there referred to as the ‘topological entanglement entropy’.

3.7 Connection with quantum information scram-

bling
The notion that the quantum information describing a system can be encoded

in highly non-local degrees of freedom, thereby resisting reconstruction

by observers with access only to local observables, is known as scrambling.

Quantum systems which are ‘chaotic’ are typically strongly scrambling. As

an extreme example, a Haar-random unitary 𝑈 ∈ U(𝑑) applied to a pure state

|𝜓0⟩ will result in a state 𝑈 |𝜓0⟩ which looks locally very close to a random

state in the high-dimensional limit 𝑑 → ∞ [53]. This means that, although

it is in principle possible to recover the original state |𝜓0⟩ by applying the

inverse operation 𝑈†, this requires knowledge of the whole state 𝑈 |𝜓0⟩, and

it is not possible to recover the original state of even a local region of the

system without access to this global information.

More physical examples should constrain the dynamics to be local, in the

sense of being generated by few-body interactions, and possibly also of being

spatially local. Even with these restrictions, there are examples of quan-

tum systems which are strongly scrambling: local random unitary circuits

acting on a system of 𝑁 qudits generate 𝜖-approximate unitary 𝑘-designs

in poly(𝑡 , 𝑁, 𝑑, log 1/𝜖) depth [102], which is a particularly strong sense

of scrambling—the same is true for random time-dependent Hamiltonian

systems [103]. Time independent Hamiltonian systems, one of the most

physically relevant cases, do not quite scramble in the strong sense of ap-
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proximating unitary designs [104], but nonetheless there are examples of

Hamiltonian systems which are strong scramblers under a slightly weaker

definition of scrambling, such as the exponential decay of out-of-time-ordered

correlators [105, 106].

One interesting aspect of the measurement-induced phase transition can be

found by asking how the underlying unitary dynamics affects the nature

of the phase transition. One of the original motivations for studying these

‘hybrid’ quantum systems, consisting of alternating unitary dynamics and

measurements, was to give a ‘minimal model’ for the effect of the environment

on the dynamics of a quantum system—the measurements constitute local

interactions between the system and the environment in which, roughly

speaking, the environment extracts some information about the state of the

system. This suggests that the harder it is for the environment to learn

something about the system by measuring local observables, the more

resilient the properties of the unitary dynamics will be to the introduction of

measurements. More concretely, we expect that more strongly scrambling

unitary dynamics will result in larger values of the critical measurement

probability 𝑝𝑐 .

In fact, recent evidence suggests something sharper: a dichotomy between

‘strongly scrambling’ and ‘weakly scrambling’ quantum systems. In strongly

scrambling systems, such as random quantum circuits or chaotic Hamiltonian

models, the critical measurement probability is nonzero [66–70, 72–76, 80,

82, 83, 85, 88, 89, 107], whereas in weakly scrambling systems, such as

free fermion systems or certain integrable models, the critical measurement

probability is zero [67, 87, 108], meaning that there is a qualitative change

in the entanglement scaling as soon as one introduces measurements at any

finite rate. In this sense, the entanglement generated by chaotic quantum

systems is much more robust than that generated by weakly scrambling

quantum systems. This can also be seen through the complementary lens

of quantum error correction. Quantum chaotic systems generate quantum
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error-correcting codes—these codes are somewhat like random codes, but

retain a sense of locality due to the locality of the underyling dynamics [80,

109].

3.8 Scalability in experiments
As a potentially novel class of phase transition, it would be of great interest to

realize a measurement-induced phase transition in an experimental setting.

However, there are two barriers to performing the experiment directly

in line with the first theoretical explorations, which consisted of random

quantum circuits interspersed with measurements. These barriers both

become increasingly severe as the system size increases, but it is precisely this

limit which is of interest, since only there will the phase transition become

apparent.

The first challenge is to measure the entanglement entropy. To calculate the

von Neumann entropy, it is necessary to perform full state tomography [110].

This has a cost which scales exponentially with system size, and is unlikely

to be feasible beyond 10–20 spins. However, this barrier could possibly be

avoided by giving up on the von Neumann entropy and instead calculating

a different Rényi entropy. As discussed in previous sections, the (𝑛 ≥ 1)-
Rényi entropies seem to have similar scaling properties in the different

measurement-induced phases, so this is a reasonable strategy. The Rényi

entropies with 𝑛 ≥ 2 and integral are easiest to measure, since they correspond

to observables in an 𝑛-fold replicated system. More specifically, the idea is

to utilize the identity tr[𝜌𝑛] = tr[𝑆𝑛𝜌⊗𝑛], where 𝑆𝑛 is the cyclic permutation

operator which permutes the 𝑛-fold replicated Hilbert space. To do this

in an experiment, one has to prepare 𝑛 identical copies of the state, and

then measure the operator 𝑆𝑛 — in a sense this is a form of interferometry.

Clearly this is easiest when 𝑛 = 2, but even then it is still quite a challenge!

Nonetheless, in recent years extremely impressive experiments have been

performed along these lines [111], so this barrier is not unsurmountable.
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However, the next barrier seems more problematic. Even avoiding full state

tomography, to be able to measure the expectation value of an operator in a

given state 𝜌 requires the ability to repeatedly generate 𝜌, so as to generate

sufficient statistics to get a reasonable estimate of the expectation value.

Given that the measurements occur randomly in spacetime and have random

outcomes, this generates another exponential overhead. Even if we fix the

locations of the measurements, their random outcomes mean that if the

measurement probability is 𝑝 and there are 𝑁 spins with local Hilbert space

dimension 𝑞 which undergo 𝑇 rounds of measurement, then the number

of repetitions to get 𝒪(1) samples of a given trajectory is of the order 𝑞𝑝𝑁𝑇 .

In fact, since the equilibration time is typically at least 𝑇 ∼ 𝒪(𝑁) for local

dynamics, this overhead can be exponential in 𝑁2.

To date there has been one experiment exploring measurement-induced

phase transitions [112], which was performed with a system of trapped ions.

They explored the transition through the lens of purification, which fairly

generically seems to coincide with the entanglement transition. One strategy

they use to mitigate the cost of having many measurements is to consider a

slight alteration of the standard protocol. The native two-qubit entangling

gate in their system is an ‘Ising gate’ of the form 𝑈(𝜃) = exp(𝑖𝜃𝜎𝑥
1𝜎

𝑥
2 ). Notice

that if measurements are performed in the 𝜎𝑥 basis then the steady state will

simply be a product state, since the Ising gates cannot generate entanglement

from 𝜎𝑥 basis product states. Exploiting this fact, the authors consider a

protocol where the overall density of measurements 𝑝 is fixed at a fairly small

number, limiting the total number of measurements they have to perform.

They then sweep an additional variable, 𝑝𝑥 , which controls the fraction of

measurements that are performed in the 𝜎𝑥 basis. The system then transitions

from the mixed phase to the pure phase as 𝑝𝑥 is increased.





Chapter 4

Measurement-induced transitions

in many-body localized systems

In this chapter we study the dynamics of an MBL Hamiltonian subjected to

projective measurements. Many-body localized systems are characterized

by a complete set of quasi-local operators, also known as ‘l-bits’, which are

conserved under the dynamics of the system’s Hamiltonian (see Fig. 4.1c)

[55, 57, 113, 114]. Due to this robust integrability, one might guess that the

measurement-induced entanglement transition in MBL systems is similar to

that in integrable systems. Although measurements in MBL and disorder-free

integrable models share certain similarities, here we show that measurement-

induced transitions performed in certain bases (see Fig. 4.1a) can have distinct

properties.

To illustrate this point, recall that in a chaotic quantum system local operators

spread ballistically, resulting in the rapid scrambling of information with time

which can be diagnosed through the decay of out-of-time-order correlators

(OTOCs). The implication of this for the measurement-induced entanglement

transition is that in chaotic systems the choice of measurement basis does not

matter, provided it is local (i.e. close to a tensor product basis). However, in

an MBL system, only operators without any overlap with the l-bits are totally

scrambled with their out-of-time ordered correlators decaying to zero. For
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Figure 4.1: (a) The critical properties of the transition depend on the measurement
basis. Measurements in the X-basis result in a transition from volume-
law to area-law entanglement at nonzero 𝑝 = 𝑝𝑋𝑐 > 0, similar to chaotic
systems, whereas measurements in the Z-basis result in area-law en-
tanglement for any nonzero 𝑝, similar to integrable systems. (b) Each
stage of the dynamics consists of two steps. First the system is evolved
in time with the unitary 𝑈d𝑡 = exp(−𝑖𝐻d𝑡), with 𝐻 given in Eq. (4.1),
and then for each spin we projectively measure in a tensor-product basis
with probability 𝑝 (measurements are represented by the red dots). (c) A
schematic of the typical support of an ‘l-bit’ operator, localized at site 𝑖,
in the fully MBL phase. (d) A depiction of the geometry used to calculate
the tripartite information 𝐼3(𝐴 : 𝐵 : 𝐶).

example, the late-time limit of the disorder-averaged OTOC of an operator

is set by its overlap with the local integrals of motion of the MBL system

[115–120]. For the model described by Eq. (4.1), in the strong-disorder limit

𝑊 ≫ 1 the l-bits {𝜏𝑧
𝑖
} are close to the local spin operators {𝑆𝑧

𝑖
}, dressed

by exponentially decaying tails [121–125], as shown in Fig. 4.1c. The l-bits

are related to the physical spins by a quasi-local unitary 𝑈 via 𝜏𝑧
𝑖
= 𝑈𝑆𝑧

𝑖
𝑈†,

with 𝑈 → 1 in the strong-disorder limit. This means that the overlap of
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an operator 𝒪 with an l-bit 𝜏𝑧
𝑖

is given by tr
[
𝒪𝜏𝑧

𝑖

]
= tr

[
𝒪𝑆𝑧

𝑖

]
+ · · · , where

the dots indicate terms which vanish in the limit 𝑊 → ∞. As a result, the

operator 𝑆𝑥
𝑖

is scrambled by the MBL system, whereas the operator 𝑆𝑧
𝑖

remains

approximately localized.

This has the consequence that there is a qualitative difference between the

nature of the measurement-induced entanglement transition in an MBL

system depending on whether the measurements are performed in the basis

of 𝑆𝑥
𝑖

eigenstates (X-basis) or the basis of 𝑆𝑧
𝑖

eigenstates (Z-basis), as shown in

Fig. 4.1a. With measurements in the X-basis, the transition from volume to

area-law entanglement occurs at a nonzero measurement probability 𝑝𝑋𝑐 > 0,

similar to previously studied chaotic systems [66–70, 72–76, 80, 82, 83, 85,

88, 89, 107]. On the other hand, with measurements in the Z-basis, the

volume-law is destroyed for any nonzero 𝑝, similar to previously studied

integrable systems [67, 87, 108].

This difference can also be related to the interplay between measurements

and the phenomenology of entanglement growth in MBL systems. As we

discuss in Section 4.1.2, in a measurement-free MBL system, the steady

state entanglement is governed by the diagonal entropy, which is constant

under Hamiltonian time evolution. Here we show that measurements induce

dynamics in the diagonal entropy which qualitatively differ between X-basis

measurements and Z-basis measurements, where X-basis measurements

tend to maximize the diagonal entropy while Z-basis measurements tend

to minimize it. This then drives the steady state to volume-law or area-law

entanglement, depending on the measurement basis.

In a recent work [96], the authors investigated the dynamics of a finite-range

l-bit model of MBL under local Clifford dynamics. We analyze the full l-bit

Hamiltonian, which includes infinite-range interactions between l-bits. It

also provides a picture of the measurement-induced entanglement transition

in a fully realistic model of MBL and our results are consistent with results in
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Ref. [96] where they can be compared.

4.1 Model
We study a standard model of MBL, the disordered spin-1

2 Heisenberg chain,

with a Hamiltonian given by

𝐻 = 𝐽
∑
⟨𝑖 𝑗⟩

S𝑖 · S𝑗 +
𝑁∑
𝑖=1

ℎ𝑖𝑆
𝑧
𝑖 (4.1)

where the ℎ𝑖 are random variables drawn from the uniform distribution on

[−ℎ, ℎ], and the double sum runs over nearest neighbours. We use periodic

boundary conditions unless stated otherwise. For sufficiently large disorder

strength 𝑊 ≡ ℎ/𝐽 this model is many-body localized. Early studies of MBL

based on exact diagonalization estimated the critical disorder strength 𝑊𝑐

to be around 𝑊𝑐 ≈ 3.6 [126, 127], though more recent studies have argued

that 𝑊𝑐 has significant finite-size corrections, and have suggested a figure

of 𝑊𝑐 ≈ 5 [128]. In this paper we are interested in the region well into the

localized phase, and so will take 𝑊 = 10, large enough to avoid issues with

finite-size drifts of 𝑊𝑐 .

To study the effects of measurements on the entangling properties of MBL dy-

namics, we consider a repeated two-stage protocol, as illustrated in Fig. 4.1b.

Starting from an initial Haar-random product state, we apply unitary dynam-

ics generated by the Hamiltonian for some time d𝑡, i.e. |𝜓⟩ → 𝑈d𝑡 |𝜓⟩, where

𝑈d𝑡 = exp(−𝑖𝐻d𝑡). Unless otherwise specified we take d𝑡 = 1 in units of 𝐽,

independent of 𝑁 , to make the situation comparable with random local circuit

models. Then for each spin we projectively measure in a local tensor-product

basis with probability 𝑝, where 𝑝 can be interpreted as the density of mea-

surements in spacetime. The measurement outcomes are chosen according

to the Born rule. To implement a measurement on spin 𝑖 with outcome 𝜆,

the state is updated via the usual rule |𝜓⟩ → 𝑃𝑖(𝜆)|𝜓⟩/∥𝑃𝑖(𝜆)|𝜓⟩∥2, where

𝑃𝑖(𝜆) = |𝜆⟩⟨𝜆| 𝑖 is the projector on to the eigenspace associated with the
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measurement outcome 𝜆. This process is repeated until the entanglement

entropies reach a steady state.

4.1.1 Transition diagnostics
To study the measurement-induced entanglement transition in this MBL

system, we performed the time-evolution using exact diagonalization. We

made use of the fact that the Hamiltonian 𝐻 in Eq. (4.1) conserves total 𝑆𝑧 , so

in a basis ordered by total 𝑆𝑧 , 𝐻 is block-diagonal and one can diagonalize

the blocks separately.

To characterize the transition we focused on two quantities: the von Neumann

entropy 𝑆𝑋 = −tr[𝜌𝑋 ln 𝜌𝑋], and the tripartite information

𝐼3(𝐴 : 𝐵 : 𝐶) = 𝐼(𝐴 : 𝐵) + 𝐼(𝐴 : 𝐶) − 𝐼(𝐴 : 𝐵𝐶), (4.2)

where 𝐼(𝐴 : 𝐵) = 𝑆𝐴 + 𝑆𝐵 − 𝑆𝐴𝐵 is the mutual information. We calculate

𝐼3(𝐴 : 𝐵 : 𝐶) ≡ 𝐼3 for the geometry shown in Fig. 4.1d. It is easy to show that

for a system partitioned into four subsystems, the tripartite information of

any three of the subsystems does not depend on the choice of subsystems, so

once the partitioning is fixed there is no ambiguity in calling this quantity

𝐼3.

As discussed in Refs. [72, 80], the advantage of using the tripartite information

here is that it avoids any log 𝑁 divergences in the entanglement entropy at

criticality, which have been observed in hybrid Haar-random circuit models

[72]. Instead, 𝐼3 is expected to scale as 𝐼3 ∝ −𝑁 in the volume-law phase,

reach an 𝒪(1) constant at criticality, and then vanish in the area-law phase.

This is especially important given the limited system sizes accessible by exact

diagonalization.

Throughout this paper we will mostly focus on the von Neumann entropy,

and quantities defined in terms of it. However, one can also consider the

transitions in the broader family of Rényi entropies, defined as
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𝑆𝑛(𝜌) =
1

1 − 𝑛
ln Tr[𝜌𝑛]. (4.3)

The Rényi-𝑛 entropy tends to the von Neumann entropy in the limit 𝑛 → 1.

For 𝑛 > 1, there is the inequality 𝑆∞ ≤ 𝑆𝑛 ≤ 𝑛
𝑛−1𝑆∞, which implies that all

Rényi-𝑛 entropies with 𝑛 > 1 must have the same scaling with system size.

We consider the transition in the Rényi entropies in Section 4.3.

4.1.2 Diagonal entropy

The qualitative difference in the dynamics of the entanglement entropies

with Z- or X-basis measurements can also be related to the interplay of

measurements with the phenomenology of entanglement growth in MBL

systems. In the absence of measurements, the steady-state entanglement of

an MBL system is set by the diagonal entropy of the initial state in the energy

eigenbasis [54–58], 𝑆(𝑡 → ∞) ∝ 𝑆diag(|𝜓(0)⟩), with

𝑆diag(|𝜓(0)⟩) = −
∑
𝑖

𝑝𝑖 ln 𝑝𝑖 , 𝑝𝑖 = |⟨𝐸𝑖 |𝜓(0)⟩|2, (4.4)

where the {|𝐸𝑖⟩} are the eigenstates of𝐻. This is a result of dephasing between

l-bits. For many classes of initial states, such as random product states, the

average diagonal entropy is extensive in the strong disorder regime, thus

giving rise to volume-law steady state entanglement in MBL systems.

It is worth noting that 𝑆diag is constant under time-evolution by 𝐻, since it

depends only on the magnitude of the amplitudes ⟨𝐸𝑖 |𝜓(𝑡)⟩, which merely

pick up a phase. However, once measurements are introduced, the diagonal

entropy is no longer preserved in time. Instead, the measurements drive the

diagonal entropy to a new steady state, typically at an exponential rate 𝜆 ≈ 𝑝.

The choice of measurement basis determines the nature of this new steady

state. In the strong disorder limit, the eigenstates of 𝐻 are close to product

states of 𝑆𝑧
𝑖

eigenstates. Thus measurements in the Z-basis tend to drive the
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diagonal entropy close to zero (see Fig. 4.4), whereas measurements in the

X-basis tend to drive it close to its maximum value (see Fig. 4.6).

4.2 Entanglement dynamics with Z-basis measure-

ments
In this section we focus on unitary MBL dynamics interspersed with random

projective measurements in the Z-basis, and demonstrate the fact that there

is a qualitative difference once measurements are introduced with any

arbitrarily small probability 𝑝. That this transition occurs at 𝑝𝑍𝑐 = 0 is similar

to previously studied integrable systems [67, 87, 108], which is consistent

with the picture of MBL as a form of quasi-integrability robust to local

perturbations.

Fig. 4.2 shows a comparison of the dynamics of the tripartite information 𝐼3

between 𝑝 = 0 and 𝑝 > 0. For 𝑝 = 0, 𝐼3 grows in magnitude logarithmically in

time before saturating to a volume-law, similar to the well-known behaviour

of the half-chain entanglement entropy. On the other hand, for 𝑝 > 0 the

tripartite information initially grows at early times while the diagonal entropy

is still large, reaching an area-law peak (see Fig. 4.3b), but eventually the

measurements dominate and 𝐼3 decays to a smaller area-law. This area-law

peak also appears in the Bell pair model of Ref. [67], but there it occurs at

an 𝒪(1) time 𝑡peak ∼ 1/𝑝. In this system, the peak time does still scale as

1/𝑝, but it also increases with system size (see top panel of Fig. 4.3b). This

intermediate-time peak may be a consequence of the total 𝑆𝑧 conservation

of the Hamiltonian in Eq. (4.1). The initial state is a superposition of a large

number of total 𝑆𝑧 sectors, allowing for a potentially large entropy at early

times, but the Z-basis measurements drive the state towards a Z-basis product

state, such that the steady state may only be in a superposition of a few total

𝑆𝑧 sectors.

The inset to Fig. 4.2 shows that the dynamics can be reasonably well described
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Figure 4.2: A comparison of the dynamics of the tripartite information 𝐼3 for 𝑝 = 0
and 𝑝 > 0 with Z-basis measurements, with 𝑁 = 12. For 𝑝 = 0, 𝐼3
grows logarithmically in time before saturating to a volume-law. For
𝑝 > 0, 𝐼3 initially grows in time, reaching an area-law peak, before
decaying to a constant which decreases with system size. The inset
shows that the dynamics can be reasonably well described by the scaling
form −𝐼3(𝑡 , 𝑝, 𝑁) = 𝐹[𝑡𝑝𝛼/𝑁𝛾]/𝑝𝛽𝑁𝛿, where 𝐹 is a single-parameter
scaling function and 𝛼 = 0.77, 𝛽 = 0.80, 𝛾 = 1.14 and 𝛿 = 2.19. The
inset data corresponds to 20 separate time series, with 𝑁 = 12, 16 and
0.0005 ≤ 𝑝 ≤ 0.005.

by the scaling form −𝐼3(𝑡 , 𝑝, 𝑁) = 𝐹[𝑡𝑝𝛼/𝑁𝛾]/𝑝𝛽𝑁𝛿, where 𝐹 is a scaling

function and 𝛼 = 0.77, 𝛽 = 0.80, 𝛾 = 1.14 and 𝛿 = 2.19. We also tested

scaling 𝐼3 by an exponential in 𝑁 , so −𝐼3(𝑡 , 𝑝, 𝑁) = 𝐹̃
[
𝑡𝑝 𝛼̃/𝑁 𝛾̃

]
/𝑝 𝛽̃ exp(𝑁 𝛿̃),

which resulted in the exponents 𝛼̃ = 0.77, 𝛽̃ = 0.77, 𝛾̃ = 1.14 and 𝛿̃ = 0.20.

The quality of both fits were qualitatively similar, so with the system sizes

accessible we were unable to rule out power-law or exponential scaling of
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Figure 4.3: (a) Scaling of the von Neumann entropy at saturation with subsystem
size for a system of size 𝑁 = 12. For 𝑝 = 0 this quantity obeys a
volume-law, but for 𝑝 > 0 it saturates to an area-law. (b) Scaling of the
time 𝑡peak and height 𝐼max

3 of the intermediate time peak in the tripartite
information 𝐼3, as seen in Fig. 4.2. The solid lines are power law fits,
decaying approximately as 𝑝−1. With increasing system size, the peak
occurs at later times and is smaller in magnitude, indicating that it is
(sub-)area-law.

the 𝐼3 peak height with 𝑁 . Regardless, in either case in the thermodynamic

limit 𝑁 → ∞ we expect the steady-state tripartite information to scale to zero

with 𝑁 for any 𝑝 > 0, indicating the instability of the volume-law phase to

measurements.

Focusing further on the transition in the steady state, Fig. 4.3a shows the

von Neumann entropy of contiguous subsystems of different sizes in the

steady state. Whereas for 𝑝 = 0 this quantity is extensive, for 𝑝 > 0 it quickly

becomes independent of the size of the subsystem, indicating an area-law.

This behaviour can be linked to the measurement-induced dynamics of the

diagonal entropy 𝑆diag, which governs the steady state entanglement in the

measurement-free system. Fig. 4.4 shows that, for any 𝑝 > 0, the diagonal

entropy decays exponentially in time, before reaching a steady state which

is independent of 𝑝. The inset to Fig. 4.4 shows that the decay rate 𝜆 scales
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Figure 4.4: Dynamics of the diagonal entropy 𝑆diag using the energy eigenbasis, with
Z-basis measurements and 𝑁 = 12. 𝑆diag is preserved by Hamiltonian
evolution, so for 𝑝 = 0 it remains constant in time. For 𝑝 > 0, projective Z-
basis measurements cause it to decay exponentially at a rate proportional
to 𝑝. The inset shows the dependence of the early-time decay rate 𝜆 on 𝑝

and 𝑁 , with 𝜆 ≈ 𝑝, independent of 𝑁 .

approximately as 𝜆 ≈ 𝑝, independent of system size. We expect this result to

hold throughout the fully MBL regime as a result of the strongly localized

nature of the l-bits, and the fact that the measurements are performed

independently on each site.

4.3 Entanglement dynamics with X-basis measure-

ments
Having seen in Section 4.2 the collapse of the MBL steady-state volume-law

when the dynamics are interspersed with arbitrarily rare Z-basis measure-

ments, we now demonstrate that this volume-law is more resilient to mea-

surements in the X-basis. More precisely, we aim to show that there is a

nonzero critical measurement probability 𝑝𝑋𝑐 > 0, below which the steady-
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Figure 4.5: A comparison of the dynamics of the tripartite information 𝐼3 with
X-basis measurements for values of 𝑝 below and above the transition
at 𝑝𝑋𝑐 ≈ 0.014. For 𝑝 = 0.0025, 𝐼3 grows logarithmically in time before
saturating to a volume-law. By 𝑝 = 0.06, the system size scaling has
reversed, indicating a transition to an area law.

state volume-law persists. This scenario is similar to the case in previously

studied chaotic systems [66–70, 72–76, 80, 82, 83, 85, 88, 89, 107].

The top panel of Fig. 4.5 shows the dynamics of the tripartite information 𝐼3 for

nonzero 𝑝 = 0.0025, which is below the critical measurement probability 𝑝𝑋𝑐 ≈
0.014. Here the dynamics are qualitatively similar to those for 𝑝 = 0, shown

in the top panel of Fig. 4.2, where the magnitude of 𝐼3 grows logarithmically

in time before saturating to a steady-state value which increases with system

size. The bottom panel of Fig. 4.5 shows that, above the transition 𝑝 > 𝑝𝑋𝑐 , the
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Figure 4.6: Dynamics of the diagonal entropy 𝑆diag using the energy eigenbasis, with
X-basis measurements and 𝑁 = 12. 𝑆diag is preserved by Hamiltonian
evolution, so for 𝑝 = 0 it remains constant in time. For 𝑝 > 0, projective X-
basis measurements cause it grow as 𝑆diag(𝑡) = 𝑆diag(0)𝑒−𝜆𝑡+𝑆diag(∞)(1−
𝑒−𝜆𝑡) at a rate 𝜆 proportional to 𝑝. The inset shows the dependence of
the early-time decay rate 𝜆 on 𝑝 and 𝑁 , with 𝜆 ≈ 𝑝, independent of 𝑁 .

magnitude of 𝐼3 still grows logarithmically in time, but no longer saturates to

an extensive steady state, indicating a transition to an area law. The growth of

the diagonal entropy is qualitatively similar for all nonzero 𝑝—it follows the

functional form 𝑆diag(𝑡) = 𝑆diag(0)𝑒−𝜆𝑡 + 𝑆diag(∞)(1 − 𝑒−𝜆𝑡), with the growth

rate 𝜆 proportional to 𝑝, as shown in Fig. 4.6. Interestingly, in contrast to

the case with Z-basis measurements, here 𝑆diag(∞) decreases with 𝑝. This

may be a consequence of the finite disorder-strength, which means that the

energy eigenstates aren’t exactly product states.

It is also worth noting that, as a result of the increase in diagonal entropy

induced by X-basis measurements, it is possible to boost the steady state

entanglement relative to 𝑝 = 0 for initial states with non-maximal diagonal

entropy, contrary to the usual picture of measurements only destroying
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entanglement. Of course, this effect is relevant only for fairly small 𝑝, since for

larger 𝑝 the disentangling power of the individual measurements overcomes

the boost from the increased diagonal entropy.

With the goal of studying the transition point between the volume- and

area-law phases, we show in Fig. 4.7 the steady state tripartite information 𝐼3

as a function of measurement probability 𝑝 and system size 𝑁 . To estimate

the properties of the critical point, we assume a scaling function of the

form 𝐼3(𝑡 → ∞, 𝑝, 𝑁) = 𝐹
[
(𝑝 − 𝑝𝑋𝑐 )𝑁1/𝜈] , and perform a fit to minimize the

least-squares distance between each scaled point and the line obtained by a

linear interpolation between its neighbours (see the supplementary material

of Ref. [72] for more details). This yields the parameters 𝑝𝑋𝑐 = 0.014(2) and

𝜈 = 1.3(2), where the error bars correspond to the region where the cost

function from the fit is less than 1.3 times its minimum. We expect 𝑝𝑋𝑐 to

vary with the time step d𝑡, so we do not believe it will display universal

behaviour. However, the critical exponent 𝜈 is close to the value of 𝜈 = 4
3

for 2+0D percolation, similar to the results in random local unitary circuits

[72]. To test for the presence of conformal symmetry at the critical point, we

also extract the dynamical critical exponent 𝑧 using the method described in

Refs. [72, 85] of using the entanglement entropy of a single ancilla qubit as

an order parameter for the transition. This yields 𝑧 = 0.98(4), as shown in

Fig. 4.9, close to the value of 𝑧 = 1 for conformal symmetry.

Finally, having obtained an estimate for the critical point, we examine the

scaling of the steady-state entanglement entropy 𝑆𝑙
𝑛(𝑝 = 𝑝𝑋𝑐 ) with subsystem

size 𝑙 at criticality, where 𝑛 indicates the Rényi index. In random circuit

models with interspersed measurements, 𝑆𝑙
𝑛(𝑝 = 𝑝𝑋𝑐 ) was found to scale

logarithmically with 𝑙, suggesting an underlying conformal field theory (CFT)

description. In Fig. 4.8b, we plot 𝑆𝑙
𝑛(𝑝 = 𝑝𝑋𝑐 ) as a function of ln 𝑙, and find

a similar logarithmic scaling, albeit for fairly small subsystem sizes. The

coefficient 𝛼(𝑛) of the log term depends on the Rényi index 𝑛, as shown

in Fig. 4.8c, with the dependence well described by 𝛼(𝑛) = 𝛼(∞)(1 + 1/𝑛),
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Figure 4.7: The steady state tripartite information 𝐼3 as a function of measurement
probability 𝑝 and system size 𝑁 . The inset shows a data collapse with
the fitted parameters 𝑝𝑋𝑐 = 0.014(2) and 𝜈 = 1.3(2).

which is the behaviour expected for unitary CFTs [129]. Interestingly, in

Ref. [72] the authors found for spin-1
2 Haar-random circuits that 𝛼(𝑛) was

not quite described by a fit of this form, but rather required an offset,

𝛼(𝑛) = 𝑎(1 + 1/𝑛) + 𝑏. This departure from the behaviour of unitary CFTs

could be seen as consistent with the fact that, in the analytically solvable limit

of infinite local Hilbert space dimension 𝑞 → ∞, the measurement-induced

transition in a Haar-random circuit is described by a non-unitary CFT [75],

though there may be important differences between 𝑞 → ∞ and finite 𝑞.

Still, that 𝛼(𝑛) in this spin-1
2 hybrid-MBL system is instead well described

by the formula for a unitary CFT suggests that the transition in this system

is quite distinct in character from that in Haar-random circuits. Finally, we

note in passing that the value of 𝛼(∞) ≈ 0.34 in this system is far from the

value of 𝛼(∞) ≈ 0.49 observed numerically in spin-1
2 Haar-random circuits

[72], but close to the value of 𝛼(𝑛) = 1
3 for all 𝑛 ≥ 1 predicted in Ref. [75] for
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Figure 4.8: (a) Scaling of the steady-state von Neumann entropy with subsystem
size 𝑙. The transition from volume to area-law occurs at 𝑝𝑋𝑐 ≈ 0.014. (b)
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the form 𝛼(𝑛) = 𝛼(∞)(1 + 1/𝑛), where 𝛼(∞) ≈ 0.34.

the 𝑞 → ∞ Haar-random circuit model with periodic boundary conditions,

though as emphasized this limit is far from the system considered here. It

is also somewhat close to the value of ln 2 ×
√

3
𝜋 ≈ 0.38 for 2+0D percolation

with periodic boundary conditions [68, 130, 131], but, at least in hybrid

Haar-random circuits, this value is correct only for the Rényi-0 entropy [75].
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Figure 4.9: Extracting the dynamical critical exponent 𝑧 = 0.98(4) using the entangle-
ment entropy of an ancilla qubit as an order parameter for the transition
[72, 85]. The ancilla is maximally entangled with the bulk system at
the saturation time 𝑡0 determined by the dynamics of 𝐼3, and then we
continue with the dynamics described in Section 4.1 (acting only on the
original spins). In performing the data collapse, we exclude times shortly
after 𝑡0 because the scaling only occurs after an intermediate timescale.

For both of these numerical comparisons, it is important to note that Refs. [68,

72] both use base-2 logs, whereas we use natural logs, so one has to multiply

their values by ln 2 to compare.

4.4 Discussion
Measurement-induced entanglement transitions represent an interesting

new class of phase transition which shine light on the resilience of quantum

entanglement against a classicality-inducing environment. They were ini-

tially explored for systems at opposite ends of the spectrum of many-body

quantum dynamics: chaotic random unitary circuits, and integrable models.

In this work we have demonstrated that the nature of the measurement-

induced transition in many-body localized (MBL) systems can interpolate
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between these two extremes, in a way which is consistent with the standard

phenomenology of MBL. If the measurements are made in a basis which is

scrambled by the MBL dynamics, then the transition from volume- to area-law

entanglement occurs at a nonzero measurement probability 𝑝, similar to

previously studied chaotic systems. On the other hand, if the measurements

are made in a basis which remains localized by the MBL dynamics, then the

volume-law collapses for any nonzero 𝑝. This distinction does not appear

with random unitary circuits, since all local operators are scrambled in time.

In MBL systems, the existence of an extensive number of local integrals of

motion, the ‘l-bits’, means that not all local operators are scrambled. Instead,

only those operators which have low overlap with the l-bits are scrambled,

and it is for these operators that the volume-law will persist for 0 ≤ 𝑝 < 𝑝𝑐 if

measurements are made in the basis of their eigenstates.

One obvious question is how the measurement-induced entanglement transi-

tion (MIT) intersects with the MBL transition. At sufficiently low disorder

strength 𝑊 < 𝑊𝑐 , the Hamiltonian in Eq. (4.1) is chaotic [126, 128], i.e. it

satisfies the eigenstate thermalization hypothesis [3, 4]. One might expect

the MIT in this chaotic Hamiltonian system with short-range interactions to

be in the same universality class as the MIT in random local unitary circuits

with the same local Hilbert space dimension. But, from the analysis of the

scaling of the critical Rényi entropies in Section 4.3, it appears that the MIT in

the MBL phase may be in a distinct universality class to that in Haar-random

local unitary circuits. This begs the question of how the conformal field

theory describing the MIT critical point changes as one sweeps the disorder

strength 𝑊 across the MBL transition.

It is worth noting that one key difference between the model considered in

this paper and random-circuit models is that here there is quenched (spatial)

disorder in the unitary part of the dynamics. This is noteworthy because

the critical exponent 𝜈 = 1.3(2) we extract violates a naive application of the

Harris criterion 𝜈 ≥ 2/𝑑 with 𝑑 = 1 [132, 133]. This is despite the fact that
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we observe 𝑧 ≈ 1 at the critical point. We speculate two possible reasons for

this violation. The first is that the randomness of the measurements in both

space and time means that the overall ‘disorder’ in this problem is no longer

quenched, so the Harris criterion may not apply. The second is based on

the recent conjecture by Li et al. [76] that the critical points of these hybrid

quantum circuits are described by Euclidean CFTs, where the physical time

coordinate essentially acts as a second spatial coordinate. In that sense, the

Harris criterion may still apply, but with 𝑑 = 2 rather than 𝑑 = 1.

We also discussed in Section 4.3 how X-basis measurements with small but

nonzero 𝑝 can actually increase the steady-state entanglement relative to 𝑝 = 0

for initial states with non-maximal diagonal entropy, as a consequence of

the increase in diagonal entropy induced by X-basis measurements. This

may be somewhat counterintuitive, given the usual picture of measurements

destroying entanglement, but suggests the possibility that measurements

could be used as a tool to produce states with desirable properties [134],

such as high entanglement, in systems where simply evolving with random

unitaries is not feasible.

More broadly, there is also the question of how measurements affect the

characteristics of phases of pure-unitary dynamics. We have seen, such

as in Fig. 4.5, that at least some of the aspects of MBL phenomenology

remain preserved in the volume-law phase even for nonzero 𝑝, such as

the monotonic logarithmic growth of entanglement in time. However, it

has also been argued [67] that a steady-state volume law stable to 𝑝 > 0

necessarily implies the existence of a subleading logarithmic correction to

the volume law, 𝑆(𝐴) ∼ 𝛼 ln |𝐴| + 𝑠 |𝐴|. This has been observed in random

Clifford models [70] and appears analytically as an entropic contribution to

the free-energy cost of an ‘entanglement domain wall’ [100], so this is one

aspect which is qualitatively modified by the presence of measurements. It

would be enlightening to see if such a subleading correction is also present

in the steady-state of this hybrid MBL system, but this is likely out of
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reach of the small system sizes accessible by exact diagonalization. This

may therefore be an opportunity for NISQ-era [135] quantum simulators to

probe new physics out of the reach of numerics. Direct measurement of the

entanglement entropy associated with a single quantum trajectory may be

difficult, owing to the need to perform the exponentially many experimental

repetitions associated with the postselection of measurement outcomes [74]

and the complexity of measuring an entropy [110, 136]. However, there have

been proposals for more experimentally feasible probes of the entanglement

transition based on the Fisher information [74] and coupled ancilla qubits

[85]. It would be interesting to see if these or new techniques could be

developed to allow for experimental detection of novel physics, such as the

subleading logarithmic corrections to the entanglement entropy, induced by

measurements of quantum systems.





Chapter 5

Measurement-induced criticality in

Clifford circuits

Measurement-induced phase transitions occur in a wide variety of mod-

els, including random circuits [66–86], Hamiltonian systems [87–95], and

measurement-only models [78, 96–98], and exhibit universal behavior. How-

ever, the determination of the relevant universality classes has proved to be a

subtle issue. In certain 1+1D systems there is a ‘dimensional correspondence’,

where the measurement-induced transition in the 1+1D quantum system

corresponds to an ordering transition in a 2+0D statistical mechanical model.

Through these models, it has become clear that there is an important link

between measurement-induced transitions and classical percolation, but the

precise nature of this relationship is still unclear. For example, for 1+1D

Haar-random circuits there are two distinct mappings to 2D percolation:

one for the (𝑛 = 0)-Rényi entropy (Hartley entropy) [68] which employs the

minimal cut formalism [137], and another for the (𝑛 ≥ 1)-Rényi entropies [74,

75] which uses the replica-trick to map the problem to 2D percolation in the

limit of large local Hilbert space dimension 𝑞 → ∞.

However, there is both analytical [75] and numerical evidence [72, 76, 138]

to suggest that away from this limit the universality class should be distinct

from percolation. Puzzlingly, despite this evidence, numerics on 1+1D
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Haar-random and Clifford circuits give many bulk exponents which are close

to those of percolation. It has been suggested [75] that this could be an

indication that the finite 𝑞 fixed point is close to the percolation fixed point

in the RG phase diagram.

Despite the results in 1+1D, it was not previously clear whether this proximity

to percolation holds in higher dimensions. To address this, in the first part

of this chapter we study the critical properties of the measurement-induced

transition in 2+1D Clifford circuits. First, we precisely locate the critical point

using the tripartite information 𝐼3 (see Section 5.2), which has been argued

to be scale-invariant at criticality, thereby providing a good estimator of the

critical probability 𝑝𝑐 . Having fixed 𝑝𝑐 , we then find an inverse power-law for

(a)

(b)

S /L p= pc

S /L2 S / L

p=0 p = pc p=1

(Volume law) (Area law)

at

d-dimensional Clifford circuit (d   1)-dimensional percolation

≈

+

Figure 5.1: (a) Phase diagram for the measurement-induced transition in 2+1D local
random Clifford circuits. For measurement probabilities 𝑝 < 𝑝𝑐 the
steady state exhibits volume-law entanglement, while for 𝑝 ≥ 𝑝𝑐 the
steady state is area-law entangled. The entanglement transition and the
purification transition coincide. (b) The critical point of a 𝑑-dimensional
circuit appears to be described by bulk exponents from the (𝑑 + 1)D
percolation. However, entanglement cluster exponents do not match the
percolation surface exponents.
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the critical entanglement dynamics, 𝑆(𝑡 , 𝐿) ∼ 𝐿(1 − 𝑎/𝑡), which saturates to

an area-law (see Fig. 5.1a). We provide a heuristic justification for this scaling

based on the ‘minimal cut’ prescription, which assumes a percolation-like

picture. The steady-state area-law scaling is consistent with the behavior of

conformal field theories in dimensions 𝑑 > 2 [63, 64].

We note that the accurate determination of the critical point using 𝐼3 was im-

portant to correctly determine the critical scaling, since even small deviations

can result in scaling which looks like 𝑆 ∼ 𝒪(𝐿 log 𝐿) (c.f. Ref. [84] and the

discussion in Section 5.B).

Next we analyze the connection between this measurement-induced entan-

glement transition and quantum error-correction through the lens of the

purification transition [73, 74, 80, 85, 139], which is characterized by a tran-

sition in the purification time of an initially maximally-mixed state—in the

‘mixed phase’ the state purifies in a time exponential in system size 𝐿, whereas

in the ‘pure phase’ it purifies in a time polynomial in 𝐿. This purification

transition can be viewed as a transition in the quantum channel capacity

density of the hybrid quantum circuit, which governs whether the circuit can

be used to generate a finite-rate quantum error-correcting code—the code

rate is finite in the mixed phase, and goes to zero as one approaches the

pure phase. In other words, these hybrid quantum circuits can form emergent

quantum error-correcting codes which protect against errors given precisely

by the measurements involved in the circuit.

It is not a priori obvious that these two measurement-induced transitions

should coincide: the entanglement transition concerns spatial correlations in

a quantum state at a fixed time, whereas the purification transition concerns

correlations between quantum states at different times [80]. Their coincidence

in 1+1D was explained by the fact that the 2+0D statistical mechanical model

governing the purification transition is the same as that of the entanglement

transition, just with different boundary conditions [74, 76]. In these models,
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Figure 5.2: We employ a graph-state based simulation algorithm [140], where the
data encoding the state consists of a graph 𝒢 and a list {𝐶𝑖}𝐿

𝑑

𝑖=1 of one-
qubit Cliffords. The entanglement structure is completely fixed by 𝒢.
Entanglement clusters can be found by a breadth-first search on 𝒢, and
are here highlighted in different colors. In general the action of a Clifford
gate corresponds to updating 𝒢 and the list of one-qubit Cliffords. Here
we illustrate the simple case of a CZ gate acting on two qubits whose
one-qubit Cliffords commute with CZ; in this case the CZ gate simply
toggles an edge between the qubits.

the time coordinate of the physical circuit plays the role of imaginary time

in the stat-mech model, giving an emergent symmetry between space and

time [76]. In higher dimensions, however, the symmetry between space and

time can be broken quite naturally. Our precise handle on the critical point

allows us to demonstrate that the purification transition in 2+1D Clifford

circuits continues to coincide with the entanglement transition, suggesting

this phenomenon may be generic in all dimensions.

The coincidence of these two transitions then allows us to utilize the entangling

and purifying dynamics of entangled ancilla qubits to extract various bulk

and surface critical exponents of the transition in 2+1D Clifford circuits,

and to provide evidence of conformal symmetry at the critical point (see

Section 5.3). The bulk exponents extracted in this way are within error-bars of

3D percolation (see Table 5.1). Interestingly, we do observe small deviations

from percolation in certain surface critical exponents (see Section 5.3). This is

similar to the behavior observed numerically in 1+1D circuits with qubits [72,

76, 85].
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Quantum circuits Classical percolationExponent 1+1D C 2+1D C 1D P 2D P 3D P
𝜈 1.24(7) 0.85(9) 1 4/3 = 1.333 0.8774
𝜂 0.22(1) −0.01(5) 1 5/24 = 0.208 −0.047
𝜂∥ 0.63(1) 0.85(4) 1 2/3 = 0.667 0.95
𝜂⊥ 0.43(2) 0.46(8) 1 7/16 = 0.438 0.45
𝛽 0.14(1) 0.40(1) 0 5/36 = 0.139 0.43
𝛽𝑠 0.39(2) 0.74(2) 0 4/9 = 0.444 0.85
𝑧 1.06(4) 1.07(4)

Entanglement clusters
𝛽𝑒𝑐/𝜈 -0.009(2) 0.00(2)
𝛽𝑠/𝜈 0 1/3 = 0.333 0.974
𝛽/𝜈 0 5/48 = 0.104 0.49
𝛾𝑒𝑐/𝜈 0.95(1) 1.84(2)
𝛾1,1/𝜈 0 1/3 = 0.333 0.060
𝛾/𝜈 1 43/24 = 1.792 2.09
𝜏 2.04 1.98(1) 2 187/91 = 2.055 2.19

Table 5.1: Critical exponents of the measurement-induced transition in hybrid 1+1D
and 2+1D random Clifford circuits, compared with those of 1D, 2D and
3D percolation (1D P, 2D P, and 3D P respectively). Exponents which
appear to differ from percolation are highlighted in red. Those exponents
which describe the scaling of entanglement clusters are labelled by the
subscript 𝑒𝑐, and are compared with the bulk and surface exponents for
percolation. The exponents for 1+1D Clifford circuits, excluding those
describing entanglement clusters, are taken from Ref. [72].

We perform our simulations using a graph-state based algorithm (see Fig. 5.2)

[140], which provides easy access to geometric information about the entan-

glement structure—the entanglement is completely fixed by the underyling

graph. This allows us to employ graph-theoretic clustering tools to analyze

entanglement clusters in the steady-state (see Section 5.4). If we naively assume

that the critical point has a simple geometric map to percolation, then the

critical properties of these entanglement clusters should be governed by the

surface exponents of percolation, given that the clusters exist on the final

timeslice of the (𝑑 + 1)-dimensional bulk. To confirm this naive expectation,

we first analyze entanglement clusters in the projective transverse field Ising

model, which is a measurement-only Clifford model known to have a simple

geometric map to percolation [92]. There we indeed find critical scaling of
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the entanglement clusters consist with surface percolation exponents.

However, moving on to the Clifford circuits, we find that, both in 1+1D and

2+1D, the entanglement clusters are governed by exponents significantly

different from those of surface percolation (see Fig. 5.1b). We interpret

this as further evidence that the measurement-induced transition in qubit

Clifford circuits is in a different universality class to percolation. Lessons

from Haar-random circuits also tell us that, even when a map to percolation

does exist, it may be highly non-trivial in nature, occurring for example only

in a replica limit [74, 75]. The deviation from surface percolation exponents

in the Clifford models indicates that, even if a map to percolation does exist

in certain limits, it may not have such a simple geometric interpretation as do

the analogous maps for the projective transverse field Ising model [92] and

the Hartley entropy in Haar-random circuits [68].

5.1 Methods

5.1.1 Model
In Sections 5.2 and 5.3 we study a 2+1D model of local random Clifford

dynamics interspersed with random projective measurements. Each time

step consists of a round of random 2-qubit Clifford gates with disjoint support

applied to nearest-neighbors, followed by a round of projective measurements

in the 𝜎𝑧 basis, where each qubit has probability 𝑝 of being measured. The

gates are drawn uniformly over the whole 2-qubit Clifford group. The pattern

of gates applied at a given time step is determined by two indices: a ‘sublattice

index’, which takes values in Z2, and a ‘clock index’, which takes values in

Z4. Arranging the qubits in an 𝐿 × 𝐿 square lattice with periodic boundary

conditions, the sublattice index determines which sublattice of qubits will

act as the ‘controls’ for the Clifford gates (see Fig. 5.3a). Given a choice of

sublattice, the clock index then determines which direction the Clifford gates

act in relative to the control qubits. The values 0, 1, 2, and 3 correspond to

gates acting up, right, down, and left from the control qubits respectively (see
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Figure 5.3: (a) The sublattice index determines which sublattice of qubits, denoted by
or , are used as the ‘controls’ for the Clifford gates in that time step.

(b) Given a choice of sublattice index, the clock index determines in which
direction each Clifford gate acts relative to the control. (c) The geometry
used to calculate the tripartite information 𝐼3(𝐴 : 𝐵 : 𝐶). (d) One period
of the gate sequence on a 2× 2 lattice with periodic boundary conditions,
and time moving in the vertical direction. Different colors label different
values of the clock index. (e) Unit cell of the underlying lattice structure,
obtained by contracting each Clifford gate into a point.

Fig. 5.3b). At the 𝑛th time step, the sublattice index has the value 𝑛 (mod 2),
and the clock index has the value ⌊𝑛/2⌋ (mod 4), so that the overall gate

sequence has period 8 (see Fig. 5.3d). Since the support of the Clifford gates

changes with each time step, certain quantities that depend on making a ‘cut’,

such as the entanglement entropy of a given region, exhibit a mild periodicity

related to how often the gates cross the cut. To get well-defined steady-state

values, we perform a window-average over a window matching the period

of the oscillations (equal to 4 time steps in this case)—all quantities in this

paper have been averaged in this way.

It is worth noting that this choice of gate protocol is by no means unique.

On grounds of universality, we expect the main effect of a different choice

of local quantum circuit is to change the critical measurement probability

𝑝𝑐 , with the critical exponents unaffected. One alternative was explored in
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Ref. [84], which used 4-local gates instead of our 2-local gates. For rank-1

measurements, they observe a critical probability of 𝑝𝑐 ≈ 0.54, which is

roughly the square root of our estimated value of 𝑝𝑐 ≈ 0.312(2). They do

observe a different correlation length exponent 𝜈, on which we comment in

Section 5.2.

In Section 5.4, as well as studying the 2+1D Clifford model we have just

outlined, we also study a 1+1D Clifford model. This is identical to that

studied in many previous works studying the 1+1D problem, and can be

thought of as being controlled by a single ‘sublattice index’, resulting in a

‘brick-wall’ structure of alternating layers of Clifford gates interspersed with

random projective measurements.

5.1.2 Simulation method
To simulate the hybrid Clifford dynamics, we used a graph-state based

algorithm [140]. This makes use of the remarkable fact that every stabilizer

state can be represented as a graph state, up to the action of some 1-qubit

Cliffords [141]. Simulation of stabilizer states then takes the form of updating

the underlying graph structure and the list of 1-qubit Cliffords, which can be

done in polynomial time.

In more detail, graph states are a class of pure quantum states whose

structure is determined entirely by an underlying graph 𝒢 = (𝑉, 𝐸). Each

graph vertex 𝑣 ∈ 𝑉 corresponds to a qubit, and the graph edges 𝐸 determine

the preparation procedure for the state. To prepare the graph state |𝒢⟩, we

start from the initial product state |𝜓0⟩ = [(|0⟩ + |1⟩)/
√

2]⊗𝑁 , where 𝑁 is the

number of qubits, and then apply a CZ gate to each pair of qubits which are

connected by an edge in the graph 𝒢.

Stabilizer states are the states which can be prepared from the initial product

state |0⟩⊗𝑁 by acting with gates from the 𝑁-qubit Clifford group 𝒞𝑁 . The

set of stabilizer states is larger than that of graph states, but not by much:

all stabilizer states can be written as a graph state, up to the action of some
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gates from the 1-qubit Clifford group 𝒞1 [which contains only 24 gates, up

to phase]. Single qubit gates are then trivial to perform, taking Θ(1) time.

Two-qubit Cliffords take time 𝒪(𝑑2), where 𝑑 is the maximum vertex degree

of the qubits involved in the gate, and single-qubit Z-basis measurements

take time 𝒪(𝑑). This makes graphs with low connectivity, which can roughly

be identified with low entangled states, easier to simulate.

To wit, the graph structure completely determines the entanglement of

the corresponding quantum state. Given a bipartition of the system into

subsystems 𝐴 and 𝐵, the (Rényi or von Neumann) entanglement entropy 𝑆𝐴

is given by

𝑆𝐴 = rank(Γ𝐴𝐵), (5.1)

where Γ𝐴𝐵 is the submatrix of the adjacency matrix characterizing edges

between subsystems 𝐴 and 𝐵 [141]. We note that for stabilizer states all Rényi

entropies (including the von Neumann entropy) are equal [142].

To simulate an initially mixed state 𝜌, we introduce an auxiliary system to

obtain a purification of 𝜌. We then perform time-evolution on the resultant

pure state, with the quantum circuit acting as the identity on the purifying

system. For the maximally-mixed initial state on 𝑁 qubits, 𝜌 = 1/2𝑁 , this

corresponds to the pure state simulation of 𝑁 Bell pairs, where the system

dynamics acts only on one half of the Bell pairs. This purification simulation

method does mean that 𝑁-qubit mixed states are harder to simulate than 𝑁-

qubit pure states, but not as hard as 2𝑁-qubit pure states, since the purifying

qubits typically have a lower vertex degree than the original qubits.

5.1.3 Transition diagnostics

As well as the entanglement entropy 𝑆𝐴, we also study the tripartite mutual

information

𝐼3(𝐴 : 𝐵 : 𝐶) = 𝐼2(𝐴 : 𝐵) + 𝐼2(𝐴 : 𝐶) − 𝐼2(𝐴 : 𝐵𝐶), (5.2)
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where 𝐼2(𝐴 : 𝐵) = 𝑆𝐴 + 𝑆𝐵 − 𝑆𝐴𝐵 is the mutual information. It is easy to see

that for pure states, given a partition of the system into 4 subsystems, the

tripartite information of 3 of the subsystems does not depend on the choice

of subsystems, so from now on we will simply write 𝐼3 ≡ 𝐼3(𝐴 : 𝐵 : 𝐶). We

calculate 𝐼3 for the partition shown in Fig. 5.3c. Notice that a vertical slice of

this geometry gives a circle divided into four equal sections. In 1+1D this

partitioning was successfully employed to study the entanglement transition

because, at least within the minimal cut picture [137], it cancels out any

boundary terms corresponding to the entanglement cost of a domain wall

traversing from the circuit boundary to the percolating cluster in the bulk

of the circuit [72, 80]. This then suggests that in 1+1D, 𝐼3 is extensive in the

volume-law phase, 𝒪(1) at criticality, and zero in the area-law phase. In

2+1D, we argue that, for this particular choice of geometry, 𝐼3 remains 𝒪(1)
at criticality, with its overall behavior described by

𝐼3(𝑝, 𝐿) =


𝒪(𝐿2), 𝑝 < 𝑝𝑐

𝒪(1), 𝑝 = 𝑝𝑐

0, 𝑝 > 𝑝𝑐

(5.3)

This implies that the values of 𝐼3(𝑝, 𝐿) should coincide for different system

sizes at 𝑝 = 𝑝𝑐 , allowing for reliable location of the critical point. We further

discuss our choice of geometry for 𝐼3 in Section 5.B.

5.2 Entanglement transition
To accurately estimate the location of the critical point, it is necessary to

determine the correct scaling of 𝐼3. To that end, we must rule out plausible

scalings which are different from the one proposed in Eq. (5.3). We have

also investigated the possibility that 𝐼3 ∝ 𝐿 at the critical point, which would

suggest that the values of 𝐼3(𝑝, 𝐿)/𝐿 should coincide at 𝑝 = 𝑝𝑐 . We detail

evidence against this scaling form in Section 5.A.
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Figure 5.4: The steady-state 𝐼3 as a function of (𝑝 − 𝑝𝑐)𝐿1/𝜈, where 𝑝𝑐 ≈ 0.312(2) and
𝜈 ≈ 0.85(9). The inset shows the uncollapsed data. This dataset consists
of 5 × 104 circuit realizations.

The steady-state values of 𝐼3(𝑝, 𝐿) are plotted in Fig. 5.4. Given the scaling in

Eq. (5.3), the curves should coincide at the critical point. To determine the

critical point and the correlation length exponent 𝜈 we make the finite-size

scaling ansatz

𝐼3(𝑝, 𝐿) ∼ 𝐹
[
(𝑝 − 𝑝𝑐)𝐿1/𝜈

]
, (5.4)

where 𝐹[·] is a single-parameter scaling function. We determine the optimal

parameters by minimizing a cost function 𝜖(𝑝𝑐 , 𝜈) which measures deviations

of a point from a linear interpolation between its neighbors [72, 143] (see

Section 5.B for details). The resulting data collapse is of excellent quality,

with 𝑝𝑐 ≈ 0.312(2) and 𝜈 ≈ 0.85(9), where the error bars correspond to the

range of values for which the cost function is less than 2 times its minimum

value. We note that this value of 𝜈 is reasonably close to the 3D percolation

value of 𝜈perc ≈ 0.877 [144], suggesting that the close relationship between
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exponents of the entanglement transition and percolation, even at low local

Hilbert space dimension, continues to hold in 2+1D. We also note that our

value of 𝜈 is significantly larger than that reported in Ref. [84] (𝜈 ≈ 0.67);

we attribute this to the fact that we extract 𝜈 by a data collapse not of the

half-plane entanglement but of the tripartite information, which coincides

for different system sizes at the critical point and so provides a much more

accurate estimator of the critical point. A similar scenario occurs in 1+1D [72].

We discuss this further in Section 5.B.

Let us briefly comment on the value of 𝑝𝑐 ≈ 0.312 obtained for the critical

measurement probability. This value coincides with the threshold for site

percolation on the simple cubic lattice [145], but as far as we are aware this is

a coincidence; in fact our gate model maps to the lattice shown in Fig. 5.3e,

which exhibits a bond percolation transition at 𝑝𝑐 = 0.3759(2). We expect

other gate models to give different values of 𝑝𝑐 (see Ref. [84]) but the same

critical exponents. It is also interesting to compare our value of 𝑝𝑐 to the

upper bound derived in Ref. [73], which modeled the volume-law phase as

forming a dynamically-generated non-degenerate quantum error-correcting

code, allowing them to apply the quantum Hamming bound. The bound on

𝑝𝑐 depends only on the local Hilbert space dimension 𝑞 (not on the spatial

dimension), and for 𝑞 = 2 gives 𝑝𝑐 ≲ 0.1893. While this bound was satisfied

by 1+1D Haar-random and Clifford circuits (𝑝𝑐 ≈ 0.17 [72]), here we see

that it is strongly violated in 2+1D Clifford circuits. A similar violation has

also been observed in all-to-all models [80], where it was pointed out that

if these hybrid dynamics which violate this upper bound are to generate

quantum error-correcting codes, these codes must be degenerate. Finally, we

note that the value of 𝐼3 at criticality, 𝐼2+1𝐷
3 (𝑝𝑐) = −0.47(8), is within error-bars

of the value for 1+1D Clifford circuits, 𝐼1+1𝐷
3 (𝑝𝑐) = −0.56(9) [72], suggesting

the possibility that at criticality 𝐼3 could reach an 𝒪(1) constant which is

independent of dimension.

Having established the location of the critical point via finite-size scaling
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of 𝐼3, we study the scaling properties of the entanglement entropy in the

different phases. We propose the following scaling for the 2+1D circuit:

𝑆(𝑝, 𝐿) ∼


𝐿(1 − 𝑎

𝜉 ) + 𝐴 𝐿2

𝜉2 , 𝑝 < 𝑝𝑐 ,

𝐿, 𝑝 = 𝑝𝑐 ,

𝐿(1 − 𝑎
𝜉 ), 𝑝 > 𝑝𝑐 ,

(5.5)

where 𝜉 = |𝑝− 𝑝𝑐 |−𝜈 is the correlation length and 𝑎, 𝐴 are unknown constants.

Such scaling implies the data collapse of the entropy is possible using a

similar ansatz as in the 1+1D circuit [68, 70],

𝑆(𝑝, 𝐿) − 𝑆(𝑝𝑐 , 𝐿) = 𝐹[(𝑝 − 𝑝𝑐)𝐿1/𝜈], (5.6)

where 𝐹[·] is a single-parameter scaling function, depending only on

𝐿/𝜉.

In order to see the origin of this proposed scaling form, we draw from the

similarity to the 1+1D case, where the behavior of entropy can be intuitively

understood by considering the Hartley entropy 𝑆0. For Haar random circuits

𝑆0 can be mapped exactly to classical percolation in 2D [68]: each projective

measurement cuts a bond of the underlying lattice and prevents percolation;

Hartley entropy of a region is then calculated as the minimal number of

cuts needed to separate said region at the final-time boundary from the rest

of the circuit. This mapping extends naturally to 𝑑+1D circuits, where 𝑆0

corresponds to a minimal-cut 𝑑-dimensional membrane. Near criticality, the

‘nodes-and-links’ picture of percolation [146, 147] gives an insight into the

scaling properties of 𝑆0 (see Fig. 5.5) and shows two important contributions:

from the bulk, and from the edge.
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Figure 5.5: ‘Nodes and links’ picture of percolation. (a) An example of percolation
in the bulk of a 2D system. Percolating bonds cluster within nodes
(black dots) connected by links (thick black lines), forming a ‘wire frame’.
Average distance between nodes is the correlation length 𝜉. There are
also smaller structures on the links (dark red), dead ends (red) and
structures unconnected to the frame (orange). Minimal-cut path (blue
dotted line) can be deformed to only cut through the links (cuts indicated
by transparent blue circles), causing an 𝑂(1) contribution to the entropy.
(b) The same example, but in the presence of the final-time boundary.
Every structure touching the edge is promoted to be part of the frame.
Minimal-cut path generically starts within a smaller structure of size
𝑂(1), having now to traverse through larger and larger chambers in order
to reach structures of size 𝜉. (c) Percolation in the bulk of a 3D system
(showing only nodes and links for simplicity). Minimal-cut membrane
can be deformed, contributing 𝑂(1) to the entropy per one cell of the
frame. (d) Flattened minimal-cut membrane, showing all the necessary
cuts. Near the edge, the membrane traverses layers of structures of
increasingly larger sizes (with approximate common ratio 𝑟).
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For 𝑝 < 𝑝𝑐 , percolation in the bulk of the circuit is possible due to unbroken

bonds forming a ‘wire frame’ consisting of dense clusters of bonds (nodes)

connected by long chains of unbroken bonds (links). Each cell in the frame is

of the size of the correlation length 𝜉 and, if traversed by the minimal-cut

membrane, gives a contribution of 𝑂(1) to the entropy [see Fig. 5.5(a) and

(c) for 2D and 3D examples]. Counting the number of cells results in the

bulk of the circuit contributing ∼ (𝐿/𝜉)𝑑 to 𝑆0, the source of the volume-law

scaling.

The second relevant contribution comes from the final-time boundary of

the circuit [see Fig. 5.5(b)]. This edge cuts through not only the links and

nodes discussed above, but also through smaller structures, dead ends,

and other structures normally unconnected to the main mesh. This results

in the minimal-cut membrane having to generically cut through a large

number of small mesh cells right next to the boundary, then through layers

of consecutively larger cells, until the cell size reaches 𝜉 [see Fig. 5.5(d)].

Assuming a geometric progression of cell sizes with common ratio 𝑟 > 1 [68],

the number of cells in the 𝑖th layer is ∼ (𝐿/𝑟 𝑖)𝑑−1, while the total number of

layers is ∼ log𝑟 𝜉. We then arrive at an important result: the total contribution

from the boundary for 1+1D is ∼ log 𝜉, while for higher dimensions is

∼ (1 − 𝑎/𝜉𝑑−1)𝐿𝑑−1. This term is in general responsible for the area-law

scaling, but at the critical point 𝑝 = 𝑝𝑐 (when 𝜉 → 𝐿) it results in logarithmic

scaling in 1+1D, and area-law scaling in higher dimensions.

We can also use this analysis to predict the time-dependence of the entangle-

ment entropy at criticality. For intermediate times 1 ≪ 𝑡 ≪ min(𝜉, 𝐿), the

circuit is shallow, and the minimal cut membrane will pass from the final time

boundary to the initial time boundary. This is because at 𝑡 = 0 the system is

in a product state and the membrane can traverse the initial boundary freely.

Hence, the main contribution to the entropy will be from summing over pro-

gressively larger cells up until the circuit depth of 𝑡, i.e. the number of layers
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is now only ∼ log𝑟 𝑡. Thus, the geometric sum
∑log𝑟 𝑡

𝑖
(𝐿/𝑟 𝑖)𝑑−1 gives

𝑆(𝑡 , 𝐿) ∼ 𝐿𝑑−1
(
1 − 𝑎

𝑡𝑑−1

)
(5.7)

for some 𝒪(1) constant 𝑎. For the special case of 𝑑 = 1 the sum reduces to the

logarithmic scaling 𝑆(𝑡 , 𝐿) ∼ log 𝑡 [68], but in higher dimensions the growth

takes the form of an inverse power-law in time, eventually saturating to an

area-law. We can write this as a scaling form 𝑆(𝑡 , 𝐿) − 𝑏𝐿𝑑−1 ∼ 𝑓 (𝑡/𝐿) with

𝑓 (𝑥) ∼ −𝑥−(𝑑−1) as 𝑥 → 0 and 𝑓 (𝑥) → const. as 𝑥 → ∞, consistent with a

dynamical critical exponent of 𝑧 = 1 (see also Fig. 5.7b and Fig. 5.C1c).

Fig. 5.6 presents a summary of our results for the entanglement entropy,

showing an excellent agreement with the scaling ansatze in Eqs. (5.5) and (5.7).

Notably, in the steady state we observe area-law scaling at the critical point

(consistent with the recent results of Ref. [98]), possibly with subleading

additive logarithmic corrections, but not with multiplicative logarithmic

corrections (𝐿 log 𝐿), as implied in Ref. [84]. We note however that if one

assumes a lower transition point (𝑝 ≈ 0.29), numerics may seem like a 𝐿 log 𝐿

behavior for small system sizes, suggesting that correctly locating the critical

value 𝑝𝑐 is crucial to making any statements on scaling of entropy at criticality.

As explained above, data collapse of 𝐼3 pinpoints the precise value of 𝑝𝑐 ,

allowing us to determine the correct critical scaling behavior.
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Figure 5.6: Dynamics and steady-state behavior of the half-plane entanglement
𝑆(𝐿/2 × 𝐿) in the volume-law (𝑝 < 𝑝𝑐), critical (𝑝 = 𝑝𝑐), and area-law
(𝑝 > 𝑝𝑐) phases. The left column shows the dynamics for 𝐿 = 32, with
𝑆𝑡 ∼ 𝐿𝑡 for 𝑝 < 𝑝𝑐 , 𝑆𝑡 ∼ 𝐿(1 − 𝑎/𝑡) for 𝑝 = 𝑝𝑐 , and 𝑆𝑡 saturating in 𝒪(1)
time for 𝑝 > 𝑝𝑐 . The right column shows the steady-state scaling, with
𝑆∞(𝐿) ∼ 𝒪(𝐿2) for 𝑝 < 𝑝𝑐 , and 𝑆∞(𝐿) ∼ 𝒪(𝐿) for 𝑝 ≥ 𝑝𝑐 . We use 𝑝 = 0.1,
𝑝 = 0.312, and 𝑝 = 0.4 for the volume-law, critical, and area-law plots
respectively.
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Moreover, at these system sizes we cannot directly observe the presence

of a subleading additive log 𝐿 term, but we also cannot rule it out since it

may have a small coefficient. Such a subleading additive log 𝐿 is predicted

by a calculation from capillary wave theory [100, 148] which evaluates

the free energy cost of inserting an Ising domain wall membrane in the

quantum circuit’s spacetime bulk, with the boundary condition that at the

boundary of the circuit corresponding to the final time the membrane is

pinned to the region for which one wants to calculate the entanglement

entropy. The subleading log 𝐿 then corresponds to an entropic contribution

to the free energy from ‘thermal’ fluctuations of the membrane at finite

‘temperature’ (here corresponding to nonzero measurement probability).

In general, the appearance at criticality of an area-law with additive log

corrections is reminiscent of the behavior of higher-dimensional conformal

field theories [63, 64]. There is also the possibility of a sublinear power-law

correction, analogous to the ∼ 𝐿0.38 correction observed numerically in 1+1D

Clifford circuits [100], which could indicate a more complex entanglement

domain wall structure than the simple Ising structure that predicts the

logarithmic correction.

Finally, regarding the critical entanglement dynamics, we note that one must

be careful to distinguish the inverse power-law behaviour of Eq. (5.7) from

logarithmic growth. In Section 5.C we provide a plot of the critical entropy

dynamics at 𝐿 = 92 on a log scale, which demonstrates that the growth is not

logarithmic in time, and provide further evidence for the inverse power-law

scaling.

5.3 Purification transition
In this section, we investigate the purification transition and demonstrate

that it coincides with the entanglement transition studied in Section 5.2. To

do so we study the entanglement entropy density 𝑆/𝐿2 of a maximally-mixed

initial state after being time-evolved for time 𝑡 = 4𝐿. In the ‘pure phase’, the
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state purifies in time linear in system size 𝐿, implying 𝑆/𝐿2 → 0 for 𝑡 ∝ 𝐿 but

sufficiently large (𝑡 = 4𝐿 suffices), while in the ‘mixed phase’ the purification

time is exponential in 𝐿, so that after the time 𝑡 = 4𝐿 we expect the entropy

density to remain finite. Fig. 5.7 shows the entanglement entropy density

as a function of measurement probability 𝑝. The entropy density vanishes

close to the critical point 𝑝𝑐 ≈ 0.312 of the entanglement transition. For these

system sizes, there still exists some appreciable finite-size drift, but it appears

to be such that the entropy density vanishes increasingly close to 𝑝𝑐 ≈ 0.312

as the system size increases. The black dashed curve shows the function

𝐴(𝑝𝑐 − 𝑝)2𝜈, with 𝐴 a constant and 𝑝𝑐 and 𝜈 fixed from the entanglement

transition. The exponent 2𝜈 is motivated by the scaling of the entanglement

entropy in Eq. (5.5), where the 𝒪(𝐿2) term controlling the entropy density

appears with the coefficient 𝜉−2 ∼ (𝑝𝑐 − 𝑝)2𝜈. The convergence of the entropy

density to the scaling form 𝐴(𝑝𝑐−𝑝)2𝜈 therefore provides strong evidence that

the purification transition indeed coincides with the entanglement transition

and that the estimation of 𝜈 in the previous section is correct.
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Figure 5.7: (a) The entropy density of an initially maximally-mixed state after evolv-
ing for a time 𝑡 = 4𝐿. The black dashed line shows the function 𝐴(𝑝𝑐−𝑝)2𝜈
with 𝐴 ≈ 11.7, and 𝑝𝑐 and 𝜈 determined from finite-size scaling of 𝐼3.
At these system sizes there is still some finite-size drift in the data,
but it seems to be approaching the curve described by 𝐴(𝑝𝑐 − 𝑝)2𝜈. (b)
Purification dynamics at 𝑝 = 𝑝𝑐 . The data collapse onto a single curve
when plotted in terms of 𝑡/𝐿, indicating a dynamical critical exponent of
𝑧 ≈ 1 [the optimal fitted value is 𝑧 = 1.07(4)]. Non-universal early-time
dynamics are excluded from the fit.
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Having established the coincidence of these two transitions, we now extract

further critical exponents of the transition using the local order parameter

proposed in Ref. [85] of the entanglement entropy of an ancilla qubit entangled

with the system but not directly acted on by the circuit dynamics. First,

we extract the anomalous scaling exponents 𝜂, 𝜂∥ , and 𝜂⊥ controlling the

power-law decay of bulk-bulk, surface-surface, and surface-bulk two-point

correlation functions at criticality. In percolation, these quantities control

the probabilities that two distant sites, living either in the bulk or on the

surface, belong to the same cluster. To determine these exponents we study

the dynamics at 𝑝 = 𝑝𝑐 of the mutual information between two ancilla

qubits separated by a distance 𝐿/2 [72], which provides an upper bound on

connected correlation functions [149]. The ancilla qubits are entangled with

the system at a time 𝑡0. We use different values of 𝑡0 and different boundary

conditions to extract the different exponents: {𝑡0 = 2𝐿, periodic} for 𝜂, {𝑡0 = 0,

periodic} for 𝜂∥ , and {𝑡0 = 2𝐿, open} for 𝜂⊥. Conformal symmetry 𝑧 = 1 at

the critical point (see Fig. 5.7b) implies that in 𝐷 spacetime dimensions the

mutual information between two qubits separated by a distance 𝑟 should

assume the scaling form

𝐼2(𝑡 , 𝑟) ∼
1

𝑟𝐷−2+𝜂 𝐺

[
𝑡 − 𝑡0
𝑟

]
, (5.8)

where 𝐺[·] is a single-parameter scaling function, and the exponent depends

on the choice of 𝑡0 and boundary conditions, as outlined above. Thus in

this 2+1D spacetime circuit, we can extract the exponents by performing

data collapses of 𝐿1+𝜂𝐼2[(𝑡 − 𝑡0)/𝐿, 𝐿/2], as shown in Fig. 5.8. For the bulk-

bulk exponent 𝜂 and the surface-bulk exponent 𝜂⊥, we obtain the values

𝜂 ≈ −0.01(5) and 𝜂⊥ ≈ 0.46(8), which are within error-bars of the 3D

percolation values 𝜂perc = −0.047 and 𝜂⊥,perc = 0.45 [150]. We note in passing

that the data collapse for 𝜂⊥ is not as good quality as that for 𝜂, resulting in

larger error bars using the methodology described in Section 5.B. However,

there does not appear to be a systematic drift with increasing system size. We
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attempted to improve the collapse quality by using a large number of circuit

realizations (106 for 𝜂⊥), but some discrepancy is still evident. This could

possibly be a result of 𝜂⊥ being particularly sensitive to any miscalibration of

the critical point 𝑝𝑐 , despite the precision to which we have pinpointed 𝑝𝑐 in

this work.
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Figure 5.8: Extraction of the anomalous scaling exponents 𝜂 ≈ −0.01(5), 𝜂∥ ≈ 0.85(4),
and 𝜂⊥ ≈ 0.46(8), shown in (a), (b), and (c) respectively, via data collapse
at 𝑝 = 𝑝𝑐 of the mutual information 𝐼2 between two ancilla qubits which
are entangled at time 𝑡0 with two system qubits a distance 𝐿/2 apart. The
different exponents are extracted using different boundary conditions
and different values of 𝑡0 [see main text]. The insets show the uncollapsed
data. The 𝜂 dataset consists of 2.5 × 105 circuit realizations, while the 𝜂∥
and 𝜂⊥ datasets each consist of 1 × 106 circuit realizations.
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Moving on to the surface-surface exponent𝜂∥ , we obtain the value𝜂∥ ≈ 0.85(4).
This is not within error-bars of the 3D percolation value 𝜂∥ ,perc = 0.95,

indicating a possible difference in surface behavior. The error-bars on our

exponent estimates capture only the statistical error, so it is possible that there

are still significant finite-size corrections. However, we note that a similar

deviation in 𝜂∥ (and in 𝜂⊥), was observed in 1+1D Haar-random circuits

(though not in Clifford circuits) [72]. In this case, a deviation only in 𝜂∥ would

not be consistent with the scaling relation 2𝜂⊥ = 𝜂 + 𝜂∥ , but the error-bars on

our estimates are large enough that there could also be small deviations in 𝜂⊥

that provide the necessary contribution to restore the scaling relation.

Next, we extract the exponents 𝛽 and 𝛽𝑠 controlling the behavior of the

order parameter as a function of 𝑝. In percolation, 𝛽 controls the probability

𝑃(𝑝) ∼ |𝑝 − 𝑝𝑐 |𝛽 that a site in the bulk will belong to the infinite percolating

cluster, while 𝛽𝑠 does the same but for a site on the surface. To extract these

exponents we study the entanglement entropy of an ancilla qubit, entangled

with the system at time 𝑡0 = 2𝐿 for 𝛽 and time 𝑡0 = 0 for 𝛽𝑠 , and subsequently

time-evolved for a further time 𝑡 = 2𝐿. Fig. 5.9 shows the ancilla entropy

𝑆ancilla as a function of measurement probability 𝑝 for the cases relevant to 𝛽

and 𝛽𝑠 . For the bulk exponent 𝛽, the data are well described by the function

𝐵(𝑝 − 𝑝𝑐)𝛽 with 𝐵 a constant, 𝑝𝑐 ≈ 0.312 fixed by the entanglement transition,

and 𝛽 ≈ 0.40(1). This is close to the 3D percolation value of 𝛽perc ≈ 0.43.

However, for the surface exponent 𝛽𝑠 , the data are well described by the

function 𝐶(𝑝𝑐 − 𝑝)𝛽𝑠 , where 𝛽𝑠 ≈ 0.74(2). This is somewhat different from the

3D percolation value of 𝛽𝑠,perc ≈ 0.85. The value of 𝛽𝑠 is quite sensitive to

the value of 𝑝𝑐 ; we estimate that to obtain 𝛽𝑠 ≈ 0.85 one would have to have

𝑝𝑐 ≈ 0.318, which does not seem tenable given the clear crossing point in 𝐼3

(see inset of Fig. 5.4). There are also some small deviations from the scaling

around 𝑝 ≈ 𝑝𝑐 , but these seem to decrease with system size. We therefore

tentatively conclude that the surface critical exponent 𝛽𝑠 may also differ from

3D percolation. The fact that we observe both the surface exponents 𝛽𝑠 and
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𝜂∥ to be smaller than the corresponding values from percolation is consistent

with the scaling relation 2𝛽𝑠 = 𝜈(𝐷 − 2 + 𝜂∥), where 𝐷 = 3 is the number of

spacetime dimensions.
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Figure 5.9: Extracting the exponents 𝛽 and 𝛽𝑠 using the entropy 𝑆ancilla of an ancilla
qubit which is maximally entangled with a bulk qubit at a time 𝑡0, and
then further evolved for a time 𝑡 = 2𝐿. (a) The bulk exponent 𝛽 is
extracted using 𝑡0 = 2𝐿. The black dashed curve shows the function
𝐵(𝑝𝑐 − 𝑝)𝛽 where 𝐵 ≈ 3.2 and 𝛽 ≈ 0.40(1). (b) The surface exponent 𝛽𝑠 is
extracted using 𝑡0 = 0. There the black dashed curve shows the function
𝐶(𝑝𝑐 − 𝑝)𝛽𝑠 where 𝐶 ≈ 4.6 and 𝛽𝑠 ≈ 0.74(2). In both cases, 𝑝𝑐 ≈ 0.312 is
fixed by finite-size scaling of 𝐼3. This dataset consists of 1 × 104 circuit
realizations.
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5.4 Entanglement clusters
Finally, with the aim of further exploring connections with percolation,

we investigate entanglement clusters in the steady state. Working within

the graph-state framework for simulating stabilizer states, we define an

entanglement cluster in the graph-theoretic sense: two spins are in the same

cluster if there is a connected path between them (see Fig. 5.2 for an example).

We will mainly study the size 𝑠 of the clusters, defined for a given cluster

as the number of spins it contains. This is clearly quite a coarse-grained

notion of entanglement, since different spins in the same cluster can be

entangled by different amounts. Nonetheless, it provides some insight into

how multipartite is the steady-state entanglement.

If we assume that there is a percolation-like statistical mechanical model

controlling the critical point, then naively one would expect the scaling

of the entanglement clusters to be controlled by surface exponents of (𝑑 +
1)-dimensional percolation. We will focus on two quantities, the largest

entanglement cluster size 𝑠max, and the mean entanglement cluster size 𝑠.

Within the percolation language, these correspond to the ‘surface area’ of the

infinite percolating cluster (assuming the largest surface cluster coincides

with the largest bulk cluster), and the mean ‘surface area’ of clusters with at

least one site on the surface, where by ‘surface area’ we mean the number of

sites in the cluster that lie on the surface. In a (𝑑+ 1)-dimensional percolation

model with finite linear extent 𝐿, these should scale as 𝑠max/𝐿𝑑 ∼ 𝐿−𝛽𝑠/𝜈 and

𝑠 ∼ 𝐿𝛾1,1/𝜈 respectively.

To check this naive expectation, we first analyzed the scaling of entangle-

ment clusters within the projective transverse field Ising model (PTFIM), as

discussed in more detail in Section 5.D. This is a measurement-only model

exhibiting an entanglement transition which is known to be in the percolation

universality class [92]. Conveniently, it also only involves Clifford operations,

so can be simulated using the graph-state framework, and therefore provides
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a useful testbed for the scaling properties of the entanglement clusters. The

results are summarized in Fig. 5.D1, where we show data for the mean cluster

size and largest cluster size for the PTFIM in both 1+1D and 2+1D. In 1+1D,

these quantities both scale as power-laws with exponents closely matching the

expected values from surface 2D percolation. In 2+1D, the largest cluster size

also follows a power-law closely matching the expectation from surface 3D

percolation. The mean cluster size appears to have a slightly larger exponent

than expected, but it is possible that this discrepancy is due to significant

finite-size effects, as we discuss in more detail in Section 5.D. Nonetheless,

taken as a whole we believe these results provide reasonable evidence to

suggest that if the critical circuit dynamics has a simple geometric map to

percolation, as in the PTFIM, then we should expect the scaling of the entan-

glement clusters to be controlled by surface exponents of (𝑑 + 1)-dimensional

percolation.

In fact, we will see that the critical properties of the entanglement clusters

in the steady-state of the random Clifford circuits scale with exponents

quite distinct from those of surface (𝑑 + 1)-dimensional percolation. Several

of them are controlled by exponents close to those of bulk 𝑑-dimensional

percolation, but it is possible this could be a coincidence. We offer two

possible interpretations of these results. First, this could be further evidence

that the measurement-induced transition in random Clifford circuits on

qubits is in a distinct universality class to percolation, which is the conclusion

of several recent studies [72, 76, 138]. Second, lessons from Haar-random

circuits [75] suggest that, even if a map to percolation does exist in certain

limits, it may be highly non-trivial, and in particular may not have a simple

geometric interpretation as for the PTFIM and the Hartley entropy in Haar

circuits [68]. As a consequence it is less obvious that the critical properties of

the entanglement clusters in random Clifford circuits should be controlled by

the surface exponents 𝛽𝑠 and 𝛾1,1 that are relevant for models that do have a

simple geometric map to percolation.
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Before we go into more detail, we make a brief comment about notation. As

we just discussed, in the absence of a simple geometric map to percolation, it

is not obvious that the mean and largest cluster sizes should be controlled by

the surface exponents 𝛾1,1 and 𝛽𝑠 as they are in the PTFIM. For this reason

we will label exponents for the entanglement clusters with the subscript 𝑒𝑐,

and do not claim that they should necessarily match the exponents 𝛾1,1 and

𝛽𝑠 in all models.

To find the entanglement clusters, we employ a breadth-first search on the

graph storing the steady state [151]. Fig. 5.10 shows the behavior of the

average cluster size 𝑠 =
∑

𝑠 𝑛𝑠𝑠
2/∑𝑠′ 𝑛𝑠′𝑠

′, where the cluster number 𝑛𝑠 is the

number of clusters of size 𝑠 normalized by the system volume 𝐿𝑑. Note that

this quantity measures the average cluster size if sites are randomly selected

with equal probability—if instead clusters are randomly selected with equal

probability then the corresponding average is
∑

𝑠 𝑛𝑠𝑠/
∑

𝑠′ 𝑛𝑠′. Assuming

critical scaling of the form 𝑠 ∼ 𝐿𝛾𝑒𝑐/𝜈, the inset to Fig. 5.10a shows a log-log

plot of this quantity for 1+1D Clifford circuits, with a fitted exponent of

𝛾𝑒𝑐/𝜈 ≈ 0.95(1) shown by the solid red line, close to the value of 𝛾/𝜈 = 1 for

1D bulk percolation [147], and far from the value 𝛾1,1/𝜈 = 1/3 for surface 2D

percolation [152]. The analogous plot for 2+1D Clifford circuits is shown in

the inset to Fig. 5.10b, where the fitted exponent 𝛾𝑒𝑐/𝜈 ≈ 1.84(2) is close to

the value 𝛾/𝜈 = 43/24 ≈ 1.79 for bulk 2D percolation, and far from the value

𝛾1,1/𝜈 ≈ 0.060(12) for surface 3D percolation [152].
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Figure 5.10: The average size 𝑠 of all entanglement clusters in the steady-state for (a)
1+1D and (b) 2+1D Clifford circuits. The insets show log-log plots of
this quantity at 𝑝 = 𝑝𝑐 , with the behaviour well described by the power
law 𝑠 ∼ 𝐿𝛾𝑒𝑐/𝜈, where 𝛾𝑒𝑐/𝜈 = 0.95(1) for 1+1D and 𝛾𝑒𝑐/𝜈 = 1.84(2) for
2+1D (power-law fits shown in solid red).
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Fig. 5.11 shows the average over circuit realizations of the size 𝑠max of the

largest steady-state cluster in each realization, as a fraction of system size.

This is a measure of the surface fractal dimension 𝑑 𝑓 of the infinite cluster

since by definition 𝑠max ∼ 𝐿𝑑 𝑓 ∼ 𝐿𝑑−𝛽𝑠/𝜈. The inset to Fig. 5.11a shows a

log-log plot of 𝑠max(𝑝𝑐)/𝐿𝑑 ∼ 𝐿−𝛽𝑒𝑐/𝜈 for 1+1D Clifford circuits, which is well

described by the fitted exponent 𝛽𝑒𝑐/𝜈 ≈ −0.009(2). This is close to the value

𝛽/𝜈 = 0 for 1D bulk percolation, and far from the exponent 𝛽𝑠/𝜈 = 1/3 for

surface 2D percolation. In 2+1D, we find that there are significant finite-size

effects affecting the scaling of the largest cluster size. For small system sizes,

𝐿 ⪅ 32, the power-law exponent is close to the bulk 2D percolation exponent

𝛽/𝜈 = 5/48 ≈ 0.10, but this appears to be a finite-size effect. At larger system

sizes the exponent saturates to approximately zero, with the fitted value

𝛽𝑒𝑐/𝜈 ≈ 0.00(2), which is very far from the surface 3D percolation exponent

of 𝛽𝑠/𝜈 ≈ 0.97 [153].
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Figure 5.11: The average size 𝑠max of the largest entanglement cluster in the steady
state for (a) 1+1D and (b) 2+1D Clifford circuits. The insets show log-log
plots of this quantity at 𝑝 = 𝑝𝑐 , with the behavior well described by
the power law 𝑠max(𝑝𝑐)/𝐿𝑑 ∼ 𝐿−𝛽𝑒𝑐/𝜈, where 𝛽𝑒𝑐/𝜈 = −0.009(2) for 1+1D
and 𝛽𝑒𝑐/𝜈 = 0.00(2) for 2+1D (power-law fits shown in solid red). Note
there are strong finite-size effects in 2+1D, so there the fit is only to sizes
𝐿 ≥ 40.
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Figure 5.12: Distribution function 𝑛𝑠 of the entanglement cluster sizes 𝑠 in the 𝑝 = 𝑝𝑐
steady state for (a) 1+1D and (b) 2+1D Clifford circuits, with system
sizes 𝐿 = 348 and 𝐿2 = 482 respectively. For 1 ≪ 𝑠 ≪ 𝐿𝑑, the probability
distribution follows a power-law distribution 𝑛𝑠 ∼ 𝑠−𝜏(𝑐0 + 𝑐1𝑠

−Ω) with
the leading-order correction to scaling controlled by the exponent Ω.
The dashed and dotted lines show fits using the exponents from 𝑑-
and (𝑑 + 1)-dimensional percolation respectively. The peak at large 𝑠

corresponds to the percolating cluster of size 𝒪(𝐿𝑑) present for 𝑝 ≤ 𝑝𝑐 .
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Finally, in Fig. 5.12 we show the distribution 𝑛𝑠 of all cluster sizes 𝑠, which at

𝑝 = 𝑝𝑐 and for 1 ≪ 𝑠 ≪ 𝐿𝑑 follows a power-law 𝑛𝑠 ∼ 𝑠−𝜏(𝑐0 + 𝑐1𝑠
−Ω + · · · ),

with the leading-order correction to scaling controlled by the exponent Ω. A

comment on this scaling form is necessary if we are to make a comparison with

1D percolation. As noted above, for 1D percolation the critical probability

is 𝑝𝑐 = 1. This has the consequence that, strictly at 𝑝 = 𝑝𝑐 , there is only a

single cluster which covers the whole system, 𝑠max = 𝐿, so for cluster sizes

𝑠 < 𝑠max the cluster number 𝑛𝑠 = 0. Nonetheless, one can meaningfully

define the Fisher exponent 𝜏 by analyzing the behavior of 𝑛𝑠 for 𝑝 < 𝑝𝑐 ,

where one finds 𝜏 = 2 for 1D percolation. However, a key difference between

the 1+1D hybrid quantum circuits we study and 1D percolation is that for

the quantum circuits, 1 − 𝑝𝑐 ≈ 0.84 is different from unity, so there is still

randomness at the critical point, and thus we can observe a full distribution

of cluster sizes. This provides justification for continuing to use the scaling

form 𝑛𝑠 ∼ 𝑠−𝜏(𝑐0 + 𝑐1𝑠
−Ω + · · · ) to describe the cluster distribution function

in 1+1D hybrid circuits.

In this case, it is harder to distinguish the behavior of 𝑑- and (𝑑+1)-dimensional

percolation, since the exponents for the leading term, 𝜏1D = 2, 𝜏2D = 187/91 ≈
2.05 [147] and 𝜏3D ≈ 2.19 [145], are all quite similar in magnitude. Indeed

both 𝜏1D and 𝜏2D provide a reasonable fit to our 1+1D data (see Fig. 5.12a), and

both 𝜏2D and 𝜏3D provide a reasonable fit to our 2+1D data (see Fig. 5.12b). An

independent statistical bootstrap analysis [154] gives the exponents 𝜏 ≈ 2.04

and Ω ≈ 0.15 in 1+1D, and 𝜏 ≈ 1.98 and Ω ≈ 1.04 in 2+1D. However, it is hard

to call these values physically meaningful, since allowing for variation in the

scaling correction exponent Ω provides considerable freedom to optimize

the quality of the fit. What is at least clear is that the Fisher exponent 𝜏 is

close to values predicted by percolation theory in low dimensions, since our

fitted values are far from the mean-field value 𝜏 = 2.5.

We conclude this section by noting that the entanglement cluster distribution

is qualitatively similar to the stabilizer length distribution (SLD) introduced
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by Li, Chen and Fisher in Ref. [70]. Indeed, both have a power-law tail,

and a volume-law peak which disappears upon entering the area-law phase.

Furthermore, at criticality the exponent 𝜏 of the power-law tail is close to 2

in both cases. In 1+1D the SLD has the nice property that it can be used to

calculate the entanglement entropy itself—for example, a power-law exponent

of 2 gives rise to a subleading log 𝐿 contribution to the entanglement entropy.

However, it is not clear how to generalize the SLD to higher dimensions in a

way that preserves this ability to calculate the entanglement entropy from the

analogous ‘stabilizer volume distribution’. From the entanglement cluster

distribution we analyze here, it is possible to calculate the entanglement

entropy provided one makes certain simplifying assumptions about the

fractal structure of the entanglement clusters, but we defer further analysis

of this link to future work.

5.5 Discussion
We have provided an extensive study of the critical properties of the

measurement-induced transition in 2+1D Clifford circuits. Analogously

to the situation in 1+1D, we have found several bulk critical exponents which

are within error-bars of those from 3D percolation, but there appear to be

some differences in surface behavior. We should note that these critical expo-

nent estimates should be treated with some amount of caution, especially

for small system sizes, as conformal field theories with zero central charge

(like those appearing in current theories of the 1+1D transition [75]) can have

logarithmic corrections to scaling [155, 156], which could result in systematic

errors.

Nonetheless, focusing on this surface behavior, we studied the critical scaling

of entanglement clusters in the steady state, and found that — in contrast

to models with a simple geometric map to percolation — Clifford circuits

have entanglement cluster exponents which differ significantly from those

of surface percolation. We take this as evidence that in 1+1D and 2+1D the
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measurement-induced transition in qubit Clifford circuits is in a distinct

universality class from percolation.

Presumably the entanglement clusters are governed by surface exponents

of the as yet unknown (𝑑 + 1)-dimensional statistical mechanical model

applicable to Clifford circuits. It remains a significant question why the

bulk exponents of this model look so much like those of percolation, even

though this system is far from where the percolation picture should be

applicable. There have been recent developments in the machinery required

to average over random Clifford unitaries [157], which should prove helpful in

developing this statistical mechanical model. However, the reduced structure

relative to Haar-random unitaries makes it less obvious how to perform the

replica limit required to give the correct critical physics.

We have also shown the coincidence of the purification transition and the

entanglement transition in 2+1D. This may at first be surprising, given that

the entanglement transition concerns spatial correlations between equal-time

wavefunctions, while the purification transition concerns correlations in

time of a non-local quantity. The results in this paper indicate that these

two transitions may coincide in all dimensions. One possible explanation

for this could be the conjecture of Ref. [76] that the non-unitary nature of

the dynamics results in the real time coordinate in 𝑑 spatial dimensions

acting as imaginary time in the corresponding (𝑑 + 1)-dimensional statistical

mechanical model. In this sense space and time may become symmetric, so

the coincidence of the entanglement transition and the purification transition

would be less surprising. The coincidence of these transitions and our

entanglement cluster analysis also suggest a way to investigate connections

with quantum error-correction—the emergence of the critical entanglement

cluster can be seen as the germination of the quantum error-correcting code

that characterizes the stability of the volume-law phase.

Moving into higher dimensions raises several questions. One interesting
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direction is that of ‘measurement-protected order’ [78, 79], analogous to the

‘localization-protected order’ afforded by many-body localization (MBL) [158,

159]. It is tempting to view the area-law side of the measurement-induced

transition as a ‘trivial’ phase, but recent work has demonstrated that there

can be stable symmetry-protected topological (SPT) order in the area-law

phase, motivated by comparisons with the area-law ground states of gapped

Hamiltonians. However, it is only in dimensions 𝑑 ≥ 2 that true topological

order can exist [160], so it would be interesting to see if non-trivial topological

order could be realized in the steady states of 2+1D hybrid quantum circuits.

There is also the question of which types of order can be stabilized by

measurements. There are significant constraints on possible phases stabilized

by MBL: non-Abelian symmetries are forbidden [161], for example, as well as

chiral order [162]. It is also possible that true MBL does not exist in 𝑑 > 1 [163].

It is an important topic for future research to determine which restrictions,

if any, are applicable to measurement-protected order. This may allow for

considerably more freedom in the more general paradigm of understanding

and classifying non-equilibrium phases of matter.
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Figure 5.A1: (a) The steady-state values of 𝐼3/𝐿 as a function of (𝑝 − 𝑝𝑐)𝐿1/𝜈, where
𝑝𝑐 ≈ 0.303 and 𝜈 ≈ 1.07. The inset shows the uncollapsed data. This
dataset consists of 50,000 circuit realizations. (b) Analogous to Fig. 5.8a,
except performed at the alternative critical point 𝑝𝑐 ≈ 0.303 estimated
from the data collapse of 𝐼3/𝐿. The main plot shows the ‘optimal’
collapse at 𝜂 = −0.57 as determined by minimizing the cost function in
Section 5.B, but this clearly does not produce a good data collapse.

5.A Alternative scaling forms for 𝐼3
In this section we detail some evidence against the hypothesis that 𝐼3 ∼ 𝒪(𝐿)
at 𝑝 = 𝑝𝑐 . Finite-size scaling of 𝐼3/𝐿 results in the critical point 𝑝𝑐 ≈ 0.303 with

𝜈 ≈ 1.07 (see Fig. 5.A1a). However, if we attempt to use this critical point to

estimate other critical exponents from standard finite-size scaling arguments,

we are unable to obtain a good data collapse, indicating the absence of scaling

behavior. For example, to extract the anomalous scaling exponent 𝜂, we

follow the procedure detailed in Section 5.3, where 𝜂 is chosen to optimize

the data collapse of the dynamics of the mutual information between two

ancilla qubits. Whereas this was possible for the critical point 𝑝𝑐 ≈ 0.312

obtained from finite-size scaling of 𝐼3 (see Fig. 5.8a), for the purported critical

point 𝑝𝑐 ≈ 0.303 from 𝐼3/𝐿 scaling, there was not a value of 𝜂 for which a

good data collapse was possible (see Fig. 5.A1b). Moreover, the data collapse

in Fig. 5.A1a is of visibly worse quality than the excellent collapse in Fig. 5.4.

We also see in Section 5.3 that the purification transition seems to coincide

with the critical point 𝑝𝑐 ≈ 0.312 from 𝐼3 scaling, with a dynamical critical

exponent 𝑧 ≈ 1 indicating the emergence of conformal symmetry. Given

that these facts mirror the situation in 1+1D, this provides further a posteriori

justification for the scaling 𝐼3 ∼ 𝒪(1) at criticality.
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Figure 5.B1: (a) The logarithm of the cost function 𝜖 measuring the quality of the data
collapse for different values of 𝑝𝑐 and 𝜈, compared between two possible
indicators of the entanglement transition: the half-plane entanglement
entropy 𝑆(𝐿/2), and the tripartite information 𝐼3. The black dots show
the minimum of the cost function for each indicator. See the appendix
for a definition of the cost function 𝜖. (b) A linear-scale close-up of
the cost function for the 𝐼3 data collapse around the estimated critical
point, which is indicated by the black dot. The white line indicates the
boundary of the region for which the cost function is less than 2 times
its minimum value; this is the region from which the error bars are
calculated. At the estimated critical point the cost function attains the
value 𝜖 = 1.47, close to the optimal value 𝜖 ≈ 1.

5.B Details of the finite-size scaling

To perform the data collapses, we use a cost function 𝜖(𝑝𝑐 , 𝜈) which uses

linear interpolation to find the parameters (𝑝𝑐 , 𝜈) which cause the data to best

collapse on to a single curve [72, 143]. In more detail, given a set of parameters

(𝑝𝑐 , 𝜈), for each value of 𝑝 and 𝐿 we create an 𝑥-value 𝑥 B (𝑝 − 𝑝𝑐)𝐿1/𝜈, with

a corresponding 𝑦-value 𝑦(𝑝, 𝐿) and error 𝑑(𝑝, 𝐿). We then sort the triples

(𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖) according to their 𝑥-values, and evaluate the cost function

𝜖(𝑝𝑐 , 𝜈) B
1

𝑛 − 2

𝑛−1∑
𝑖=2

𝑤(𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖 |𝑥𝑖−1, 𝑦𝑖−1, 𝑑𝑖−1, 𝑥𝑖+1, 𝑦𝑖+1, 𝑑𝑖+1), (5.9)
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where 𝑤(𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖 |𝑥𝑖−1, 𝑦𝑖−1, 𝑑𝑖−1, 𝑥𝑖+1, 𝑦𝑖+1, 𝑑𝑖+1) is defined as

𝑤 B

(
𝑦 − 𝑦̄

Δ(𝑦 − 𝑦̄)

)2
, (5.10)

𝑦̄ B
(𝑥𝑖+1 − 𝑥𝑖)𝑦𝑖−1 − (𝑥𝑖−1 − 𝑥𝑖)𝑦𝑖+1

𝑥𝑖+1 − 𝑥𝑖−1
, (5.11)

|Δ(𝑦 − 𝑦̄)|2 B 𝑑2
𝑖 +

(
𝑥𝑖+1 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖−1

)2
𝑑2
𝑖−1 +

(
𝑥𝑖−1 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖−1

)2
𝑑2
𝑖+1. (5.12)

The function 𝑤 measures the deviation of a point from the line obtained

by a linear interpolation of its nearest neighbours, weighted by the errors

in each data point. Values of (𝑝𝑐 , 𝜈) for which 𝜖(𝑝𝑐 , 𝜈) ≈ 1 are considered

optimal.

As discussed in Section 5.2, our finite-size scaling analysis yields the corre-

lation length exponent 𝜈 ≈ 0.85(9), which is significantly different to that

observed in Ref. [84]. We attribute this to the fact that we extract 𝜈 by a

data collapse not of the half-plane entanglement, as in Ref. [84], but of the

tripartite information, which coincides for different system sizes at the critical

point and so provides a much more accurate estimator of the critical point.

To further this point, we show in Fig. 5.B1a a comparison of the cost function

𝜖(𝑝𝑐 , 𝜈) landscape in log scale between the half-plane entropy 𝑆(𝐿/2 × 𝐿)
and the tripartite information 𝐼3. The entropy cost function plot shows a

clear ‘ridge’ region where 𝜖 is roughly constant, spanning the whole range of

values of 𝑝𝑐 and with a large variation of 𝜈 along the ridge (see also Fig. 2 in

the Erratum of Ref. [84]). On the other hand, the 𝐼3 cost function plot is much

more localized around the estimated critical parameters, reaching a smaller

value of 𝜖 than the entropy plot. This localization is less obvious viewed in

log scale, but the log was necessary for a meaningful visual comparison of

the cost function plots for the two indicators. Fig. 5.B1b shows a linear-scale

version of the cost function plot for 𝐼3, which allows for a clearer visualization

of the localization of the cost function minimum. The estimated critical point

is indicated by the large black dot, while the surrounding white line gives
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Figure 5.C1: The dynamics of the half-plane von Neumann entropy at the critical
point 𝑝𝑐 = 0.312 of the 2+1D Clifford model. (a) The data are not
linear on a log scale, indicating that the entanglement growth is not
logarithmic in time (system size is 𝐿 = 92). (b) A plot of 𝑆(𝑡 , 𝐿/2)/𝐿
as a function of 1/𝑡, where the linear trend provides support for the
scaling 𝑆(𝑡 , 𝐿) ∼ 𝐿(1− 𝑎/𝑡). (c) Scaling collapse of 𝑆(𝑡) − 𝑏𝐿 vs 𝑡/𝐿, with
𝑏 = 0.685 producing the best fit.

the boundary of the region where the cost function is less than 2 times its

minimum value, from which we calculate the error bars in 𝑝𝑐 and 𝜈. Notice

that at the estimated critical point, the cost function reaches a value 𝜖 = 1.47

close to 1, indicating a good-quality data collapse.

Furthermore, a comment on the used system sizes is necessary. One could

argue that the 4 subsystems used to calculate 𝐼3 have the vertical dimension

𝐿𝑦 ≤ 8, which may be small enough to exhibit substantial finite-size effects,

hindering our ability to properly locate the critical point. However, 𝐼3 in 1+1D

circuits shows almost no finite-size drift at criticality already for systems

of size 𝐿 ≥ 16 [72] (subsystems of size ≥ 4). Using our data from Fig. 5.4,

one can assess that the crossings of 𝐼3 exhibit no statistically significant drift

above roughly 𝐿 ≥ 16, strongly implying little to no finite-size effects in 𝐼3 at

criticality for the system sizes considered. We also note that the data collapse

is of exceptional quality, again strongly ruling out any substantial finite-size

drifts.

5.C Critical entanglement dynamics
In Fig. 5.C1 we plot the dynamics of the half-plane von Neumann entropy

at the 2+1D critical point 𝑝𝑐 = 0.312. Because the entanglement is relatively

small at the critical point, we are able to simulate a large system with linear



5.D. Entanglement clusters in the projective transverse field Ising model 121

size 𝐿 = 92. In Fig. 5.C1a the time axis is on a logarithmic scale, and we can

see that the data do not appear linear on this scale, thereby demonstrating

that the entanglement growth is not logarithmic in time. Note that we are

plotting here the window-averaged entropy, averaged over a window of 4

timesteps, which is why there is not data at every timestep. This is to remove

a periodicity effect related to how often the Clifford gates cross the cut used

to define the entanglement entropy, as discussed in Section 5.1.2A.

As we discuss in Section 5.2, we instead argue that the entanglement growth

scales as 𝑆(𝑡 , 𝐿) = 𝑏𝐿(1 − 𝑎/𝑡) in 2+1D, where 𝑎, 𝑏 are some 𝒪(1) constants.

Evidence for this is shown in Fig. 5.C1b, where the data appears approximately

linear when plotted as a function of 1/𝑡. Note that the data appears linear

on this scale, with the straight lines showing linear fits. The gradients and

y-intercepts of these fits are approximately the same for different system

sizes, supporting the idea that 𝑎 and 𝑏 are 𝒪(1) constants. Note that we

only expect this scaling to hold for intermediate times, so there are some

deviations from this behavior at early times. Finally, in Fig. 5.C1c, we show

a data collapse of 𝑆(𝑡) − 𝑏𝐿 vs 𝑡/𝐿 with 𝑏 = 0.685, supporting the scaling

ansatz 𝑆(𝑡) − 𝑏𝐿 ∼ 𝑓 (𝑡/𝐿) consistent with a dynamical critical exponent of

𝑧 = 1.

5.D Entanglement clusters in the projective trans-

verse field Ising model
The projective transverse field Ising model (PTFIM) is a measurement-

only model exhibiting an entanglement transition which is known to be in

the percolation universality class [92]. Conveniently, it also only involves

Clifford operations, so can be simulated using the graph-state framework,

and therefore provides a useful testbed for the scaling properties of the

entanglement clusters we analyze in Section 5.4.

Referring the reader to Ref. [92] for the full details, the PTFIM is defined as
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Figure 5.D1: The mean cluster size 𝑠 and largest cluster size 𝑠max/𝐿𝑑 for the projective
transverse field Ising model in 1+1D (left column) and 2+1D (right
column). These should scale as 𝑠 ∼ 𝐿𝛾1,1/𝜈 and 𝑠max/𝐿𝑑 ∼ 𝐿−𝛽𝑠/𝜈

respectively. The critical exponents are all close to the corresponding
surface critical exponents of percolation in (𝑑 + 1)-dimensions, with
the exception of the mean cluster size in 2+1D, as we discuss in the
main text.

follows. We define the model on a hypercubic lattice for simplicity. Each site

of the lattice contains a spin. The model involves two types of measurements:

on-site measurements of 𝜎𝑥 , and measurements of 𝜎𝑧𝜎𝑧 for spins connected

by an edge. The system is initialized in the product state |+⟩⊗𝑁 , where

|+⟩ = (|0⟩ + |1⟩)/
√

2. Then, at each timestep, for each site 𝑖 assign the variable

𝑥𝑖 = 1 with probability 𝑝 and 𝑥𝑖 = 0 otherwise, and for each edge 𝑒 connecting

spins 𝑖 and 𝑗, assign the variable 𝑧𝑒 = 1 with probability 1 − 𝑝 and 𝑧𝑒 = 0

otherwise. These variables determine the sites and edges on which the

observables 𝜎𝑥
𝑖

and 𝜎𝑧
𝑖
𝜎𝑧
𝑗

are measured. The edge observables are measured

first, followed by the site observables. On a 𝑑-dimensional hypercubic lattice,

this process maps on to bond percolation on a (𝑑+1)-dimensional hypercubic

lattice.

As previously, we focus on two properties of the surface clusters: the largest
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cluster size 𝑠max, and the mean cluster size 𝑠. In a system with 𝑑 spatial

dimensions and linear size 𝐿, these should scale as 𝑠max/𝐿𝑑 ∼ 𝐿−𝛽𝑠/𝜈 and

𝑠 ∼ 𝐿𝛾1,1/𝜈 respectively. Our results for the PTFIM in 1+1D and 2+1D

are shown in the left and right columns of Fig. 5.D1, where we perform

simulations up to 𝐿 = 800 and 𝐿 = 128 respectively. In 1+1D, the resulting

exponents for the entanglement clusters are 𝛾𝑒𝑐/𝜈 = 0.33(1) for the mean

cluster size and 𝛽𝑒𝑐/𝜈 = 0.332(2) for the largest cluster size. These are very

close to the corresponding surface exponents for 2D percolation, 𝛾1,1/𝜈 = 1/3

and 𝛽𝑠/𝜈 = 1/3. In 2+1D, the extracted exponent for the largest cluster size is

𝛽𝑒𝑐/𝜈 = 0.973(3), which is very close to the exponent 𝛽𝑠/𝜈 ≈ 0.9754(4) for 3D

percolation [153]. For the mean cluster size in 2+1D, the situation is less clear.

We extract an exponent for the entanglement clusters of 𝛾𝑒𝑐/𝜈 = 0.14(2). The

exponent 𝛾1,1 does not appear to be well documented for 3D percolation,

however, from the scaling relation 𝛾1,1/𝜈 = 𝑑 − 1 − 2𝛽𝑠/𝜈 [152, 164] we

estimate the value 𝛾1,1/𝜈 = 0.0492(8), which is not compatible within error

bars of the exponent 𝛾𝑒𝑐/𝜈. Nonetheless, it is very likely that there are

large finite size effects for this exponent — we have performed percolation

simulations (see Fig. 5.D2) to reproduce the quoted value for 𝛾1,1/𝜈, and

found that we had to be very careful with the subleading corrections to

scaling in order to get the correct exponent, even up to surprisingly large
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Figure 5.D2: The mean surface cluster size 𝑠 for the site percolation on a 2D square
lattice (left) and a 3D simple cubic lattice (right). Blue line is a fit to
𝑠 = 𝑎𝐿𝛾1,1/𝜈 for the largest system sizes, while the red line includes a
constant correction to scaling, 𝑠 = 𝑎𝐿𝛾1,1/𝜈+𝑏. Corresponding estimates
of 𝛾1,1/𝜈 are given in the legend.
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system sizes (𝐿 ≤ 640). Without accounting for the corrections, we obtain a

larger exponent, 𝛾1,1/𝜈 ∼ 0.206(2), while including a constant correction gives

𝛾1,1/𝜈 ∼ 0.049(10), a value close to the expectation from the scaling relation.

For the 2+1D Clifford circuit we have simulated up to 𝐿 = 128 at criticality,

but it is possible that there are still significant finite size corrections to 𝛾𝑒𝑐/𝜈
that are not captured by the statistical error bars we quote here. It, however,

needs to be noted that there are relatively large error bars on 𝑠 for PTFIM in

2+1D which could conceal finite size effects, while the corresponding results

for Clifford circuit have smaller error bars and seem to exhibit small finite

size effects.
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