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Abstract—This paper proposes a spectral entropy-based 

voice activity detection method, which is computationally 

efficient for hearing aids. The method is highly accurate at low 

SNR levels by using the spectral entropy which is more robust 

against changes of the noise power. Compared with the 

traditional fast Fourier transform based spectral entropy 

approaches, the proposed method of calculating the spectral 

entropy using the outputs of a hearing aid filter-bank 

significantly reduces the computational complexity. The 

performance of the proposed method was evaluated and 

compared with two other computationally efficient methods. 

At negative SNR levels, the proposed method has an accuracy 

of more than 5% higher than the power-based method with the 

number of floating-point operations only about 1/100 of that of 

the statistical model based method.  

Keywords— Hearing aids, speech processing, spectral 

entropy, voice activity detection.  

I. INTRODUCTION 

Voice activity detection (VAD) is one of the essential 
modules of speech signal processing tasks. In the case of 
speech enhancement, VAD can be used to update the 
characteristics of the noise in specific speech enhancement 
algorithms or optimize the noise reduction strategy over 
different noise conditions. In hearing aids, noise adaptive 
speech enhancement requires VAD to update the noise 
information [1]. 

Earlier VAD methods are mostly based on energy levels 
[2], zero crossing rate [3], or cepstral feature [4] of the 
sampled audio signal. More advanced model-based methods 
focus on estimating a statistical model for the noisy signal 
[5]. However, these methods mainly rely on tracking the 
power of the signal, leading to a low estimation accuracy at 
low signal (speech) to noise ratio (SNR) levels. Recently, 
spectral entropy (SpE) has been developed for VAD [6], [7], 
[8]. Since SpE is more robust against the changes of noise 
level and more effective in expressing the characteristics of 
speech signals, it has a higher accuracy at low SNRs [8]. As 
a trade-off, the computational complexity is increased 
because of the signal spectrum calculation. More recently, 
machine learning based approaches [9], [10] have shown 
promising results in various noise conditions. However, the 
training and implementation of robust models requires a 
large amount of computational resource that often has 
implementation issues on remote devices. 

Hearing aids often use VAD as part of their speech 
enhancement algorithms for speech intelligibility 
improvement, which is particularly challenging at negative 
SNRs. The design of VAD with high accuracy at negative 
SNRs is of particular interest. However, the computational 
resources of hearing aids are limited due to their small form 
factor (size)and power constraints. Their clock often works 
at very low rates to minimize power consumption. Hearing 
aids demand processing delays within a few milliseconds 
and reduces the number of frequency bands [11]. In addition, 
VAD is implemented with speech enhancement algorithms 
requiring more computational resources. In practice, the 
machine learning or complex spectrum analysis based VAD 
methods are often not applicable in hearing aids. 

This paper presents a computationally efficient SpE 
based VAD. In contrast to conventional SpE methods which 
use the fast Fourier transform (FFT) to calculate the 
frequency bins, the proposed method calculates the SpE 
using the outputs of the hearing aid filter-bank with a small 
number of frequency bands and lower spectral resolution. 
The VAD classification threshold is the mean value of SpE 
for acquiring high accuracy at low SNR levels [8]. To be 
applicable in various noise conditions, the classification 
threshold is automatically adapted according to the 
background noise. The detection accuracy and 
computational efficiency of the proposed method are 
evaluated and compared with other computationally efficient 
VAD methods. The rest of the paper is organized as follows. 
Section II introduces the details of the SpE based VAD. 
Section III describes the method, dataset and parameters 
used for evaluation. The evaluation results are presented in 
Section IV and concluding remarks are drawn in Section V. 

II. SPECTRAL ENTROPY-BASED VAD 

A. Problem Formulation  

The voice activity detection is considered as a 
segmentation problem in which the short frames of a 
sampled noisy speech signal are classified as frames that 
contain speech (speech frames) and frames that only contain 
noise (nonspeech frames). This is based on the assumption 
that natural speech is connected with silent pauses [12]. In 
real acoustic environments, clean speech is contaminated by 
continuous noise. Thus, the speech pauses would only 
contain noise that can be classified in a frame-by-frame 
process. The sampled noisy speech signal 𝑦(𝑖) is modelled as 
the sum of a clean speech signal  x(i) and a noise signal 𝑑(𝑖): 



𝑦(𝑖) = 𝑥(𝑖) + 𝑑(𝑖)                              (1) 

where i denotes the sample index. 

B. Calculating the Spectral Entropy Using Filter-Bank 

Outputs  

The conventional SpE based approaches [8], [13] use the 
probability associated with spectral energy of each frequency 
bin of the FFT. In contrast the proposed method uses the 
instantaneous power of the signal in each frequency band of 
the filter-bank [14] to calculate the probability. In SpE based 
approaches, most of the computational resources calculate 
the spectral characteristics of the noisy speech. Since the 
outputs of the original filter-bank in the hearing aid are 
directly used, computational complexity is significantly 
reduced. Previous work [15] has already shown that a 
nonlinear filter-bank based SpE can be used for SNR 
estimation with high accuracy in various noise conditions. 
The present paper demonstrates a linear filter-bank based 
SpE with a broader range of applications for different types 
of hearing aid.  

The present paper uses a filter-bank comprising 10 
frequency bands (fourth-order Butterworth band-pass filter) 
was used similar to that in a hearing aid model [16] which 
simulates the process of human auditory for speech 
enhancement. The central frequencies (CFs) and the 
bandwidth of the filter-bank follow the settings in [15]. The 
CFs of the band-pass filters were logarithmically spaced 
between 250 Hz and 8000 Hz [17], and the bandwidths 
(BWs) were calculated using the equivalent rectangular 
bandwidth (ERB) equation in [18]. As shown in Fig. 1, the 
filter-bank outputs show that the spectrum of the clean 
speech is more concentrated at lower frequency range than 
that of the noise. It indicates that the outputs of the filter-bank 
with low spectral resolution is able to reflect the spectral 
differences between clean speech and noise. 

To calculate the SpE, the power present probability 
𝑝(𝑘, 𝑖)  in frequency band 𝑘  at the sampling index 𝑖  is 
calculated by normalizing the instantaneous spectral power 
across all frequency bands:  

𝑝(𝑘, 𝑖) =
𝑆(𝑘,𝑖)

∑ 𝑆(𝑙,𝑖)𝐾
𝑙=1

       𝑘 ∈ {1,2,3, … , 𝐾}         (2) 

where the instantaneous power 𝑆(𝑘, 𝑖) is defined by: 

𝑆(𝑘, 𝑖) = |𝑌(𝑘, 𝑖)|2                             (3) 

where 

𝑌(𝑘, 𝑖) = 𝐹(𝑘, 𝑖) ∗ 𝑦(𝑖).                        (4) 

𝐹(𝑘, 𝑖)  is the transfer function of the band-pass filter for 
frequency band 𝑘 , and 𝐾  is the total number of frequency 
bands in the filter-bank. Based on the equation used in [15], 
the SpE [h(i)] at sampling index 𝑖 is defined by: 

ℎ(𝑖) = − ∑ 𝑤𝑓𝑘  [𝑝(𝑘, 𝑖)𝑙𝑜𝑔2
𝐿
𝑘=1 𝑝(𝑘, 𝑖)].            (5) 

In contrast to [15], the present study smoothes ℎ(𝑖)  over 
time. This is because the SpE has a large number of 
variations (as shown in Fig. 2). A sudden rise of the SpE 
would increase the VAD detection errors. Smoothing was 
applied using a first-order recursive function: 

ℎ(𝑖) = 𝜆ℎ(𝑖 − 1) + (1 − 𝜆)ℎ(𝑖).……..……… (6) 

As shown in Fig. 2(b) the smoothed SpE of the speech 
signal is very different to that of the nonspeech signal. The 
mean value (over time) of the spectral entropy (MSpE) is 
used as a threshold for classification of speech and non-
speech frames. The MSpE (ℎ̅(𝑗)) of frame 𝑗 can be calculated 
by: 

ℎ̅(𝑗) =
1

𝑀
∑ ℎ𝑗(𝑖)𝑀

𝑖=1                            (7) 

where 𝑀 is the total number of the sampling points over the 
frame. In this study, the frame length was 10 ms. 

C. Adaptive VAD Threshold  

The proposed VAD method is designed to operate on a 
frame-by-frame process. In each frame, the MSpE of the 
sampled frame is compared with the classification threshold. 
In order to adapt to the background noise changes, the 
classification threshold is continuously updated based on the 
MSpE of the newly sampled frame. If the sampled frame has 
a MSpE lower than the threshold, the threshold is updated by 
smoothing the previous threshold with the MSpE of the 
current frame; otherwise, the threshold is updated only 
according to the current frame. 

The threshold updating algorithm and nonspeech frame 
detection strategy were developed based on [2] which 
estimates the noise power in nonstationary noise by tracking 
the local minimum power. The approach in [2] was followed 
because it has lower computational cost and higher accuracy 
than other approaches [19], [20]. In contrast to [2], which 
tracks the local minimal power of the noisy speech, the 

 
Fig. 1. (a) The waveform consists of 32-talker babble, white, pink noise, 
and clean speech in sequence. (b) The corresponding spectrogram of the 

filter-bank outputs at the frequency range between 250 Hz and 8000 Hz. 

The filter-bank consists of 10 frequency bands and fourth-order 
Butterworth band-pass filters. 

 
Fig. 2. (a) The utterance “three three four” spoken by a female speaker 

in white noise at the SNR of 15 dB. (b) The corresponding SpE and the 
smoothed SpE. 



approach in the present paper tracks the local maximum 
MSpE instead because the SpE is more robust at low SNR 
levels. The classification threshold 𝑇(𝑗) is calculated as: 

𝑇(𝑗) = 

{
𝛼𝑇(𝑗 − 1) +

1 − 𝛼

1 − 𝛿
(ℎ̅(𝑗) − 𝛿ℎ̅(𝑗 − 1))    ℎ̅(𝑗) ≤ 𝑇(𝑗 − 1)   (8 − 𝑎)

𝜕ℎ̅(𝑗)                                                                  ℎ̅(𝑗) > 𝑇(𝑗 − 1)   (8 − b)
. 

The initial value of 𝑇 is ℎ̅(1).The classification strategy can 

be described by the following equation: 

𝑃(𝑗) = {
0                   ℎ̅(𝑗) ≤ 𝜀𝜌(𝑗 − 1) 

1                   ℎ̅(𝑗) > 𝜀𝜌(𝑗 − 1)
                  (9) 

where 𝑃(𝑗) is the speech presence probability of the short 

frame at index of 𝑗, 𝛿 and 𝛼 are factors used for regulating 

the threshold updating speed, and 𝜀  is the decision 

parameter. These smoothing parameters are used to control 

the updating speed of the threshold which are determined by 

the sample rate and the frame length [2]. The parameters 

were obtained based on practical tests. The smoothed SpE 

and the updated classification threshold are plotted along 

with the clean speech in Fig. 3. At a SNR of either 15 dB 

(left) or 0 dB (right), the smoothed SpE shows apparent 

decrease when there is a presence of speech envelope. The 

classification threshold shows reliable tracking of the noise 

SpE. 

D. Computaional Algorithm of the Proposed VAD Method 

The algorithm of the proposed VAD is summarized in 

Fig. 4. First, calculation of the SpE uses Eqs. (2)-(5). After 

smoothing [Eq. (6)], the MSpE of each frame is calculated 

[Eq. (7)]. Then, the classification threshold is updated using 

Eq. (8). Finally, classifying the current frame uses the criteria 

in Eq. (9).  

III. DATASET AND EVALUATION 

A. Dataset 

The proposed algorithm was evaluated using noisy 
speech generated by adding noise to clean speech. White 
noise, factory, 32-talker babble noise and 2 talker babble 
noise were used for generating noisy speech at SNR levels 
between 15 dB and -10 dB. The white and factory noise were 
drawn from NOISE92 dataset [21]. The 2- and 32-talker 
babble noise were generated by combining different IEEE 
speech sentences [15]. Each IEEE speech sentence was 
normalized at the same level. The clean speech was drawn 
from the AURORA corpus [22] with 100 utterances spoken 
by 25 male and 25 female speakers. The isolated utterances 
were connected to generate continuous noisy speech by 
adding a silent pause with random lengths between 0-0.4 s. 
The total length of the noisy speech was 160 s. The non-
speech frames of the noisy speech were manually labeled 
with a percentage of 46%. The sample rate was 16 kHz. 

B. Evaluation Method  

In order to evaluate the performance of the proposed 

algorithm, for each type of noise the correct detection 

probability (𝑃𝑐) and the incorrect detection probabilities (𝑃𝑖) 
at each SNR level were evaluated by following the procedure 

in [6]. 𝑃𝑐 is defined as: 

𝑃𝑐 =
𝑤𝑐

𝑁
                                              (10) 

where 𝑤𝑐 is the number of correctly detected frames and 𝑁 
is the total number of labeled speech frames. 𝑃𝑖 is defined 
as: 

𝑃𝑖 =
𝑤𝑖

𝑀
                                             (11) 

where 𝑤𝑖  is the number of incorrectly detected frames and 𝑀 

is the total number of both the speech and nonspeech frames. 
The VAD test was carried out for each 10 ms frame. The 
parameters used in the present study for evaluation are listed 
in Table I. These parameters are determined by the sample 
rate and frame length and are obtained based on practical 
tests [2]. 

TABLE I.  PARAMETERS USED IN THE EVALUATION   

Parameter Value Equation 

λ 0.9996 (6) 

α 0.998 (8) 

δ 0.9 (8) 

𝜕 0.999 (8) 

ε 0.92 (9) 

 

Fig. 4. The flow chart of the proposed VAD algorithm.  
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Fig. 3. The adaptive VAD threshold in comparing with the smoothed SpE and the clean speech (“three three four” spoken by a female speaker) in 

white noise at a SNR level of 15 dB (left) and 0 dB (right). 



IV. RESULTS 

A. VAD Accuracy 

This paper focuses on demonstrating a computationally 

efficient VAD method with relatively high accuracy. For 

comparison two algorithms having low computational 

resources [2],[5] were selected. Specifically, the VAD 

accuracy of the statistical model method [5], and power 

based method [2] in white , factory, 32-, and 2 talker babble 

noise were evaluated. The 𝑃𝑐  and 𝑃𝑖  of the evaluated 

methods are plotted as a function of the SNR level in Fig. 5. 

As shown, for white noise the accuracy of the proposed 

method is similar to that of the power and statistical model 

based methods with a 𝑃𝑐  of about 0.95. All the tested 

methods show an increase of 𝑃𝑐 with decreasing SNR due 

to the significant increase of 𝑃𝑖 at negative SNRs. The 𝑃𝑖 of 

the proposed method is about 0.04 higher than the power-

based method, particularly, at SNR of 5 dB and 0 dB. For 

factory noise, at SNRs of -10 dB, the 𝑃𝑐 of the proposed 

method is about 0.05 higher than that of the statistical model 

based method. For 32-talker babble noise, when compared 

with the power based method, the proposed method shows 

higher 𝑃𝑐 particularly at negative SNRs. However, the 𝑃𝑖 
of the proposed method is slightly higher than the compared 

methods at 0 and 5 dB SNR. For 2-talker babble noise, the 

𝑃𝑐  of the proposed method is much higher than the 

compared methods over all the SNR levels. Particularly, in 

comparing with the statistical model based method, 𝑃𝑐 has 

been improved about 0.22 and 0.11 at SNR of 0 and -10 dB 

respectively. 

B. Computational Efficiency 

The required CPU time of the proposed method running 

in MATLAB was compared with that of the statistical model 

and power based methods. The tested CPU was Intel I7 and 

the version of MATLAB was 2019b. The total CPU time of 

processing a 160 s noisy speech was measured. For each of 

the tested methods, 5 times repeat measurements were 

performed to reduce errors caused by other CPU 

background processes. The mean and standard derivation of 

the CPU time are listed in Table II. To make the results 

comparable, the CPU time of the filter-bank process was 

also measured. According to Table II, the CPU time of the 

proposed method is close to that of the power-based method 

which is only about 1/10 of the statistical model based 

method; although the CPU time of the filter-bank process is 

higher than that of the power-based approach. When 

implementing VAD in hearing aids, the proposed method 

can use the hearing aid filter-bank outputs directly. Thus, 

the CPU time of the filter-bank should not be considered as 

an extra delay in hardware implementation.  

TABLE II.   CPU TIME WHEN RUNNING THE ALGORITHMS  IN 

MATLAB  

To estimate the required computational resource for 

hardware implementation, the number of floating-point 

operations (FLOPs) of the tested methods were counted. 

Each method was implemented as a MATLAB function 

with minimized computational steps. The results were 

obtained by scanning and parsing each line of the MATLAB 

codes and inferring the FLOPs. The required mathematical 

operations were estimated by analyzing the matrix sizes. 

The total number of FLOPs for processing a 160 s length 

noisy speech was obtained. The results are listed in Table 

III. The FLOPs of the proposed algorithm are only about 

1/100 of the statistical model based method. 

TABLE III.  NUMBER OF FLOATING POINT OPERATIONS  

V. CONCLUSION  

A SpE based VAD method, which can directly use the 

outputs of the hearing aid filter-bank has been presented. 

The approach reduces computational complexity. The 

performance of the proposed method has been evaluated and 

compared with other computationally efficient VAD 

methods. Results have shown that the proposed method has 

higher VAD accuracy at SNR level < 0 dB. The required 

CPU time of the proposed method is close to that of the 

power-based method and much lower than that of the 

statistical model based method. The FLOPs of the proposed 

method are only about 1/100 of that of the statistical model 

based method. 

 
Proposed 

method 

Statistical 

model based 

method 

Power-based 

method 

Filter-bank 

CPU 

time 

(s) 

0.066 

±0.008 

 

5.609 

±0.011 

 

0.062 

±0.006 

 

2.1311 

±0.036 

 Proposed 

method (without 

filter-bank) 

Statistical model 

based method 

Power-based 

method 

FLOPs 5.815× 106 5.197 × 108 1.121× 106 

 
Fig. 5. Evaluated correct detection probability (𝑃𝑐 marked with solid lines) and incorrect detection probability (𝑃𝑖 marked with dash lines) of the proposed 

method, statistical model based method, and power-based method as a function of SNR level in white, factory,32-talker and 2-talker babble noise. 
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