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Abstract

Non-parametric statistical hypothesis testing procedures aim to distinguish the null
hypothesis against the alternative with minimal assumptions on the model distribu-
tions. In recent years, the maximum mean discrepancy (MMD) has been developed
as a measure to compare two distributions, which is applicable to two-sample prob-
lems and independence tests. With the aid of reproducing kernel Hilbert spaces
(RKHS) that are rich-enough, MMD enjoys desirable statistical properties includ-
ing characteristics, consistency, and maximal test power. Moreover, MMD receives
empirical successes in complex tasks such as training and comparing generative
models.

Stein’s method also provides an elegant probabilistic tool to compare unnor-
malised distributions, which commonly appear in practical machine learning tasks.
Combined with rich-enough RKHS, the kernel Stein discrepancy (KSD) has been
developed as a proper discrepancy measure between distributions, which can be
used to tackle one-sample problems (or goodness-of-fit tests).

The existing development of KSD applies to a limited choice of domains, such
as Euclidean space or finite discrete sets, and requires complete data observations,
while the current MMD constructions are limited by the choice of simple kernels
where the power of the tests suffer, e.g. high-dimensional image data. The main fo-
cus of this thesis is on the further advancement of kernel-based statistics for hypoth-
esis testings. Firstly, Stein operators are developed that are compatible with broader
data domains to perform the corresponding goodness-of-fit tests. Goodness-of-fit
tests for general unnormalised densities on Riemannian manifolds, which are of the
non-Euclidean topology, have been developed. In addition, novel non-parametric
goodness-of-fit tests for data with censoring are studied. Then the tests for data ob-
servations with left truncation are studied, e.g. times of entering the hospital always
happen before death time in the hospital, and we say the death time is truncated by
the entering time. We test the notion of independence beyond truncation by propos-
ing a kernelised measure for quasi-independence. Finally, we study the deep kernel
architectures to improve the two-sample testing performances.
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Chapter 1

Introduction

We address the problem of non-parametric hypothesis testing, advancing the exist-
ing techniques to larger classes of distributions beyond complete observations1 on
Rd. We consider testing distributions on complex non-Euclidean domains such as
directional distributions Sd−1 or Riemannian manifoldM; testing data with incom-
plete observations, in particular, censored data and truncated data. In this thesis, we
focus on the development of non-parametric hypothesis testing techniques based on
functions in reproducing kernel Hilbert spaces (RKHS).

1.1 Hypothesis Testing with Kernels

The task of hypothesis testing involves the distribution comparison with observed
samples, embracing the notion of probability of the null hypothesis falling below
a predetermined significance level which is also referred to as the test size. The
testing procedure can be rephrased as follows: P and Q are two distributions and
the null hypothesis reads H0 : P = Q; comparisons between distributions are made
to conclude whether P andQ have significant difference w.r.t. the test size, which is
referred to as the alternative hypothesisH1 : P 6= Q. Testing scenarios include two-
sample testing, independence testing and goodness-of-fit testing. For two-sample
testing, two sets of samples are drawn from unknown distributions P and Q and
H0 : P = Q is tested, i.e. whether two sets of samples are drawn from the same
distribution. Independence testing tests statistical dependence between two random
variables X and Y , with joint distribution Pxy and marginal distributions Px and Py
respectively. The null hypothesis reads H0 : Pxy = PxPy, i.e. the joint distribution
can be factorised into the product of marginals. Goodness-of-fit testing examines
H0 : P = Q for known distribution P and a set of samples drawn from unknown
distribution Q, i.e. testing whether a set of observed samples are drawn from a
known model. The knowledge of P distinguishes goodness-of-fit testing from two-

1complete observation refers to no missing data, e.g. uncensored data
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sample testing2.

“Non-parametric hypothesis testing” refers to the scenario where the assump-
tions made on the distributions P and Q are minimal. In particular, the distributions
in non-parametric testing are not assumed to be in any parametric family. By con-
trast, parametric tests, such as student t-test or normality test, assume a pre-defined
parametric family to be tested against, and usually deal with particular summary
statistics such as means or standard deviations, which are more restrictive in terms
of comparing the full distributions. Recent advancement of non-parametric tests
introduce RKHS functions which can be rich enough to distinguish distributions
whenever they differ. The Maximum mean discrepancy (MMD) [Gretton et al.,
2012a] has been developed to tackle the two sample problem via the notion of ker-
nel mean embedding [Muandet et al., 2017], mapping a distribution to a function
in an RKHS. If such a mapping is injective, the kernel associated with the RKHS
is known as a characteristic kernel [Sriperumbudur et al., 2011], making MMD a
proper discrepancy measure for distributions. Independence tests are studied via
the Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2008] which
is derived using the kernel mean embedding for both the joint distribution and the
product marginal distributions.

Stein’s method [Barbour and Chen, 2005] provides an elegant probabilistic
tool for comparing distributions, and was originally developed for approximating
the normal distributions [Stein et al., 1972] and Poisson approximations [Barbour
et al., 1992]. As Stein’s method may only require to access the distributions through
the differential (or difference) of the log density functions (or mass functions), it
is applicable to deal with unnormalised models [Hyvärinen, 2005], which draw
increasing attentions in the statistics and machine learning communities. With
rich enough RKHS test functions, kernel Stein discrepancies (KSD) [Gorham and
Mackey, 2015; Ley et al., 2017] are developed for goodness-of-fit testing on smooth
unnormalised models on Euclidean space Rd [Chwialkowski et al., 2016; Liu et al.,
2016]. Based on the kernelised Stein discrepancies, statistical tests are also studied
for discrete distributions [Yang et al., 2018], point processes [Yang et al., 2019],
latent variable models [Kanagawa et al., 2019], as well as conditional densities
[Jitkrittum et al., 2020]. Additionally, computationally efficient kernel-based tests
are also studied in the context of two-sample testing [Gretton et al., 2012b; Jitkrit-
tum et al., 2016a], independence testing [Jitkrittum et al., 2017] and goodness-of-fit
testing [Jitkrittum et al., 2017].

2As only one set of samples are observed, goodness-of-fit test is also referred to as the one-sample
test or the one-sample problem.
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Motivations and Contributions Non-parametric hypothesis tests for complex do-
mains are not yet well developed. For instance, in directional statistics, statistical
tests are mainly based on parametric tests such as the Rayleigh test or Kuiper test
[Mardia and Jupp, 1999], and tests on general Riemannian manifolds are based on
the Sobolev test of uniformity, which is limited to estimating complicated transfor-
mations of functions [Jupp et al., 2005, 2008]. In addition, density estimations on
Riemannian manifolds generally suffer from intractable normalisation terms. While
attempts have been made to estimate these normalisation terms [Mardia et al., 2016;
Jupp and Kume, 2018], they usually suffer from low accuracy or high computa-
tional cost. The success of non-parametric kernel-based statistical tests motivates
us to develop kernel-based non-parametric goodness-of-fit tests for non-Euclidean
data, directly dealing with unnormalised models. Moreover, following the kernel-
based statistical tests for censored data [Fernandez and Gretton, 2019; Fernandez
et al., 2019; Fernandez and Rivera, 2019] achieving state-of-the-art performance,
we are also inspired to further improve the kernel-based goodness-of-fit tests, and
to extend the kernel-based tests for (in)dependence for data with both truncation
and censoring.

1.2 Hypothesis Testing with Deep Neural Networks

In kernel-based hypothesis testing, a particular kernel may work well for a given
observed set of finite samples while not being so useful w.r.t. another sample set,
especially when the data can be complex and dimensions become higher. The initial
proposal to tackle the kernel choice problem in two-sample testing [Gretton et al.,
2012a] suggests using the median Euclidean distance between data as bandwidth
for Gaussian kernel, which yields state-of-the-art performances on relatively simple
data. However, statistical testing with more complex data adaptive kernels [Gretton
et al., 2012b; Jitkrittum et al., 2016a, 2017] has been proposed to better distinguish
the distributions from the particular finite sample observations.

Deep neural networks have been increasingly studied in recent years with suc-
cessful performance on modern machine learning tasks involving high dimensional
datasets. The expanding capacity and rich representations of modern deep neu-
ral network architectures facilitate the extraction of useful features and modelling
complex functions. Combining the elegant functional and statistical properties of
RKHS functions with the flexibility of deep neural networks, the deep kernel ap-
proach [Wilson et al., 2016] has been devised to tackle various problems including
density estimation [Wenliang et al., 2018], semi-supervised learning [Jean et al.,
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2018] and training generative models [Li et al., 2017; Sutherland et al., 2016].

Our goal is to develop novel approaches for learning deep kernel representa-
tions from observed datasets which can further improve the test power, even with
limited sample size. We have further investigated the features extracted from the
deep neural networks for interpretability purposes.

1.3 Structure of the Thesis

We start with a review, in Chapter 2, of existing kernel-based hypothesis testing
techniques, which address two-sample testing, independence testing and goodness-
of-fit testing. In Chapter 3, we develop a novel goodness-of-fit test based on ap-
propriate Stein operators for non-Euclidean data, including directional data; and we
provide a more general discussion on smooth Riemannian manifolds. In Chapter 4,
we study Stein operators that can deal with censoring, and derive the corresponding
goodness-of-fit testing procedures. In Chapter 5, we consider data with both trun-
cation3 and censoring. We define the notion of quasi-independence and develop the
kernel-based testing procedure for quasi-independence. In Chapter 6, we develop
and discuss the deep kernel learning for hypothesis testing.

The four main thesis chapters are based on the following publications which
appeared over the course of this Ph.D.4

1. Chapter 3 Goodness-of-fit Tests on non-Euclidean Data

Xu, W. & Matsuda, T. (2020) A Stein Goodness-of-fit Test for Directional
Distributions. International Conference on Artificial Intelligence and Statis-
tics (AISTATS).

Xu, W. & Matsuda, T. (2021) Interpretable Stein Goodness-of-fit Tests
on Riemannian Manifolds. International Conference on Machine Learning
(ICML).

2. Chapter 4 Goodness-of-fit Tests for Censored Data

Fernandez, T.∗, Rivera, N.∗, Xu, W.∗ & Gretton, A. (2020) Kernelized Stein
Discrepancy Tests of Goodness-of-fit for Time-to-Event Data. International
Conference on Machine Learning (ICML).

3. Chapter 5 A Kernel Test for Quasi-independence

3truncation refers to ordered data X ≤ Y and we say Y is left truncated by X .
4∗ denotes equal contributions.
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Fernandez, T., Xu, W., Ditzhaus, M., & Gretton, A. (2020). A Kernel Test for
Quasi-independence. In Advances in Neural Information Processing Systems
(NeurIPS).

4. Chapter 6 Deep Kernels for Hypothesis Testing

Liu, F.∗, Xu, W.∗, Lu, J., Zhang, G., Gretton, A., & Sutherland, D. J. (2020).
Learning Deep Kernels for Non-Parametric Two-Sample Tests. International
Conference on Machine Learning (ICML).

Other Contributions Works done during the course of this thesis that are not in-
cluded are

• Jitkrittum, W., Xu, W., Szabó, Z., Fukumizu, K., & Gretton, A. (2017). A
Linear-time Kernel Goodness-of-fit Test. In Advances in Neural Information
Processing Systems (NIPS).

• Xu, W., Niu, G., Hyvärinen, A., & Sugiyama, M. (2019). Direction Mat-
ters: On Influence-Preserving Graph Summarization and Max-cut Principle
for Directed Graphs. arXiv preprint arXiv:1907.09588. (accepted for Neural
Computation)

• Wu, X. Z., Xu, W., Liu, S., & Zhou, Z. H. (2020). Model Reuse with Reduced
Kernel Mean Embedding Specification. arXiv preprint arXiv:2001.07135.

• Xu, W. & Reinert, G. (2021) A Stein Goodness-of-fit test for Exponential
Random Graph Models. International Conference on Artificial Intelligence
and Statistics (AISTATS).



Chapter 2

Kernel-based Hypothesis Testing

In this chapter, we provide a brief review of existing kernel-based non-parametric
statistical procedures for two-sample problems, independence tests and goodness-
of-fit tests, which includes preliminary knowledge and notations for the other chap-
ters of the thesis.

2.1 Maximum Mean Discrepancy (MMD)

2.1.1 Reproducing Kernel Hilbert Space
The study of RKHS functions and related methods attract attention in statistics and
machine learning community from the evolution and the success of kernel-based
methods in tackling problems ranging from predictions to classifications, which
exploits the rich representation of the nonlinear feature map. There are a few equiv-
alent definitions for RKHS, where we present the simplest version that is sufficient
for our presentation. For more detailed treatment on RKHS theory, see Berlinet and
Thomas [2004] and Steinwart and Christmann [2008].

Definition 2.1 (Reproducing kernel Berlinet and Thomas [2004] Definition 1). Let
H be a Hilbert space of real-valued functions defined on a non-empty set X and
associated with inner product 〈·, ·〉H, a function k : X × X → R is said to be a
reproducing kernel ofH if and only if

1. (inclusion) ∀x ∈ X , k(x, ·) ∈ H

2. (reproducing property) ∀x ∈ X , ∀f ∈ H, 〈f, k(x, ·)〉H = f(x).

The reproducing property states that the function value of f at point x is repro-
duced by the inner product of f with function k(x, ·), which allows the evaluation
of the bivariate kernel function:

k(x, x̃) = 〈k(x, ·), k(x̃, ·)〉H , ∀(x, x̃) ∈ X × X , (2.1)
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Throughout this thesis, such bivariate function is symmetric, i.e. ∀(x, x̃) ∈ X ×X ,

k(x, x̃) = 〈k(x, ·), k(x̃, ·)〉H = 〈k(x̃, ·), k(x, ·)〉H = k(x̃, x)

A Hilbert space equipped with the symmetric reproducing kernel k defined in Def-
inition 2.1 is called a reproducing kernel Hilbert space (RKHS) [Steinwart and
Christmann, 2008], or a proper Hilbert space [Berlinet and Thomas, 2004].

We sometimes useHk to explicitly refer to the RKHSH equipped with kernel
k. Apart from being a function in Hk, k(x, ·) can be also interpreted as a vector
in Hk (recall that H is a vector space). The reproducing property means that the
evaluation of function f(·) at x, i.e. f(x), is given by the inner product between a
feature vector k(x, ·) of x, and a feature representation of the function f(·), which
is denoted by f . This interpretation means that f ∈ H can be seen as a parameter
vector of the function x 7→ 〈f, k(x, ·)〉, and consequentlyH is a space of parameter
vectors which can be used to define real-valued functions. We call the function ϕ :

x 7→ k(x, ·) the feature map (or canonical feature map ) [Steinwart and Christmann,
2008, Lemma 4.19] ofHk, which can be also seen as a parameter vector as above.

To further illustrate the concept of reproducing kernel, we use a finite di-
mensional feature vector as a concrete example. Let X = R and ϕ(x) :=

(cos(x), sin(x))>. Denote 〈·, ·〉R2 as the standard dot product in R2, then the re-
producing kernel is defined from Eq.(2.1) as

k(x, x̃) = 〈ϕ(x), ϕ(x̃)〉R2 = cos(x) cos(x̃) + sin(x) sin(x̃). (2.2)

While the dimension of the feature map is not restricted to be finite, it is not
necessary to specify the feature map to define the kernel. Instead, one can define the
evaluation of the real-valued bivariate function in Eq.(2.1) to specify the kernel. To
further understand how the kernel function correspond to RKHS, we introduce the
concept of positive definite (or positive type) function [Berlinet and Thomas, 2004].

Definition 2.2 (Positive-definite functions: Berlinet and Thomas [2004] Definition
2 ). A function k : X×X → R is called positive definite if ∀n ≥ 1, ∀a1, . . . , an ∈ R
and all x1, . . . , xn ∈ X , ∑

i,j

aiajk(xi, xj) ≥ 0. (2.3)

Positive definite functions are useful in learning methods such kernel ridge
regression and support vector machines (SVM). Common positive definite kernel
functions defined in Rd include linear kernels k0(x, x̃) = x>x̃; polynomial ker-
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nels kP (x, x̃) = (x>x̃ + c)d, c ≥ 0, d ∈ N; or exponential kernels kE(x, x̃) =

exp(βx>x̃), β > 0;.

Theorem 2.1 (Positive definite kernel and RKHS ). Assume that k : X × X → R
is positive definite. The following statements hold.

1. There exist a map ϕ : X → H (not unique) that for all x, x̃ ∈ X , we have
k(x, x̃) = 〈ϕ(x), ϕ(x̃)〉H.

2. (Moore-Aronszajn theorem [Aronszajn, 1950]) There is a unique Hilbert
spaceH of functions on X where k is the reproducing kernel.

As such, we know that the RKHS, H, induced from a positive definite repro-
ducing kernel is unique. On the other hand, if a Hilbert space of functions on a
non-empty set X is equipped with a reproducing kernel, then such kernel is also
unique [Steinwart and Christmann, 2008, Theorem 4.20].

In the rest of the thesis, we denote kernel as the positive definite function
k : X × X → R. The reproducing property of the positive definite kernel en-
ables the reformulation of learning objective that depends on the (nonlinear) fea-
ture map only through its inner product, which is known as the kernel trick. The
infinite-dimensional nonlinear features can be powerful tools in learning proce-
dures, and we refer the procedure of using RKHS function f ∈ H, instead of
linearly parametrised function fθ(x) (θ refers to the linear weights) to perform rel-
evant tasks as kernelised procedure. A commonly used kernel corresponding to
an infinite-dimensional RKHS is the Gaussian kernel, also known as the squared
exponential kernel or radial basis function (RBF) kernel

kG(x, x̃) = exp

(
−‖x− x̃‖

2

2σ2

)
(2.4)

where σ > 0 is referred to as the bandwidth or length-scale. Different choices of σ
define different kernels, thus different corresponding RKHS.

2.1.2 Kernel Mean Embedding
With the rich-enough feature map, RKHS functions are used to construct mappings
to represent probability distribution via kernel mean embedding [Muandet et al.,
2017]. Let P be a probability distribution on X and k be the kernel associated with
RKHSH, the mean embedding of P induced by k is defined as

µP := Ex∼P [k(x, ·)] ∈ H, (2.5)
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whenever µP exist. Intuitively, the mean embedding is the expectation of the feature
map under the distribution P .

Lemma 2.1 (Gretton et al. [2012a] Lemma 3). If Ex∼P [
√
k(x, x)] < ∞, then µP

in Eq.(2.5) exist, µP ∈ H and Ex∼P [f(x)] = 〈f, µP 〉H, ∀f ∈ H.

If the kernel k is assumed to be bounded, i.e. supx∈X k(x, x) < ∞ the mean
embedding is well defined for all Borel probability measures [Sriperumbudur et al.,
2010, Proposition 2]. For instance, the commonly used Gaussian kernel in Eq. (2.4)
is upper bounded by 1. In this thesis, we assume all the reproducing kernels1 we
study are bounded.

Lemma 2.2 (Boundedness of kernels Steinwart and Christmann [2008] Lemma
4.23). Let k : X × X → R be a kernel associated with RKHS H. Then k is
bounded if and only if ‖f‖∞ = supx∈X |f(x)| <∞,∀f ∈ H.

Hence, the boundedness of kernel k implies the boundedness of any RKHS
function inH and vice versa.

Kernel mean embedding allows representing the distributions as a single point
in RKHS, which facilitates the comparison between distributions. For two distri-
butions P and Q with mean embedding µP and µQ respectively, a natural way to
perceive how far P is from Q might be transferred to the RKHS distance between
two points µP , µQ ∈ H,

D(P,Q) = ‖µP − µQ‖2
H, (2.6)

as µP − µQ ∈ H. We will explain later that the measure of distributional difference
in Eq.(2.6) actually corresponds to MMD [Gretton et al., 2012a] derived from taking
supremum of functions over unit ball in the RKHS.

The kernel mean embedding in Eq.(2.5) can be estimated empirically from
independent and identically distributed (i.i.d.) samples, x1, . . . , xn ∼ P :

µ̂P :=
1

n

n∑
i=1

k(xi, ·) (2.7)

replacing P by its empirical counterpart P̂ = 1
n

∑n
i=1 δxi where δxi denotes the

Dirac measure at xi ∈ X . The empirical mean embedding is a
√
n-consistent es-

timator for µP in RKHS norm depending on the i.i.d. samples [Tolstikhin et al.,
2017], i.e., ‖µP − µ̂P‖H = OP (n−

1
2 ) w.r.t. sample size n of the of i.i.d. samples.

1The reproducing kernel here need to be distinguished from the functions we study later with
Stein operator, where sometimes termed as “Stein kernel”.
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2.1.3 Two-sample Tests with MMD

Two sample tests (or test of homogeneity) are hypothesis tests aiming to determine
whether two sets of samples are drawn from the same distribution. Traditional meth-
ods such as t-tests [Student, 1908] and Kolmogorov-Smirnov (KS) tests [Lilliefors,
1967; Smirnov, 1948] are mainstays of statistical applications. However, these tests
may either require strong parametric assumptions about the distributions being stud-
ied (t-tests) or may only be effective on data in extremely low-dimensional spaces
(KS test2). Recent work in statistics and machine learning has focused on relaxing
these assumptions, with methods either generally applicable or specific to various
more complex domains [Gretton et al., 2012a; Jitkrittum et al., 2016a; Ramdas et al.,
2017]. Other related kernel-based methods include kernel Fisher discriminant anal-
ysis [Eric et al., 2007] and tests based on checking for differences in mean embed-
ding evaluated at specific locations such as mean embedding (ME) test or smooth
characteristic function test (SCF) test [Chwialkowski et al., 2015; Jitkrittum et al.,
2016a]. These tests are non-parametric and achieve very good test performance
with asymptotically maximal power and well controlled type-I error, with the ap-
propriate choice of kernels. We now introduce a popular class of the kernel-based
non-parametric two-sample tests based on the maximum mean discrepancy (MMD)
which is constructed from the kernel mean embedding introduced above.

Maximum mean discrepancy MMD has been introduced to compare two distribu-
tions [Gretton et al., 2007], utilising the reproducing property of RKHS functions
and the rich representation of the kernel mean embedding. Let k : X × X → R be
the kernel associated with RKHS H. The MMD between two distributions P and
Q is defined as

MMD(P,Q;Hk) = sup
‖f‖H≤1

Ex∼P [f(x)]− Ex′∼Q[f(x′)] (2.8)

= sup
‖f‖H≤1

〈f, µP − µQ〉H (2.9)

= ‖µP − µQ‖H (2.10)

The second line Eq.(2.9) follows from the reproducing property from Lemma 2.1
and the last line Eq.(2.10) follows from the fact that the inner product achieves its
supremum when two vectors align and the constraint that f is in the unit ball of H.

2KS test requires computation of cumulative distribution function (c.d.f.) that is applicable for
univariate distribution.
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From Eq.(2.9), the RKHS function that attains such supremum

f ∗(v) ∝ µP (v)− µQ(v) = Ex∼P [k(x, v)]− Ex′∼Q[k(x′, v)], ∀v ∈ X

is referred to as witness function [Gretton et al., 2012a, Section 2.3]. As such, the
squared version of MMD corresponds to the difference between two distributions
measured in RKHS norm stated in Eq.(2.6). We note that the MMD defined from
the supremum notion Eq.(2.8) is an instance of an integral probability metric (IPM)
[Müller, 1997]. More discussions and examples of IPM can be found in Sriperum-
budur et al. [2010]. MMD is generally a pseudo-metric on the space of probability
measures and is a metric when k is characteristic that is to be defined below. In the
testing context, the characteristic notion on the kernel is very useful to impose.

Definition 2.3 (Characteristic kernels [Sriperumbudur et al., 2011]). A kernel k is
said to be characteristic if the mean map P 7→ µP is injective on the set of Borel
probability measures P . For any distributions P,Q ∈ P and the corresponding
mean embedding µP , µQ induced from characteristic kernel k,

MMD(P,Q;Hk) = ‖µP − µQ‖Hk = 0⇐⇒ P = Q.

The injectivity of the the mean map with characteristic kernels ensures that dis-
tinct distribution are mapped to distinct points in RKHS, allowing MMD to depart
from 0 if and only if two distributions are not equal. In the two-sample testing con-
text, such notion enables the construction of the following consistent tests against
any alternatives in the distribution class P . Consider the squared version of MMD:

MMD2(P,Q;Hk) = ‖µP − µQ‖2
Hk = 〈µP , µP 〉+ 〈µQ, µQ〉 − 2 〈µP , µQ〉

= Ex,x′∼Pk(x, x′) + Ey,y′∼Qk(y, y′)− Ex∼P,y∼Qk(x, y) (2.11)

Given two sets of independent identically distributed (i.i.d.) samples SP =

{x1, . . . , xm}
i.i.d.∼ P and SQ = {y1, . . . , yn}

i.i.d.∼ Q, an unbiased estimator of
Eq.(2.11), based on the empirical estimate of kernel mean embedding in Eq.(2.7),
is given by

MMD2
u(SP , SQ;Hk)

=
1

m(m− 1)

∑
i 6=i′

k(xi, xi′) +
1

n(n− 1)

∑
j 6=j′

k(yj, yj′)−
2

mn

∑
ij

k(xi, yj).

(2.12)
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Recall that the two-sample problem aim to test the null hypothesis H0 : P = Q

against the alternative hypothesis H1 : P 6= Q. We would desire the sample sizes
m and n are of the same order for nice asymptotic behaviours. Without loss of
generality, assume m = n. It has been shown that the asymptotic distribution of
n ·MMD2

u(SP , SQ;Hk) under the null (P = Q) follows infinite weighted sum of
χ2-distribution [Gretton et al., 2012a, Theorem 12], where under the alternative
(P 6= Q),

√
n · MMD2

u(SP , SQ;Hk) is asymptotically normally distributed with
the mean centered at MMD(P,Q;Hk) > 0. As such, n · MMD2

u(SP , SQ;Hk) is
then considered as a test statistic to be compared against the rejection threshold.
If the test statistic exceeds the rejection threshold, the empirical estimation of the
MMD is thought to exhibit significant departure from the null hypothesis so that
H0 is rejected. A common choice of rejection threshold is the (1 − α)-quantile
of the null distribution with α being the predetermined level of significance of the
test (or test size). As the null distribution is given by infinite weighted sum of χ2

random variables which does not have closed form expression, the null distribution
can be simulated via a permutation procedure [Gretton et al., 2008] where the rejec-
tion threshold can be determined. Alternatively, simulating the null distribution via
truncated weights via eigendecomposition [Gretton et al., 2009a] or wild-bootstrap
procedure [Chwialkowski et al., 2014] is also possible. More discussions on exist-
ing testing procedures can be found in Section 6.2.

Beyond the application on two-sample testing and independence testing,
MMD, being a discrepancy measure between distributions, also allows applications
in a wide range of machine learning problems including feature extractions [Jitkrit-
tum et al., 2016a], covariate shift [Gretton et al., 2009b], distribution regression
[Szabó et al., 2016] and generative modelling [Bińkowski et al., 2018; Li et al.,
2017].

2.1.4 Hilbert-Schmidt Independence Criterion (HSIC)

Statistical tests for (in)dependence is another crucial aspect of hypothesis testings,
i.e. for joint random variables X ∈ X and Y ∈ Y , testing whether a joint distri-
bution Pxy factorises into the product of marginals PxPy, with the null hypothesis
that H0 : X and Y are independent versus the alternative hypothesis H1 : X and Y
are not independent. The test is performed through some dependence measure, the
simplest being the correlation coefficients, which captures the dependence through
linear features. The MMD statistic in Eq.(2.8) measures the difference between dis-
tribution over a broad class of nonlinear functions. As such, dependence measure
through nonlinear features have been developed including kernel canonical corre-
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lation (KCC) [Fukumizu et al., 2007a], constrained covariance (COCO) [Gretton
et al., 2005c], normalized cross-covariance (NOCCO) [Fukumizu et al., 2007a] and
complete orthogonal systems (COND) [Fukumizu et al., 2007b].

Let f : X → R and g : Y → R, the cross-covariance type of dependence
measure are defined through the product of the mean-centered function between f
and g:

EPxy
[(
f(X)− EPx [f(X)]

)(
g(Y )− EPy [g(Y )]

)]
= EPxy

[
f(X)g(Y )

]
− EPx

[
f(X)

]
EPy
[
g(Y )

]
(2.13)

The sensitivity of the statistic to dependence between X and Y heavily depends on
the choice of features through functions f and g3. While the good choices of such
features may not be easily pre-defined, Gretton et al. [2005a] developed the depen-
dence measure, named as Hilbert-Schmidt Independence Criterion (HSIC), which
is defined as the Hilbert-Schmidt norm of the cross covariance operator. Denote
kx ∈ HX , ky ∈ HY as the kernels and associate RKHS for X and Y respectively;
denote µx ∈ HX , µy ∈ HY as the corresponding mean embedding for marginals Px
and Py; and denote⊗ as the tensor product as in [Gretton et al., 2005a, Eq.(6)]. The
cross-covariance operatorCxy = EPxy [(kx(X, ·)−µx)⊗(ky(Y, ·)−µy)] ∈ HX⊗HY .

HSIC2(Pxy,HX ,HY) = ‖Cxy‖2
HS (2.14)

where ‖ · ‖HS denotes the Hilbert-Schmidt norm [Gretton et al., 2005a, Definition
1]. It turned out to be that the Definition in Eq.(2.14) can be reformulated from the
dependence measure in Eq.(2.13) by taking the supremum of f ⊗ g over the joint
tensor space of RKHSHX ⊗HY ,

HSIC(Pxy,HX ,HY) = sup
‖f⊗g‖HX⊗HY≤1

EPxy
[
f(X)g(Y )

]
− EPx

[
f(X)

]
EPy
[
g(Y )

]
(2.15)

=
∥∥∥EPxy[(kx(X, ·)− µx)⊗ (ky(Y, ·)− µy)

]∥∥∥2

HX⊗HY
,

(2.16)

where the RKHS norm on the tensor space ‖f ⊗ g‖HX⊗HY = ‖f‖HX ‖g‖HY . With
the supremum notion, HSIC can be seen as an application of kernel mean embed-

3Choosing f and g be linear functions on X and Y respectively degenerates to covariance mea-
sure, where the dependence measure is through linear interaction.
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ding where the distributions between the joint distribution Pxy and the product of
marginals PxPy are compared. Eq.(2.16) is equivalent to

HSIC2(Pxy,HX ,HY) = ‖µxy − µx ⊗ µy‖2
HX⊗HY ,

where µxy(·, ∗) = EPxy [kx(X, ·)⊗ ky(Y, ∗)] ∈ HX ⊗HY denotes the mean embed-
ding w.r.t the joint distribution Pxy.

Independence Tests with HSIC With promising statistical properties, similar to
MMD, HSIC is used as a statistic to test independence. When kx and ky are
both characteristic kernels, HSIC = 0 if and only if Pxy = PxPy where the
independence hypothesis holds. Given a set of joint i.i.d. samples SPxy =

{(xi, yi)}ni=1 ∼ Pxy, the empirical estimate of HSIC can be computed similarly
as MMD in Eq.(2.12),

HSIC2
u(SPxy ,HX ,HY) =

1

(n)2

∑
i 6=j

kx(xi, xj)ky(yi, yj) (2.17)

+
1

(n)4

∑
(i,j,q,r)∈in4

kx(xi, xj)ky(yq, yr)− 2
1

(n)3

∑
(i,j,r)∈in3

kx(xi, xj)ky(yi, yr) (2.18)

where (n)m := n!
(n−m)!

and inm denotes the set index of all m-tuples drawn from
the index set [n] = {1, . . . , n} without replacement. To efficiently estimate the un-
known null distribution, the permutation-based tests of independence by HSIC has
been proposed [Gretton et al., 2008]. Subsequently, more efficient implementation
of the HSIC-based independence tests have also been proposed [Jitkrittum et al.,
2016b; Zhang et al., 2018].

2.2 Kernel Stein Discrepancy (KSD)

2.2.1 Stein’s Method for Comparing Distributions
Stein’s method [Barbour and Chen, 2005] provides an elegant probabilistic tool for
comparing distributions, which has been used to tackle various problems in statisti-
cal inference, random graph theory, computational biology, etc. As Stein’s method
may only require to access the distributions through the differential (or difference)
of the log density functions (or mass functions), it is applicable to deal with un-
normalised models [Hyvärinen, 2005], which have become increasingly popular in
the machine learning. Stein’s method has recently caught the attention from the
machine learning community [Anastasiou et al., 2021], and a variety of practical
applications have been developed, including variational methods [Liu and Wang,
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2016], approximate inference [Huggins and Mackey, 2018], learning implicit mod-
els [Li and Turner, 2017], non-convex optimisations [Sedghi and Anandkumar,
2014], sampling techniques [Chen et al., 2018; Gorham and Mackey, 2015], control
variates [Oates et al., 2019].

Combining the Stein’s method with rich representation of RKHS test func-
tions, the kernel Stein discrepancy (KSD) [Gorham and Mackey, 2015] has been
studied for comparing distributions in Rd. Using KSD as test statistics, kernel-
based non-parametric goodness-of-fit tests [Chwialkowski et al., 2016; Liu et al.,
2016] have been developed, which is capable of dealing with unnormalised densi-
ties. In addition, with appropriately chosen Stein operators, KSD goodness-of-fit
tests have been extended to various settings such as discrete variable models [Yang
et al., 2018], point process [Yang et al., 2019], latent variable models [Kanagawa
et al., 2019], and conditional densities [Jitkrittum et al., 2020]. Computationally
efficient tests [Jitkrittum et al., 2017, 2018; Huggins and Mackey, 2018] have also
been developed.

2.2.2 The Stein Operator on Rd

We introduce, a Stein operator in Rd [Gorham and Mackey, 2015; Ley et al., 2017;
Barp et al., 2019], which is the core ingredients for deriving the KSD. Let X ⊂
Rd and fi : X → R for i = 1, . . . , d be scalar-valued functions on X . f(x) =

(f1(x), . . . , fd(x))> ∈ Rd defines a vector valued function f . Let q be a smooth
probability density on Rd which vanishes at infinity. For a bounded smooth function
f : Rd → Rd, the Stein operator Tq is defined by

Tqf(x) =
d∑
i=1

(
fi(x)

∂

∂xi
log q(x) +

∂

∂xi
fi(x)

)
. (2.19)

The operator Tq is called a Stein operator if the Stein’s identity holds for all f in an
appropriate class of functions

Eq[Tqf ] = 0. (2.20)

The operator in Eq.(2.19) can be rewrite in the form

Tqf(x) =
∑
i

1

q(x)

∂

∂xi
(fi(x)q(x))
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and is a Stein operator due to integration by parts on Rd,

Eq[Tqf ] =

∫
Rd
Tqf(x)q(x)dx =

∑
i

∫
Rd

∂

∂xi
(fi(x)q(x)) dx = 0.

The last equality holds since fi(x)q(x) vanishes at infinity. The function f here is
referred to as test function. The class of functions that Eq.(2.20) holds, is called
Stein class of q. Since Stein operator Tq depends on the density q only through the
derivatives of log q, it does not involve the normalisation constant of q, which is a
useful property for dealing with unnormalised models [Hyvärinen, 2005].

Stein operator can be used to compare two distributions via a class of test
functions. Let p, q be two smooth densities in Rd, vanishing at infinity, the Stein
discrepancy between p, q through function f is

SD(p‖q; f) = Ep[Tqf ]− Eq[Tqf ] = Ep[Tqf ], (2.21)

where the last equality holds by Stein’s identity. We also know that, for any test
functions in the Stein class, p = q implies SD(p‖q; f) = 0.

Assume the test function class to be a RKHS, i.e. fi ∈ H,∀i, where each scalar
valued functions lives in the same RKHS [Chwialkowski et al., 2016; Liu et al.,
2016]. The kernel Stein discrepancy (KSD) between density p and q is defined via
taking the supremum over the unit ball RKHS function class, similar to Eq.(2.8) :

KSD(p‖q) = sup
‖f‖Hd≤1

Ep[Tqf ]. (2.22)

As shown by the boundedness property of kernels in Lemma 2.2, a bounded kernel
corresponds to a bounded RKHS test function class. From properties of Stein dis-
crepancy, we know that if p = q, we have KSD(q‖p) = 0. However, in the testing
procedure, a desirable property of the discrepancy measure is that KSD(q‖p) = 0

if and only if p = q. This correspond to the characteristic notion in MMD con-
struction in Definition 2.3. As such, we require our RKHS to be sufficiently large
to capture any possible discrepancies between p and q. Under mild regularity con-
ditions,

• H equipped with C0-universal kernel k [Carmeli et al., 2010, Definition 4.1]

• Ex∼q
[
〈Tqk(x, ·), Tqk(x, ·)〉H

]
<∞

• Eq
∥∥∥∑i

∂
∂xi

log p(x)
q(x)

∥∥∥2

<∞
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it is shown that KSD(p‖q) ≥ 0 and KSD(p‖q) = 0 if and only if p = q

[Chwialkowski et al., 2016, Theorem 2.2]. Thus, KSD is a proper discrepancy
measure between densities.

2.2.3 Goodness-of-fit Tests with KSD
The goodness-of-fit testing procedure aims to check the hypothesis H0 : q = p,
where q is the target distribution required up to normalization constant; and p is the
unknown data distribution only accessible from samples, x1, . . . , xn ∼ p. Since p is
unknown, algebraic manipulations produce the following form of KSD(p‖q):

KSD2(p‖q) = Ex,x̃∼p[hq(x, x̃)], (2.23)

where hq(x, x̃) = 〈Tqk(x, ·), Tqk(x̃, ·)〉 does not involve p. k(x, ·) denotes the kernel
associated with H. As such, KSD can be empirically estimated via Eq.(2.23) us-
ing U-statistics or V-statistics. The critical value is determined by bootstrap based
on the theory of U-statistics or V-statistics. In this way, a goodness-of-fit testing
procedure on Rd is obtained, which is applicable to unnormalised models.

LetH be a reproducing kernel Hilbert space (RKHS) on Rd andHd be its prod-
uct. By using Stein operator, kernel Stein discrepancy (KSD) [Chwialkowski et al.,
2016; Liu et al., 2016] between two densities p and q is defined as KSD(p‖q) =

sup‖f‖Hd≤1 Ep[Tqf ].
Now, suppose we have samples x1, . . . , xn from unknown density p on Rd.

Then, an empirical estimate of KSD2(p‖q) is obtained by using Eq.(2.23) in the
form of U-statistics, and this estimate can be used to test the hypothesis H0 : p = q,
where the critical value is determined by bootstrap. In this way, a general method
of goodness-of-fit test on Rd is obtained, which does not require computation of the
normalisation constant.

The kernel Stein discrepancy (KSD) [Gorham and Mackey, 2015; Ley et al.,
2017] is a discrepancy measure between distributions that is based on Stein method
[Barbour and Chen, 2005; Chen et al., 2010] and reproducing kernel Hilbert space
(RKHS) theory [Berlinet and Thomas, 2004]. KSD provides a general procedure
for goodness-of-fit testing that does not require computation of the normalization
constant, and it has shown state-of-the-art performance in various scenarios includ-
ing Euclidean data [Chwialkowski et al., 2016; Liu et al., 2016], discrete data [Yang
et al., 2018], point processes [Yang et al., 2019], censored data [Fernandez et al.,
2020] and directional data [Xu and Matsuda, 2020]. In addition, by using the tech-
nique of kernel mean embedding [Muandet et al., 2017], KSD test also enables
extraction of distributional features to perform model criticism [Jitkrittum et al.,
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2017, 2018; Kanagawa et al., 2019; Jitkrittum et al., 2020]. We note that Stein’s
method has recently been extended to Riemannian manifolds and applied to numer-
ical integration [Barp et al., 2018] and Bayesian inference [Liu and Zhu, 2018].



Chapter 3

Goodness-of-fit Tests on non-Euclidean Data

Summary We address the problem of goodness-of-fit testing and model criticism
on non-Euclidean data such as hyperspheres, torus or rotation groups. Due to the
different topologies, the standard statistical procedures for multivariate data in Rd

are not applicable to such data. We first derive goodness-of-fit testing and model
criticism methods for directional distribution, and then study its generalisation to
testing and comparing distributions on smooth Riemannian manifolds, especially
for those with an intractable normalisation constant. The proposed methods are
based on Stein operators on Riemannian manifolds. Simulation results and real
data applications show the superior test performances and useful interpretability of
the proposed methods.

3.1 Introduction

In many scientific and machine learning applications, data is obtained in the form
of directions and they are naturally identified with a vector on the unit hypersphere
Sd−1 = {x ∈ Rd | ‖x‖ = 1} ⊂ Rd. For example, wind direction is represented by
a vector on the unit circle S1 ⊂ R2 [Genton and Hering, 2007; Hering and Genton,
2010]; while the protein structure is described by vectors on the unit sphere S2 ⊂ R3

[Hamelryck et al., 2006]. In addition, usual multivariate data in Rd is transformed
to directional data by applying normalisation, and such transformation is useful
to analyse scale-invariant features. For example, text document and gene expres-
sion data are transformed into directional data and applied model-based clustering
[Banerjee et al., 2005]. Moreover, it has been showed that projecting face images to
a unit hypersphere can improve face recognition performance by convolutional neu-
ral networks [Wang et al., 2017]. Statistical methods for such directional data have
been widely studied in the field of directional statistics [Mardia and Jupp, 1999; Ley
and Verdebout, 2017], and many statistical models of directional distributions have
been proposed.
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One characteristic feature of directional distributions is that they often involve
an intractable normalisation constant. For example, the Fisher-Bingham distribution
[Kent, 1982] is defined by an unnormalised density

p(x | A, b) ∝ exp(x>Ax+ b>x), x ∈ Sd−1 (3.1)

and its normalisation constant is not represented in closed form. Such intractable
normalisation constant makes statistical inferences for directional distributions
computationally difficult. While directional data are becoming increasingly im-
portant in many applications such as bioinformatics, meteorology, chronobiology,
and text/image analysis, to the best of our knowledge, non-parametric goodness-
of-fit testing procedures for general directional distributions is not well established.
Despite statistical inference methods have been developed to directly deal with un-
normalised models in Euclidean space Rd [Hyvärinen, 2005], they are not readily
applicable to non-Euclidean data, i.e., applying the non-parametric goodness-of-fit
tests described in Section 2.2 [Chwialkowski et al., 2016; Liu and Wang, 2016] are
not consistent and do not produce controlled type-I error.

Generalising from directional distributions, data also commonly appear in the
domains described by Riemannian manifolds. For example, structures of biologi-
cal molecules can be described by a pair of angular variables, which is identified
with a point on the torus [Singh et al., 2002]. In computer vision, the orientation
of a camera is represented by a 3 × 3 rotation matrix, which gives rise to data on
the rotation group [Song et al., 2009]. Other examples include the orbit of a comet
[Jupp et al., 1979] and the vectorcardiogram data [Downs, 1972]. In addition, shape
analysis [Dryden and Mardia, 2016] and compositional data analysis [Pawlowsky-
Glahn and Buccianti, 2011] also deal with complex data defined on Riemannian
manifolds. Since the usual statistical procedures for Euclidean data are not applica-
ble, many studies have developed statistical models and methods tailored for data
on Riemannian manifolds [Chikuse, 2003, 2012; Hoff, 2009].

Statistical models on Riemannian manifolds are also often given in the form of
unnormalised densities where the normalisation constants remain computationally
intractable. For example, the Fisher distribution on the rotation group [Chikuse,
2012; Sei et al., 2013] is defined by

p(X | Θ) ∝ exp(tr(Θ>X)), X,Θ ∈ R3×3 (3.2)

and the normalisation constant involves integrating over R3×3 which are unable to
express in closed form. Similar to the directional distributions, statistical inference
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with such models are computationally intensive due to the intractable normalisation
constant. Thus, statistical methods on Riemannian manifolds that do not require
computation of the normalisation constant have been developed for several tasks
such as parameter estimations [Mardia et al., 2016] and sampling techniques on the
manifold [Byrne and Girolami, 2013; Ma et al., 2015]. However, non-parametric
goodness-of-fit testing for general distributions on Riemannian manifolds are not
yet established.

Contributions In this chapter, we develop and analyse novel non-parametric
goodness-of-fit testing procedures for general Riemannian manifold distributions
including directional distributions by extending kernel Stein discrepancy. We first
derive a Stein operator and the corresponding KSD test that is applicable to Rie-
mannian manifold, using directional distributions as a motivating example. Then
we discuss other possible Stein operators and the kernel-based goodness-of-fit tests
for distributions on general Riemannian manifolds. Comparison of relative test ef-
ficiencies between these tests, in terms of Bahadur slope, are provided. In addition,
we perform model criticism on Riemannian manifold based on a modified finite-set
Stein discrepancy (FSSD) statistic, which is learned from maximising test power.
We show that the proposed methods control type-I error well and have better test
power compared to existing alternative tests via simulations. Real data applications
show the usefulness of extracting interpretable features via the proposed model crit-
icism procedure.

3.2 Unnormalised Distributions

3.2.1 Directional Distributions

The density models defined on the unit hyperspheres Sd−1 = {x ∈ Rd | ‖x‖ = 1}
are used to describe the directional data and are referred to as directional distribu-
tions [Mardia and Jupp, 1999]. Here we present two representative directional dis-
tributions alongside with the uniform distributions which are widely used: the von-
Mises-Fisher distribution and the Fisher-Bingham distribution. Figure 3.1 shows
illustrative examples of these distributions via samples on S2.

We define the probability density of directional distributions by taking the uni-
form distribution on Sd−1 as base measure. Namely, the unnormalised density of
the uniform distribution is constant, p(x) ∝ 1,∀x ∈ Sd−1. The von-Mises-Fisher
(or von-Mises when d = 2) distribution is a directional counterpart of the isotropic



3.2. Unnormalised Distributions 32

(a) Uniform Distribution (b) von-Mises-Fisher (c) Fisher-Bingham

Figure 3.1: Samples from directional distributions on S2

Gaussian distribution on Rd. Its unnormalised density is given by

p(x | µ, κ) =
1

Cd(κ)
exp(κµ>x), (3.3)

for x ∈ Sd−1, where µ ∈ Sd−1, κ > 0,

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
,

and Iv is the modified Bessel function of the first kind and order v. It is a unimodal
distribution with peak at µ1 and degree of concentration specified by κ2.

The Fisher-Bingham (or Kent) distribution is an extension of the von-Mises-
Fisher distribution [Kent, 1982], where the log-likelihood includes second order
terms. Its unnormalised density is given by

p(x | A, b) =
1

Z(A, b)
exp(x>Ax+ b>x), (3.4)

for x ∈ Sd−1, where A ∈ Rd×d is symmetric and b ∈ Rd. The normalisation
constant Z(A, b) is not represented in closed form and hard to compute in general.

Kent distribution sometimes specifically refers to the so-called 5-parameter
Fisher-Bingham distribution (FB5) [Kent et al., 1979], where for specific class of
parameters A and b in Eq. (3.4), the unnormalised density can be simplified the the
form of

p(x) ∝ exp(κu>x+ β((γ>1 x)2 + γ>2 x)2), x ∈ Sd−1.

The 8-parameter Fisher-Bingham distribution (FB8) are also studied [Yuan, 2019],

1The parameter µ is analogous to the “mean parameter” in Gaussian density in Rd.
2The parameter κ is analogous to the inverse of “variance parameter” in Gaussian density in Rd.
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where the unnormalised density can be simplified as

p(x) ∝ exp(κν>Γx+ β1((γ>1 x)2 + β2(γ>2 x)2).

An example of the Fisher-Bingham on S2 is shown in Figure.3.1(c).

The goodness-of-fit testing procedures for directional distributions are mainly
parametric and limited to testing for specific distributions such as uniform
[Figueiredo, 2007; Garcı́a-Portugués and Verdebout, 2018; Mardia and Jupp, 1999]
and von-Mises-Fisher [Figueiredo, 2012; Mardia et al., 1984]. Although [Boente
et al., 2014] proposed testing procedures based on the kernel density estimator
which are non-parametric, they are difficult to apply to unnormalised models such
as the Fisher-Bingham distribution in Eq. (3.4) due to the requirement of the nor-
malisation constant from the null model to calculate the Lp test statistics.

3.2.2 Distributions on General Riemannian Manifolds

A Riemannian manifold describes a topological manifold,M, with additional ge-
ometric structure called Riemannian metric, g, a smoothly varying inner product
on tangent space on manifold. More specifically, g is a covariant 2-tensor field on
M whose value at each point p ∈ M defines a positive definite inner product on
the tangent space TpM at p. A manifold is said to be compact if its underlying
topological space is compact. M may have non-empty boundary, denoted by ∂M.
See Kobayashi and Nomizu [1963] for details on Riemannian geometry. Denote a
smooth Riemannian manifold by (M, g). Lee [2018] shows that that every smooth
manifold admits a Riemannian metric. In this chapter, we use manifold to refer a
compact smooth Riemannian manifold when no ambiguity arises. We note that the
hypersphere can be seen as such a manifold. Here, we give two additional examples
of manifold that are commonly seen in practice. Note that we define the probability
density of each distribution by its Radon–Nikodym derivative with respect to the
volume element of (M, g).

Torus The torus S1 × S1 is the direct product of two circles S1 and the bivariate
circular data (x1, x2) ∈ [0, 2π)2 can be viewed as data on the torus S1 × S1, where
we identify (cosx, sinx) ∈ S1 with x ∈ [0, 2π). To describe dependence between
the two circular variables3, Singh et al. [2002] proposed the bivariate von-Mises

3We note that the torus, S1 × S1, describing two circular variables has different topological
structure than a unit sphere S2 where the domain (x̃1, x̃2) ∈ [0, 2π)× [0, π) for (x̃1, x̃2) ∈ S2.
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distribution:

p(x1, x2 | ξ) ∝ exp(κ1 cos(x1 − µ1) + κ2 cos(x2 − µ2)

+ λ12 sin(x1 − µ1) sin(x2 − µ2)), (3.5)

where ξ = (κ1, κ2, µ1, µ2, λ12), κ1 ≥ 0, κ2 ≥ 0, 0 ≤ µ1 < 2π and 0 ≤ µ2 < 2π.
The normalisation constant can not be represented in closed form for general ξ. We
will apply this model to wind direction data in Section 3.5.

Rotation group The rotation group SO(m) is defined as

SO(m) = {X ∈ Rm×m | X>X = Im, detX = 1},

where Im is the m-dimensional identity matrix. The Fisher distribution [Chikuse,
2012; Sei et al., 2013] on SO(m) is defined as

p(X | Θ) ∝ exp(tr(Θ>X)), (3.6)

for which the normalisation constant is not given in closed form. We will apply this
model to vectorcardiogram data in Section 3.5. More discussions on general form
of exponential-trace type of distribution for matrix-valued manifold can be found in
Chikuse [2003]; Hoff [2009]4.

Statistical methods have been developed to deal with models for the Rieman-
nian manifold. For sampling procedure, MCMC techniques on Riemannian mani-
folds have been developed [Byrne and Girolami, 2013; Ma et al., 2015; Hoff, 2019].
For parameter estimation, score matching [Hyvärinen, 2005] has been extended to
specific Riemannian manifold [Mardia et al., 2016; Mardia, 2018]. The goodness-
of-fit testing procedures on general Riemannian manifolds are less investigated,
even with the parametric models. For the special case of the uniform distribution,
testing procedures were developed by [Chikuse and Jupp, 2004; Chikuse, 2012]
and they have been extended the Sobolev test for uniformity [Giné, 1975] based on
estimating the model parameters Jupp et al. [2005, 2008]. However, these meth-
ods are not applicable to general cases. To overcome this, the Sobolev test has
been extended to general cases Jupp et al. [2005] and transformation based test via

4For instance, similar to directional distribution, the Bingham-von-Mises-Fisher (BMF) distribu-
tion for matrix-valued variable [Hoff, 2009] has unnormalised density of the form,

p(X | A,B, F ) ∝ exp(tr(F>X +BX>AX)).
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sliced cumulative distribution function has been developed Jupp and Kume [2018],
For tests of uniformity, several methods have been proposed such as the Sobolev
test [Chikuse and Jupp, 2004; Giné, 1975; Jupp et al., 2008]. However, they are
not readily applicable to general distributions. Although there are a few methods
applicable to general distributions [Jupp et al., 2005; Jupp and Kume, 2018], they
require computation of the normalisation constant, which is often computationally
intensive. Also, existing methods cannot be applied to model criticism [Jitkrittum
et al., 2016a], which would provide an intuitive clarification of the discrepancy be-
tween model and data.

3.3 Stein Operators on Manifold

In this section, we introduce several Stein operators of different type for distribu-
tions on Riemannian manifolds by using Stokes’ theorem. The operators are cate-
gorised via the order of differentials of the test functions5.

3.3.1 Differential Forms and Stokes’ Theorem
To derive Stein operators on Riemannian manifolds, we need to use differential
forms and Stokes’ theorem. Here, we briefly introduce these concepts. For more
detailed and rigorous treatments, see Flanders [1963]; Spivak [2018].

Let M be a smooth d-dimensional Riemannian manifold and take its local
coordinate system x1, . . . , xd. We introduce symbols dx1, . . . , dxd and an asso-
ciative and anti-symmetric operation ∧ between them called the wedge product:
dxi ∧ dxj = −dxj ∧ dxi. Note that dxi ∧ dxi = 0. Then, a p-form ω on M

(0 ≤ p ≤ d) is defined as

ω =
∑
i1···ip

fi1···ipdx
i1 ∧ · · · ∧ dxip , (3.7)

where the sum is taken over all p-tuples {i1, · · · , ip} ⊂ {1, . . . , d} and each
fi1···ip is a smooth function on M. For a p-form ω above and a q-form η =∑

j1···jq gj1···jqdx
j1 ∧ · · · ∧dxjq with p+ q ≤ d, their wedge product ω∧ η is defined

as the (p+ q)-form given by

ω ∧ η =
∑
i1···ip

∑
jq ···jq

fi1···ipgj1···jqdx
i1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq . (3.8)

5Note that this does not refer to the differentials for the (unnormalised) density functions.
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The exterior derivative dω of ω is defined as the (p+ 1)-form given by

dω =
∑
i1···ip

d∑
i=1

∂fi1···ip
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxip , (3.9)

where df for a function f is the 1-form defined by

df =
d∑
i=1

∂f

∂xi
dxi.

For another coordinate system y1, . . . , yd onM, the differential form can be trans-
formed from the coordinate of x1, . . . , xd by

dyj =
d∑
i=1

∂yj

∂xi
dxi. (3.10)

The differential forms and exterior derivatives will be useful for discussing Stokes’
theorem on manifold. For example, the volume element, with respect to the coordi-
nate x1, . . . , xd, is defined as the d-form given by

(det g)1/2dx1 ∧ · · · ∧ dxd,

where g = g(x1, . . . , xd) is the d× d matrix of the Riemannian metric with respect
to x1, . . . , xd.

The integration of a d-form on a d-dimensional manifold is naturally defined
like the usual integration on Rd and invariant with respect to the coordinate selec-
tion. Correspondingly, the integration by parts formula on Rd is generalised in the
form of Stokes’ theorem.

Theorem 3.1 (Stokes’ theorem). Let ∂M be the boundary ofM and ω be a (d−1)-
form onM. Then, ∫

M
dω =

∫
∂M

ω.

Corollary 3.1. If ∂M is empty, then∫
M

dω = 0

for any (d− 1)-form ω onM.
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Coordinate choice In the following, to facilitate the derivation as well as computa-
tion of Stein operators, we assume that there exists a coordinate system θ1, . . . , θd

onM that coversM almost everywhere. For example, spherical coordinate system
θ = (θ1, . . . , θd−1) can be considered on hypersphere Sd−1, which is defined by

θ1

θ2

θ3

...
θd−1


7→



cos θ1

sin θ1 cos θ2

sin θ1 sin θ2 cos θ3

...
sin θ1 · · · sin θd−1


∈ Sd−1, (3.11)

where (θ1, . . . , θd−2) ∈ [0, π)d−2 and θd−1 ∈ [0, 2π). In this coordinate system, the
volume element [Flanders, 1963] is given by

dS = J(θ1, . . . , θd−1)dθ1 ∧ · · · ∧ dθd−1,

where J(θ1, . . . , θd−1) = sind−2(θ1) sind−3(θ2) · · · sin(θd−2).

Note that J(θ1) = 1 when d = 2. Since the surface area of Sd−1 is Sd−1 =

2πd/2/Γ(d/2), the uniform distribution on Sd−1 corresponds to the (d − 1)-form η

on Sd−1, given by

η =
1

Sd−1

J(θ1, . . . , θd−1)dθ1 ∧ · · · ∧ dθd−1.

By using the uniform density as the base measure, the directional distribution on
Sd−1 with density p is represented by the (d− 1)-form ω given by

ω = pη.

Thus, expectation of a function g with respect to p is obtained by

Ep[g] =

∫
Sd−1

gω =
1

Sd−1

∫ 2π

0

∫ π

0

· · ·
∫ π

0

g(θ)p(θ)J(θ)dθ1 · · · dθd−1.

Similarly, the polar coordinate system is useful for the torus. In addition, Stereo-
graphical projection can also be useful coordinate of choice. The generalised Euler
angles [Chikuse, 2012, Section 2.5.1] for the rotation groups, and Givens rotations
[Pourzanjani et al., 2017] for the Stiefel manifolds are also useful coordinate system
satisfying the above assumption.
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3.3.2 First Order Stein Operator
For a smooth probability density q onM and a smooth function f = (f 1, . . . , fd) :

M→ Rd and coordinate system (θ1, . . . , θd), define a function A(1)
q f :M→ R by

A(1)
q f =

d∑
i=1

(
∂f i

∂θi
+ f i

∂

∂θi
log(qJ)

)
, (3.12)

where J = (det g)1/2 is the volume element.

Theorem 3.2 (Stein’s identity). If ∂M is empty or f 1, . . . , fd vanish on ∂M, then

Eq[A(1)
q f ] = 0.

The Stein operator only involves the first order differential w.r.t. to test function
f = (f 1, . . . , fd). Thus we refer A(1) as a first order Stein operator.

Proof. Let

ω =
d∑
i=1

f idθ(−i),

where dθ(−i) = dθi+1 ∧ · · · ∧ dθd ∧ dθ1 · · · ∧ dθi−1 for i = 1, . . . , d. Then,

d(qJω) =
d∑
i=1

(
∂f i

∂θi
+ f i

∂

∂θi
log(qJ)

)
qJdθ1 ∧ · · · ∧ dθd

= (qJA(1)
q f)dθ1 ∧ · · · ∧ dθd.

Therefore, from Theorem 3.1 and Corollary 3.1,

Eq[A(1)
q f ] =

∫
M

d(qJω) = 0,

and the Stein’s identity follows.

The boundary assumption of Theorem 3.2 is in the same fashion as Assump-
tion 4 in Barp et al. [2018] to make the Stein’s identity hold. If M is a closed
manifold such as hyperspheres, torus or rotation group, it does not have boundary
by definition and thus the assumption of Theorem 3.2 holds. If the boundary of
M is non-empty, f(∂M) = 0 can be imposed by choosing specific test function
class. A relevant discussion of Theorem 3.2 can be found in density estimation on
truncated domain context [Liu and Kanamori, 2019].
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3.3.3 Second Order Stein Operator
In the context of numerical integration on Riemannian manifolds, Barp et al. [2018]
introduced another type of Stein operator A(2)

q , which involves the second order
differential operators w.r.t. the test functions. Here, we refer A(2)

q as the second
order Stein operator. Specifically, for a smooth probability density q onM and a
smooth function f̃ :M→ R, define A(2)

q f̃ :M→ R by

A(2)
q f̃ =

∑
ij

(
gij

∂2f̃

∂θi∂θj
+ gij

∂f̃

∂θj
∂ log J

∂θi
+ gij

∂f̃

∂θj
∂ log q

∂θi

)
, (3.13)

where we denote the inverse matrix of (gij) by (gij) following the convention of
Riemmanian geometry.

Remark Denote ∂xi as the basis vector on tangent space of x, TxM. In Barp et al.
[2018], the Stein operator is defined via the (Riemannian) gradient operator

∇f̃ =
∑
i,j

[G−1]i,j
∂f̃

∂xj
∂xi,

where G ∈ Rd×d denotes the metric tensor matrix; the divergence operator

∇ · s =
∑
i

∂si
∂xi

+ si
∂

∂xi
log
√

det(G)

for s = s1∂x
1, . . . , sd∂x

d; and the Laplace–Bertrami operator ∆f̃ = ∇ · ∇f̃ . The
second order Stein operator can be written in the form

Ã(2)
q f̃ = 〈∇f̃ ,∇ log q〉+ ∆f̃ . (3.14)

Theorem 3.3 (Proposition 1 of Barp et al. [2018]). If ∂M is empty or∫
∂M
∑

ij g
ijp(∇f̃)i · njinj

dV = 0 for normal vector n and its associated vol-
ume indV , then

Eq[A(2)
q f̃ ] = 0.

Theorem 3.3 follows from Theorem 3.2, because the second order Stein oper-
ator in Eq.(3.13) can be viewed as a special case of the first order Stein operator in
Eq.(3.12) with

f i =
∑
j

gij
∂f̃

∂θj
.



3.4. Goodness-of-fit Tests on Manifold 40

Similar form of the second order Stein operator in Eq. (3.13) (or Eq. (3.14)) has
been studied in Liu and Zhu [2018] for Bayesian inference. On the other hand, Le
et al. [2020] arrives at a similar second order Stein operator in the context of density
approximation by considering an infinitesimal generator of the Feller’s diffusion
process whose stationary distribution is q.

3.3.4 Zeroth Order Stein Operator
For a smooth probability density q on M and a function h : M → R, define a
function A(0)

q h :M→ R by

A(0)
q h = h− Eq[h].

It is easy to see that Eq[A(0)
q h] = 0 . Since A(0)

q does not involve any differential
operators, we refer it as the zeroth order Stein operator. Compared to the first and
second order Stein operators, this operator requires the normalisation constant of q,
which is often computationally intractable for Riemannian manifolds. We will show
later that this operator corresponds to the maximum mean discrepancy [Gretton
et al., 2012a]. We will also compare the test performances build on different Stein
operators via corresponding manifold Kernel Stein Discrepancy (mKSD) that we
now introduce.

3.4 Goodness-of-fit Tests on Manifold

In this section, we propose goodness-of-fit testing and model criticism procedures
for distributions on Riemannian manifolds based on the Stein operators introduced
in the previous section.

3.4.1 Manifold Kernel Stein Discrepancies (mKSD)
By using Stein operators introduced in the previous section, we extend kernel Stein
discrepancy to distributions on Riemannian manifolds.

Let H be a RKHS on M with reproducing kernel k and Hd be its product.
We define the manifold kernel Stein discrepancies (mKSD) of the first, second and
zeroth order by

mKSD(1)(p‖q) = sup
‖f‖Hd≤1

Ep[A(1)
q f ],

mKSD(2)(p‖q) = sup
‖f̃‖H≤1

Ep[A(2)
q f̃ ],

mKSD(0)(p‖q) = sup
‖h‖H≤1

Ep[A(0)
q h],
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respectively. We also define the Stein kernels6 of first, second and zeroth order by

h(1)
q (x, x̃) =

〈
A(1)
q k(x, ·),A(1)

q k(x̃, ·)
〉
Hd ,

h(2)
q (x, x̃) =

〈
A(2)
q k(x, ·),A(2)

q k(x̃, ·)
〉
H ,

h(0)
q (x, x̃) =

〈
A(0)
q k(x, ·),A(0)

q k(x̃, ·)
〉
H ,

respectively. Then, by algebraic manipulation through reproducing property and
taking the supremum over unit ball RKHS similar to Eq.(2.23), we obtain the fol-
lowing.

Theorem 3.4. If p and q are smooth densities onM and the reproducing kernel k
ofH is smooth, then for c = 0, 1, 2,

mKSD(c)(p‖q)2 = Ex,x̃[h(c)
q (x, x̃)]. (3.15)

From Theorem 3.4, we can estimate mKSD by using samples from p. This is
an important property in goodness-of-fit testing. Detailed derivations are shown in
Appendix 3.A. The study the conditions that mKSD is a proper discrepancy measure
between distributions on Riemannian manifolds, we consider cases c = 0, 1, 2. First
we consider score function for density ratio of the form L(x) = (L1(x), . . . , Ld)

> ∈
Rd with

Li(x) =
∂

∂θi
log

q(x)

p(x)
.

Then we consider the universality notions for RKHS functions adapted from
Carmeli et al. [2010]. Denote C(X ;R) as the space of continuous functions with
compact-open topology and C0(X ;R) as the continuous functions vanishing at in-
finty with uniform norm (otherwise called infinity norm) ‖f‖∞ = maxx∈X ‖f(x)‖.
k is Mercer kernel provided that Hk is a subset of C(X ;R); k is c0-kernel provided
thatHk is a subset of C0(X ;R).

Definition 3.1 (Carmeli et al. [2010] Definition 4.2). Let k : X × X → R be a
reproducing kernel forHk.

(i) A c0-kernel is called universal if Hk is dense in L2(X,µ,R) for each proba-
bility measure µ.

(ii) A Mercer kernel is called compact-universal if Hk is dense in L2(X,µ,R)

for each probability measure µ with compact support.
6As noted in Chapter 2, we distinguish the Stein kernel defined here hq from RKHS kernel k.

We also note that as hq depends on both q and k, the boundedness of k does not guarantee the
boundedness of hq .
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Theorem 3.5. Let p and q be smooth densities on M. Assume: 1) ∂M is empty
and kernel k is compact universal in the sense of [Carmeli et al., 2010, Definition
2 (ii)]; 2) Ex,x̃∼p[h(c)

q (x, x̃)2] < ∞, for c = 0, 1, 2; 3) Ep‖L(x)‖2 < ∞. Then,
mKSD(c)(p‖q) ≥ 0 and mKSD(c)(p‖q) = 0 if and only if p = q.

Manifold with non-empty boundaries

The characterisation in Theorem 3.5 requires both Stein’s identity (for forward di-
rection) and universality of RKHS (for backward direction). The Stein’s identity
relies on, either vanishing boundary or f(∂M) = 0, f ∈ H. Theorem 3.5 requires
∂M to be empty for both conditions to hold.

For manifold with non-empty boundary, f(∂M) = 0, f ∈ H is required for
Stein’s identity to hold. However, [Barp et al., 2018, Theorem 3] shows that the
space is dense requires the function vanishes nowhere. Hence, f(∂M) = 0, f ∈ H
and universality of H may not satisfy simultaneously. As such, we may consider
functions that is (near-)universal with some form of approximation.

For ε > 0, we define an ε-neighbourhood of the boundary Bε(∂M) = {x :

x ∈ M,∃y ∈ ∂M, d(x, y) < ε}. Consider an approximation function gε, s.t.
gε(x) = 1,∀x ∈M\Bε(∂M) and “gradually vanishes” to 0 on Bε(∂M): one such
“gradually vanishing” function can be

gε(x) =
1

ε
min d(x, y), y ∈ ∂M, x ∈ Bε(∂M). (3.16)

Consider a compact universal kernel k and an approximation function gε, we can
construct the product kernel kε(x, ·) = gε(x)k(x, ·) that is still positive definite. The
kernel function kε is getting closer to compact universal kernel k when ε→ 0, which
can be useful in practice to construct kernels and mKSD that effectively distinguish
two distributions. We illustrate this with an example on disc in Appendix 3.E.

Remarks on mKSD

The mKSDs are build for testing goodness-of-fit of densities on Riemannian mani-
folds, while each mKSD has its advantages by construction.

Advantage of mKSD(1) over mKSD(2) While mKSD(2) involves optimisation over
f̃ ∈ H, mKSD(1) optimises over f ∈ Hd. Thus, mKSD(1) is expected to be more
flexible and powerful in distinguishing between distributions than mKSD(2). We
will confirm that this is true in Section 3.4.3.
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Equivalence of mKSD(0) and MMD Remind that, for a RKHS H, the maximum
mean discrepancy (MMD) [Gretton et al., 2012a] between p and q is defined by

MMD2(p‖q) = ‖µp − µq‖2
H,

where µp, µq are the kernel mean embedding [Muandet et al., 2017] of p and q,
respectively. The following theorem shows that mKSD(0) is equivalent to MMD.

Theorem 3.6. If p and q are densities onM and the reproducing kernel k is com-
pact universal as in Theorem 3.5, then

mKSD(0)(p‖q) = MMD(p‖q).

Proof. By definition, we have

mKSD(0)(p‖q) = sup
‖h‖H≤1

Ep[A(0)
q h]

= sup
‖h‖H≤1

(Ep[h]− Eq[h]).

Hence, taking the supremum in closed form via reproducing property, we obtain

mKSD(0)(p‖q)2 = ‖µp − µq‖2
H = MMD2(p‖q).

All quantities are well-defined due to bounded kernel k.

The derivation is coordinate invariant as taking the expectation Ep and Eq
already take the geometry of the manifold into account by integrating over rel-
evant coordinate measures on the underlying space, M. As such, the equiva-
lence relationship is also applicable for KSD in the Euclidean case in Eq.(2.22),
KSD(0)(p‖q)2 = MMD2(p‖q) for densities p and q on Rd.

Moreover, the two quantities has coinciding assumptions on kernels: from
KSD perspective with universality based assumptions and from MMD perspective
with characteristic kernels. [Carmeli et al., 2010] shows the connections between
compact universal kernel and c0-universal kernel. [Sriperumbudur et al., 2011;
Fukumizu et al., 2009] show the equivalence relationship of c0-universal kernel be-
ing characteristic.

The MMD statistic used in two sample problem is also discussed in goodness-
of-fit context [Jitkrittum et al., 2017; Yang et al., 2019], where the samples are
simulated from the null and the test is conducted by checking whether the observed
samples and the simulated are from the same distribution. Theorem 3.6 further uni-



3.4. Goodness-of-fit Tests on Manifold 44

fies such procedure under the KSD framework. While empirical results [Jitkrittum
et al., 2017; Yang et al., 2019; Xu and Matsuda, 2020] have shown the empiri-
cal test performances between the KSD and MMD test statistics in the context of
goodness-of-fit testing, in the next section, we provide additional theoretical analy-
sis regarding the test efficiencies.

3.4.2 Goodness-of-fit Tests with mKSDs
Here, we present a procedure for testing H0 : p = q with significance level α based
on samples x1, . . . , xn ∼ p.

From Theorem 3.4, an unbiased estimate of mKSD can be obtained in the form
of U-statistics [Lee, 1990]:

mKSD(c)
u (p‖q)2 =

1

n(n− 1)

∑
i 6=j

h(c)
q (xi, xj). (3.17)

Its asymptotic distribution is obtained via U-statistics theory [Lee, 1990; Van der
Vaart, 2000] as follows. We denote the convergence in distribution by d→.

Theorem 3.7. For c = 0, 1, 2, the following statements hold.

1. Under H0 : p = q, the asymptotic distribution of mKSD(c)
u (p‖q)2 is

n ·mKSD(c)
u (p‖q)2 =

∞∑
j=1

w
(c)
j (Z2

j − 1), (3.18)

where Zj are i.i.d. standard Gaussian random variables and w
(c)
j are the

eigenvalues of the Stein kernel h(c)
q (x, x̃) under p(x̃):∫

h(c)
q (x, x̃)φj(x̃)p(x̃)dx̃ = w

(c)
j φj(x),

where φj(x) 6≡ 0.

2. Under H1 : p 6= q, the asymptotic distribution of mKSD(c)
u (p‖q)2 is

√
n ·
(

mKSD(c)
u (p‖q)2 −mKSD(c)(p‖q)2

)
d→ N (0, σc

2),

where σc2 = Varx∼p[Ex̃∼p[h(c)
q (x, x̃)]] > 0.

We employ Theorem 3.7 for goodness-of-fit testing with U-statistic. Namely,
we generate bootstrap samples from an approximation of the null distribution
Eq. (3.18) of n·mKSD(c)

u (p‖q)2 and compare their (1−α) quantile with the statistics
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Algorithm 1 mKSD test via U-statistics (mKSDu)
Input:

samples x1, . . . , xn ∼ p, null density q (metric tensor G if required)
kernel function k, test size α, bootstrap sample size B

Objective:
Test H0 : p = q versus H1 : p 6= q.

Test procedure:
1: Compute the U-statistics mKSD(c)

u (p, q)2 via (3.17).
2: Compute eigenvalues ω̂1, . . . , ω̂n of n×n matrix H , where Hij = h

(c)
q (xi, xj).

3: for t = 1 : B do
4: Sample Z1, . . . , Zn ∼ N (0, 1) independently.
5: Compute St =

∑n
j=1 ω̂j(Z

2
j − 1).

6: end for
7: Determine the (1− α)-quantile γ1−α of S1, . . . , SB.

Output:
Reject H0 if n ·mKSD2

u(p, q) > γ1−α; otherwise do not reject.

n ·mKSD(c)
u (p‖q)2. To approximate the null distribution in Eq. (3.18), we truncate

the infinite sum in Eq. (3.18) following [Gretton et al., 2009a]:
∑n

j=1 ω̂j(Z
2
j − 1),

where ω̂j are eigenvalues of the n×n Stein kernel matrix H with Hij = h
(c)
q (xi, xj)

and Z1, . . . , Zn are independent standard Gaussian random variables. The testing
procedure is outlined in Algorithm 1.

For an efficient implementation of the test, we also consider the following V-
statistics7

mKSD(c)
v (p‖q)2 =

1

n2

∑
i,j

h(c)
q (xi, xj), (3.19)

and adopt the wild bootstrap method [Chwialkowski et al., 2014, 2016] for testing.
Instead of simulating the null distribution from the estimated asymptotic limit dis-
tribution in Eq. (3.18), the simulated null distribution is generated from weighted
re-sampling of the Stein kernel matrix. The wild bootstrap method is not only use-
ful for building a consistent test with non-independent samples [Leucht and Neu-
mann, 2013] and naive permutation or bootstrap procedures fails for kernel-based
test statistics [Chwialkowski et al., 2014], it is also useful computationally efficient
to implement. Specifically, for each t = 1, . . . , B, we sample uniform i.i.d. vari-
ables U1, . . . , Un ∼ U[0, 1], let W0,t = 1 and define

Wi,t = 1{Ui>at}Wi−1,t − 1{Ui<at}Wi−1,t, (3.20)

7The V-statistic is a biased estimate of the mKSD.
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Algorithm 2 mKSD test via wild bootstrap
Input:

samples x1, . . . , xn ∼ p, null density q, (metric tensor G if required)
kernel function k, test size α, bootstrap size B

Objective:
Test H0 : p = q versus H1 : p 6= q.

Test procedure:
1: Compute the statistic mKSD(c)

v (p‖q)2, Eq.(3.19).
2: for t = 1 : B do
3: Sample W1,t, . . . ,Wn,t via Eq.(3.20).
4: Compute St by Eq.(3.21).
5: end for
6: Determine the (1− α)-quantile γ1−α of S1, . . . , SB.

Output:
Reject H0 if mKSD(c)

v (p‖q)2 > γ1−α; otherwise do not reject.

for i = 1, . . . , n, where 1{·} denotes the indicator function and at is the probability
of sign change, which is referred to as wild bootstrap process. This is particularly
useful to incorporate dependencies in the generated samples [Chwialkowski et al.,
2014], e.g. sampling from MCMC procedures. When x1, . . . , xn are independent,
at is set to 0.5, which correspond to independent Radamacher variables. As such,
the wild bootstrap samples are given by

St =
1

n2

∑
i,j

Wi,tWj,th(xi, xj), t = 1, . . . , n. (3.21)

We reject the null if the test statistic mKSD(c)
v (p‖q)2 in Eq.(3.17) exceeds the (1 −

α)-quantile of {S1, . . . , SB}. The testing procedure is outlined in Algorithm 2.

Kernel choice The performance of kernel-based testing is sensitive to the choice
of kernel parameters. We choose the kernel parameters by maximising an approx-
imation of the test power following [Gretton et al., 2012b; Jitkrittum et al., 2016a;
Sutherland et al., 2016]. From Theorem 3.7,

D :=
√
n · mKSD(c)

u (p‖q)2 −mKSD(c)(p‖q)2

σc

d→ N (0, 1)
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under the alternative H1 : p 6= q. Thus, for sufficiently large n, the test power is
approximated as

PrH1(n ·mKSD(c)
u (p‖q)2 > r) =PrH1

(
D >

r√
nσc
−
√
n

mKSD(c)(p‖q)2

σc

)

≈1− Φ

(
r√
nσc
−
√
n

mKSD(c)(p‖q)2

σc

)

≈Φ

(
√
n

mKSD(c)(p‖q)2

σc

)
,

where Φ denotes the cumulative distribution function of the standard normal distri-
bution and we used the approximation [Sutherland et al., 2016]

r√
nσc
−
√
n

mKSD(c)(p‖q)2

σc
≈ −
√
n

mKSD(c)(p‖q)2

σc
(3.22)

for sufficiently large n. Thus, we choose the kernel parameters by maximising an
estimate of mKSD(c)(p‖q)2

σc
[Jitkrittum et al., 2016a, 2017].

Such kernel choice strategies focus on a given class of kernel, e.g. squared ex-
ponential kernel to optimise with the kernel parameters. Such function class can be
more flexible, e.g. kernel with Matérn form that utilises the modified Bessel func-
tion as well as distance metric in space generalises useful kernels such as Laplace
form of kernel and Gaussian form. The extension of kernel choices into these larger
class of RKHS kernel are interesting future directions. Despite kernels with Matérn
form are still translational invariant, Chapter 6 address flexibility of kernel choice by
exploring translational non-invariant kernels parametrised by deep neural networks
with applications on two-sample problems.

3.4.3 Comparisons between mKSD Tests

Bahadur Efficiency From Theorem 3.7, mKSD tests are consistent against all al-
ternative distributions q satisfying Theorem 3.5. Thus, to understand which mKSD
test is more powerful than others, we investigated their Bahadur efficiency [Bahadur
et al., 1960], which quantify how fast the p-value goes to zero under alternatives.
Here, to focus on the effect of the choice of Stein operator on test performance, we
briefly present results for testing of uniformity on the circle S1 under the von-Mises
distribution. The technique of the proof is adapted from Jitkrittum et al. [2017].
More details on Bahadur efficiency are discussed in Appendix 3.B.
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Approximate Bahadur Slope (ABS) We first define Bahadur slope for general tests
[Gleser, 1966] and its applications in kernel-based tests [Jitkrittum et al., 2017;
Garreau et al., 2017]. Consider the test procedure with null hypothesis H0 : ω ∈ Ω0

and the alternative H1 : ω ∈ Ω\Ω0, where Ω and Ω0 are arbitrary sets. Denote Tn
as the test statistic computed from a sample of size n.

Definition 3.2. For ω0 ∈ Ω0, let F be the asymptotic null distribution

F (t) = lim
n→∞

Pω0(Tn < t)

which is assumed to be continuous and common ∀ω0 ∈ Ω0. Assume that there exists
a continuous strictly increasing function ρ : (0,∞) → (0,∞) s.t limn→∞ ρ(n) =

∞. Denote

c(ω) = −2 plimn→∞
log(1− F (Tn))

ρ(n)
, (3.23)

for some bounded non-negative function c such that c(ω0) = 0 when ω0 ∈ Ω0. The
function c(ω) is known as approximate Bahadur slope.

Asymptotic Relative Efficiency (ARE) Between Tests with Different Aq ARE
between two statistical testing procedures measures how fast the p-values of one
test shrinks to 0, relatively to the other’s. If it is faster, for given problem under
the alternative, it is more sensitive to pick up the alternative, where we call the test
more “statistically efficient”. With approximate Bahadur slope (ABS), we are ready
to define approximate Bahadur efficiency.

Definition 3.3. Given two sequences of test statistics, T (1)
n and T (2)

n and their ABS
c(1) and c(2), the approximate Bahadur efficiency of T (1)

n relative to T (2)
n is

E(ωA) :=
c(1)(ωA)

c(2)(ωA)
(3.24)

for ωA ∈ Ω\Ω0, in the space of alternative models.

If E(ωA) > 1, then T (1)
n is asymptotically more efficient than T (2)

n in the sense
of Bahadur, for the particular problem specified by ωA ∈ Ω\Ω0.

Theorem 3.8. (Scaling shift in von-Mises distribution) Let x ∈ S1, q(x) ∝ 1

and p(x) ∝ exp (κu>x). Choose the von-Mises kernel of the form k(x, x′) =

exp (x>x′). Denote the approximate Bahadur efficiency between mKSD with first
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and second order Stein operators as

E1,2(κ) :=
c(mKSD(1))(κ)

c(mKSD(2))(κ)
,

where κ > 0. For non-trivial problems, i.e. small κ, 0 < κ ≤ 10, E1,2(κ) > 1.

Adapting [Jitkrittum et al., 2017, Theorem 5], it suffices to show mKSD(1)(p‖q)
≥ mKSD(2)(p‖q) and

Ex,x̃∼q[h(2)
q (x, x̃)2] > Ex,x̃∼q[h(1)

q (x, x̃)2] > 0.

Detailed derivations are shown in the supplementary material.

We provide additional discussion on test efficiencies with mKSD(0) in the
supplementary material. In general, since we cannot compute Ep in closed form,
especially with unnormalised density, we need to perform the test with samples,
where sampling error makes the mKSD(0) test less asymptotically efficient [Jitkrit-
tum et al., 2017; Yang et al., 2019; Xu and Matsuda, 2020].

Computational efficiency Since the Stein kernels h(1)
q and h(2)

q depend on q only
through the derivative of log q, mKSD tests with the first and second order Stein
operators do not require computation of the normalisation constant of q. This is a
major computational advantage over existing goodness-of-fit tests on Riemannian
manifolds. While the computational cost of mKSD(1)

u is O(n2d), that of mKSD(2)

is O(n2d3) due to the computation of the metric tensor.

On the other hand, mKSD test of zeroth order is equivalent to testing whether
two sets of samples are from the same distribution by using MMD [Gretton et al.,
2012a]8. Namely, to test whether x1, . . . , xn is from density q, we draw samples
y1, . . . , ym from q and determine whether x1, . . . , xn and y1, . . . , ym are from the
same distribution. This procedure requires to sample from the null distribution q
on Riemannian manifolds, which is computationally intensive in general. Note that
the results in Theorem 3.7 with c = 0 replicate the asymptotic results for MMD
[Gretton et al., 2012a].

Choosing mKSD tests Overall, mKSD(1) has its advantage in terms of having a
large space of test functions with both asymptotic test efficiency and computational
efficiency so that it is recommended to use when available. mKSD(2) can be slightly
easier to derive and parametrise in particular scenarios, although it sacrifice test
power and computational efficiency. mKSD(0), or namely MMD, is also applica-

8This procedure is sometimes referred to as the pseudo goodness-of-fit test.
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ble when it is possible to sample from the given unnormalised density model on
Riemannian manifolds.

3.4.4 Model Criticism on Manifold

When the proposed model does not fit the observed data well, understanding which
part of the model misfit the data is of practical interest. The model criticism with
kernel non-parametric tests has been studied for MMD [Sutherland et al., 2016] and
KSD [Jitkrittum et al., 2017]. Here, we propose model criticism methods based on
mKSD1.

Let sp(·) = Ex̃∼p[A(1)
q k(x̃, ·)] ∈ Hd. We define the manifold Finite Set Stein

Discrepancy (mFSSD) adapted from [Jitkrittum et al., 2017] by

mFSSD2 =
1

dJ

d∑
i=1

J∑
j=1

(sp(vj))2
i , (3.25)

which can be computed in linear time of sample size n. Stein identity of sp(·)
ensures mFSSD2 = 0 under H0 with probability 1 [Jitkrittum et al., 2017, Theorem
1]. To perform model criticism, we extract some test locations that give a higher
detection rate (i.e., test power) than others. We choose the test locations V =

{vj}Jj=1 by maximising the approximate test power:

V = arg max
v

mFSSD2

σ̃H1

,

where σ̃H1 is the variance of mFSSD2 under H1.

Asymptotics for mFSSD To compute the empirical version of mFSSD, we consider
the empirical version sp(·) in Eq.(3.25) from samples x1, . . . , xn ∼ p:

ŝp(·) =
1

n

∑
i

[A(1)
q k(xi, ·)].

Then the empirical mFSSD has the form

m̂FSSD2 =
1

dJ

d∑
i=1

J∑
j=1

(̂sp(vj))2
i , (3.26)

for any set of test locations {vj}Jj=1.

Proposition 3.1. Assume the conditions in Theorem 3.5 hold, and Ex∼p[‖sp(x)‖2] <
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∞. Under H1 : p 6= q,

√
n ·
(

m̂FSSD2 −mFSSD2
)

d→ N (0, σ̃2
H1

),

where σ̃2
H1

denotes the asymptotic variance for m̂FSSD2.

Proof. With the assumed regularity conditions, Eq.(3.26) is in the form of the non-
degenerate U-statistics with σ̃2

H1
> 0. The asymptotic normality follows from [Ser-

fling, 2009, Section 5.5.1], similarly described in [Jitkrittum et al., 2017, Proposi-
tion 2].

The asymptotic normality for m̂FSSD2 in Proposition 3.1 enables derivation of
the approximate test power, which is similarly to the objective for choosing kernel
parameters as described in Section 3.4.2.

Proposition 3.2. [Approximate test power of n · m̂FSSD2] Under H1, for large n
and fixed r, the test power is

PH1(n · m̂FSSD2 > r) ≈ 1− Φ

(
r√
nσ̃2

H1

−
√
n

mFSSD2

σ̃2
H1

)
,

where Φ denotes the cumulative distribution function of the standard normal distri-
bution, and σ̃2

H1
is defined in Proposition 3.1.

Due to
√
n scaling in Proposition 3.1, maximising the approximate test power

for n · m̂FSSD2 can be approximated by maximising mFSSD2

σ̃2
H1

to obtain optimal test

locations, V = {vj}Jj=1, under the alternative H1 : p 6= q,

3.5 Simulation Results

3.5.1 Goodness-of-fit Tests for Directional Distributions
First, we validate via simulations the proposed first order mKSD tests for directional
distributions, i.e. M = Sd−1, focusing on the U-statistic test in Algorithm 1 and
V-statistic test in Algorithm 2. We denote the mKSD(1) in the context of directional
distribution as directional kernel Stein discrepancy (dKSD). We refer dKSDu and
dKSDv as the testing procedure in Algorithm 1 and Algorithm 2 respectively.

We employ the von-Mises kernel of the form k(x, x′) = exp (γx>x′), which is
positive definite [Gneiting et al., 2013], for both the dKSD tests and MMD-based
testing procedures which corresponds to mKSD(0) as shown in the previous section.
The von-Mises kernel is compact universal. Rewriting the kernel in the form anal-
ogous to the Gaussian kernel: k(x, y) = exp(γx>x′) = C · exp(−1

2
γ · ‖x − x′‖2),
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n Rayleigh Kuiper dKSDu dKSDv MMD

30 0.138 0.128 0.560 0.338 0.133
50 0.308 0.267 0.750 0.898 0.317

100 0.712 0.667 0.820 1.0 0.583
200 0.980 0.962 0.900 1.0 0.900

Table 3.1: Rejection rates for the circular uniform distribution under the von-Mises distri-
bution with κ = 0.5 as alternative, with test size α = 0.01.

n Rayleigh Kuiper dKSDu dKSDv MMD

30 0.757 0.731 0.650 0.831 0.600
50 0.957 0.940 0.750 1.0 0.833

100 1.0 1.0 0.833 1.0 0.983
200 1.0 1.0 0.96 1.0 1.0

Table 3.2: Rejection rates for the circular uniform distribution under the von-Mises distri-
bution with κ = 1 as alternative, with test size α = 0.01.

where C is a constant due to hypersphere structure. Gaussian kernel is universal
[Sriperumbudur et al., 2011] and the hypersphere is a compact subset of the space
of Rd matrices, the von-Mises kernel is then also compact-universal from Corollary
3 of Carmeli et al. [2010]. The bootstrap sample size is set to B = 1000. The
significance level is set to α = 0.01. In MMD-based test, we set m = n.

Circular uniform distribution
We start by considering the circular (d = 2) uniform distribution, for which the
goodness-of-fit tests have been proposed such as Rayleigh test and Kuiper test [Mar-
dia and Jupp, 1999]. See supplementary material for details of Rayleigh test and
Kuiper test. We compare the proposed dKSD tests with these existing tests as well
as MMD-based test. We repeated 600 trials to calculate rejection rates.

Tables 3.1 and 3.2 present the rejection rate under the von-Mises distribution
alternative with concentration parameter κ = 0.5 and κ = 1, respectively. The
power of all tests increases with increasing n or κ and converges to one. In overall,
we observe that the dKSDv has the highest power, especially in harder problems
with small κ and n. Table 3.3 presents the rejection rate under the null and the
type-I errors of all tests are well controlled to the test significance level α = 0.01.

von-Mises-Fisher distribution on Sd−1

Next, we consider testing the von-Mises-Fisher distribution vMF(µ, κ) in Eq. (3.3).
von-Mises-Fisher distribution is commonly view as directional distribution coun-
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n Rayleigh Kuiper dKSDu dKSDv MMD

30 0.006 0.010 0.011 0.007 0.013
50 0.015 0.011 0.015 0.015 0.016

100 0.010 0.011 0.008 0.011 0.030
200 0.015 0.018 0.010 0.015 0.013

Table 3.3: Type-I error of tests for the circular uniform distribution

(a) d = 3, σ = 0 (b) d = 3, σ = 1 (c) d = 3, n = 200 (d) n = 200,µ =

d−
1
21d

Figure 3.2: Rejection rates for von-Mises-Fisher Distributions on Sd−1

terpart of Gaussian distribution in Rd. It has mean parameter µ ∈ Sd−1 and concen-
tration parameter κ.

We set the null distributions as vMF(µ0, 1) and the alternative distribution by
perturbing the mean location µ and concentration scaling κ, vMF(µ, 1 + σ) where
µ0 = (1, 0, . . . , 0) ∈ Sd−1. µ ∈ Sd−1 and σ ≥ 0. We generated samples from the
von-Mises-Fisher distribution by using the rejection methods[Jakob, 2012; Wood,
1994]. We compare the proposed dKSD tests with MMD-based test in Figure 3.2.

Figure 3.2(a) plots the rejection rate under the null (µ = µ0, σ = 0) with
respect to n for d = 3. The type-I errors of dKSD tests are well controlled to the
significance level α = 0.01. Figure 3.2(b) plots the rejection rate with respect to
n for d = 3, µ = µ0 and σ = 1. Both dKSDu and dKSDv have larger power
than MMD-based test. Figure 3.2(c) plots the rejection rate with respect to σ for
d = 3, n = 200 and µ = µ0. The dKSD achieves maximal test power of 1 as
κ increases. Figure 3.2(d) plots the rejection rate with respect to the hypersphere
dimension d for n = 200. The alternative is set to be µ = (1/

√
d)1d and σ = 0.5,

where 1d denotes the all one vector. All test powers decrease for problems in higher
dimension which is expected. The dKSD tests have larger power than MMD-based
test in all dimensions.

Fisher-Bingham distribution on Sd−1

In addition, we consider the Fisher-Bingham distribution in Eq. (3.4). Here, we
focus on the Fisher-Bingham distribution FB(A) that only includes second order
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(a) d = 3, σ = 0 (b) d = 3, σ = 1 (c) d = 3, n = 200 (d) n = 200, σ = 1

Figure 3.3: Rejection rates for Fisher-Bingham Distributions on Sd−1

terms:
p(x | A) ∝ exp(x>Ax), x ∈ Sd−1,

where A ∈ Rd×d is symmetric. The normalisation constant does not have closed
form in general. We set the null distribution to FB(A) with

Aij =

2 (i = j)

1 (i 6= j)
,

and the alternative distribution to FB(A′) with A′ = A + σ1d,d, where σ ≥ 0 and
1d,d denotes the d × d matrix with all entries one. We generated samples from the
Fisher-Bingham distribution via rejection sampling with angular central Gaussian
proposals [Kent et al., 2013; Fallaize and Kypraios, 2016]. We compare the pro-
posed dKSD tests with MMD-based test in Figure 3.3.

Figure 3.3(a) plots the rejection rate under the null (σ = 0) with respect to n
for d = 3. The type-I errors of dKSD tests are controlled to the test significance
level α = 0.01. Figure 3.3(b) plots the rejection rate with respect to n for d = 3 and
σ = 1. The dKSD tests achieves maximal test power as n increases and have higher
power than MMD-based tests Figure 3.3(c) plots the rejection rate with respect to σ
for n = 200 and d = 3. Again, the dKSD tests have larger power and capture small
perturbation. Figure 3.3(d) plots the rejection rate with respect to d for n = 200 and
σ = 1. The dKSD tests attain almost 80% power even when the dimension is as
large as 15, whereas the power of the MMD-based test is smaller than 20% for all
dimensions.

Computational runtime Due to the MMD-based tests requires generating samples
on hypershperes from unnormalised densities which requires Monte Carlo sampling
procedure, the computational time for the overall testing procedure becomes much
longer. Table 3.4 presents the computational time for the tests based on an example
of Fisher-Bingham distribution with d = 3. The dKSD tests are more computation-
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n 30 50 100 200 300 500

dKSDu 0.005 0.011 0.027 0.096 0.227 0.588
dKSDv 0.009 0.015 0.030 0.105 0.238 0.574
MMD 0.091 0.120 0.180 0.379 0.704 2.614

Table 3.4: Computational time for Fisher-Bingham distributions (in seconds).

ally efficient than MMD-based test.

3.5.2 Goodness-of-fit Tests for Rotation Group
Then, we show the validity of the proposed mKSD tests by simulation on the ro-
tation group SO(3). We use the Euler angle [Chikuse, 2012] as the coordinate
system. The bootstrap sample size is set to B = 1000. The significance level
is set to α = 0.01. For the mKSD(0) test (MMD-based test), the number of
samples m draw from the null is set to be equal to the sample size n. We use
the kernel for rotation group [Song et al., 2009] k(X, Y ) = exp(η · tr(X>Y ))

, where the parameter η was chosen by optimising the approximate test power.
To see this, we rewrite the kernel in the form analogous to the Gaussian kernel:
k(X, Y ) = exp(γ · tr(X>Y )) = C · exp(−1

2
γ · ‖X − Y ‖2

F ), where C is a con-
stant that only depends on d, the dimension of the matrices X, Y ∈ SO(d) due to
tr(X>X) = tr(Id) = d for all X ∈ SO(d). Since the Gaussian kernel is universal
[Sriperumbudur et al., 2011] and the rotation group SO(d) is a compact subset of the
space of d× d matrices, the exponential-trace kernel is then also compact-universal
from Corollary 3 of Carmeli et al. [2010]. We compare our tests with Sobolev type
of tests in [Jupp et al., 2005].

Uniform distribution on SO(3)
First, we consider testing of uniformity on SO(3) and compare the performance of
the mKSD tests with the Sobolev test [Jupp et al., 2005]. We generated samples
from the exponential trace distribution p(X | κ) ∝ exp(κ · tr(X)) by the rejection
sampling [Hoff, 2009]. The uniform distribution corresponds to κ = 0.

Figure 3.4 (a) plots the rejection rates with respect to κ for n = 100. When
κ = 0, the type-I errors of all tests are well controlled to the significance level
α = 0.01. The power of all tests increases with increasing κ and converges to
one. Figure 3.4 (b) plots the rejection rates with respect to n for κ = 0.35. The
power of all tests increases with n and converges to one. When the model becomes
increasingly different from the null, the mKSD(1) is more sensitive to distinguish
the difference, with higher power than others.
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Figure 3.4: Rejection rates at α = 0.01: (a)-(b) for uniform density; (c)-(d) for Fisher
distribution on SO(3)

Fisher distribution
Next, we consider the Fisher distribution (or matrix-Langevin distribution) of the
unnormalised density p(X | F ) ∝ exp(tr(FX)) [Chikuse, 2003; Sei et al., 2013].
We generated data from p(X | F0) and applied mKSD tests on the null p(X | Fb),
where

Fb =

1 b 0

b 1 0

0 0 1

 .

We compare the mKSD tests with the extended Sobolev test [Jupp et al., 2005], in
which the normalisation constant are computed via Monte Carlo estimation.

Figure 3.4(c) plots the rejection rates with respect to b for n = 100. Fig-
ure 3.4(d) plots the rejection rates with respect to n for b = 0.2. From the plot,
we see that all tests achieves the correct test level under the null. When the model
becomes increasingly different from the null, the mKSD(1) is more sensitive to
distinguish the difference, with higher power than others. mKSD(0)/MMD test has
lower power than mKSD(1) and mKSD(0) due to inefficiency from sampling. While
the Sobolev test is useful when the null and the alternative are very different, it is
not powerful enough for harder problems where the alternative perturbed little from
the null.

3.6 Real Data Applications

Finally, we apply the mKSD tests to two real data for testing goodness-of-fit and
model criticism.

3.6.1 Vectorcardiogram data
As a real dataset on the rotation group SO(3), we use the vectorcardiogram data pre-
viously studied by Jupp et al. [2008]. The data summarises vectorcardiogram from
normal children where each data point records 3 perpendicular vectors of directions
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Figure 3.5: Wind direction data. Left: 2D histogram for wind directions; Mid: the 10
optimised locations, without repetition. Right: the objective value for data
locations, the higher the darker.

QRS, PRS and T from Frank system for electrical lead placement. Details of this
dataset can be found in [Downs, 1972].

Jupp et al. [2005] fitted the Fisher distribution p(X | F ) ∝ exp(tr(F>X)) to
28 data points of children aged between 2 to 10 and obtained the estimate

F̂ = 5.63×

0.583 0.629 0.514

0.660 −0.736 0.151

0.473 0.252 −0.844

 .

We use this value as the null model to be tested. We apply the kernel k(X, Y ) =

exp(η·tr(X>Y )), where the parameter η was chosen by optimising the approximate
test power from Eq. (3.22). Table 3.5 presents the p-values of each test. All mKSD
tests show strong evidence to reject the fitted model at α = 0.05; however, the
Sobolev test, with p-value=0.126, is not powerful enough to reject the null at the
same test level.

Table 3.5: p-values for vectorcardiogram data.

mKSD(1) mKSD(2) mKSD(0)/MMD Sobolev
0.004 0.000 0.010 0.126

3.6.2 Wind direction data
As a real data on torus, we consider wind direction in Tokyo on 00:00 (x1) and
12:00 (x2) for each day in 20189. Thus, the sample size is n = 365. The data were
discretised into 16 directions, such as north-northeast. Figure 3.5 presents a 16×16

histogram of raw data.
Using noise contrastive estimation [Gutmann and Hyvärinen, 2012], Uehara

et al. [2020] fitted the bivariate von-Mises distribution to the wind direction data
9Data is available on Japan Meteorological Agency website.
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and obtained the estimate

ξ̂ = (0.7170, 0.3954, 1.1499, 1.1499,−1.1274).

By setting this fitted model to the null model, we consider the goodness-of-fit
testing of the bivariate von-Mises distribution in Eq.(3.5) via mKSD. We employ
the product kernel of the von-Mises kernels as follows, k((x1, x2), (y1, y2)) =

exp(η1 cos(x1 − y1) + η2 cos(x2 − y2)). Similar as before, the parameters η1 and
η2 were chosen by optimising the approximate test power. The p-value obtained by
applying mKSD(1) test is 0.434, which indicates that the model fits data well.

In addition, we fitted a simpler model with no interactions between x1 and x2,
i.e. λ12 is set to zero in Eq.(3.5) so that the model reduces to the product of two
independent von-Mises distribution on each direction. The p-value by mKSD(1) is
0.002, which finds strong evidence to reject the null model. In other words, there is a
significant interaction between wind direction on 00:00 and 12:00. We then carried
out model criticism by mFSSD statistic in Eq.(3.25) with optimised test location
via maximising approximate test power. Choosing the number of test locations
J = 10, we plot the optimised locations in Figure 3.5. It provides information
about dependence between wind direction at midnight and noon.



Appendices

3.A Proofs and Derivations

Quadratic form of mKSD

Proof of Theorem 3.4

Proof. We show that, the mKSD admits the form of taking expectation over p for
bivariate functions h(c)

q which is independent of p. h(c)
q is also referred as the Stein

kernel. The proof utilise the reproducing property of relevant RKHS and the fact
that A(c)

q is a linear functional of relevant test function f .

For c = 1, the test function is a stack of d-dimensional RKHS functions
f ∈ Hd. Ep[A(1)

q f ] is a linear functional of f ∈ Hd. Then, from the Riesz
representation theorem, there uniquely exists r = (r1, . . . , rd) ∈ Hd such that
Ep[A(1)

q f ] = 〈f, r〉Hd . By using the reproducing property ofH associate with kernel
k, we obtain

ri(x) = Ex̃∼p
[
k(x, x̃)

∂

∂θ̃i
log(qJ) +

∂

∂θ̃i
k(x, x̃)

]
, (3.27)

for i = 1, . . . , d. Thus, the maximisation in mKSD(1)(p‖q) is attained by f =

r/‖r‖Hd and mKSD(1)(p‖q)2 = ‖r‖2
Hd . Therefore, the quadratic form is obtained

after straightforward calculations:

mKSD(1)(p‖q)2 =
〈
Ex∼p[A(1)

q k(x, ·)],Ex̃∼p[A(1)
q k(x̃, ·)]

〉
Hd

= Ex,x̃∼p
[〈
A(1)
q k(x, ·),A(1)

q k(x̃, ·)
〉
Hd︸ ︷︷ ︸
]

h
(1)
q (x,x̃)

,

and the assertion follows.

For c = 2, similar argument applies where the test function is a scalar-valued
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RKHS f̃ ∈ H. Instead of Eq.(3.27), we have r̃ ∈ H, s.t. Ep[A(2)
q f̃ ] = 〈f̃ , r̃〉H and

r̃(x) = Ex̃∼p

[∑
ij

gij
(
∂

∂θ̃j
k(x, x̃)

∂

∂θ̃i
log(qJ) +

∂2

∂θ̃i∂θ̃j
k(x, x̃)

)]
, (3.28)

and the maximisation in mKSD(2)(p‖q) is attained by f̃ = r̃/‖r̃‖H; thus
mKSD(2)(p‖q)2 = ‖r̃‖2

H. The assertion then follows from the similar calculations
as above.

For c = 0, the quadratic form is readily obtained from derivation of maximum-
mean-discrepancy (MMD) [Gretton et al., 2012a] form as shown in Theorem 3.6.
Alternatively, for scalar test function h ∈ H, we can write,

mKSD(0)(p‖q) = sup
‖h‖H≤1

Ep[A(0)
q h] = sup

‖h‖H≤1

|Ep[h]− Eq[h]| ,

where taking the supremum we get,

mKSD(0)(p‖q)2 =
〈
Ep
[
k(x, ·)− Eq[k(x, ·)]

]
,Ep
[
k(x̃, ·)− Eq[k(x̃, ·)]

]〉
H

= Ex,x̃∼p
〈
k(x, ·)− Eq[k(x, ·)]︸ ︷︷ ︸

A(0)
q k(x,·)

, k(x̃, ·)− Eq[k(x̃, ·)]
〉
H
.

The assertion follows.

The quadratic form is useful when computing the empirical estimate for the
expectation where only samples from unknown distribution p is observed. We also
note that Eq[k(x̃, ·)], in general, is not possible to obtain in analytical form, espe-
cially when the density q is only given up to normalisation. Samples from q, if
possible to obtain from unnormalised density, can be useful to estimate A(0)

q k(x, ·),

where we denote as Â(0)
q k(x, ·).

Characterisation of mKSD

Proof of Theorem 3.5

Proof. Denote s(c)
p (·) = Ex̃∼p[A(c)

q k(x̃, ·)] ∈ F and we can write mKSD(c)(p‖q)2 =

‖sp(·)‖2
F ≥ 0, where F can be H for c = 0, 2 or Hd for c = 1. If p = q, then

mKSD(c)(p‖q)2 = 0 from the Stein identity.

Conversely, if mKSD(c)(p‖q)2 = 0, then s(c)
p (x) = 0, a zero vector in Rd

for c = 1 and a scalar zero in R for c = 0, 2, ∀x, s.t. p(x) > 0. Then, from
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log(q/p) = log(qJ)− log(pJ), we obtain,

Ex̃∼p [Li(x̃)k(x̃, x)] = (s(1)
p )i(x)− Ex̃∼p

[
A(1)
p K(x̃, x)

]
= 0,

and

Ex̃∼p [L(x̃)k(x̃, x)] = (s(c)
p )i(x)− Ex̃∼p

[
A(c)
p K(x̃, x)

]
= 0,

for c = 0, 2, for every x with positive densities. Since k is compact-universal,
vanishes at ∂M andM is smooth and compact, it implies that L(1)

i = 0,∀i [Carmeli
et al., 2010, Theorem 4(b)] (for c = 1, i = [d]; for c = 0, 2, i = 1). Therefore,
log(q/p) is constant onM. Since both p and q are both densities onM that integrate
to one, we conclude p = q.

Asymptotics of mKSD

Proof of Theorem 3.7

Proof. To show part 1, it is enough to check the mKSD statistics is degenerate U-
statistics under H0 : p = q. By considering test function f = k(x, ·) (or its relevant
vector-valued form for c = 1), Stein identity shows that,

Ex̃∼p[A(c)
q k(x, x̃)] = 0,∀x ∈M, (3.29)

so that the variance σ2
c = 0 for c = 0, 1, 2. Then the standard results for degenerate

U-statistics in [Serfling, 2009, Section 5.5.2] apply and the assertions follow.

In addition, it is interesting to note link the result for c = 0 with the asymptotic
result in as

h(0)
q (x, x̃) = k(x, x̃)− ξ(x)− ξ(x̃) + C,

where C = Ex,x̃∼qk(x, x̃) is a constant, ξ(x) = Ex̃∼qk(x, x̃) is only a function of
x and ξ(x̃) = Ex∼qk(x, x̃) is only a function of x̃. The formulation is analogous to
the asymptotic results for MMD, as shown in [Gretton et al., 2012a, Theorem 8]:
h

(0)
q (x, x̃) is equivalent to the notion of k̃(x, x̃) in [Gretton et al., 2012a].

Part 2 follows as σ2
c > 0 under H1 : p 6= q by Theorem 3.5. Apply asymptotic

distribution of non-degenerate U-statistics [Serfling, 2009, Section 5.5.1] and the
assertions follow.
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3.B More on Bahadur Efficiency

In this section, we introduce additional relevant concepts to analyse Approximate
Relative Efficiency (ARE) between two tests, characterised by Bahadur slope [Ba-
hadur et al., 1960] and corresponding Bahadur efficiency.

Definition 3.4. LetD(a, t) be a class of all continuous cumulative distribution func-
tions (CDF) F such that −2 log(1 − F (x)) = axt(1 + o(1)), as x → ∞ for a > 0

and t > 0.

Proposition 3.3. The approximate Bahadur slope (ABS) for the tests with mKSD(c),
c = 0, 1, 2 is

c(mKSD(c)) :=
Ep[h(c)

q (x, x̃)]

Eq[h(c)
q (x, x̃)2]

1
2

,

where h(c)
q (x, x̃) is the Stein kernel for mKSD(c), and ρ(n) = n.

Proof. Using Theorem 9 and Theorem 11 in [Jitkrittum et al., 2017], we know that
n ·mKSD(c)

u (p‖q)2 in Eq.(3.17) is in the class of D(a = 1/ωc, t = 1) for ω2
c is the

variance of the statistic. By Stein identity, Ex,x̃∼q
[
h

(c)
q (x, x̃)

]2

= 0. Hence, using
second point in Theorem 9 [Jitkrittum et al., 2017] and choosing ρ = n, we have
n ·mKSD(c)

u (p‖q)2\ρ(n)→ mKSD(c)(p‖q)2 by weak law of large numbers.

The Case Study on Circular distribution S1 Proof of Theorem 3.8

Proof. To compute E1,2(κ), we can rewrite the following:

E1,2(κ) =
Ep[h(1)

q (x, x̃)]

Ep[h(2)
q (x, x̃)]

· Eq[h
(2)
q (x, x̃)2]

1
2

Eq[h(1)
q (x, x̃)2]

1
2

The second term only involves integrals over q(x) ∝ 1, which is independent of

κ and we can solve it as Eq [h(2)q (x,x̃)2]
1
2

Eq [h(1)q (x,x̃)2]
1
2

= 1.692 > 1. For the first term, the ratio

is monotonic decreasing w.r.t. κ > 0 and solving numerically at κ = 10, we get
Ep[h

(1)
q (x,x̃)]

Ep[h
(2)
q (x,x̃)]

= 2.953 > 1. Hence, for κ ∈ (0, 10), E1,2 > 1.

We can apply similar approach to compare the relative test efficiency E0,1(κ)

between mKSD(0) and mKSD(1). We plot numerical solutions in Figure 3.6. From
Figure 3.6, we see that E1,2 and E0,1 both greater than 1 for κ ∈ (0, 10). For
further increase of κ, there is a trend for both relative efficiencies stabilising at
some value greater than 1. Theoretical analysis for such limiting behaviour is
of an interesting future topic. Although Figure 3.6 shows that E0,1(κ) > 1 for
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small perturbation from the null, i.e. κ ∈ (0, 20) which suggest the relative ef-
ficiency of mKSD(0) is higher than the first order test mKSD(1), it is usually not
possible to compute MMD analytically and the normalised density is required.
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Figure 3.6: Relative Test Efficiency

Intuitively, with sampling error of order
√
n and ρ(n) = n is chosen to compute Ba-

hadur slope, the MMD computed from samples
are less efficient to perform goodness-of-fit test
compared to mKSD tests that directly access
the unnormalised density, as shown in Figure
3.4. Similar findings are also observed in other
settings where MMD is considered to perform

goodness-of-fit tests [Liu et al., 2016; Jitkrittum et al., 2017; Yang et al., 2018,
2019; Xu and Matsuda, 2020]. In addition, correctly sampling from Riemannian
manifold is non-trivial and can be time-consuming for sample-based tests.

3.C More on Model Criticism

In this section, we provide additional details on model criticism for wind data
present in Section 3.6.2. We fitted the model in Eq.(3.5) by using noise contrastive
estimation [Uehara et al., 2020] and our test does not find evidence to reject the fit-
ted model, suggesting a good fit for the wind direction data. In addition, we consider
the model without interaction term between two directions:

q̃(x1, x2 | ξ̃) ∝ exp{κ1 cos(x1 − µ1) + κ2 cos(x2 − µ2)}, (3.30)

which is equivalent to model in Eq.(3.5) by imposing λ12 = 0. This model can be
viewed as product of marginal distributions of x1 and x2 and we refer as factorised
model. Our test reject the null at test level α = 0.05 suggesting a poor fit of the
factorised model.

To further visualise the difference between models in Eq.(3.5) and Eq.(3.30),
we plot histogram of each wind direction in Figure 3.7(b) and samples from the
factorised model q̃ in Figure 3.7(c) where no interactions are present between x1

and x2. Compare with the wind direction data, shown again in Figure 3.7(a), we
can see that Figure 3.7(c) differs the most at the regions of x̃ = (x1, x2) = (2.8, π)

(data model denser) and x̃′ = (x1, x2) = (1, 1) (q̃ model denser). Such difference
is captured by our optimised test locations from mFSSD in Figure 3.7(e), where x̃
is at the region with 3 stars in a row and x̃′ is around the region with 4-stars in a



3.D. Uniformity Tests for Directional Distributions 64

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x 2

0

5

10

15

20

(a) Wind direction model

0 1 2 3 4 5 6
Wind Direction

10

30

50

70

Co
un

ts

x1
x2

(b) Marginals for each direction

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x 2

0

2

4

6

(c) Samples from factorised
model

0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x 2

0

2

4

6

(d) Objective values for J = 10

0 1 2 3 4 5 6
x1

0
1
2
3
4
5
6

x 2

(e) Optimised locations;
J = 10

0 1 2 3 4 5 6
x1

0
1
2
3
4
5
6

x 2

(f) Objective values for a
single test location

Figure 3.7: Visualising the fitted model and rejected model for wind direction data.

row. It shows the effectiveness of mFSSD in distinguishing the differences between
distributions. As q̃ is referred as imposing data model in Eq.(3.5) to be 0, a negative
λ12 = −1.1274 < 0 in the data model implies that positive sin(x1−µ1) sin(x2−µ2)

is less dense. With µ1 = 1.1499 = µ2, sin(x1 − µ1) sin(x2 − µ2) is positive around
the region the x̃′ making the data model less dense, as shown in Figure 3.7(a) and
3.7(c).

3.D Uniformity Tests for Directional Distributions

We present Rayleigh test and Kuiper test for uniformity for directional distributions.

Rayleigh Test
The test statistic of Rayleigh test is

Rn :=
2

n

( n∑
i=1

cos θi

)2

+

(
n∑
i=1

sin θi

)2
 .

Under the null, we have Rn ∼ χ2
2. Therefore, the critical value is given by the

quantile of chi-square distribution. For example, if the significance level is set to
α = 0.01, then the critical value is 9.210.
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Figure 3.8: Examples on truncated Gaussian mixture

Kuiper Test
Kuiper test for uniformity is based on the cumulative distribution function (CDF).
The CDF of the uniform distribution is

F (θ) =
θ

2π
.

We sort the samples to 0 ≤ θ1 ≤ · · · ≤ θn ≤ 2π and compute

D+
n :=

√
n sup
θ∈[0,2π)

{Fn(θ)− F (θ)} =
√
n max

1≤i≤n

(
i

n
− Ui

)
,

D−n :=
√
n sup
θ∈[0,2π)

{F (θ)− Fn(θ)} =
√
n max

1≤i≤n

(
Ui −

i− 1

n

)
,

where Ui = θi/(2π). Then, the test statistic is defined as

Vn := D+
n +D−n .

The critical value is found in the statistical table. For example, for the significance
level α = 0.01, the critical value is 2.001.

3.E Additional Discussions on Non-empty Boundary

We consider truncated distribution on a disc, whose boundary is non-empty. The
mixture of Gaussian distribution is truncated in a circle B1(R2),

q̃ν(x) ∝ 1

2
N (x|µ1,Σν) +

1

2
N (x|µ2,Σν),∀x ∈ B1(R2),
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n=100 n=400 n=700 n=1000

mKSD(p=30) 0.106 0.940 1.000 1.000
mKSD(p=10) 0.086 0.938 0.990 1.000
mKSD(p=5) 0.026 0.910 0.930 1.000
mKSD(p=2) 0.018 0.818 0.902 1.000
mKSD(p=1) 0.012 0.406 0.780 1.000
MMD 0.014 0.514 0.818 0.920

Table 3.6: Rejection rate under the alternative ν = 1
2 ; α = 0.01; 500 trials.

where µ1 = (−1, 0, 0), µ2 = (1, 0, 0) and Σν =

(
1 ν

ν 1

)
is shared between two

components. The null distribution is set as ν = 0 and null samples are shown in
Figure. 3.8(a). The alternative is constructed by perturbing ν.

To understand the “vanishing-at-boundary” effect of the approximation via g,
we use g(p)(x) = 1−‖x‖p, which has value 0 at the red boundary in Figure. 3.8(b).
We consider Gaussian kernel with unit bandwidth k(x, ·) and the product kernel
k(p) = g(p)(x)k(x, ·) and call the corresponding test statistics mKSD(p) when k(p)

is used as the reproducing kernel. When p is large, g(p) acts as a proxy to gε stated
in Eq. (3.16).

From the simulation result in Table. 3.6, we can see that the power quickly
goes to maximal test power when sample size increase. We can also see that as p
increases, the test power results is getting very similar and the p does not need to be
too large. Such observation implies that with relatively shap decreasing g to van-
ish at ∂M, the kernel/mKSD is already good enough to distinguish the alternative
from the null in the example presented, i.e. p = 5 still looks not “too sharp” from
Figure. 3.8(b) but test power is not too far from much larger p.



Chapter 4

Goodness-of-fit Tests for Censored Data

Summary We study the non-parametric goodness-of-fit testing procedures for cen-
sored data. Censored data occurs when the event time of interest is not accurately
observed but, instead, a random interval which the event time belongs to is given.
While the testing procedures for uncensored data are unable to adapt for the cen-
sored data, we develop a collection of kernelised Stein discrepancy tests to incorpo-
rate the presence of censoring. We study each of them theoretically and empirically
and discuss the advantages and disadvantages of these tests. Our experimental re-
sults show that our proposed methods perform better than existing tests, including
a recent test based on the kernelised maximum mean discrepancy.

4.1 Introduction

An important topic of study in statistics is the distribution of times to a critical event,
otherwise known as survival times: examples include the infection time from a
disease [Andersen et al., 2012; Mirabello et al., 2009]; the death time of a patient in
a clinical trial [Collett, 2015; Biswas et al., 2007]; or the possible re-offending times
for released criminals [Chung et al., 1991]. Survival data are frequently subject to
censoring: the time of interest is not observed, but rather a bound on it. The most
common scenario studied that we focus on in this chapter, is the right censoring,
where a lower bound on the survival time is observed. For instance, a patient might
leave a clinical trial before it is completed, meaning that we only obtain a lower
bound on the time of death. The definitions and terminologies for the survival
analysis setting and censored data will be provided in Section 4.2.

We address the setting where a model of survival times is proposed, and it
is desired to test this model against observed data in the presence of censoring,
which is in the regime of goodness-of-fit testing. When departures from the model
follow a known parametric family, a number of classical tests are available, being
the most popular in practice the log-rank test [Hollander and Proschan, 1979], and
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its generalisation, the weighted log-rank test [Brendel et al., 2014]. For an overview
of these and other methods we refer the reader to [Klein and Moeschberger, 2006]

In the event of more general departures from the null, kernel methods may
be used to construct a powerful class of non-parametric tests to detect a greater
range of alternative scenarios. For the uncensored case, a popular class of kernel
goodness-of-fit tests [Liu et al., 2016; Chwialkowski et al., 2016; Jitkrittum et al.,
2017] using Stein’s method [Barbour and Chen, 2005; Ley et al., 2017; Gorham
and Mackey, 2015] has been introduced in Section 2.2, which can be computed
even when the model is known only up to normalisation. To tackle the goodness-
of-fit problem for censored data, we consider the similar non-parametric hypothesis
testing strategy tests that construct the test statistics by taking the supremum over a
rich enough RKHS functions with respect to a particular Stein operator of choice.
While an alternative strategy would be simply to run a two-sample test using sam-
ples from the model, using for instance the MMD [Gretton et al., 2012a], Stein tests
are more computationally efficient (with no additional sampling is needed), and can
take advantage of model structure to achieve better test power.

In this chapter, we propose to the kernel Stein goodness-of-fit tests to the set-
ting of survival analysis with right-censored data. In Section 4.3, we introduce three
separate approaches to constructing a Stein operator in the presence of censoring.
The Survival Stein Operator is the most direct generalisation of the Stein operator
used in the uncensored KSD test. The Martingale Stein Operator uses a different
construction, based on a classical martingale studied in the survival analysis liter-
ature. The Proportional Stein Operator is designed for composite null hypotheses
where the hazard function (that is, the instantaneous probability of an event at a
given time, conditioned on survival to that time) is known only up to a constant of
proportionality in this case. For instance, we may wish to use a constant hazard as
the null hypothesis, without specifying in advance the value of the constant.

The rest of the chapter is structured as follows: in Section 4.4, we construct
kernel statistics of goodness-of-fit, based on each of the operators previously intro-
duced. We characterise the asymptotics of each statistic in Section 4.5. We find that
in order to guarantee convergence in distribution under the null, the kernel statis-
tic based on the Survival Stein Operator requires more restrictive conditions than
the statistic built on the Martingale Stein Operator. In other words, the straight-
forward extension of the uncensored test is in fact the more restrictive approach
of the two. Stronger assumptions again are required in obtaining convergence in
distribution for the Proportional Stein Operator statistic, which should come as no
surprise, given that the null is now an entire model class. For each statistic, we pro-
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Figure 4.1: Example functions related to survival analysis.

pose a wild bootstrap approach to obtain the test threshold. Empirical studies and
results are presented in Section 6.6, where we compare with a recent state-of-the-art
non-parametric test for censored data [Fernandez and Gretton, 2019] based on the
maximum-mean-discrepancy, which has been shown to outperform classical tests.
For challenging cases, our Stein tests surpass the maximum-mean-discrepancy test.

4.2 Survival Analysis Background

4.2.1 Important Functions in Survival Analysis
In survival analysis, we deal with the observed time T , which is associated with
the actual survival time of interest X that we do not have direct access to and the
censoring time C. We denote by fT , fX and fC , the respective density functions
associated with the random variables T , X and C. Similarly, we denote by FT ,
FX and FC , the respective cumulative distribution functions (c.d.f.); and by ST =

1−FT , SX = 1−FX and SC = 1−FC , the survival functions. An important element
in survival analysis is the hazard function which represents the instantaneous risk of
dying1 at a given time. Given a distribution with density fX and survival function
SX , the hazard function λX(x) is given by fX(x)/SX(x), which can be seen as
the density at x of a random variable X conditioned on the event {X ≥ x}. The
corresponding cumulative hazard function is defined as ΛX(x) =

∫ x
0
λX(t)dt. A

useful feature of the hazard function is that there is a one-to-one relation between
hazard and density functions through the relation SX(x) = e−ΛX(x). For the random
variables T andC, we denote by λT and λC their respective hazard functions, and by
ΛT and ΛC , their cumulative hazards functions. As a remark, every continuous non-
negative function λ : R+ → R can be a hazard function, as long as

∫
R+
λ(t)dt =∞,

thus, describing hazards is much easier than describing densities, as we do not need
to worry about normalisation constants. Examples of corresponding functions for
different models are displayed in Figure 4.1.

1Dying refers to the opposite concept of surviving.
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4.2.2 Censored Data
Let (X1, . . . , Xn)

i.i.d.∼ FX be the survival times, which are non-negative real-valued
random variables of interest, and let (C1, . . . , Cn)

i.i.d.∼ FC be the censoring times
which is another collection of non-negative random variables. In this chapter, we
assume the non-informative censoring setting, where the censoring times are inde-
pendent of the survival times. The data we observe correspond to (Ti,∆i) where
Ti = min{Xi, Ci} and ∆i = 1{Xi≤Ci}. We can imagine that Xi is the time of
interest such as the death of a patient and Ci is the time a patient leaves the study
for some other reason, thus, for some patients we observe their actual death time,
whereas for others we just observe a lower bound: the time they left the study with-
out dying. ∆i indicates if we are observing Xi or Ci.

As the observations for censored data come as pairs (Ti,∆i), it is convenient to
consider the joint measure µ on R+ × {0, 1} induced by the pair (T,∆). We write
µX to denote the measure µ when the survival times of interest Xi are generated
according to fX , and µ0 if they are generated under f0 (i.e., under the null). Note
that µX and µ0 also depend on fC , however we don’t make this dependence explicit,
since for goodness-of-fit we only care about f0 and fX . Finally, we know the fol-
lowing identities in survival analysis, which will be useful for later discussions: for
any measurable function φ,

EX [∆φ(T )] =

∫ ∞
0

φ(s)fX(s)SC(s)ds, (4.1)

EX [(1−∆)φ(T )] =

∫ ∞
0

φ(s)fC(s)SX(s)ds. (4.2)

Here EX = EµX means that we are taking expectation w.r.t. (T,∆) ∼ µX . Simi-
larly, we write E0 to indicate (T,∆) ∼ µ0 (under the null hypothesis).

4.3 Stein Operators for Censored Data

In this section, we describe a set of Stein operators for censored data. We denote by
Ω the set of functions R+ × {0, 1} → R, and recall that µ0 is the measure induced
by data (T,∆) under the null hypothesis.

Definition 4.1. LetH ⊆ L2(f0). We call T0 : L2(f0)→ Ω a Stein operator forH if
for each ω ∈ H

E0 [(T0ω)(T,∆)] = 0. (4.3)

An interesting technical point is that our operator takes functions ω : R+ → R
and maps them to Ω. The idea behind having these two spaces is that while our data
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of interest is a time (hence the spaceH of functions R+ → R), we actually observe
pairs (Ti,∆i), hence we need functions in Ω.

We choose the general class H to be an RKHS. We assume that H contains
only differentiable and bounded functions, and that if ω ∈ H then ω′ ∈ H. These
requirements are not restrictive and most of the standard kernels in the literature
generate RKHSs with these properties, including the Gaussian kernel. Further prop-
erties ofH will be imposed if needed in particular cases.

4.3.1 Survival Stein Operator

Observe that Ti = Xi if and only if ∆i = 1. One might be tempted to use only
the uncensored observations to approximate

∫∞
0

(T0ω)(x)f0(x)dx, where T0 is the
standard Stein operator similar to Eq. (2.19), by computing

1

n

n∑
i=1

∆i(T0ω)(Ti) =
1

n

n∑
i=1

∆i(T0ω)(Xi),

however, this sum does not converge to
∫∞

0
(T0ω)(x)f0(x)dx as the term ∆i in-

troduces bias due to censoring. Indeed, such an empirical average converges to∫∞
0

(T0ω)(x)SC(x)fX(x)dx by Eq. (4.1). To account for this bias we redefine
T0 : H(s) → Ω as

(T0ω)(x, δ) = δ
(ω(x)SC(x)f0(x))′

SC(x)f0(x)
+ ω(0)f0(0). (4.4)

Here we writeH(s) instead ofH whenever we assume that the additional condition
is satisfied, ∫

R+

∣∣(ω(x)SC(x)f0(x))′
∣∣ dx <∞, ∀ω ∈ H, (4.5)

which guarantees that the operator is well-defined. Notice that ω(0)f0(0) in equa-
tion (4.4) appears since we do not necessarily assume a vanishing boundary at 0.

Under the null hypothesis, (Ti,∆i) ∼ µ0, it holds that

1

n

n∑
i=1

(T0ω)(Ti,∆i)→ E0[(T0ω)(T,∆)] (4.6)

as the number of data points tends to infinity, and E0[(T0ω)(T,∆)] = 0 due to
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Eq. (4.1) and the fact that∫
R+

(ω(x)SC(x)f0(x))′dx+ ω(0)f0(0) = 0, (4.7)

which is proved using integration by parts. Notice that in this argument we use
thatH(s) only contains bounded functions, allowing us to get rid of the boundary at
infinity.

The operator T0 can be seen as a natural extension of the Stein operator
[Gorham and Mackey, 2015] to censored data. Observe that in the uncensored case,
SC(x) ≡ 1 recovers the standard Stein operator.

Unfortunately, in the goodness-of-fit setting, we only have access to the null
distribution f0(x) but not to the censoring distribution fC(x), thus SC(x) needs to
be estimated. The standard estimator for SC is the Kaplan-Meier estimator [Kaplan
and Meier, 1958] which can be very data inefficient, leading to an unsatisfactory
testing procedure.

To bypass the approximation of SC we define the survival Stein operator T (s)
0 :

H(s) → Ω as

(T (s)
0 ω)(x, δ) = δω′(x) +

λ′0(x)

λ0(x)
δω(x)

− λ0(x)ω(x) + λ0(0)ω(0) (4.8)

Proposition 4.1. Consider T0 and T (s)
0 defined in Eq. (4.4) and Eq. (4.8), respec-

tively. Let (T,∆) ∼ µ0. Then

E0[(T (s)
0 ω)(T,∆)] = E0[(T0ω)(T,∆)] = 0, ∀ω ∈ H(s).

The previous proposition says that if the data we observed were generated from
µ0 then the expectation of the operators T0 and T (s)

0 are equal for each function in
H(s). However, the relation between T0 and T (s)

0 is stronger than merely equal-
ity in expectation, indeed, under a slightly stronger condition on the form of the
distribution f0 and fC we get the following result.

Proposition 4.2. Assume that∫ ∞
0

(λC(x) + λ0(x))fC(x)f0(x) <∞, (4.9)

then, under the null hypothesis, i.e. (Ti,∆i) ∼ µ0, we have that, as the number of
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data points tends to infinity,

sup
ω∈B1(H)

1

n

n∑
i=1

(T (s)
0 ω)(Ti,∆i)− (T0ω)(Ti,∆i)

p→ 0,

whereB1(H) denotes the unit ball of RKHSH and
p→ denotes convergence in prob-

ability

The proof utilises a symmetrisation argument followed by law of large numbers
and details are shown in Appendix 4.A. To better understand the survival Stein
operator, we interpret the proposed Stein operator by making connections to the
Stein operator used in the uncensored case.

A careful computation gives the following equivalent expression for the expec-
tation of (T (s)

0 ω)(T,∆) for (T,∆) ∼ µX :

EX [(T (s)
0 ω)(T,∆)] = EX

[
ω(T )∆

(
log

f0(T )

fX(T )

)′]
− EX [ω(T )(1−∆)(λ0 − λX)(T )] + ω(0)(λ0 − λX)(0).

Here, we can relate the first expectation to uncensored observations: ∆ = 1; the
second expectation to censored observations: ∆ = 0; and the third term describes a
shift due to boundary conditions.

The expectation of the uncensored part is equal to∫ ∞
0

ω(x)

(
log

f0(x)

fX(x)

)′
SC(x)fX(x)dx,

which is analogous to what we obtain in the uncensored case, with an additional SC
weighting. If we have no censoring, then SC ≡ 1, recovering the expression found
in [Chwialkowski et al., 2016]. On the other hand, the expectation of the censored
part is equal to ∫ ∞

0

ω(x)

(
SX(x)

S0(x)
f0(x)− fX(x)

)
fC(x)dx,

which measures the discrepancy between f0 and fX through survival weights, under
the measure of censoring fC . In the absence of censoring, fC = 0 a.e., so this term
appears due to the censoring variable. Notice that if differences between f0 and fX
occur at times t where SC(t) = 0, which corresponds to the observations at this
time being entirely censored, then no method will detect these differences.
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4.3.2 Martingale Stein Operator

While the previous approach mimics the classic diffusion-type Stein operator, it has
similar drawbacks. Similarly to what we observe in KSD tests for uncensored case
[Chwialkowski et al., 2016; Liu et al., 2016], our Stein operator T (s)

0 requires very
strong integrability conditions on the involved distribution functions. In our setting,
we find, for example condition c.1 in Section 4.5.1, which involves integrals with
respect to hazard functions which are known to satisfy

∫
λ0(x)dx = ∞, leading to

a testing procedure with weak theoretical guarantees. While these conditions may
hold for some models, it is not hard to find simple examples where they do not hold.

In order to get a more robust test, we exploit a well-known identity in survival
analysis, allowing us to deduce a more natural Stein operator. Such an identity is
given by

E0

[
∆φ(T )−

∫ T

0

φ(t)λ0(x)dx

]
= 0, (4.10)

which holds for any function φ such that E0[|φ(T )|] <∞ [Aalen et al., 2008]. This
equality is derived by using a martingale identity that appears in the derivation of
classical estimators in survival analysis (see Appendix 4.B).

Assuming λ0(t) > 0, we replace φ = ω′/λ0 in Eq. (4.10) to get

E0

[
∆
ω′(T )

λ0(T )
− (ω(T )− ω(0))

]
= 0.

Define the martingale Stein Operator T (m)
0 : H(m) → Ω as

(T (m)
0 ω)(x, δ) = δ

ω′(x)

λ0(x)
− (ω(x)− ω(0)) (4.11)

where we writeH(m) instead ofH wheneverH satisfies∫
R+

∣∣∣∣ω′(x)

λ0(x)

∣∣∣∣SC(x)f0(x)dx <∞, ∀ω ∈ H. (4.12)

From its definition, it is clear that E0[(T (m)
0 ω)(T,∆)] = 0. Note that, by the defini-

tion of the hazard functions, condition in Eq. (4.12) is equivalent to∫
R+

|ω′(x)|SC(x)S0(x)dx <∞, ∀ω ∈ H, (4.13)

which holds true if the kernel is bounded (recall that we assume that ω′ ∈ H).
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Therefore, compared to T (s)
0 , the testing procedure associated to T (m)

0 has very
strong theoretical guarantees. Indeed, we observe that condition c.2 in Section 4.5.1
is much simpler to satisfy because, this time, we consider integrals with respect to
the inverse of the hazard function.

Model-Free Implementation Inspired by the test of uniformity through MMD-
based test statistic [Fernandez et al., 2019], we transform our data via the null model
c.d.f. F0 to obtain Ui = F0(Ti) and generate pairs (Ui,∆i). Notice that since F0 is
monotone Ui = F0(Ti) = min{F0(Xi), F0(Ci)}, thus ∆i remains consistent. Under
this transformation, testing the null hypothesis is equivalent to test whether F0(Xi)

is distributed as a uniform random variable, thus, in this setting, λ0 = λU = 1
1−x

and
(T (m)

0 ω)(u, δ) = δω′(u)(1− u)− ω(u) + ω(0)

for u = F0(x) (notice that F0(0) = 0). It will be shown in the experiments that
this transformation is beneficial in terms of power performance. Similarly, we can
exploit that Λ0(X) ∼ Exp(1) under the null when the model is transformed via the
cumulative hazard function, which is another monotonic function.

4.3.3 Proportional Stein Operator

In some scenarios, we are interested in the shape of the hazard function up to a
multiplicative constant, i.e. λ0(t) = γλ(t) where we know λ(t) but not the constant
γ. The family indexed by γ is called a proportional hazards family and it is one of
the key objects of study in survival analysis. This object is fundamental because
sometimes it is more important to test for qualitative results as “the hazard rate is
growing at a constant speed”, rather than obtaining precise values of the hazard
function. If we only know λX(t) up to constant and we can ensure that ω(0)λ(0) =

0, then we can define a Stein operator based on unnormalised hazard.

In order to define our operator, we assume that∫
R+

|(ω(x)λ0(x))′|dx <∞, and

ω(0)λ0(0) = lim
x→∞

ω(x)λ0(x) = 0, ∀ω ∈ H. (4.14)

As usual, we write H(p) to indicate that H satisfies property (4.14). Note that for
any function ω ∈ H(p) it holds that∫ ∞

0

(ω(x)λ0(x))′

λ0(x)
λ0(x)dx = 0.
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The integral in the form above can be estimated using the Nelson-Aalen estimator
in survival analysis [Nelson, 1972], leading to the statistic

1

n

n∑
i=1

(ω(Ti)λ0(T ))′

λ0(Ti)

∆i

Y (Ti)/n
,

where Y (t) =
∑n

k=1 1{Tk≥t} is the so-called risk function, which counts the number
of individuals at risk at time t. This suggests the following operator

(T̂ (p)
0 ω)(x, δ) =

(
ω′(x) +

ω(x)λ′0(x)

λ0(x)

)
δ

Y (x)/n
. (4.15)

In the definition above we use the notation T̂ (p)
0 to indicate that, the function Y (t)

depends on all data points, hence T̂ (p)
0 can be seen as an empirical estimator of a

deterministic operator. Indeed, if (Ti,∆i) ∼ µ0, then

Y (x)

n
→ SC(x)S0(x),

which indicates that under the null hypothesis, the operator T̂ (p)
0 is similar to T (p)

0 ,
given by

(T (p)
0 ω)(x, δ) =

(
ω′(x) +

ω(x)λ′0(x)

λ0(x)

)
δ

SC(x)SX(x)
.

This operator cannot be directly evaluated since we do not have access to SC .
The following proposition establishes the formal relation between T̂ (p)

0 and T (p)
0 .

Proposition 4.3. Let (Ti,∆i) ∼ µ0, then for every ω ∈ H(p).

1

n

n∑
i=1

(T̂ (p)
0 ω)(Ti,∆i)

p→ E0

[
(T (p)

0 ω)(T1,∆1)
]

= 0. (4.16)

4.4 Censored-Data Kernel Stein Discrepancy

In this section, we derive censored-data Kernel Stein Discrepancies (c-KSD) using
each of our three Stein operators defined in the previous section. The idea is to
compare the largest discrepancy between two distributions fX and f0 over a class of
test functions in the RKHS H. Since we have access to censored data, we compare
fX and f0 through the measures µX and µ0, defined in Section 4.2.

We proceed to define three censored-data kernel Stein discrepancies: the sur-
vival Kernel Stein Discrepancy (s-KSD), the martingale Kernel Stein Discrepancy
(m-KSD), and the proportional Kernel Stein Discrepancy (p-KSD) based on the
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respective Stein operators T (s)
0 , T (m)

0 and T̂ (p)
0 . In general, for any given Stein op-

erator T (c)
0 : H(c) → Ω we define the c-KSD as

c-KSD(fX‖f0) = sup
ω∈B1(H(c))

EX [(T0
(c)ω)(T,∆)]. (4.17)

Denote byK(c) the reproducing kernel ofH(c). For any of the operators T (c)
0 , apply-

ing T (c)
0 on K(c)(x, ·)2 is defined as (T (c)

0 ω)(x, δ) but replacing ω(x) by K(c)(x, ·)
and ω′(x) by ∂

∂x
K(c)(x, ·). For example, for c = m, we get that

[
(T (m)

0 K(m))(x, δ)
]

(·) =
δ

λ0(x)

(
∂

∂x
K(m)(x, ·)

)
− (K(m)(x, ·)−K(m)(0, ·)),

(4.18)
which is derived from Eq. (4.11).

Recall that for c ∈ {s,m, p}, we assumed that if ω ∈ H(c) then ω′ ∈ H(c), and
thus ξ(c)(x, δ)(·) =

[
(T (c)

0 K(c))(x, δ)
]

(·) ∈ H(c) since all operators involve ω or

ω′. Define the Stein kernel h(c) : (R+ × {0, 1})2 → R by

h(c)((x, δ), (x′, δ′)) =
〈
ξ(c)(x, δ), ξ(c)(x′, δ′)

〉
H(c) .

By using the reproducing property in the form of Eq. (4.18), we can obtain a closed
form expression for c-KSD for taking the supremum given by the following propo-
sition.

Proposition 4.4. For c ∈ {s,m, p}, and let (T,∆) and (T ′,∆′) be independent
samples from µX , and suppose that

EX
[√

h(c)((T,∆), (T,∆)

]
<∞, (4.19)

then

c-KSD(fX‖f0)2 = EX
[
h(c)((T,∆), (T ′,∆′)

]
.

The derivation is standard for taking supremum over functions in unit ball
RKHS and the detailed derivations for the Stein kernels h(c)((x, δ), (x′, δ′)) can be
found in Appendix 4.A.

2Recall that K(c)(x, ·) itself is a function R+ → R.
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4.5 Goodness-of-fit Test via c-KSD

In this section, we study goodness-of-fit testing procedures based on c-KSD. We
begin by estimating the squared c-KSD using the Stein kernel h(c),

̂c-KSD2(fX‖f0) =
1

n2

n∑
i=1

n∑
j=1

h(c)((Ti,∆i), (Tj,∆j))

where (Ti,∆i) are independent samples from µX . By construction, under the null
hypothesis where µX = µ0, the estimator above should be close to zero, while under
the alternative hypothesis when µX 6= µ0, we expect it to be separated from zero.

4.5.1 Theoretical Analysis
We state some technical conditions that feature our analysis in order to establish the
asymptotic behavior of ̂c-KSD2.

Technical Conditions
a) Reproducing kernel conditions: We assume thatK has continuous second-order
derivatives, and that K(x, y) and ∂2

∂x∂y
K(x, y) are bounded and C0-universal Defi-

nition 3.1(i) [Carmeli et al., 2010, Definition 4.1].
b) Boundary condition: limx→0+

√
K(x, x)λ0(x) <∞.

c) Null integrability conditions: Let (T,∆), (T ′,∆′)
i.i.d.∼ µ0, and recall that

E0 = Eµ0 . Depending on c ∈ {s,m, p}, we assume:

1) s-KSD:

i) E0[φ(T,∆)2|K(T, T )|] <∞, and

ii) E0[φ(T,∆)2φ(T ′,∆′)2K(T, T ′)2] <∞,

where φ(x, δ) = δ
λ′0(x)

λ0(x)
− λ0(x).

2) m-KSD:

i) E0

[
|K?(T,T )|∆
λ0(T )2

]
<∞, and

ii) E0

[
K?(T,T ′)2∆∆′

λ0(T )2λ0(T ′)2

]
<∞,

where K?(x, y) = ∂2

∂x∂y
K(x, y).

3) p-KSD:

i) E0

[
|K?(T,T )|∆

(f0(T )SC(T ))2

]
<∞, and
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ii) E0

[
K?(T,T ′)2∆∆′

(f0(T )f0(T ′)SC(T )SC(T ′))2

]
<∞,

where K?(x, y) =
(

∂2

∂x∂y
K(x, y)λ0(x)λ0(y)

)
.

d) Alternative integrability conditions: Consider samples (T,∆), (T ′,∆′)
i.i.d.∼ µX .

Then, for each c ∈ {s,m, p} we assume:

1) s-KSD:

i) EX [φ(T,∆)2|K(T, T )|] <∞,

where φ(x, δ) = δ
λ′0(x)

λ0(x)
− λ0(x).

2) m-KSD:

i) EX
[
|K?(T,T )|∆
λ0(T )2

]
<∞,

where K?(x, y) = ∂2

∂x∂y
K(x, y).

3) p-KSD:

i) EX
[
|K?(T,T )|∆
ST (T )2λ0(T )2

]
<∞,

where K?(x, y) =
(

∂2

∂x∂y
K(x, y)λ0(x)λ0(y)

)
.

The following theorem establishes consistency of our empirical kernel Stein dis-
crepancies to their population versions.

Theorem 4.1. [Asymptotics under the alternative H1] Let c ∈ {s,m, p}, and sup-
pose that fX satisfies conditions a), b), and the corresponding condition d). Then
the following holds:(

ĉ-KSD(fX‖f0)
)2 p→ (c-KSD(fX‖f0))2 .

The previous theorem is not enough to ensure good behavior under the alterna-
tive as we need to be sure that the discrepancy of two different distribution functions
fX and f0 is different from 0, regardless of censoring. We can prove this for c-KSD

for c ∈ {s,m}. This does not hold true for p-KSD since it is designed to test if
the hazard function λX is proportional to λ0, and not for goodness-of-fit testing
purposes. Indeed, whenever the hazards are in a proportional relation, p-KSD is 0.

Theorem 4.2. Let c ∈ {s,m}. Assume SC(x) = 0 implies SX(x) = 0 and
that K is C0-universal. Then, under Conditions a), b) and d), f0 6= fX implies
c-KSD(f0‖fX) > 0.
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Under the null distribution, fX = f0, we also have that ĉ-KSD(f0‖f0) → 0,
but we can prove an even stronger result that follows from the theory of V -statistics.

Theorem 4.3 (Asymptotics under the null H0). Let c ∈ {s,m, p}, and suppose that
fX = f0 and that conditions a), b), and the corresponding condition c) are satisfied.
Then

n ·
(

ĉ-KSD(fX‖f0)
)2 D→ rc + Yc,

where rc is a constant and Yc is an infinite sum of independent χ2 random variables.

While Theorem 4.3 ensures the existence of a limiting null distribution, which
implies that a rejection region for the test is well defined, in practice it is very hard
to approximate the limit distribution and the corresponding rejection regions, for
which, we rely on a wild bootstrap approach.

We remark that we can obtain concentrations bounds for the test-statistics un-
der the null hypothesis if we assume that the kernels h(s) and h(m) are bounded, by
using standard methods. Obtaining concentration bounds for h(p) is harder as it is a
random kernel, depending on all data points.

4.5.2 Wild Bootstrap Tests
To re-sample from the null distribution we use the wild bootstrap technique
[Dehling and Mikosch, 1994]. This technique is quite generic and it can be ap-
plied to any kernel-based testing procedure [Chwialkowski et al., 2014]. The wild
bootstrap estimator is given by

1

n2

n∑
i=1

n∑
j=1

WiWjh
(c)((Ti,∆i), (Tj,∆j)), (4.20)

where W1, . . . ,Wn are independent random variables from a common distribution
W with E(W1) = 0 and Var(W1) = 1. In our experiments we considerWi sampled
from a Rademacher distribution, but any distribution with the properties above is
suitable. Dehling and Mikosch [1994] proved that if the limit distribution exists,
in the sense of Theorem 4.3, then the wild bootstrap statistic also converges to the
same limit distribution.

The testing procedure for goodness-of-fit is performed as follows: 1) Set a type
1 error α ∈ (0, 1). 2) Compute ̂c-KSD2(fX‖f0) using our n data points. 3) Compute
m-independent copies of the wild bootstrap estimator from Eq. (4.20). 4) Compute
the proportion of wild bootstrap samples that are larger than ̂c-KSD2(fX‖f0) ; if
such a proportion is smaller than α we reject the null hypothesis, otherwise do not
reject it.
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Figure 4.2: Rejection rate w.r.t. sample size and model perturbation. Left two for Weibull
Hazard; Right two for Periodic Hazard. α = 0.01.

4.6 Experiments

4.6.1 Simulation Results
Proposed approaches: We denote sKSD, mKSD and pKSD as the tests based on
the survival, martingale and the proportional kernel Stein discrepancies respectively
as described in Section 4.3, where the tests are implemented using the wild boot-
strap approach as described in Section 4.5.2. Additionally, we implement the model
free transformation described at the end of Section 4.3.2 and denote the c.d.f. trans-
formation F0 as suffix u and the cumulative hazard transformation Λ0 as suffix
e; e.g. mKSDu uses test statistic given by the mKSD test applied to the trans-
formed data ((F0(Ti),∆i))

n
i=1 to test the null hypothesis H0 : F0(X) ∼ U(0, 1);

mKSDe uses test statistic given by the mKSD test applied to the transformed data
((Λ0(Ti),∆i))

n
i=1 to test the null hypothesis H0 : Λ0(X) ∼ Exp(1). Finally, for the

experiments, we use an exponentiated quadratic kernel with length-scale parame-
ter chosen by using the median-heuristic, which is the median of all the absolute
differences between two different data points. We did not use further optimisation
for kernel parameters here to improve the performance of the tests. In this one-
dimensional problem setting, median bandwidth is a simple choice that achieves
good test power and the test is not super sensitive to kernel bandwidth. Optimise
approximate test power [Gretton et al., 2012a; Jitkrittum et al., 2016a, 2017] results
into less data for testing and test power can be reduced.

Competing approaches: We denote MMD as the maximum-mean-discrepancy
approach proposed by Fernandez and Gretton [2019], which provides state-of-
the-art results; Pearson denotes the Pearson χ2 goodness-of-fit test proposed by
Akritas [1988], which can be competitive in certain cases. LR1 and LR2 de-
note the weighted log-rank tests with respective weights functions w1(t) = 1 and
w2(t) =

∑n
i=1 1{Ti≥t}, which are classical tests, but not very competitive except

for some very simple settings (e.g. testing H0 : λ0(t) = 1 against λX(t) = c, for
constant c 6= 1).
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Computational costs: As the c.d.f. transformation F0 and Λ0 can be computed ex-
plicitly and prior to computing the test statistics, mKSDu and mKSDe has the same
order of computational time as mKSD. As the log-rank based test can be rewrite
into the form of Eq.(4.17) dropping the sup notion and choosing fixed weights, LR
test can be efficiently computed via wild bootstrap for null simulation and achieve
the computational runtime of the same order of mKSD. The χ2-based test only re-
quires computation of statistics without simulating the null and has a computational
advantage.

Data Sources: We begin by studying our proposed method via simulated distribu-
tions where we consider two data scenarios.
1. Weibull hazard functions
In our first experiment, we consider the Weibull model, which is commonly used in
survival analysis [Bradburn et al., 2003]. The Weibull distribution is characterised
by the density function of the form f(x; k, r) = kr (rx)k−1 exp{−(rx)k}, where k
and r denote shape and rate parameters, respectively.
2. Periodic hazard functions
A much more interesting scenario is the so-called periodic hazards, which can be
used to describe, for example, seasonal diseases such as Influenza. In this example,
we consider the hazard function λX(x) = 1 − cos (θπx) studied in Fernandez and
Gretton [2019]. The relevant functions fX , FX , SX ,ΛX can be computed if nec-
essary from Section 4.2. Note that when θ → ∞, then the distribution tends to a
exponential of parameter 1. See Figure 4.1 for a comparison between the models.

Testing for Goodness-of-fit
In Figure 4.2, we show the rejection rate for testing the goodness-of-fit, where a
particular density model is considered in the null hypothesis. For both models, we
investigate the performance of our test in two setting: increasing sample size and
perturbations from the null.

Increasing sample size shown in first and third plot in Figure 4.2 demonstrates how
fast the test power converges to 1 w.r.t. the sample size increases. In the Weibull
setting we set the null H0 : f0(x) = f(x; 1, 1), where the alternative as fX(x) =

f(x; 1.5, 1) and in the periodic setting, we consider the null H0 : f0(x) = e−x,
and generate data from the alternative θ = 3. In both settings we consider 30% of
censored data points

In both the Weibull cases, the KSD-based tests outperforms the competitors
in terms of test power. In the periodic hazard case which is a harder problem, the
KSD-based tests performs better than MMD-based tests after transformation, while
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less power without transformation. This is likely due to the difference of the models
are not easy to estimate; however, transforming via exact functions (F0 or Λ0), will
give better estimation of the population statistics over fixed test distribution (U or
Exp(1)), than direct empirical estimation from the data.

Perturbations from the null shown in second and fourth plot in Figure 4.2 demon-
strates how sensitive the test are able to capture the alternative when the alternative
distribution is getting closer to the null distribution. For the Weibull data, we set
H0 : f0(x) = f(x; 1, 1) and consider Weibull alternatives fX(x) = f(x; k, 1) with
k ∈ (0, . . . , 2]. Note that we recover the null hypothesis when k = 1. Also, we con-
sider a constant 30% of censored observations and a fixed sample size of n = 100.
For the periodic experiment we set H0 : λ0(x) = 1 − cos (πx), which is recovered
when we take θ = 1. In this case, we consider alternatives θ ∈ [0.5, 2]\{1}. We
consider, again, a constant 30% of censoring, and a fixed sample size of n = 100.

For Weibull case, the kernel based methods outperform those non-kernel based
methods, under the alternatives; in the sense that they achieve higher power with
smaller departure from the null. Moreover, our KSD-based tests perform better than
the MMD-based test. In Weibull case which is relatively simple, all KSD-based
tests achieves similar results, which is expected. In the more challenging problem
of periodic hazard, KSD-based tests with transformations outperforms MMD-based
test, the similar trend as in third plot of Figure 4.2.

Testing for Hazard Proportionality

We consider the case of non-normalised models with unnormalised hazard func-
tions. Unlike density functions which integrates to one, the hazard function does
not need to. Hence, while testing unnormalised density is asking whether the data
comes from a particular density model, to test unnormalised hazards is equivalent
to test for a class of models with the same hazard shape, which is referred as testing
hazard proportionality. We perform the test with the composite null hypothesis with
unnormalised hazards via pKSD.

We present the result using the Weibull model with the shape parameter k and
scale parameter l: when fixing shape parameter and varying the scale parameter,
the hazard function remains the same up to multiplicative constants, i.e. has the
same hazard shape; however, when the shape parameter changes, the hazard func-
tions are not the same up to multiplicative constants. From Table 4.1, we can see
that, when the shape of the Weibull model is different, the unnormalised methods
correctly reject the null. However, the unnormalised method (with pKSD) have less
test power compared to the goodness-of-fit test methods mKSDu and sKSDu. A
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` = 1.0 k = 2.0 k = 1.5 k = 0.8
α sKSDu mKSDu pKSD sKSDu mKSDu pKSD sKSDu mKSDu pKSD

10 % 99.67 98.67 79.33 66.33 57.33 46.33 81.33 82.00 47.00
5 % 97.00 94.00 54.67 59.67 41.33 26.00 68.00 66.33 35.00
1 % 89.00 78.00 10.33 23.00 18.67 7.33 27.33 27.00 19.33

Table 4.1: Rejection Rate (in %) with shape (k) perturbation: the null distribution
Weilbull(k = 1.2, l = 1.0), sample size 100, censoring rate: 30%

k = 1.2 ` = 2.0 ` = 1.5 H0 : ` = 1.0
α sKSDu mKSDu pKSD sKSDu mKSDu pKSD sKSDu mKSDu pKSD

10 % 91.00 100.00 15.00 82.00 94.00 12.00 14.00 7.00 13.00
5 % 79.00 98.00 8.00 71.00 88.00 6.00 5.00 4.00 6.00
1 % 67.00 88.00 3.00 57.00 71.00 3.00 2.00 1.00 2.00

Table 4.2: Rejection Rate (in %) with scale (`) difference: the null distribution
Weilbull(k = 1.2, ` = 1.0), sample size 100, censoring rate: 30%

possible explanation lies in the fact that, since this method tests against the whole
model class, it must ignore all differences within this class, which affects the power
of the test. In Table 4.2, as changing the scale parameter keeps the same hazard
function up to a multiplicative constant, the unnormalised hazard approach does not
reject and achieves well-controlled Type-I errors. On the other hand, as the models
are different, sKSDu and mKSDu reject the null hypothesis. This result enables us
to efficiently test a class of distribution without first estimating the best-fit model.

4.6.2 Real Data Applications
We perform our tests on the following real datasets to check relevant model assump-
tions. aml: Acute Myelogenous Leukemia survival dataset [Miller Jr, 2011]; cgd:
Chronic Granulotamous Disease dataset [Fleming and Harrington, 2011]; ovarian:
Ovarian Cancer Survival dataset [Edmonson et al., 1979]; lung: North Central Can-
cer Treatment Group (NCCTG) Lung Cancer dataset [Loprinzi et al., 1994]; stan-
ford: Stanford Heart Transplant Data [Crowley and Hu, 1977]; nafld: Non-alcohol
fatty liver disease (NAFLD) [Allen et al., 2018].

Test Results We apply our proposed tests on real dataset for the Testing hazard pro-
portionality and Goodness-of-fit settings. First, we check model class assumption
using pKSD to test whether the observed data is from a desired family model with-
out fitting model parameters. We check the exponential model class and the Weibull
model with shape equals to 2. As the results shown in Table 4.3, our tests does not
reject the Exponential model, which is coherent with scientific domain knowledge
from the literature.3

3High-grade serous ovarian carcinoma (HG-SOC) is a major cause of cancer-related death. The
growth of HG-SOC acts as an indicator of survival time of ovarian cancer [Gu et al., 2019]. This
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p-value aml cgd ovarian
Exponential 0.585 0.460 0.681

Weibull: k = 2 0.001 0.002 0.063

Table 4.3: Rejection rate for real data applications on testing hazard proportionality

Dataset Covarites p-value
lung Age 0.167

stanford T5 mismatch score 0.594
nafld Weight and Gender 0.108

Table 4.4: Rejection rate on real data applications on testing goodness-of-fit

For the Goodness-of-fit test setting, we fit a cox proportional hazard model
from the covariates provided in the datasets. The cox-proportional hazard function
has the form λX(xi) = λb(xi) exp(βYi), where λb(x) is the base hazard and Yi is
the covariate for subject i. The procedure is done via splitting the data into training
set and test sets. Fitting the cox proportional-hazard model is applied on the training
sets and the test sets are used to perform the goodness-of-fit tests. Results in Table
4.4 shows that all the models does not reject the fitted cox proportional hazard
models and validate the proportional hazard assumptions for relevant fitted models,
which is coherent with scientific experience stated in the literature.4

paper also suggests that that HG-SOC follows exponential expansion, which implies exponentially
distributed survival time of ovarian patient.

4Chansky et al. [2016] suggests that cox proportional hazard model is a reasonable tool among
practitioners for lung dataset. [Crowley and Hu, 1977] suggests a fit for cox proportional hazard
model for stanford dataset. [Allen et al., 2018] states that cox proportional hazards is often used to
study the impact of NAFLD on incident metabolic syndrome or death.



Appendices

4.A Proofs and Derivations

Proofs of Section 4.3.1: Survival Stein Operator

Proof of Proposition 4.1

The proof is deliberately presented in an order to reveals the construction procedure
for the survival Stein operator T (s)

0 . Let ω ∈ H(s). Expanding Eq. (4.4) yields

(T0ω)(x, δ) = δ
(ω(x)SC(x)f0(x))′

SC(x)f0(x)
+ ω(0)f0(0)

= δω′(x) + δω(x)
(SC(x)f0(x))′

SC(x)f0(x)
+ ω(0)f0(0)

= δω′(x) + δω(x)

(
f ′0(x)

f0(x)
− λC(x)

)
+ ω(0)f0(0). (4.21)

Recall that λC = fC/SC denotes the hazard function associated to the censoring
times and SC = 1− FC , so the final line holds.

Notice that, when taking expectation of Eq. (4.21) w.r.t. E0, the only unknown
term is E0 [∆ω(T )λC(T )], since λC is not available even under the null hypothesis.
Nevertheless, by Eq. (4.1) and Eq. (4.2), a simple inspection shows that

E0 [∆ω(T )λC(T )] =

∫ ∞
0

ω(x)
fC(x)

SC(x)
SC(x)f0(x)dx = E0[(1−∆)ω(T )λ0(T )].

Therefore, we can replace δω(x)λC(x) by (1−δ)ω(x)λ0(x) in Eq. (4.21), obtaining
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our survival Stein operator:

(T (s)
0 ω)(x, δ) = δω′(x) + δω(x)

f ′0(x)

f0(x)
− (1− δ)ω(x)λ0(x) + ω(0)f0(0)

= δω′(x) + δω(x)

(
λ′0(x)

λ0(x)
− λ0(x)

)
− (1− δ)ω(x)λ0(x) + ω(0)f0(0)

= δω′(x) + δω(x)
λ′0(x)

λ0(x)
− ω(x)λ0(x) + ω(0)λ0(0).

The second equality holds due to the identity f ′0(x)

f0(x)
=

λ′0(x)

λ0(x)
− λ0(x), where

λ′0(x)

λ0(x)
=

f ′0(x)

S0(x)λ0(x)
+

f0(x)2

S0(x)2λ0(x)
=
f ′0(x)

f0(x)
+ λ0(x). (4.22)

The last line utilises S0(0) = 1. By construction, it holds E0[(T0ω)(T,∆)] =

E0[(T (s)
0 ω)(T,∆)] for any ω ∈ H(s).

Proof of Proposition 4.2

By construction, we can write

(T (s)
0 ω)(T,∆)− (T0ω)(T,∆) = ω(T )

[(
∆
λ′0(T )

λ0(T )
− λ0(T )

)
−∆

(
f ′0(T )

f0(T )
− λC(T )

)]
.

Plug in Eq. (4.22), we have

(T (s)
0 ω)(T,∆)− (T0ω)(T,∆) = ω(T ) (∆λC(T )− (1−∆)λ0(T )) .

Then we write the empirical version as

sup
ω∈B1(H)

1

n

n∑
i=1

(T (s)
0 ω)(Ti,∆i)− (T0ω)(Ti,∆i)

= sup
ω∈B1(H)

1

n

n∑
i=1

ω(Ti) (∆iλC(Ti)− (1−∆i)λ0(Ti))

= sup
ω∈B1(H)

〈
ω,

1

n

n∑
i=1

K(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

〉
H

=

∥∥∥∥∥ 1

n

n∑
i=1

K(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

∥∥∥∥∥
H

The last line follows from standard trick for taking supremum over unit ball RKHS.
We continue by proving that the previous norm converges to zero in probability. Ob-
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serve that by the symmetrisation lemma [Vershynin, 2018, Lemma 6.4.2], it holds

E

[∥∥∥∥∥ 1

n

n∑
i=1

K(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

∥∥∥∥∥
H

]
≤

2E

[∥∥∥∥∥ 1

n

n∑
i=1

WiK(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

∥∥∥∥∥
H

]

where W1, . . . ,Wn are i.i.d. Rademacher random variables, independent of the
data (Ti,∆i)

n
i=1. Then, by Jensen’s inequality, and by using that E(Wi) = 0, we

conclude that the previous expression converges to zero in probability, as

E

∥∥∥∥∥ 1

n

n∑
i=1

WiK(Ti, ·) (∆iλC(Ti)− (1−∆i)λ0(Ti))

∥∥∥∥∥
2

H

 =

E

[
1

n2

n∑
i=1

K(Ti, Ti) (∆iλC(Ti)− (1−∆i)λ0(Ti))
2

]
→ 0

a.s., where the limit result holds due the law of large numbers which can be applied
under the condition in Eq. (4.9) and by assuming |K(x, y)| ≤ c1, as

E
[
K(Ti, Ti) (∆iλC(Ti)− (1−∆i)λ0(Ti))

2]
≤ c1E

[
∆iλC(Ti)

2 + (1−∆i)λ0(Ti)
2
]

= c1

∫ ∞
0

(
λC(x)2SC(x)f0(x) + λ0(x)2S0(x)fC(x)

)
dx

= c1

∫ ∞
0

(λC(x) + λ0(x)) fC(x)f0(x)dx <∞.

Proofs of Section 4.3.3: Proportional Stein Operator

Proof of Proposition 4.3
We start by claiming that the following equation holds true for every ω ∈ H(p):

1

n

n∑
i=1

(
(T̂ (p)

0 ω)(Ti,∆i)− (T (p)
0 ω)(Ti,∆i)

)
p→ 0. (4.23)

Then, the main result follows from Eq. (4.23) by the law of large numbers and that

E0

[
(T (p)

0 ω)(T1,∆1)
]

=

∫ ∞
0

(ω(t)λ0(t))′

λ0(t)

1

S0(t)SC(t)
SC(t)f0(t)dt

=

∫ ∞
0

(ω(t)λ0(t))′

λ0(t)
λ0(t)dt = 0,
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which follows from the definition of our operator (see Eq. (4.14)). We finish the
proof by proving our claim in Eq. (4.23). Observe that∣∣∣∣∣ 1n

n∑
i=1

(
(T̂ (p)

0 ω)(Ti,∆i)− (T (p)
0 ω)(Ti,∆i)

)∣∣∣∣∣
≤ 1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)

∣∣∣∣ ∆i

Y (Ti)/n
− ∆i

ST (Ti)

∣∣∣∣ , (4.24)

where ST (t) = SC(t)S0(t) holds under the null hypothesis. We proceed to prove
that the previous sum tends to 0 in probability when n grows to infinity. Let ε > 0

and define tε > 0 as the infimum of all t such that
∫∞
t
|(ω(x)λ0(x))′| dx < ε.

Notice that such tε is well-defined since
∫∞

0
|(ω(x)λ0(x))′| dx < ∞. We continue

by splitting the sum in Eq. (4.24) into two regions, {Ti ≤ tε} and {Ti < tε},
obtaining that Eq. (4.24) equals

1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)

∣∣∣∣ ∆i

Y (Ti)/n
− ∆i

ST (Ti)

∣∣∣∣1{Ti≤tε}
+

1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)

∣∣∣∣ ∆i

Y (Ti)/n
− ∆i

ST (Ti)

∣∣∣∣1{Ti>tε}, (4.25)

and we prove that both sums tend to 0 in probability when n grows to infinity. We
start with the first term. Observe that

1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)

∣∣∣∣ ∆i

Y (Ti)/n
− ∆i

ST (Ti)

∣∣∣∣1{Ti≤tε}
≤ sup

t≤tε

∣∣∣∣ 1

Y (t)/n
− 1

ST (t)

∣∣∣∣ 1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)
∆i1{Ti≤tε}

= op(1),

where the previous result holds since supt≤tε

∣∣∣ 1
Y (t)/n

− 1
ST (t)

∣∣∣→ 0 almost surely by
the Glivenko-Cantelli Theorem, and since

1

n

n∑
i=1

|(ω(Ti)λ0(Ti))
′|

λ0(Ti)
∆i1{Ti≤tε} → E

[
|(ω(T1)λ0(T1))′|

λ0(T1)
∆11{T1≤tε}

]
=

∫ tε

0

|(ω(t)λ0(t))′|
λ0(t)

SC(t)f0(t)dt =

∫ tε

0

|(ω(t)λ0(t))′| dt <∞,

where the last expression is finite due to Eq. (4.14).
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For the second term in Eq. (4.25), Theorem 3.2.1. of [Gill, 1980] yields

sup
t≤τn

∣∣∣∣1− Y (Ti)/n

ST (Ti)

∣∣∣∣ = Op(1),

where τn = max{T1, . . . , Tn}, and, Lemma 2.7 of [Gill, 1983] yields
supt≤τn nST (t)/Y (t) = Op(1). Recall that ST (t) = S0(t)SC(t). From the pre-
vious results, we get

1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

∣∣∣∣ 1

Y (Ti)/n
− 1

ST (Ti)

∣∣∣∣1{Ti>tε}
=

1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

1

Y (Ti)/n

∣∣∣∣1− Y (Ti)/n

ST (Ti)

∣∣∣∣1{Ti>tε}
= Op(1)

1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

1

Y (Ti)/n
1{Ti>tε}

= Op(1)
1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

1

S0(Ti)SC(Ti)
1{Ti>tε}.

Now, notice that

1

n

n∑
i=1

∆i
|(ω(Ti)λ0(Ti))

′|
λ0(Ti)

1

S0(Ti)SC(Ti)
1{Ti>tε}

a.s.→ E0

[
∆1
|(ω(T1)λ0(T1))′|

λ0(T1)

1

S0(T1)SC(T1)
1{T1>tε}

]
=

∫ ∞
tε

|(ω(x)λ0(x))′|
λ0(x)

f0(x)SC(x)

S0(x)SC(x)
dx

=

∫ ∞
tε

|(ω(x)λ0(x))′|dx < ε,

where the first equality holds by Eq. (4.1), and the last inequality comes from the
definition of tε. Since we can choose ε > 0 as small as desired, we conclude the
result.

Proofs Section 4.4: Censored-Data Kernel Stein Discrepancy

Proof of Proposition 4.4

Notice that, by the definition of the random function ξ(c)(∆, T ), we have that
(T (c)ω)(T,∆) = 〈ω, ξ(c)(T,∆)〉H(c) . Also notice that, ξ(c)(x, δ) ∈ H(c) for each
fixed (x, δ), and that the expectation, EX

[
ξ(c)(T,∆)

]
∈ H(c) if and only if equa-

tion (4.19) is satisfied (the previous expectation has to be understood in the Bochner
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sense, as we are taking expectation of a random function). Then,

c-KSD(fX‖f0)2 = sup
ω∈B1(H(c))

EX
[
(T (c)

0 ω)(T,∆)
]2

= sup
ω∈B1(H(c))

EX
[〈
ω, ξ(c)(T,∆)

〉
H(c)

]2
= sup

ω∈B1(H(c))

〈
ω,EX

[
ξ(c)(T,∆)

]〉2

H(c)

=
∥∥EX [ξ(c)(T,∆)

]∥∥2

H(c)

=
〈
EX
[
ξ(c)(T,∆)

]
,EX

[
ξ(c)(T ′,∆′)

]〉
H(c)

= EX
[〈
ξ(c)(T,∆), ξ(c)(T ′,∆′)

〉
H(c)

]
= EX

[
h(c)((T,∆), (T ′,∆′))

]
,

where the third equality is due to the linearity of expectation and the inner product,
the fourth equality follows from the definition of norm (and since we are taking
supremum in the unit ball), and the second to last equality is, again, due to the
linearity of the expectation and inner product.

Explicit computation of h(c)

Denote φ(x, δ) = δ
λ′0(x)

λ0(x)
− λ0(x), and L1(x, y) = ∂

∂x
K(c)(x, y), L2(x, y) =

∂
∂y
K(c)(x, y) and L = ∂2

∂x∂y
K(c)(x, y). For simplicity of exposition, we will drop

the superscript (c) in all cases.

Survival Stein operator (c = s): For this case, we have

ξ(x, δ) = (T0K)((x, δ), ·)

= δ
∂

∂x
K(x, ·) +

(
δ
λ′0(x)

λ0(x)
− λ0(x)

)
K(x, ·) + λ0(0)K(0, ·)

= δL1(x, ·) + φ(x, δ)K(x, ·) + λ0(0)K(0, ·).

Notice that a simple computation shows that L(x, y) = 〈L1(x, ·), L1(y, ·)〉H, then

h(s)((x, δ), (x′, δ′)) = δδ′L(x, x′) + δφ(x′, δ′)L1(x, x′) + δλ0(0)L1(x, 0)

+ φ(x, δ)δ′L2(x, x′) + φ(x, δ)φ(x′, δ′)K(x, x′) + φ(x, δ)λ0(0)K(x, 0)

+ λ0(0)δ′L2(0, x′) + λ0(0)φ(x′, δ′)K(0, x′) + λ0(0)2K(0, 0).
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Martingale Stein operator (c = m): Observe that in this case

ξ(x, δ) = (T0K)((s, δ), ·) =
δ

λ0(x)
L1(x, ·)−K(x, ·) +K(0, ·).

Then, by the reproducing kernel property

h(m)(x, δ), (x′, δ′)) =
δ

λ0(x)

δ′

λ0(x′)
L(x, x′)− δ

λ0(x)
L1(x, x′) +

δ

λ0(x)
L1(x, 0)

− δ′

λ0(x′)
L2(x, x′) +K(x, x′)−K(x, 0)

+
δ′

λ0(x′)
L2(0, x′)−K(0, x′) +K(0, 0).

Proportional Stein operator (c = p): Notice that, in this case, we use T̂ (p)
0 , given

in Eq. (4.15), to compute ξ̂(p)(x, δ) = (T̂ (p)
0 K(p))((x, δ), ·) since T (p)

0 is not avail-
able, as it depends on SC , which is unknown even under the null hypothesis. Then,

ξ̂(x, δ) = (T̂0K)((x, δ), ·) =

(
L1(x, ·) +

λ′0(x)

λ0(x)
K(x, ·)

)
δ

Y (x)/n
.

Define K?(x, y) =
(

∂2

∂x∂y
λ0(x)λ0(y)K(x, y)

)
. Then, by the reproducing property,

ĥ(p)((x, δ), (x′, δ′)) = n2 δδ′

Y (x)Y (x′)
K?(x, x′).

Recall that Y (t) =
∑n

k=1 1{Tk≥t} denotes the risk function, which depends on all
the data points, hence we write ĥ(p) to remind that this kernel is a random one.

Proofs of Section 4.5: Goodness-of-fit via c-KSD
The following lemmas show that, under Conditions c) and d) in Section 4.5.1, de-
pending in the case, the kernels h(c) have finite first and second moment. These
moment conditions on the kernel are important to deduce asymptotic results.

Lemma 4.1. Let (T ′,∆′) and (T,∆) be independent samples from µX , and assume
that Condition d) holds. Then,

EX
[
|h(c)((T,∆), (T,∆))|

]
<∞, and EX

[
|h(c)((T,∆), (T ′,∆′))|

]
<∞

for c ∈ {s,m, p}, under the alternative hypothesis.

Lemma 4.2. Let (T ′,∆′) and (T,∆) be independent samples from µ0, and assume
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that Condition c) holds. Then

E0

[
|h(c)((T,∆), (T,∆))|

]
<∞, and E0

[
h(c)((T,∆), (T ′,∆′))2

]
<∞

for c ∈ {s,m, p}, under the null hypothesis.

We just proof Lemma 4.1 since the proof of Lemma 4.2 is essentially the same.

Proof of Lemma 4.1. First of all, note that for any kernel (positive-definite func-
tion), it holds

h(c)((x, δ), (x′, δ′)) ≤ 1

2
h(c)((x, δ), (x, δ)) +

1

2
h(c)((x′, δ′), (x′, δ′)),

hence, it is enough to only prove the first part of the lemma.

Survival Stein operator (c = s):
Recall ξ(s)(x, δ) = δL1(x, ·) + φ(x, δ)K(x, ·) + λ0(0)K(0, ·), where L1(x, y) =
∂
∂x
K(x, y) φ(x, δ) = δ

λ′0(x)

λ0(x)
− λ0(x), then

EX
[
|h(s)((T,∆), (T,∆))|

]
= EX

[∥∥ξ(s)(T,∆)
∥∥2

H(s)

]
≤ 4EX

[
‖∆L1(T, ·)‖2

H(s) + ‖φ(T,∆)K(T, ·)‖2
H(s)

]
+ 4 ‖λ0(0)K(0, ·)‖2

H(s)

≤ 4EX
[
‖∆L1(T, ·)‖2

H(s)

]
+ 4EX

[
‖φ(T,∆)K(T, ·)‖2

H(s)

]
+ 4λ0(0)2K(0, 0).

The first and third term in the previous equation are finite under the technical
Conditions a) and b). Thus, we only need to check

EX
[
‖φ(T,∆)K(T, ·)‖2

H(s)

]
= EX

[
φ(T,∆)2|K(T, T )|

]
<∞,

which is guaranteed by Condition d).

Martingale Stein operator (c = m):
Recall that ξ(m)(x, δ) = φ(x, δ)L1(x, ·) − K(x, ·) + K(0, ·), where L1(x, y) =
∂
∂x
K(x, y) and φ(x, δ) = δ

λ0(x)
. Then

EX
[
|h(m)((T,∆), (T,∆))|

]
= EX

[∥∥ξ(m)(T,∆)
∥∥2

H(m)

]
≤ 4EX

[
‖φ(T,∆)L1(T, ·)‖2

H(s)

]
+ 4E

[
‖K(T, ·)‖2

H(s)

]
+ 4 ‖K(0, ·)‖2

H(s) .

Observe that the second and third term are finite under Condition a). Additionally,
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define L(x, y) = ∂2

∂x∂y
K(x, y) and notice that

EX
[
‖φ(T,∆)L1(T, ·)‖2

H(s)

]
= EX

[
φ(T,∆)2L(T, T )

]
= EX

[
∆

λ0(T )2
L(T, T )

]
<∞

holds under Condition d) (Notice that L = K? in Condition d.2)).

Proportional Stein operator (c = p).
This case follows directly from Condition d.3).

Proof of Theorem 4.1

We distinguish between two cases: first, when h(c) is a deterministic kernel (that is
c ∈ {s,m}), and second, when ĥ(c) is a random kernel, meaning c = p.

Deterministic kernel (c ∈ {s,m}) :
For the first case, we have

ĉ-KSD
2
(fX ||f0) =

1

n2

n∑
i=1

n∑
j=1

h(c)((Ti,∆i), (Tj,∆j)),

which is a V-statistic of order 2. Thus, by using the law of large numbers for V-
statistics, we deduce

ĉ-KSD
2
(fX ||f0)

a.s.→ EX
(
h(c)((T,∆), (T ′,∆′))

)
= c-KSD2(fX ||f0),

as n grows to infinity. Notice that the previous limit result requires the following
conditions: EX

(
|h(c)((T,∆), (T,∆))|

)
< ∞ and EX

(
|h(c)((T,∆), (T ′,∆′))|

)
<

∞, which are satisfied under Condition d) by Lemma 4.1.

Random kernel (c = p) :
For the second case, recall that

p̂-KSD
2
(fX ||f0) =

n∑
i=1

n∑
j=1

ĥ(p)((Ti,∆i), (Tj,∆j)), (4.26)

where ĥ(p) is a random kernel. Our first step will be to assume that we can replace
the random kernel ĥ(p), given by ĥ(p)((x, δ), (x′, δ′)) = n2 δδ

′K?(x,x′)
Y (x)Y (x′)

, by its limit

h(p)((x, δ), (x′, δ′)) = δδ′K?(x,x′)
ST (x)ST (x′)

, where K?(x, y) =
(

∂2

∂x∂y
K(x, y)λ0(x)λ0(y)

)
.
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We claim that

1

n2

n∑
i=1

n∑
j=1

ĥ(p)((Ti,∆i), (Tj,∆j)) =
1

n2

n∑
i=1

n∑
j=1

h(p)((Ti,∆i), (Tj,∆j)) + op(1),

(4.27)

and then we have that

p̂-KSD
2
(fX ||f0) =

1

n2

n∑
i=1

n∑
j=1

ĥ(p)((Ti,∆i), (Tj,∆j))

=
1

n2

n∑
i=1

n∑
j=1

h(p)((Ti,∆i), (Tj,∆j)) + op(1)

= EX(h(p)((T,∆), (T ′,∆′))) + op(1)

= p-KSD2(fX ||f0) + op(1),

where the third equality is due to the standard law of large numbers for V statistics,
and by Condition d.3) and Lemma 4.1.
We finish the proof by proving the claim made in Eq. (4.27). Recall that

1

n2

n∑
i=1

n∑
j=1

ĥ(p)((Ti,∆i), (Tj,∆j)) =

∥∥∥∥∥ 1

n

n∑
i=1

ξ̂(p)(Ti,∆i)

∥∥∥∥∥
2

H(p)

,

and

1

n2

n∑
i=1

n∑
j=1

h(p)((Ti,∆i), (Tj,∆j)) =

∥∥∥∥∥ 1

n

n∑
i=1

ξ(p)(Ti,∆i)

∥∥∥∥∥
2

H(p)

, (4.28)

where ξ̂(p)(x, δ) = n (K(x,·)λ0(x))′

λ0(x)
δ

Y (x)
and ξ(p)(x, δ) = (K(x,·)λ0(x))′

λ0(x)
δ

ST (x)
. Then, by

the triangular inequality, and by taking square5, the claim in Eq. (4.27) follows from
proving:

i)
∥∥∥ 1
n

∑n
i=1 ξ̂

(p)(Ti,∆i)− ξ(p)(Ti,∆i)
∥∥∥
H(p)

= op(1), and

ii)
∥∥ 1
n

∑n
i=1 ξ

(p)(Ti,∆i)
∥∥
H(p) = Op(1).

Notice that item ii) holds trivially by Eq. (4.28), and by the law of large numbers
for V-statistics, which can be applied due to Lemma 4.1, under Condition d). We
finish by proving the result in item i). Following the same steps used in Eq. (4.24),

5notice that ‖b‖ − ‖a− b‖ ≤ ‖a‖ ≤ ‖b‖+ ‖a− b‖
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we have that∥∥∥∥∥ 1

n

n∑
i=1

ξ̂(p)(Ti,∆i)− ξ(p)(Ti,∆i)

∥∥∥∥∥
H(p)

(4.29)

=

∥∥∥∥∥ 1

n

n∑
i=1

(K(Ti, ·)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)∥∥∥∥∥
H(p)

= sup
ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
≤ sup

ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
1{Ti≤tε} (4.30)

+ sup
ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
1{Ti>tε}, (4.31)

where ε > 0 and tε > 0, and tε is the infimum over all t > 0 such that∫ ∞
t

∫ ∞
t

|K?(t, s)|
λ0(t)λ0(s)ST (t)ST (s)

SC(t)SC(s)fX(t)fX(s)dtds ≤ ε.

Notice that such a tε is well-defined by Lemma 4.1 and Condition d.3). For the term
in Eq. (4.30), observe that(

sup
ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
1{Ti≤tε}

)2

(4.32)

≤ sup
t≤tε

(
1

Y (t)/n
− 1

ST (t)

)2
1

n2

n∑
i=1

n∑
j=1

∆i∆j
K?(Ti, Tj)

λ0(Ti)λ0(Tj)
1{Ti≤tε}1{Tj≤tε}

= op(1) (4.33)

where the last line holds since supt≤tε

∣∣∣ 1
Y (t)/n

− 1
ST (t)

∣∣∣ = op(1) a.s., by an applica-
tion of Glivenko-Cantelli, and since the double sum converges to

E
(

∆1∆2
K?(T1, T2)

λ0(T1)λ0(T2)
1{T1≤tε}1{T2≤tε}

)
,

which is finite by Lemma 4.1 and Condition d.3).

Finally, we prove that the term in Eq. (4.31) is op(1). Define R(t) =∣∣∣ ST (t)
Y (t)/n

− 1
∣∣∣. Gill [1983] proved that supt≤τn R(t) = Op(1) where τn =

max{T1, . . . , Tn}. By using this result, the term in Eq. (4.31) satisfies
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(
sup

ω∈B1(H(p))

1

n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

(
∆i

Y (Ti)/n
− ∆i

ST (Ti)

)
1{Ti>tε}

)2

≤ 1

n2

n∑
i=1

n∑
j=1

∆i∆j|K?(Ti, Tj)|
λ0(Ti)λ0(Tj)ST (Ti)ST (Tj)

R(Ti)R(Tj)1{Ti>tε}1{Tj>tε}

= Op(1)
1

n2

n∑
i=1

n∑
j=1

∆i∆j|K?(Ti, Tj)|
λ0(Ti)λ0(Tj)ST (Ti)ST (Tj)

1{Ti>tε}1{Tj>tε}

= Op(1)

∫ ∞
tε

∫ ∞
tε

|K?(t, s)|
λ0(t)λ0(s)ST (t)ST (s)

SC(t)SC(s)fX(t)fX(s)dtds

= Op(1)ε,

where, in the second line, we use that supt≤τn R(t) = Op(1), and in the fourth line
we use the law of large numbers, and the definition of tε. Since ε is arbitrary, we
conclude that equation (4.31) tends to 0 in probability.

Proof of Theorem 4.2

Survival Stein operator (c=s):
We proceed by contradiction. Assume that fX 6= f0 but

c-KSD(fX‖f0) = sup
ω∈B1(H(s))

EX((T (s)
0 ω)(T,∆)) = 0.

Recall that

EX((T (s)
0 ω)(T,∆)) = EX((T0ω)(T,∆))

= EX
[
∆ω′(T ) + ∆ω(T )

f ′0(T )

f0(T )
−∆ω(T )λC(T )

]
+ ω(0)f0(0).

Similarly, define

(TXω)(x, δ) = δω′(x) + δω(x)
f ′X(x)

fX(x)
− δω(x)λC(x) + ω(0)fX(0),
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and notice that EX((TXω)(T,∆)) = 0 by the Stein’s identity. Then

EX
(

(T (s)
0 ω)(T,∆)

)
= EX ((T0ω)(T,∆))

= EX ((T0ω)(T,∆)− (TXω)(T,∆))

= EX
(

∆ω(T )

(
f ′0(T )

f0(T )
− f ′X(T )

fX(T )

)
+ ω(0)(f0(0)− fX(0))

)
= EX

(
∆ω(T )

(
log

f0(T )

fX(T )

)′)
+ ω(0)(f0(0)− fX(0)),

and thus

s-KSD(fX‖f0) = sup
ω∈B1(H(s))

EX((T (s)
0 ω)(T,∆))

= sup
ω∈B1(H(s))

EX
(

∆ω(T )

(
log

f0(T )

fX(T )

)′)
+ ω(0)(f0(0)− fX(0))

= sup
ω∈B1(H(s))

〈
ω,

∫ ∞
0

K(x, ·)dν(x)

〉
=

∥∥∥∥∫ ∞
0

K(x, ·)dν(x)

∥∥∥∥
H(s)

= 0,

where dν(x) =
(

log f0(x)
fX(x)

)′
SC(x)fX(x)dx + (f0(x) − fX(x))δ0(x), and where

we identify
∫∞

0
K(x, ·)dν(x) as the mean kernel embedding of the measure ν.

We shall assume that the above embedding is well-defined, otherwise we have
s-KSD(fX‖f0) 6= 0. Since the kernel is C0-universal, the previous set of equations
implies ν is the zero measure, which implies that f0(0) = fX(0), and(

log
f0(x)

fX(x)

)′
= 0, (4.34)

as long as fX(x) > 0 implies SC(x)fX(x) > 0 (which does, since we assume
SC(x) = 0 implies SX(x) =

∫∞
x
fX(x)dx = 0). Eq. (4.34) yields f0 ∝ fX and

fX = f0 since both, f0 and fX , are probability density functions. This finalises our
proof.

Martingale Stein operator (c=m):
Write the martingale Stein operator w.r.t. µX :

(T (m)
X ω)(x, δ) = ω′(x)

δ

λX(x)
− (ω(x)− ω(0)),
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and notice that EX [(T (m)
X ω)(T,∆)] = 0 from the martingale identity. Observe that

m-KSD(fX‖f0) = sup
ω∈B1(H(m))

EX((T (m)
0 ω)(T,∆))

= sup
ω∈B1(H(m))

EX((T (m)
0 ω)(T,∆))− EX((T (m)

X ω)(T,∆))

= sup
ω∈B1(H(m))

EX
(
ω′(T )∆

(
1

λ0(T )
− 1

λX(T )

))
= sup

ω∈B1(H(m))

∫ ∞
0

ω′(x)

(
1

λ0(x)
− 1

λX(x)

)
fX(x)SC(x)dx.

Denote α(x) =
(

1
λ0(x)

− 1
λX(x)

)
fX(x)SC(x), and, as usual, K?(x, y) =

∂2

∂x∂y
K(x, y). Then,

m-KSD(fX‖f0)2 =

∫ ∞
0

∫ ∞
0

α(x)K?(x, y)α(y)dxdy.

SinceK? is C0-universal by Condition a), the previous term is equal to 0 if and only
if α(x) = 0 for all x > 0. Now, α(x) = 0 if and only if 1

λ0(x)
− 1

λX(x)
= 0, which

holds if and only if f0(x) = fX(x) for all x > 0.

Proof of Theorem 4.3

Deterministic kernels (c ∈ {s,m}) :
For c ∈ {s,m} which are associated to a deterministic Stein kernel function
h(c)((T,∆), (T ′,∆′)), the result follows from the classical theory of V-statistics
since h(c) are degenerate kernels, and under the following moment conditions:

i) E0

[
|h(c)((T,∆), (T,∆))|

]
<∞,

ii) E0

[
h(c)((T,∆), (T ′,∆′))2

]
<∞,

which are satisfied due to Lemma 4.2.

Random kernel (c ∈ {p}):
Observe that

√
n · ĉ-KSD(fX‖f0) = sup

ω∈B1(H(p))

1√
n

n∑
i=1

(ω(Ti)λ0(Ti))
′

λ0(Ti)

∆i

Y (Ti)/n

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dN(x),
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where dN(x) =
∑n

i=1 ∆iδTi(x). By hypothesis,
∫∞

0
(ω(x)λ0(x))′dx = 0 for all

ω ∈ H(p), then

√
n · ĉ-KSD(fX‖f0)

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dN(x)−

√
n

∫ ∞
0

(ω(x)λ0(x))′dx

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dM(x)−

√
n

∫ ∞
τn

(ω(x)λ0(x))′dx

where dM(x) = dN(x) − Y (x)λ0(x)dx. Therefore we conclude that
√
n ·

ĉ-KSD(fX‖f0) ∈ [a− b, a+ b], where

a = sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dM(x), and

b = sup
ω∈B1(H(p))

√
n

∫ ∞
τn

(ω(x)λ0(x))′dx

We will prove that b = op(1). Let K?(x, y) =
(

∂2

∂x∂y
λ0(x)λ0(y)K(x, y)

)
, then

(
sup

ω∈B1(H(p))

√
n ·
∫ ∞
τn

(ω(x)λ0(x))′dx

)2

= n

∫ ∞
τn

∫ ∞
τn

K?(x, y)

fT (x)fT (y)
fT (x)fT (y)dxdy

≤ nST (τn)1/2

(∫ ∞
τn

(∫ ∞
τn

K?(x, y)

fT (x)fT (y)
fT (x)dx

)2

fT (y)dy

)1/2

≤ nST (τn)

(∫ ∞
τn

∫ ∞
τn

K?(x, y)2

fT (x)2fT (y)2
fT (x)fT (y)dxdy

)1/2

,

where the two inequalities above follow from the Cauchy-Schwarz inequality, by
the fact that nST (τn) = Op(1) [Yang, 1994], and the previous double integral con-
verges to 0 by Condition c.3), since τn = max{T1, . . . , Tn} → ∞. From the
previous result, we deduce

√
n · ĉ-KSD(fX‖f0) = sup

ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

Y (x)/n
dM(x) + op(1).

The previous step is important the analysis as it allows to write
√
n · ĉ-KSD(fX‖f0)

in terms of M(x). Our next step is to prove that we can replace the term Y (x)/n,
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in the previous equation, by ST (x). Observe

√
n · ĉ-KSD(fX‖f0)

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

(
1

Y (x)/n
− 1

ST (x)
+

1

ST (x)

)
dM(x) + op(1)

= sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

ST (x)
dM(x)

± sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

(
1

Y (x)/n
− 1

ST (x)

)
dM(x) + op(1).

The ± notation above denotes lower, given by −, and upper, given by +, bounds
for
√
n · ĉ-KSD(fX‖f0). Finally, by taking square, the result is deduced by proving

sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

(
1

Y (x)/n
− 1

ST (x)

)
dM(x) = op(1),

and

sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

ST (x)
dM(x) = Op(1).

The second equation won’t be verified as, at the end of this proof, we will show that
such a quantity converges in distribution to some random variable, thus it will be
bounded in probability. For the first equation, notice that(

sup
ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

(
1

Y (x)/n
− 1

ST (x)

)
dM(x)

)2

=
1

n

∫ τn

0

∫ τn

0

K?(x, y)

λ0(x)λ0(y)

(
1

Y (x)/n
− 1

ST (x)

)(
1

Y (y)/n
− 1

ST (y)

)
dM(x)dM(y),

is a double integral with respect to the M(x). Then, by [Fernandez and Rivera,
2019, Theorem 17], it is enough to verify

1

n

∫ τn

0

K?(x, x)

λ0(x)2

(
1

Y (x)/n
− 1

ST (x)

)2

Y (x)λ0(x)dx = op(1).
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Observe that

1

n

∫ τn

0

K?(x, x)

λ0(x)2

(
1

Y (x)/n
− 1

ST (x)

)2

Y (x)λ0(x)dx

=

∫ τn

0

K?(x, x)

λ0(x)2

(
1− Y (x)/n

ST (x)

)2
1

Y (x)/n
λ0(x)dx

= Op(1)

∫ τ

0

K?(x, x)

λ0(x)2

(
1− Y (x)/n

ST (x)

)2
1

ST (x)
λ0(x)dx

= op(1),

where the second equality follows from n/Y (x) = Op(1)1/ST (x) uniformly for
all x ≤ τn [Gill, 1983], and the last equality is due to dominated convergence in
sets of probability as high as desired, as

(
1− Y (x)/n

ST (x)

)
→ 0 for all x <∞ from the

Glivenko-Cantelli Theorem, and

K?(x, x)

λ0(x)2

(
1− Y (x)/n

ST (x)

)2
1

ST (x)
λ0(x) = Op(1)

K?(x, x)

f0(x)2SC(x)
f0(x),

which is integrable by Condition c.3).

Putting everything together, we have shown that

√
n · ĉ-KSD

2
(fX‖f0)

=

(
sup

ω∈B1(H(p))

1√
n

∫ τn

0

(ω(x)λ0(x))′

λ0(x)

1

ST (x)
dM(x)

)2

+ op(1)

=
1

n

∫ τn

0

∫ τn

0

K?(x, y)

f0(x)f0(y)SC(x)SC(y)
dM(x)dM(y) + op(1)

=
1

n

n∑
i=1

n∑
j=1

∫ Xi

0

∫ Xj

0

K?(x, y)

f0(x)f0(y)SC(x)SC(y)
dMj(x)dMi(y) + op(1)

=
1

n

n∑
i=1

n∑
j=1

J((Ti,∆i), (Tj,∆j)) + op(1),

where Mi(x) = Ni(x) −
∫ x

0
1{Ti≥y}λ0(y)dy = ∆i1{Ti≤x} −

∫ x
0
1{Ti≥y}λ0(y)dy.

Notice that the process Mi(x) only depends on the i-th observation (Ti,∆i). No-
tice that the previous expression is approximately a V-statistic with kernel given by
J((Ti,∆i), (Tj,∆j)) =

∫ Ti
0

∫ Tj
0

K?(x,y)
f0(x)f0(y)SC(x)SC(y)

dMj(x)dMi(y). By [Fernandez
and Rivera, 2019, Proposition 23], we have that E[J((Ti,∆i), (Tj,∆j))|Ti,∆i] = 0,
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thus J is a degenerate V-statistic kernel. By the classical theory of V-statistics,

1

n

n∑
i=1

n∑
j=1

J((Ti,∆i), (Tj,∆j))
D→ rp + Yp,

where rp is a constant and Yp is a (potentially) infinite sum of independent χ2 ran-
dom variables, as long as the following moment conditions are satisfied:

i) E0(|J((T1,∆1), (T1,∆1))|) <∞, and ii) E0(J((T1,∆1), (T2,∆2))2) <∞.

Again, by Proposition 23 of [Fernandez and Rivera, 2019], checking those moment
conditions is equivalent to verify:

i)E0

[
K?(T, T )∆

(f0(T )SC(T ))2

]
<∞ and ii)E0

[
K?(T, T ′)2∆∆′

(f0(T )f0(T ′)SC(T )SC(T ′))2

]
<∞,

which are exactly the conditions assumed in Condition c.3).

4.B Known Identities

Martingales in Survival Analysis
In Section 4.3.2, we use the following identity to derive the martingale Stein opera-
tor

E0

[
∆φ(T )−

∫ T

0

φ(t)λ0(t)dt

]
= 0,

which holds under the null hypothesis, where λ0 is the hazard function under
the null. Let Ni(x) and Yi(x) be the individual counting and risk processes, de-
fined by by Ni(x) = ∆i1{Ti≤x} and Yi(x) = 1{Ti≥x}, respectively. Then, the
individual zero-mean martingale for the i-th individual corresponds to Mi(x) =

Ni(x)−
∫ x

0
Yi(y)λ0(y)dy, where E0(Mi(x)) = 0 for all x.

Additionally, let φ : R+ → R such that E0

∣∣∫ x
0
φ(y)dMi(y)

∣∣ < ∞ for all x,
then

∫ x
0
φ(y)dMi(y) is a zero-mean (Fx)-martingale (see Chapter 2 of [Aalen et al.,

2008]). Then, taking expectation, we have

E0

[∫ ∞
0

φ(x)dMi(x)

]
= E0

[∫ ∞
0

φ(x)(dNi(x)− Yi(x)λ0(x)dx)

]
= E0

[
∆φ(T )−

∫ T

0

φ(x)λ0(x)dx

]
= 0,

as stated above.



Chapter 5

A Kernel Test for Quasi-independence

Summary We consider settings in which the data of interest correspond to pairs of
ordered times, e.g, the entry and survival times of patients in a clinical trial. In these
settings, the two times are not independent (the second occurs after the first), yet it
is still of interest to determine whether there exists significant dependence beyond
their ordering in time. We refer to this notion as ”quasi-(in)dependence”. In this
chapter, we propose a non-parametric statistical test of quasi-independence. The
tests apply in the right-censored setting: an essential feature in clinical trials, where
patients can withdraw from the study. We provide an asymptotic analysis of our
test-statistic, and demonstrate in experiments that our test obtains better power than
existing approaches, while being more computationally efficient.

5.1 Introduction

Many practical scientific problems require the study of events which occur consec-
utively in time. We focus here on the setting where event-times, X and Y , are only
observed if they are in the ordered relationship X ≤ Y . This type of data is com-
monly known as truncated data, and, in particular, we say that X is right-truncated
by Y , or Y is left-truncated by X . In clinical trails, for example, only patients still
alive at the beginning of the study can be recruited, hence the recruitment times X
and the survival times Y are ordered. In the field of insurance, a liability claim may
be placed at a time Y as a consequence of an incident at a time X . In e-commerce,
the time Y of first purchase by a new user may only happen after the time X when
the user registers with the website.

Our goal is to determine whether there exists an association between X and Y
in the truncated data setting. Given that X ≤ Y , the times X and Y will clearly
not be independent (with the exception of trivial cases in which, for instance, X
and Y have disjoint support). Thus, while it is not meaningful to test for statistical
independence in the truncated setting, we can nevertheless still test for whether X
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and Y are uncoupled apart from the fact that X ≤ Y , using the notion of quasi-
independence. We will make this notion formal in Section 5.2.

Testing for an association between orderedX and Y may be important in mak-
ing business/medical decisions. In the setting of clinical trials, it is important to en-
sure that survival times are as “independent” as possible from recruitment times, in
order to avoid bias in the recruitment process. In e-commerce, it may be of interest
to test whether the purchase time for an item, such as a swimsuit, depends on the
registration time, to determine seasonal effects on consumer behaviour and refine
advertising strategies. In statistical modelling, a common working assumption is
that X and Y are independent, but can only be observed when X ≤ Y holds [Hyde,
1977; Tsai, 1988; Woodroofe, 1985]. The independence assumption can be weak-
ened to quasi-independence, which is testable, and under which typical methods are
still valid [Klein and Moeschberger, 2006; Lagakos et al., 1988; Tsai et al., 1987;
Turnbull, 1976; Wang, 1991; Woodroofe, 1985].

Our tests apply in the setting where Y is right-censored. This is a very com-
mon scenario in real-world applications, particularly in clinical trials, where pa-
tients may withdraw from the study before their event of interest is observed. In the
e-commerce example, there may be registered users that have not yet made a pur-
chase when the study ends. Formally, the data corresponds to the triple (X,T,∆),
where T = min{C, Y } is the minimum between the survival time Y of a given
patient, and the time C at which said patient leaves the study (or the study ends),
and ∆ = 1{T=Y }, similarly defined in Chapter 4. Given the truncated data setting,
we have further that X ≤ min{Y,C}. We emphasise that quasi-independence and
right-censoring are very different data properties. Quasi-independence is a deter-
ministic hard constraint (X ≤ Y ), while right-censoring is a stochastic property of
the data (incomplete observations). Quasi-independence has been widely studied
in the statistics community, including for right-censored data [Chiou et al., 2018;
Emura and Wang, 2010; Tsai, 1990]. We provide a brief review below and more
detailed descriptions of relevant concepts and methods in subsequent Section 5.2.

In this chapter, we propose a non-parametric statistical test for quasi-
independence, which can be applicable under right censoring. Our test statistic
is a non-parametric generalisation of the log-rank test [Emura and Wang, 2010],
where the departure from the null is characterised by functions in a RKHS. Conse-
quently, we are able to straightforwardly detect a very rich family of alternatives,
including non-monotone alternatives [Chiou et al., 2018]. Our test generalises the
non-parametric statistical tests of independence based on the Hilbert-Schmidt Inde-
pendence Criterion [Gretton et al., 2008]; which were adapted to the right-censoring
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setting [Fernandez et al., 2019; Rindt et al., 2019]. Due to the additional correla-
tions present in the test statistic under quasi-independence, however, we require the
new approaches in our analysis of the consistency and asymptotic behaviour of our
test statistic.

The rest of the chapter is organised as follows. In Section 5.2, we introduce
the notion of quasi-independence. We next propose an RKHS statistic to detect
this quasi-independence, and its finite sample estimate from data. We contrast the
statistic for quasi-independence with the analogous RKHS statistic for indepen-
dence, noting the additional sample dependencies on account of the left-truncation.
In Section 5.2.2, we generalise the quasi-independence statistics to account for the
presence of right-censored observations. In Section 5.3, we provide our main theo-
retical results: an asymptotic analysis for our test statistic, and a guarantee of con-
sistency under the alternative. In order to determine the test threshold in practice, we
introduce a wild bootstrap procedure to approximate the test threshold. In Section
5.4 we give a detailed empirical evaluation of our method. We begin with challeng-
ing synthetic datasets exhibiting periodic quasi-dependence, as would be expected
for example from seasonal or daily variations, where our approach strongly outper-
forms the alternatives. Additionally, we show our test is consistently the best test
in data-scenarios in which the censoring percentage is relatively high, see Figure
5.6. Next, we apply our test statistic to three real-data scenarios, shown in Figure
5.1: a survival analysis study for residents in the Channing House retirement com-
munity in Palo Alto, California [Hyde, 1977]; a study of transfusion-related AIDS
[Lagakos et al., 1988]; and a study on spontaneous abortion [Meister and Schaefer,
2008]. For this last dataset, our general-purpose test is able to detect a mode of
quasi-dependence discovered by a model that exploits domain-specific knowledge,
but not found by alternative general-purpose testing approaches. This was a partic-
ular challenge due to the large percentage of censored observations in the abortion
dataset; see censored marking in Figure 5.1. More details regarding censoring level
are shown in Figure 5.6. Proofs of all results are given in the Appendices.

5.2 Quasi-independence

Our goal is to infer the null hypothesis of quasi-independence between X and Y .
Formally, this null hypothesis is characterised as

H0 : π(x, y) = F̃X(x)S̃Y (y), for all x ≤ y, (5.1)
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Figure 5.1: Channing House dataset: the x-axis shows the entry time to the retirement
center; and the y-axis shows the right-censored lifetimes . Events are censored
by withdrawal from the center or study finishes at July 1, 1975. AIDS dataset:
the x-axis shows the incubation time X; and the y-axis shows the censored
lapse time Y, measured from infection to recruitment time. Events are censored
by death or left the study. Infected patients were recruited in the study only
if they developed AIDS within the study period, therefore, in this dataset, the
incubation time X does not exceed the lapse time Y. Abortion dataset: the x-axis
shows the time to enter the study; and the y-axis shows the right-censored time
for spontaneous abortion. Events are censored due to life birth and induced
abortions. All censored times are marked in dark.

where π(x, y) = P(X ≤ x, Y ≥ y), and F̃X(x) and S̃Y (y) are functions that
only depend on x and y, respectively. In case of independent X and Y , F̃X(x) and
S̃Y (y) coincide with FX(x) = P(X ≤ x) and SY (y) = P(Y ≥ y), but in general
they may differ. For simplicity, X and Y are assumed continuously distributed on
R+, and fXY , fX and fY denote the joint density and the corresponding marginals,
and fY |X=x denotes the conditional density of Y given X = x.

To simplify the notation, we suppose throughout that X ≤ Y always holds,
and thus write π(x, y) = P(X ≤ x, Y ≥ y) instead of π(x, y) = P(X ≤ x, Y ≥
y|X ≤ Y ), as P(X ≤ Y ) = 1. We remark, however, that the ordering X ≤ Y

can be ensured by considering a conditional probability space given X ≤ Y, and
restricting calculations of probabilities, expectation etc. to this space [Chiou et al.,
2018; Emura and Wang, 2010; Tsai, 1990].

The notion of quasi-independence must not be confused with the notion of
independent increments, i.e., X ⊥ (Y − X). For instance, generate X and Y

such that X ≤ Y by sampling i.i.d. uniform random variables, say (U1, U2), in
the interval (0, 1), and make X = U1 and Y = U2 for the first pair (U1, U2) such
that U1 ≤ U2. It can be verified that this construction leads to quasi-independent
random variables (X, Y ), but X and Y −X are not independent as the distribution
of Y −X is constrained by how large the original value of X was. The larger X is,
the smaller is the value of Y −X .

In Emura and Wang [2010], the authors propose to measure quasi-
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independence by using a log-rank-type test-statistic and pre-defined (fixed) weight
function ω, which estimates ∫

x≤y
ω(x, y)ρ(x, y)dxdy, (5.2)

where

ρ(x, y) = −π(x, y)
∂2π(x, y)

∂x∂y
+
∂π(x, y)

∂x

∂π(x, y)

∂y
, x ≤ y. (5.3)

The function ρ is originally inspired by the odds ratio [Chaieb et al., 2006], notwith-
standing that ρ here is a difference measure, rather than a ratio. Under the assump-
tion of quasi-independence, ρ ≡ 0, and thus

∫
x≤y ω(x, y)ρ(x, y)dxdy = 0.

5.2.1 Kernel Quasi-independence Criterion (KQIC)

Nevertheless, it may be that
∫
x≤y ω(x, y)ρ(x, y)dxdy = 0 even if the quasi-

independence assumption is not satisfied, since the quantity depends on the function
ω; for instance, it is trivially zero when ω = 0. To avoid choosing a specific weight
function ω, we optimise over a class of weight functions, taking an RKHS approach,

Ψ = sup
ω∈B1(H)

∫
x≤y

ω(x, y)ρ(x, y)dxdy, (5.4)

where B1(H) is the unit ball of a RKHS H with bounded measurable kernel given
by K : R2

+ × R2
+ → R. We refer to the measure Ψ2 as Kernel Quasi-Independent

Criterion (KQIC). It can easily be verified that Ψ ≥ 0; and, if X and Y are quasi-
independent, then Ψ = 0. For c0-universal kernels [Sriperumbudur et al., 2011], we
have that Ψ = 0 if and only if X and Y are quasi-independent: see Theorem 5.2.
Given the i.i.d. samples ((Xi, Yi))i∈[n], we can estimate Ψ via Ψn, defined as

Ψn =

sup
ω∈B1(H)

(
1

n

n∑
i=1

ω(Xi, Yi)π̂(Xi, Yi)−
1

n2

n∑
i=1

n∑
k=1

ω(Xi, Yk)1{Xk≤Xi<Yk≤Yi}

)
(5.5)

where π̂(x, y) = 1
n

∑n
m=1 1{Xm≤x,Ym≥y}, and notice that π̂(x, y) estimates π(x, y).

Using a reproducing kernel K that factorises, we obtain a simple expression for Ψ2
n:
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Proposition 5.1. Consider K((x, y), (x′, y′)) = K(x, x′)L(y, y′). Then

Ψ2
n =

1

n2
tr(Kπ̂Lπ̂ − 2Kπ̂LA> +KALA>)

where K, L, and A are n × n-matrices with entries given by Kik = K(Xi, Xk),
Lik = L(Yi, Yk) and Aik = 1{Xk≤Xi<Yk≤Yi}/n, and π̂ is a diagonal matrix with
entries π̂ii = π̂(Xi, Yi).

We remark that the previous expression is similar in form to the Hilbert
Schmidt Independence Criterion [Gretton et al., 2005b]. In particular, for empir-
ical distributions, HSIC(F̂XY , F̂XF̂Y ) = 1

n2 tr(KH>LH) withH = In − 1
n
1n1

>
n ,

whereas our test-statistic can be rewritten as Ψ2
n = 1

n2 tr(KH̃
>
LH̃) with H̃ =

(π̂ − A>). Note that H̃ is much more complex than H , being a random matrix
where each entry depends on all the data points. As we will see, this issue makes the
asymptotic analysis in our case much more challenging; by contrast, the asymptotic
distribution for HSIC can be readily obtained using standard results on U-statistics
[Gretton et al., 2008; Chwialkowski and Gretton, 2014].

Our test can be understood as a generalisation of the log-rank test proposed by
[Emura and Wang, 2010], where instead of considering a single log-rank test with
a specific weight function, we consider the supremum over a collection of log-rank
tests with weight functions in B1(H). By choosing a sufficiently rich RKHS, for
example the RKHS induced by the exponentiated quadratic kernels, we are able to
ensure test power against a broad family of alternatives. Conversely, simple kernels
can recover classical parametric tests such as the aforementioned log-rank tests. As
explained by Equation 7 in Emura and Wang [2010], the simplest possible (con-
stant) function space recovers the well-known conditional Kendall’s tau statistic.

Proposition 5.2 (Recovering conditional Kendall’s tau). Consider K = 1, then
Ψ2
n = K2

a/n
2, where Ka =

∑
i<k 1{Xi∨Xk≤Yi∧Yk}sign ((Xi −Xk)(Yi − Yk)) is an

empirical estimator of the conditional Kendall’s tau.

5.2.2 KQIC with Right-censoring
In clinical trails, for example, patients might withdraw from the study before ob-
serving the time Y of interest leading to so-called right-censored data. To model
this kind of data, we introduce additionally the random censoring time C. The data
correspond now to i.i.d. samples ((Xi, Ti,∆i))i∈[n], where Ti = min{Yi, Ci} is the
observation time, and ∆i = 1{Ti=Yi} is the corresponding censoring status. In par-
ticular, if ∆i = 0, we only observe the censoring time Ti = Ci, and not the time
of interest Yi. Throughout, we assume that Xi ≤ Ti always holds, to reflect the
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natural ordering of the times, i.e. first recruitment and second the event of interest
or the withdrawal from the study. As for the censored setting, X , Y and C are sup-
posed to be continuously distributed on R+. Our results are valid under the standard
non-informative censoring assumption:

Assumption 5.1. The censoring times are independent of the survival times given
the entry times, i.e., Ci ⊥ Yi|Xi.

Standard notation for marginal, joint and conditional densities will be used: for
instance, fC , fXT and fY |X=x, are the marginal density of C, the joint density of X
and T , and the conditional density of Y given X = x, respectively. Moreover, SY
denotes the survival function of Y , defined as SY (y) = P(Y ≥ y) and SC|X=x(y) =

P(Y ≥ y|X = x) is the conditional survival function of Y given X = x. Under
Assumption 5.1 we have ST |X=x(y) = SY |X=x(y)SC|X=x(y).

The null hypothesis of quasi-independence is formulated, for the right-
censored setting, as

H0 : fXY (x, y) = f̃X(x)f̃Y (y), for all x ≤ y, s.t. ST |X=x(y) > 0. (5.6)

As with the uncensored case, f̃X and f̃Y are not necessarily equal to the marginal
densities fX and fY . The additional condition ST |X=x(y) > 0 ensures that the pair
(x, y) is actually observable despite the censoring. The statistic Ψ from Eq. (5.4) is
then extended to the censored setting,

Ψc = sup
ω∈B1(H)

∫
x≤y

ω(x, y)ρc(x, y)dxdy ≥ 0,

where
ρc(x, y) = −πc(x, y)

∂2

∂x∂y
πc1(x, y) +

∂πc(x, y)

∂x

∂πc1(x, y)

∂y
,

πc1(x, y) = P(X ≤ x, T ≥ y,∆ = 1) and πc(x, y) = P(X ≤ x, T ≥ y) for x ≤ y.

Proposition 5.3. We have Ψc = 0 if the null hypothesis H0 of quasi-independence
is fulfilled.

The updated estimator for KQIC that incorporates censoring, Ψc, is defined by

Ψc,n =

sup
ω∈B1(H)

(
1

n

n∑
i=1

∆iω(Xi, Ti)π̂
c(Xi, Ti)−

1

n2

n∑
i=1

n∑
k=1

∆kω(Xi, Tk)1{Xk≤Xi<Tk≤Ti})

(5.7)
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where π̂c(x, y) = 1
n

∑n
m=1 1{Xm≤x,Tm≥y} is the natural estimator for πc(x, y). In

the uncensored case, i.e. ∆ = 1 with probability 1, the updated KQIC with censor-
ing Ψc and its estimator Ψc,n collapse to the respective quantities Ψ and Ψn from
Section 5.2. Moreover, the estimator Ψc,n can be simplified for factorising kernels.

Proposition 5.4. Consider K((x, y), (x′, y′)) = K(x, x′)L(y, y′), then

Ψ2
c,n =

1

n2
tr(Kπ̂cL̃π̂c − 2Kπ̂cL̃B> +KBL̃B>) (5.8)

where Kik = K(Xi, Xk), L̃ik = ∆i∆kL(Ti, Tk), Bik = 1{Xk≤Xi<Tk≤Ti}/n, and
πc is a diagonal matrix where π̂cii = π̂(Xi, Ti).

5.3 Asymptotic Analysis and Wild Bootstrap Test

We now present our main two theoretical results. First, we establish the asymptotic
null distribution of our statistic nΨ2

c,n.

Theorem 5.1. Assume K is bounded. Then, under the null hypothesis, nΨ2
c,n

d→
µ+Y , where µ is a positive constant, Y =

∑∞
i=1 λi(ξ

2
i − 1), ξ1, ξ2, . . . are indepen-

dent standard normal random variables, and λ1, λ2, . . . are non-negative constants
depending on the distribution of the random variables (X, Y,C) and the kernel K.

To verify Theorem 5.1, we show that the scaled version of our statistic, nΨ2
c,n,

can be expressed under the null hypothesis as the sum of a certain V-statistic and an
asymptotically vanishing term. To find this representation, we write our test-statistic
as a double integral with respect to a martingale, and use martingale techniques,
and the results introduced in [Fernández and Rivera, 2020], to show that the error
incurred by replacing certain quantities by their population versions vanishes as the
number of data points grows to infinity. The full proof is provided in Appendix 5.A.
We next establish conditions for consistency of the test under the alternative.

Theorem 5.2. Let K be a bounded, c0-universal kernel [Sriperumbudur et al.,
2011]. Then Ψ2

c,n → Ψ2
c in probability. Moreover, whenever the null hypothesis

is violated, Ψ2
c is positive, implying that nΨ2

c,n →∞ in probability,.

We remark that the factorised kernel K((x, y), (x′, y′)) = K(x, x′)L(y, y′) is
required to be c0-universal in the product space, which is true for instance when K
and L are exponentiated quadratic kernels [Fukumizu et al., 2007b]. In the case of
independence testing, a simpler condition on the kernel can be used, where kernels
are required to be individually characteristic to their respective domains [Gretton,
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2015]. Whether this simple condition can be generalised to the quasi-independence
setting remains a topic for future work.

The consistency result in Theorem 5.2 relies on the interpretation of the test
statistic Ψc,n and the KQIC Ψc, as the Hilbert space distances of the embed-
dings of certain positive measures. These distances measure the degree of (quasi)-
dependence. Under the c0-universality assumption, the embedding of finite signed
measures are injective [Sriperumbudur et al., 2011], which, in our case, implies
ρc(x, y) = 0 for almost all x ≤ y. It remains to prove that quasi-independence
holds. To show this, we first note that ρc(x, y) = 0 implies

∂2πc1(x, y)

∂x∂y
=

1

πc(x, y)

∂πc(x, y)

∂x

∂πc1(x, y)

∂y
, (5.9)

and that ∂2πc1(x,y)

∂x∂y
= SC|X=x(y)fXY (x, y). By carefully analysing Eq. (5.9) we find

an explicit decomposition of fXY (x, y) into the product of two functions only de-
pending on x and y, respectively, from which quasi-independence follows. A de-
tailed proof is provided in Appendix 5.A.

As noted above, the eigenvalues λi in Theorem 5.1 — and thus, the limit dis-
tribution of our test statistic under the null hypothesis — depend on the unknown
distribution of (X, Y,C). For this reason, we propose to approximate the limit null
distribution and its (1 − α)-quantile qα of µ + Y using a wild bootstrap approach.
This strategy is well-established for V - and U -statistics [Dehling and Mikosch,
1994], and has successfully been applied in scenarios, similar to the present one,
where the test statistic behaves asymptotically as a V -statistic [Fernandez et al.,
2019; Fernandez and Rivera, 2019].

Wild Bootstrap Testing Procedure We introduce the wild bootstrap counterpart
ΨWB
c,n of our statistic Ψc,n. Let W1, . . . ,Wn be independent and identically dis-

tributed Rademacher random variables, and define the n×nmatrixKW with entries
KW

ik = WiWkK(Xi, Xk). Then,

(ΨWB
c,n )2 =

1

n2
tr(KW π̂cL̃π̂c − 2KW π̂cL̃B> +KWBL̃B>).

We propose the test ϕWB
n = 1{Ψ2

c,n > qWB
α } to inferH0, where qWB

α denotes the (1−
α)-quantile of the simulated null from wild bootstrap (ΨWB

c,n )2 given the observations
((Xi,∆i, Ti))i∈[n].
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5.4 Experiments

We perform synthetic experiments followed by real data applications. In the first
set of synthetic examples, we replicate the settings studied in [Chiou et al., 2018],
where Gaussian copula models were used to create dependencies between X and
Y . In the second synthetic experiment, we investigate distribution functions fY |X=x

that have a periodic dependence on x. We then apply our tests to real-data scenarios
such as those studied in [Emura and Wang, 2010] and [Meister and Schaefer, 2008].

Quasi-independence Methods
We implement the proposed quasi-independence test based on the test-statistic
KQIC given in Eq. (5.8). The kernels are chosen to be Gaussian with bandwidth
optimised by using approximate test power [Gretton et al., 2009a; Jitkrittum et al.,
2017]. See Appendix 5.D for details. Competing approaches include: WLR, the
weighted log-rank test proposed in [Emura and Wang, 2010], with weight func-
tion chosen equal to nπ̂c(x, y);1 WLR SC, the weighted log-rank test proposed in
[Emura and Wang, 2010], with weight function chosen as suggested by the authors,
i.e, W (x, y) =

∫ x
0
ŜCR((y− u)−)−1π̂c(du, y), where ŜCR is the Kaplan-Meier esti-

mator associated to the data ((Ci−Xi, 1−∆i))
n
i=1; M&B, the conditional Kendall’s

tau statistic modified to incorporate censoring as proposed in [Martin and Betensky,
2005]; and MinP1 and MinP2, the “minimal p-value selection” tests proposed in
[Chiou et al., 2018], which rely on permutations of the observed pairs. A review of
these approaches can be found in Appendix 5.B. For the synthetic experiments, we
recorded the rejection rate over 200 trials. The wild bootstrap size for KQIC and
the permutation size for MinP1, MinP2 are set to be 500.

5.4.1 Simulation Results
Monotonic Dependency The first synthetic example from [Chiou et al., 2018] is
generated as follows: X ∼ Exp(5) and Y ∼ Weibull(3, 8.5); (X, Y ) are then
coupled via a 2-dimensional Gaussian copula model with correlation parameter ρ.
The censoring variable is set to be exponentially distributed and truncation applies.
With the copula construction, the magnitude of the correlation parameter ρ is a
fair indicator of the degree of dependence, with ρ = 0 denoting independence.
Rejection rates are reported in Table 5.1. At ρ = 0, the null hypothesis holds, and
the rejection rates refer to the Type-I error. All the tests achieve a correct Type-
I error around a test level α = 0.05. For ρ 6= 0, the alternative holds, and the

1Our test-statistic recovers, as a particular case, the squared of this log-rank test by choosing
K = 1
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Figure 5.2: Rejection rate for V-shape Gaussian copula model

rejection rates correspond to test power (the higher the better). The highest value is
in bold. Test results w.r.t. different censoring rates can be found in the Appendix.
Overall, our method outperforms all competing approaches.

ρ -0.4 -0.2 0.0 0.2 0.4

KQIC 0.93 0.46 0.06 0.42 0.86
WLR 0.80 0.33 0.10 0.18 0.66
WLR SC 0.85 0.42 0.03 0.24 0.74
M&B 0.64 0.22 0.02 0.16 0.74
MinP1 0.58 0.12 0.03 0.17 0.62
MinP2 0.33 0.04 0.06 0.10 0.28

-0.4 -0.2 0.0 0.2 0.4

0.99 0.67 0.05 0.63 1.00
0.94 0.52 0.06 0.32 0.94
0.93 0.53 0.06 0.43 0.99
0.94 0.28 0.03 0.42 0.92
0.84 0.12 0.10 0.34 0.84
0.56 0.08 0.08 0.28 0.52

Table 5.1: Rejection rates for monotonic dependency models based on Gaussian copula,
with n = 100 on the left; n = 200 on the right; α = 0.05; censoring rate: 50%.

V-shaped Dependency Another synthetic example [Chiou et al., 2018], in which
the authors compare the behaviour of their tests against the conditional Kendall’s
tau test of [Martin and Betensky, 2005] is detecting non-monotonic dependencies.
The following V-shaped dependency structure applies: X ∼ Weibull(0.5, 4); Y ∼
Uniform[0, 1]; (X, |Y − 0.5|) is coupled via the 2-dimensional Gaussian copula
with correlation coefficient ρ as above. Exponential censoring and truncation apply.
Rejection rates are plotted against the perturbation of correlation coefficient ρ in
Figure 5.2, where KQIC outperforms competing methods.

Periodic Dependency Apart from the V-shaped dependencies studied in Chiou
et al. [2018], we investigate more complicated non-monotonic dependencies struc-
tures. The data are generated with a periodic dependency structure, X ∼ Exp(1);
Y |X ∼ Exp(ecos(2πβX). The coefficient β controls the frequency of the dependence.
A set of examples with different parameters β is shown in Figure 5.3, with β = 0

implying independence. Further details are discussed in Appendix 5.D.1.
Examining the results in Figure 5.4, we see that our method outperforms com-

peting approaches. Unlike the correlation coefficient ρ in Gaussian copula models,
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Figure 5.3: Samples from Periodic Dependency Model w.r.t. Frequency Coefficient β

Figure 5.4: Rejection Rate for Periodic Dependency Model with 25% data censored.

the coefficient β does not directly imply the “amount” of dependence; rather, a
higher β indicates a more “difficult” problem. Thus, as anticipated, power drops
for large values of β, and the effect is more apparent at low sample sizes. Note in
particular that the permutation based tests [Chiou et al., 2018] are more affected by
an increase in frequency at which dependence occurs, while our test shows a more
robust behaviour.

High Frequency Dependency In the period dependency problem above , the pa-
rameter β controls the frequency of sinusoidal dependence. At a given sample size,
the dependence becomes harder to detect as the frequency β increases. We visu-
ally show this in Appendix 5.D.1. For problems with high frequency dependence, a
larger sample size is required.

When the sample size increases, KQIC is able to successfully reject the null at
relatively high frequencies (large β), as shown in Figure 5.5. At lower frequencies
β = 3.0, WLR SC has similar test power as KQIC. As the problem gets harder with
larger β, KQIC outperforms WLR SC. The IMQ kernel has similar test power as the
Gaussian kernel on this example. We report the Type-I error that is well controlled
in Appendix 5.D.1 Table 5.5.

Increasing Censoring Level We investigate how our test is affected by the cen-
soring level, in particular when the censoring percentage increases. We analyse
performance under both the null and alternative hypotheses. The Type-I error is
well controlled for KQIC and details are reported in Appendix 5.D.3.
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Figure 5.5: Rejection rate for high frequency dependency, with α = 0.05, 40% data cen-
sored

Figure 5.6: Rejection rate for periodic dependencies (β = 5.0), with α = 0.05 and 200
trials.

Under the alternative hypothesis, in Figure 5.6, we show the rejection rate
w.r.t. different censoring percentages and fixed sample size. This is done in our
periodic dependency setting. From the plot, we see that KQIC with Gaussian and
IMQ kernels is more robust to censoring, with test power starting to drop at 85% of
censoring for sample size = 800. WLR SC is strongly affected by censoring. WLR
is not capable of detecting H1 in this hard problem with high frequency.

In addition, we study the test behaviour with dependent censoring, since in
Assumption 5.1, only conditional independence Y ⊥ C|X is required [Emura and
Wang, 2010]. Detailed results are reported in Appendix 5.D.2.

Computational runtime
As shown in Table 5.2, our proposed test, implemented as described in Appendix
5.C, has a significantly lower runtime when compared with the permutation ap-
proaches which require much longer run-time. M&B implements the conditional
Kendall’s tau statistic which has a closed-form expression for the null distribution,
therefore the runtime is much lower again.

Our proposed test, implemented as described in Appendix 5.C, has a signifi-
cantly lower runtime when compared with the competing permutation approaches.
M&B implements the conditional Kendall’s tau statistic, which has a closed-form
expression for the null distribution, therefore its runtime is lowest of all.
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n 100 200 300 400 500 600 700 800 900

KQIC 0.012 0.019 0.031 0.041 0.063 0.085 0.130 0.152 0.200
MinP1 15.77 41.62 56.61 90.52 113.7 154.4 254.4 299.2 389.1
MinP2 20.33 35.08 59.09 101.4 123.7 174.3 242.4 300.9 354.2
M&B 0.002 0.002 0.002 0.003 0.004 0.006 0.006 0.009 0.021

Table 5.2: The runtime, in seconds, for a single trial using 500 wild bootstrap samples for
KQIC and 500 permutations for MinP1 and MinP2. M&B does not require to
approximate the null distribution.

5.4.2 Real Data Applications
We consider three real data scenarios: Channing House [Hyde, 1977]: contains
the recorded entry times and lifetimes of 461 patients (97 men and 364 women).
Among them, 268 subjects withdrew from the retirement center, yielding to a cen-
soring proportion of 0.62. The data are naturally left truncated, as only patients
who entered the center are observed; AIDS [Lagakos et al., 1988]: the data con-
tain the incubation time and lapse time, measured from infection to recruitment
time, for 295 subjects. A censoring of proportion of 0.125 occurs due to death or
withdrawal from the study. Left truncation applies since only patients that devel-
oped AIDS within the study period were recruited, thus only patients with incuba-
tion time not exceeding the lapse time were observed; and Abortion [Meister and
Schaefer, 2008]: contains the entry time and the spontaneous abortion time for 1186

women (197 control group and 989 treatment group exposed to Coumarin deriva-
tives). A censoring proportion of 0.906 occurs due to live birth or induced abortions.
Delayed entry to the study is substantial in this dataset: 50% of the control cohort
entered the study in week 9 or later, while in the treatment group this occurs for
25% of the cohort.

Implementations For our test we used both Gaussian kernels KQIC Gauss and
IMQ kernels KQIC IMQ. For competing approaches, the implementation is as dis-
cussed at the beginning of this section.

Results For the Channing house dataset, in Table 5.3, we observe that all tests agree
in not rejecting the null hypothesis for the combined and female groups at a level
α = 0.05. For the male group, all tests but MinP2 and M&B reject the null hy-
pothesis at α = 0, 05. Our results agree with [Emura and Wang, 2010]. For the
AIDS dataset, all tests reach a consensus of rejecting the null, which is consistent
with [Emura and Wang, 2010], except for MinP2 marked in blue. For the abortion
dataset, our test rejects the null hypothesis, suggesting dependency between the en-
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(p-value) Channing House AIDS Abortion Times
Combined Male Female Combined Control Treatment

KQIC Gauss 0.072 0.012 0.566 0.030 0.014 0.440 0.028
KQIC IMQ 0.078 0.022 0.414 0.010 0.032 0.158 0.048
WLR 0.058 0.016 0.444 0.035 0.408 0.868 0.748
WLR SC 0.086 0.020 0.422 0.030 0.511 0.674 0.450
MinP1 0.084 0.036 0.396 0.012 0.584 0.584 0.452
MinP2 0.198 0.426 0.118 0.406 0.694 0.572 0.346
M&B 0.178 0.199 0.495 0.010 0.712 0.693 0.752

% Events 0.379 0.474 0.354 0.875 0.094 0.069 0.098

Table 5.3: Real data test p-value, with marked results contradicting and supporting the sci-
entific literature.

try time X and the spontaneous abortion time Y in both the treatment group and
the combined case (in red). This finding is in accordance with domain knowledge
[Meister and Schaefer, 2008], where the presence of this dependence was indicated
to be due to the study design. The competing tests were unable to detect the depen-
dence; however, did not reject the null hypothesis.



Appendices

5.A Proofs

The following Proposition is an intermediate result, which is needed to prove Lem-
mas 5.2 and 5.4.

Proposition 5.5. Define

An =
1

n

n∑
i=1

∆i1{Xi<Ti}(π̂
c(Xi, Ti)− πc(Xi, Ti))

2. (5.10)

Then, the following results hold: i) An → 0 almost surely as n grows to infinity and
ii) |An| ≤ c, for some constant c, for all large n.

Proof. Since π̂c and πc are both bounded by 1, we have |An| = An ≤ 4 for all n
and, thus, ii) is proven.

Let us consider the statement i). It is easy to see that E(1{Xm≤x,Tm≥t}) =

πc(x, t). In particular, we have E(g(m, i)|Xi, Ti,∆i) = 0 for i 6= m, where
g(m, i) = 1{Xm≤Xi,Tm≥Ti} − πc(Xi, Ti). Now, notice that we can rewrite An as
V -statistic of order 3:

An =
1

n

n∑
i=1

∆i1{Xi≤Ti}

(
1

n

n∑
m=1

(1{Xm≤Xi,Tm≥Ti} − πc(Xi, Ti))

)2

=
1

n3

n∑
i=1

n∑
m=1

n∑
k=1

∆i1{Xi≤Ti}g(m, i)g(k, i).

Combining this and the law of large numbers for V -statistics yields

An
a.s.→ E(∆1g(1, 2)g(1, 3)) = E(∆1E(g(2, 1)g(3, 1)|X1, T1,∆1))

(independence) = E (∆1E(g(2, 1)|X1, T1,∆1)E(g(3, 1)|X1, T1,∆1))

= 0.
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Proofs of Sections 5.2 and 5.2.2

Proof of Proposition 5.1

Proof. From Eq. (5.5), we have

Ψn = sup
ω∈B(H)

1

n

n∑
i=1

(
ω(Xi, Yi)π̂(Xi, Yi)−

n∑
k=1

ω(Xi, Yk)Aik

)
,

whereAik = 1{Xk≤Xi<Yk≤Yi}/n.

The previous result and the reproducing kernel property yield

Ψ2
n = sup

ω∈B1(H)

(
1

n

n∑
i=1

(
ω(Xi, Yi)π̂(Xi, Yi)−

n∑
k=1

ω(Xi, Yk)Aik

))2

= sup
ω∈B1(H)

〈
ω(·), 1

n

n∑
i=1

K(Xi, ·)

(
L(Yi, ·)π̂ii −

n∑
k=1

L(Yk, ·)Aik

)〉2

=

∥∥∥∥∥ 1

n

n∑
i=1

K(Xi, ·)

(
L(Yi, ·)π̂ii −

n∑
k=1

L(Yk, ·)Aik

)∥∥∥∥∥
2

H

=
1

n2

n∑
i,j=1

KijLijπ̂iiπ̂jj −
2

n2

n∑
i,j,l=1

KijLilπ̂iiAjl +
1

n2

n∑
i,j,k,l=1

KijLklAikAjl

=
1

n2
tr(Kπ̂Lπ̂ − 2Kπ̂LA> +KALA>),

where the second to last equality follows from

1

n2

n∑
i=1

n∑
j=1

KijLijπ̂iiπ̂jj =
1

n2

n∑
i=1

n∑
j=1

Kij(π̂Lπ̂)ij =
1

n2
tr(Kπ̂Lπ̂),

2

n2

n∑
i,j,l=1

KijLilπ̂iiAjl =
2

n2

n∑
j=1

n∑
l=1

(
n∑
i=1

Kij(π̂L)il

)
Ajl

=
2

n2

n∑
j=1

n∑
l=1

(Kπ̂L)jlA
>
lj

=
2

n2
tr(Kπ̂LA>),
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and

1

n2

n∑
i,j,k,l=1

KijLklAikAjl =
1

n2

n∑
k=1

n∑
j=1

(
n∑
i=1

KijAik

)(
n∑
l=1

LklAjl

)

=
1

n2

n∑
k=1

n∑
j=1

(KA)jk
(
LA>

)
kj

=
1

n2
tr(KALA>).

Proof of Proposition 5.4

Proof. Eq. (5.7) yields

Ψc,n = sup
ω∈B1(H)

1

n

n∑
i=1

(
∆iω(Xi, Ti)π̂

c(Xi, Ti)−
1

n

n∑
k=1

∆kω(Xi, Tk)1{Xk≤Xi≤Tk≤Ti}

)

= sup
ω∈B1(H)

1

n

n∑
i=1

(
∆iω(Xi, Ti)π̂

c
ii −

n∑
k=1

∆kω(Xi, Tk)Bik

)
,

where Bik = 1{Xk≤Xi<Tk≤Ti}/n and π̂c is a diagonal matrix with entries π̂cii =

π̂c(Xi, Ti).

Then, by following the exact same computations of the proof of Proposition
5.1, we deduce

Ψ2
c,n =

1

n2
tr(Kπ̂L̃π̂ − 2Kπ̂L̃B> +KBL̃B>),

where L̃ik = ∆i∆kL(Ti, Tk).

Proof of Proposition 5.3

Proof. Under Assumption 5.1, we have that for all x ≤ y,

πc1(x, y) = P(X ≤ x, T ≥ y,∆ = 1) = E
(
1{X≤x,Y≥y}E

(
1{C≥Y }|X, Y

))
= E

(
1{X≤x,Y≥y}SC|X(Y )

)
=

∫ x

0

∫ ∞
y

SC|X=x′(y
′)fXY (x′, y′)dx′, dy′,
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and

πc(x, y) = P(X ≤ x, T ≥ y) = E
(
1{X≤x}SC|X(y)SY |X(y)

)
=

∫ x

0

SC|X=x′(y)SY |X=x′(y)fX(x′)dx′.

The null hypothesis states fXY (x, y) = f̃X(x)f̃Y (y) for all x ≤ y such that
ST |X=x(y) > 0. Thus

πc1(x, y) =

∫ x

0

∫ ∞
y

SC|X=x′(y
′)f̃X(x′)f̃Y (y′)dx′dy′,

πc(x, y) = S̃Y (y)

∫ x

0

SC|X=x′(y)f̃X(x′)dx′.

By using the previous result, it is easy to see that, under the null,

− πc(x, y)
∂2

∂x∂y
πc1(x, y)

=

(
S̃Y (y)

∫ x

0

SC|X=x′(y)f̃X(x′)dx′
)
SC|X=x(y)f̃X(x)f̃Y (y),

and

∂πc(x, y)

∂x

∂πc1(x, y)

∂y

= −
(
S̃Y (y)SC|X=x(y)f̃X(x)

)∫ x

0

SC|X=x′(y)f̃X(x′)dx′f̃Y (y)

= −
(
S̃Y (y)

∫ x

0

SC|X=x′(y)f̃X(x′)dx′
)
SC|X=x(y)f̃X(x)f̃Y (y),

from which it follows that ρc = 0, and thus Ψ = 0.

Proof of Theorem 5.1

Before proving Theorem 5.1 we give some essential definitions which will be used
by our proofs. We will first introduce Lemma 5.1, which is an essential step in the
proof of Theorem 5.1. A full proof for Lemma 5.1 is given later in this section.

Our data are considered to live in a common filtrated probability space
(Ω,F , (Ft)t≥0,P), where F is the natural σ-algebra, and Ft is the filtration gen-
erated by

{
1{Ti≤s,∆i=1},1{Ti≤s,∆i=0}, Xi : 0 ≤ s ≤ t, i ∈ [n]

}
,
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and the P-null sets of F .

We define τn = max{T1, . . . , Tn}. For each i ∈ [n], we define the i-th
individual counting and risk processes, Ni(t) and Yi(t), by Ni(t) = ∆i1{Ti≤t}

and Yi(t) = 1{Ti≥t}, respectively. For each individual i, we define the process
(Mi(t))t≥0 by

Mi(t) = Ni(t)−
∫

(0,t]

1{Xi≤s}Yi(s)λ̃Y (s)ds.

It is standard to verify that Mi(t) is an (Ft)-martingale under the null hypothesis,
and that, for any bounded predictable process (Hi(t))t≥0,

∫
(0,t]

Hi(s)dMi(s) is also
an (Ft)-martingale under the null hypothesis.

Let (T ′1,∆
′
1, X1

′) and (T ′2,∆
′
2, X

′
2) be independent copies of our data

((Ti,∆i, Xi))
n
i=1. Sometimes our results are written in terms of Ẽ which is

defined by Ẽ(·) = E (·|((Ti,∆i, Xi))
n
i=1). Additionally, we denote by Y ′1

and Y ′2 , the individual risk functions associated to T ′1 and T ′2, which are de-
fined by Y ′1(t) = 1{T ′1≥t} and Y ′2(t) = 1{T ′2≥t}, respectively. Finally, we de-
fine Zi(t) = ω(Xi, t)1{Xi≤t} for all i ∈ [n], and, based on (T ′1,∆

′
1, X

′
1) and

(T ′2,∆
′
2, X

′
2), we define Z ′1(t) = ω(X ′1, t)1{X′1≤t} and Z ′2(t) = ω(X ′2, t)1{X′2≤t}.

Lemma 5.1. Assume that K is bounded. Then, under the null hypothesis

√
nΨn,c =

sup
ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
dMi(t) + op(1).

(5.11)

Proof of Theorem 5.1
By the reproducing property, we have Zi(t) = 〈ω,K((Xi, t), ·)〉H1{Xi≤t} and
Z ′1(t) = 〈ω,K((X ′1, t), ·)〉H1{X′1≤t}; together with Eq.(5.11) in Lemma 5.1, write(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
=
(
〈ω,K((Xi, t), ·)〉H1{Xi≤t}πc(Xi, t)− Ẽ

(
〈ω,K((X ′1, t), ·)〉H1{X′1≤t}Y

′
1(t)1{Xi≤X′1}

))
=
〈
ω,K((Xi, t), ·)1{Xi≤t}πc(Xi, t)− Ẽ

(
K((X ′1, t), ·)1{X′1≤t}Y

′
1(t)1{Xi≤X′1}

)〉
H
,

where the second equality follows from the linearity of expectation, assuming
Bochner integrability of the feature map (true for bounded K). To ease notation,
we define the functions a : R2 → R and b : R3 → R by a(Xi, t) = 1{Xi≤t}π

c(Xi, t)
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and b(X ′1, Xi, t) = Y ′1(t)1{Xi≤X′1≤t}, respectively, and write(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
=
〈
ω,K((Xi, t), ·)a(Xi, t)− Ẽ (K((X ′1, t), ·)b(X ′1, Xi, t))

〉
H
. (5.12)

From the previous result, we can see that

1√
n

n∑
i=1

∫ τn

0

(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
dMi(t) =〈

ω,
1√
n

n∑
i=1

∫ τn

0

(K((Xi, t), ·)a(Xi, t)− Ẽ (K((X ′1, t), ·)b(X ′1, Xi, t)))dMi(t)

〉
H

and thus

sup
ω∈B1(H)

(
1√
n

n∑
i=1

∫ τn

0

(
Zi(t)π

c(Xi, t)− Ẽ
(
Z ′1(t)Y ′1(t)1{Xi≤X′1}

))
dMi(t)

)2

∥∥∥∥∥ 1√
n

n∑
i=1

∫ τn

0

(
K((Xi, t), ·)a(Xi, t)− Ẽ (K((X ′1, t), ·)b(X ′1, Xi, t))

)
dMi(t)

∥∥∥∥∥
2

H

=
1

n

n∑
i=1

n∑
j=1

J((Ti,∆i, Xi), (Tj,∆j, Xj)), (5.13)

where the function J : (R× {0, 1} × R)2 → R is defined by

J((s, r, x), (s′, r′, x′)) =

∫ s

0

∫ s′

0

A((t, x), (t′, x′))dms′,r′,x′(t
′)dms,r,x(t),

dms,r,x(t) = rδs(t) − 1{s≥t}1{x≤t}λ̃Y (t)dt (notice that dMi(t) = dmTi,∆i,Xi(t)),
and A : (R× R)2 → R is defined as

A((t, x), (t′, x′))

=
〈
K((x, t), ·)a(x, t)− Ẽ (K((X ′1, t), ·)b(X ′1, x, t))

,K((x′, t′), ·)a(x′, t′)− Ẽ (K((X ′2, t
′), ·)b(X ′2, x′, t′))

〉
H

= K((x, t), (x′, t′))a(x, t)a(x′, t′)− Ẽ(K((X ′1, t), (x
′, t′))b(X ′1, x, t)a(x′, t′))

− Ẽ(K((x, t), (X ′2, t
′))a(x, t)b(X ′2, x

′, t′))

+ Ẽ(K((X ′1, t), (X
′
2, t
′))b(X ′1, x, t)b(X

′
2, x
′, t′)).

It can be verified that the sum in Eq. (5.13) is a degenerate V -statistic. Indeed, the
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degeneracy property can be verified by noticing that

E(J((Ti,∆i, Xi), (s
′, r′, x′)))

= E

(∫ Ti

0

(∫ s′

0

A((t,Xi), (t
′, x′))dms′,r′,x(t

′)

)
dMi(t)

)
= E(Q(Ti)),

where Q(s) =
∫ s

0

(∫ s′
0
A((t,Xi), (t

′, x′))dms′,r′,x(t
′)
)
dMi(t) is a zero mean (Fs)-

martingale, and thus, by the optional stopping Theorem, E(Q(Ti)) = E(Q(0)) = 0.
Then, by [Koroljuk and Borovskich, 1994, Theorem 4.3.2], we deduce

1

n

n∑
i=1

n∑
j=1

J((Ti,∆i, Xi), (Tj,∆j, Xj))
D→ E(J((T1,∆1, X1), (T1,∆1, X1))) + Y ,

where Y =
∑∞

i=1 λi(ξ
2
i − 1), ξ1, ξ2, . . . are independent standard normal random

variables, and λ1, λ2, . . . are positive constants.

The previous result, together with Lemma 5.1, allow us to deduce

Ψ2
c,n

D→ µ+ Y ,

where µ = E(J((T1,∆1, X1), (T1,∆1, X1))). Notice that all integrability condi-
tions are satisfied as we assume the reproducing kernel is bounded.

Proof of Lemma 5.1

In order to prove Lemma of 5.1, we require some intermediate results.

Recall that our test-statistic is computed as the supremum over ω ∈ B1(H) of
sums

1

n

n∑
i=1

∆iω(Xi, Ti)π̂
c(Xi, Ti)−

1

n2

n∑
i=1

n∑
k=1

∆kω(Xi, Tk)1{Xk≤Xi<Tk≤Ti}.

By using the notation introduced at the beginning of Section 5.A, the previous sum
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can be rewritten as

1

n

n∑
i=1

(
∆iω(Xi, Ti)π̂

c(Xi, Ti)−
1

n

n∑
k=1

∆iω(Xk, Ti)1{Xi≤Xk<Ti≤Tk}

)

=
1

n

n∑
i=1

∫ Ti

0

(
ω(Xi, y)1{Xi≤y}π̂

c(Xi, y)− 1

n

n∑
k=1

ω(Xk, y)1{Xk≤y}1{y≤Tk}1{Xi≤Xk}

)
dNi(y)

=
1

n

n∑
i=1

∫ Ti

0

(
Zi(y)π̂c(Xi, y)− 1

n

n∑
k=1

Zk(y)Yk(y)1{Xi≤Xk}

)
dNi(y)

=
1

n

n∑
i=1

∫ Ti

0

Hi(y)dNi(y),

where Hi(y) = Zi(y)π̂c(Xi, y)− 1
n

∑n
k=1 Zk(y)Yk(y)1{Xi≤Xk}. Thus,

Ψn,c = sup
ω∈B1(H)

1

n

n∑
i=1

∫ τn

0

Hi(y)dNi(y), (5.14)

where recall that τn = max{T1, . . . , Tn}.

Proposition 5.6. Assume that K is bounded. Then, under the null hypothesis,
the process (W (t))t≥0, defined by W (t) = 1

n

∑n
i=1

∫ t
0
Hi(y)dNi(y), is an (Ft)-

martingale, and can be rewritten as

W (t) =
1

n

n∑
i=1

∫ t

0

Hi(y)dMi(y).

Notice that the previous Proposition, and Eq. (5.14) suggest the result of
Lemma 5.1. It remains to prove that the process Hi(y) may be approximated by
its “population limit”. We prove this result in two steps in the two lemmas below.

Lemma 5.2. Assume that K is bounded. Then, under the null hypothesis

sup
ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

Zi(y) (π̂c(Xi, y)− πc(Xi, y)) dMi(y) = op(1),

Lemma 5.3. Assume that K is bounded. Then, under the null hypothesis

sup
ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

(
1

n

n∑
j=1

Zj(y)Yj(y)1{Xi≤Xj} − Ẽ(Z ′1(y)Y ′1(y)1{Xi≤X′1})

)
dMi(y) = op(1),
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Proof of Lemma 5.1: Eq. (5.14) and Lemma 5.6 yield

√
nΨn,c = sup

ω∈B1(H)

1√
n

n∑
i=1

∫ τn

0

Hi(y)dMi(y),

where (recall) Hi(y) = Zi(y)π̂c(Xi, y)− 1
n

∑n
k=1 Zk(y)Yk(y)1{Xi≤Xk}. Notice that

to obtain the result, we need to replace π̂c by its population version πc, and, given
(Ti,∆i, Xi), we need to replace the i.i.d. sum 1

n

∑n
k=1 Zk(y)Yk(y)1{Xi≤Xk} by its

limit, which is given by Ẽ(Z ′1(y)Y ′1(y)1{Xi≤X′1}). By the triangular inequality, this
result follows from lemmas 5.2 and 5.3.

Proof of Proposition 5.6
Recall that dMi(y) = dNi(y)−1{Xi≤y}Yi(y)λ̃Y (y)dy. A straightforward computa-
tion verifies 1

n

∑n
i=1

∫ t
0
Hi(y)1{Xi≤y}Yi(y)λ̃Y (y)dy = 0 for all t ≥ 0, and thus

W (t) =
1

n

n∑
i=1

∫ t

0

Hi(y)dMi(y).

Also, notice that (Hi(t))t≥0 (with ω ∈ B1(H)) is bounded and (Ft)-predictable,
and that Mi(t) is an (Ft)− martingale under the null hypothesis. Then, by standard
martingale results we deduce that (W (t))t≥0 is an (Ft)-martingale.

Proof of Lemma 5.2
Observe that

Zi(t)(π̂
c(Xi, t)− πc(Xi, t)) = 〈ω,K((Xi, t), ·)〉H 1{Xi≤t}(π̂

c(Xi, t)− πc(Xi, t))

since Zi(t, ω) = ω(Xi, t)1{Xi≤t} = 〈ω,K((Xi, t), ·)〉H1{Xi≤t} due to the reproduc-
ing property.

Then,

sup
ω∈B1(H)

(
1√
n

n∑
i=1

∫ τn

0

Zi(t) (π̂c(Xi, t)− πc(Xi, t)) dMi(t)

)2

= sup
ω∈B1(H)

(
1√
n

n∑
i=1

∫ τn

0

〈ω,K((Xi, t), ·)〉H 1{Xi≤t}(π̂
c(Xi, t)− πc(Xi, t))dMi(t)

)2

= sup
ω∈B1(H)

〈
ω,

1√
n

n∑
i=1

∫ τn

0

K((Xi, t), ·)1{Xi≤t}(π̂c(Xi, t)− πc(Xi, t))dMi(t)

〉2

H

=
1

n

n∑
i=1

n∑
k=1

∫ τn

0

∫ τn

0

J((Xi, t), (Xk, s))dMi(t)dMk(s),



5.A. Proofs 128

where

J((Xi, t), (Xk, s))

= K((Xi, t), (Xk, s))1{Xi≤t}1{Xk≤s}(π̂
c(Xi, t)− πc(Xi, t))(π̂

c(Xk, s)− πc(Xk, s))

(5.15)

Define the process (Q(y))y≥0 by

Q(y) =
1

n

n∑
i=1

n∑
k=1

∫ y

0

∫ y

0

J((Xi, t), (Xk, s))dMi(t)dMk(s),

and notice that we wish to prove that Q(τn) = op(1). Let δ > 0, then, by Markov’s
inequality,

P(Q(τn) > δ) ≤ E(Q(τn))

δ
=

E(QD(τn))

δ
+

2E(QDc(τn))

δ
,

where the last equality holds since, by symmetry, Q(y) = QD(y)+2QDc(y), where

QD(y) =
1

n

n∑
i=1

n∑
k=1

∫ y

0

∫ y

0

1{s=t}J((Xi, t), (Xk, s))dMi(t)dMk(s), (5.16)

and

QDc(y) =
1

n

n∑
k=1

n∑
i=1

∫ y

0

∫
(0,s)

J((Xi, t), (Xk, s))dMi(t)dMk(s).

By [Fernández and Rivera, 2020, Theorem 6.8], QDc(y) is an (Fy)-martingale, and,
by the optional stopping theorem, E(QDc(τn)) = E(QDc(0)) = 0. Thus

P(Q(τn) > δ) ≤ E(QD(τn))

δ
,
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where

QD(τn) =
1

n

n∑
i=1

n∑
k=1

∫ τn

0

J((Xi, t), (Xk, t))d[Mi,Mk](t)

=
1

n

n∑
i=1

∫ τn

0

J((Xi, t), (Xi, t))d[Mi](t)

=
1

n

n∑
i=1

∫ τn

0

J((Xi, t), (Xi, t))Ni(t)

=
1

n

n∑
i=1

∆iJ((Xi, Ti), (Xi, Ti))

follows from considering continuous survival and censoring times.

We finish the proof by proving E(QD(τn))→ 0 as n tends to infinity. Observe
that

E(QD(τn)) = E

(
1

n

n∑
i=1

∆iJ((Xi, Ti), (Xi, Ti))

)

≤ c1E

(
1

n

n∑
i=1

∆i1{Xi≤Ti}(π̂
c(Xi, Ti)− πc(Xi, Ti))

2

)

follows from substituting the function J with the expression given in Eq. (5.15),
and by assuming the reproducing kernel is bounded by some constant c1 > 0. By
Proposition 5.5, the sum 1

n

∑n
i=1 ∆i1{Xi≤Ti}(π̂

c(Xi, Ti)−πc(Xi, Ti))
2 converges to

0 almost surely, and it is bounded by some constant c > 0, then the desired result
follows from an application of dominated convergence.

Proof of Lemma 5.3

Notice that, by the reproducing property,

1

n

n∑
j=1

Zj(t)Yj(t)1{Xi≤Xj} − Ẽ(Z ′1(t)Y ′1(t)1{Xi≤X′1})

=
1

n

n∑
j=1

〈ω,K((Xj, t), ·)〉HYj(t)1{Xi≤Xj≤t} − Ẽ
(
〈ω,K((X ′1, t), ·)〉HY ′1(t)1{Xi≤X′1≤t}

)
=

〈
ω,

1

n

n∑
j=1

K((Xj, t), ·)Yj(t)1{Xi≤Xj≤t} − Ẽ
(
K((X ′1, t), ·)Y ′1(t)1{Xi≤X′1≤t}

)〉
H

.

To ease notation, we define aij(t) = Yj(t)1{Xi≤Xj≤t} and b′i1(t) = Y ′1(t)1{Xi≤X′1≤t}

(similarly, we define b′i2(t) = Y ′2(t)1{Xi≤X′2≤t}, where recall that (T ′1,∆
′
1, X

′
1) and
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(T ′2,∆
′
2, X

′
2) are independent copies of our data). Then, the previous term can be

rewritten as

1

n

n∑
j=1

Zj(t)Yj(t)1{Xi≤Xj} − Ẽ(Z ′1(t)Y ′1(t)1{Xi≤X′1})

=

〈
ω,

1

n

n∑
j=1

K((Xj, t), ·)aij(t)− Ẽ (K((X ′1, t), ·)b′i1(t))

〉
H

.

By using the fact we take supremum on the unit ball of an RKHS, it is not
difficult to deduce,

sup
ω∈B1(H)

(
1√
n

n∑
i=1

∫ τn

0

(
1

n

n∑
j=1

Zj(t)Yj(t)1{Xi≤Xj} − Ẽ(Z ′1(t)Y ′1(t)1{Xi≤X′1})

)
dMi(y)

)2

=
1

n

n∑
i=1

n∑
k=1

∫ τn

0

∫ τn

0

J((Xi, t), (Xk, s))dMi(t)dMk(s), (5.17)

where

J((Xi, t), (Xk, s))

=
1

n2

n∑
j=1

n∑
l=1

K ((Xj, t), (Xl, s)) aij(t)akl(s)−
1

n

n∑
l=1

Ẽ(K((X ′1, t), (Xl, s))b
′
i1(t)akl(s)

− 1

n

n∑
j=1

Ẽ(K((Xj, t), (X
′
2, s))aij(t)b

′
k2(s) + Ẽ(K((X ′1, t), (X

′
2, s))b

′
i1(t)b′k2(s)),

(5.18)

Following the same steps of the proof of Lemma 5.2, we can prove that
Eq. (5.17) is op(1) by proving that

E

(
1

n

n∑
i=1

J((Xi, Ti), (Xi, Ti))

)
→ 0. (5.19)
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For this purpose, first observe that

1

n

n∑
i=1

J((Xi, Ti), (Xi, Ti)) =
1

n3

n∑
i,j,l=1

K ((Xj, Ti), (Xl, Ti)) aij(Ti)ail(Ti)

− 2

n2

n∑
i,l=1

Ẽ(K((X ′1, Ti), (Xl, Ti))b
′
i1(Ti)ail(Ti)

+
1

n

n∑
i=1

Ẽ(K((X ′1, Ti), (X
′
2, Ti))b

′
i1(Ti)b

′
i2(Ti).

Each sum on the right-hand side of the previous equation is a V -statistic of order 3,
2 and 1, respectively. It can easily be seen that they all converge to the same limit.
Consequently, the law of large numbers for V -statistics implies that

1

n

n∑
i=1

J((Xi, Ti), (Xi, Ti))→ 0

almost surely. Since the reproducing kernel is assumed to be bounded and, thus,
the sum is bounded as well, we can deduce, finally, Eq. (5.19) from the dominated
convergence theorem.

Proof of Theorem 5.2

The consistency proof relies on the interpretation of the test statistic Ψc,n and the
KQIC Ψc as the Hilbert space distances of embeddings of certain positive mea-
sures. These distances measure the degree of (quasi)-dependence. In this spirit, this
approach is connected to the well-established Hilbert Schmidt Independence Cri-
terion, see e.g. Chwialkowski et al. [2014]; Gretton et al. [2008]; Meynaoui et al.
[2019]; Sejdinovic et al. [2013].

Now, let us become more concrete and introduce the following measures ν0

and ν1 on R2
+ given by

ν0(dx, dy) = πc(x, y)πc1(dx, dy)

= πc(x, y)SC|X=x(y)fXY (x, y)dxdy,

ν1(dx, dy) = πc(dx, y)πc1(x, dy)

=
(
SY |X=x(y)SC|X=x(y)fX(x)

)(∫ x

0

SC|X=t(y)fXY (t, y)dt

)
dxdy
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as well as their empirical counterparts νn0 and νn1 defined as

νn0 (dx, dy) =
π̂c(x, y)

n

n∑
i=1

∆iδXi(x)δTi(y)

νn1 (dx, dy) =
1{x≤y}

n2

(
n∑
i=1

δXi(x)1{Ti≥y}

)(
n∑
k=1

∆kδTk(y)1{Xk≤x}

)
.

Moreover, set ρ̂c = νn0 − νn1 , which is the empirical counterpart of the measure
induced by the density ρc. Then the embeddings of the (empirical) measures into
the underlying RKHS are given by

φj(·) =

∫∫
x≤y

K((x, y), ·)νj(dx, dy), and φnj (·) =

∫∫
x≤y

K((x, y), ·)νnj (dx, dy).

By straightforward calculations, we obtain

Ψ2
c,n = sup

ω∈B1(H)

(∫∫
x≤y

ω(x, y)ρ̂c(dx, dy)

)2

= ‖φn0 − φn1‖
2
H

and

Ψ2
c = sup

ω∈B1(H)

(∫∫
x≤y

ω(x, y)ρc(dx, dy)

)2

= ‖φ0 − φ1‖2
H .

Consequently, the first part of Theorem 5.2 follows from convergence of the afore-
mentioned distances:

Lemma 5.4. We have ‖φn0 − φn1‖
2
H → ‖φ0 − φ1‖2

H in probability.

The proof of Lemma 5.4 is given below. For the second part of Theorem
5.2, recall that by assumption the chosen kernel K is c0-universal and, thus, the
embedding of finite signed Borel measures is injective, see [Sriperumbudur et al.,
2010] for details. In particular, Ψ2

c = ‖φ0 − φ1‖2
H equals zero if and only if ν0 ≡ ν1

, or equivalently ρc(x, y) = 0 for almost all x ≤ y. Consequently, it remains to
verify the following lemma, which is proven below.

Lemma 5.5. ρc(x, y) = 0 for almost all x ≤ y if and only if the null hypothesis of
quasi independence is fulfilled.
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Proof of Lemma 5.4

First, observe that

Ψ2
c,n = sup

ω∈B1(H)

(∫∫
x≤y

ω(x, y)ρ̂c(dx, dy)

)2

= ‖φn0 − φn1‖
2
H = V0,0 − 2V0,1 + V1,1,

where

V0,0 = ‖φn0‖
2
H =

1

n2

n∑
j,i=1

K((Xi, Ti), (Xj, Tj))∆i∆jπ̂
c(Xi, Ti)π̂

c(Xj, Tj),

V0,1 = 〈φn0 , φn1 〉H =
1

n3

n∑
i,j,k=1

K((Xi, Ti), (Xj, Tk))∆i∆kπ̂
c(Xi, Ti)1{Xk≤Xj<Tk≤Tj},

V1,1 = ‖φn1‖
2
H =

1

n4

n∑
i,j,k,`=1

K((Xi, T`), (Xj, Tk))∆k∆`1{X`≤Xi<T`≤Ti}1{Xk≤Xj<Tk≤Tj}.

By Proposition 5.5 we can replace π̂c by πc for all asymptotic considerations, a
detailed explanation for V0,0 is given below. Thus, V0,0, V0,1 and V1,1 are asymp-
totically equivalent to V -statistics of order 2, 3 and 4, respectively. For the desired
statement, it remains to show that (i) V0,0 → ‖φ0‖2

H (ii) V0,1 → 〈φ0, φ1〉H (iii)
V1 → ‖φ1‖2

H. All three convergences follow from the strong law of large numbers
for V -statistics and Proposition 5.5, as explained exemplary for (i):

Since the kernel K and π̂c are bounded by some c1 > 0 and 1, respectively, we
can deduce from Proposition 5.5 and the triangular inequality that almost surely

∣∣∣ 1

n2

n∑
j,i=1

K((Xi, Ti), (Xj, Tj))∆i∆j

(
π̂c(Xi, Ti)π̂

c(Xj, Tj)− πc(Xi, Ti)π
c(Xj, Tj)

)∣∣∣
≤ c1

1

n2

n∑
j,i=1

∆i∆j (|π̂c(Xi, Ti)− πc(Xi, Ti)|+ |π̂c(Xj, Tj)− πc(Xj, Tj)|)

≤ 2c1

n2

n∑
j,i=1

∆i∆j

∣∣∣π̂c(Xi, Ti)− πc(Xi, Ti)
∣∣∣

≤ 2c1

n

n∑
i=1

∆i

∣∣∣π̂c(Xi, Ti)− πc(Xi, Ti)
∣∣∣→ 0.

Thus, we can replace for further asymptotic investigations π̂c by πc. Finally, by the
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strong law of large numbers

V0,0 → E
(
K((X1, T1), (X2, T2))∆1∆2π

c(X1, T1)πc(X2, T2)
)

=

∫∫
x1<t2

∫∫
x2<t2

K((x1, t1), (x2, t2))dν0(x1, t1)dν0(x2, t2).

Proof of Lemma 5.5
The first implication was already shown in the proof of Proposition 5.3. Now, as-
sume that ρc = 0. Then

πc(x, y)
∂2πc1(x, y)

∂x∂y
=
∂πc(x, y)

∂x

∂πc1(x, y)

∂y
. (5.20)

Define M(x, y) =
∂πc1(x,y)

∂y
=
∫ x

0
SC|X=x′(y)fXY (x′, y)dx′, then Eq. (5.20) can be

rewritten as

πc(x, y)
∂M(x, y)

∂x
=
∂πc(x, y)

∂x
M(x, y). (5.21)

Set Q(x, y) = 1{M(x,y)6=0}π
c(x, y)/M(x, y). From (5.20) we can conclude that

M(x, y) = 0 implies πc(x, y) = 0 or

0 =
∂2πc1(x, y)

∂x∂y
= −SC|X=x(y)fXY (x, y).

But, the right-hand side of the equation is positive for all observable (x, y), i.e.
such that SC|X=x(y), f(x, y), f(x) > 0. Note that only these pairs are relevant
and, thus, we restrict to them subsequently. Thus, πc(x, y) = Q(x, y)M(x, y) and
differentiation with respect to x leads to

∂πc(x, y)

∂x
=
∂Q(x, y)

∂x
M(x, y) +Q(x, y)

∂M(x, y)

∂x

=
∂Q(x, y)

∂x
M(x, y) +

πc(x, y)

M(x, y)

∂M(x, y)

∂x

=
∂Q(x, y)

∂x
M(x, y) +

∂πc(x, y)

∂x
.

Thus, ∂Q(x, y)/∂x = 0 for all (observable) x ≤ y. In particular, Q does not depend
on x, and we can write Q(y) instead of Q(x, y). Consequently, we can deduce from
the definitions of Q, M and πc that

−Q(y)

∫ x

0

SC|X=x′(y)fXY (x′, y)dx′ =

∫ x

0

SY |X=x′(y)SC|X=x′(y)fX(x′)dx′.
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In particular, we can deduce that for all observable x ≤ y

−Q(y)SC|X=x(y)fXY (x, y) = SY |X=x(y)SC|X=x(y)fX(x).

From this we obtain

fXY (t, y) = −Q(y)−1SY |X=t(y)fX(t)

⇔ fX(t)fY |X=t(y) = −Q(y)−1SY |X=t(y)fX(t)

⇔ λY |X=x(y) = −Q(y)−1,

where λY |X=x denotes the hazard rate function, which does not depend on x. Note
that SY |X=x(x) = 1 and

SY |X=x(y) =
SY |X=x(y)

SY |X=x(x)
= exp

(∫ y

x

Q(s)−1ds
)
.

Moreover, for t < x < y

SY |X=x(y)

SY |X=t(y)
= exp

(∫ y

x

Q(s)−1ds−
∫ y

t

Q(s)−1ds
)

=
g(t)

g(x)
,

where g(x) = exp(
∫ x
lX
Q(s)−1ds) and lX = inf{s ≥ 0 : fX(s) > 0} is the lower

bound of the support of X (given X ≤ Y ). Differentiation with respect to y leads
to

fY |X=x(y) = fY |X=t(y)
g(t)

g(x)

and, thus,

fXY (x, y) =
fXY (t, y)g(t)

fX(t)

fX(x)

g(x)
. (5.22)

Now, let (tn)n∈N be a strictly decreasing sequence with f(tn) > 0 and tn → lX as
n→∞. Set t0 =∞. Then we can deduce from Eq. (5.22) that

fXY (x, y) = f̃Y (y)f̃X(x),

where

f̃Y (y) =
∞∑
n=1

fXY (tn, y)g(tn)

fX(tn)
1{y∈(tn,tn−1)}, f̃X(x) =

fX(x)

g(x)
.
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5.B Review of Related Quasi-independence Tests

In this section, we review the quasi-independence tests implemented in Section 5.4
of the main text.

WLR refers to the weighted log-rank test discussed in [Emura and Wang,
2010], which is defined as

LW =

∫
x≤y

W (x, y)

{
N11(dx, dy)− N1•(dx, y)N•1(x, dy)

R(x, y)

}
,

where
N11(dx, dy) =

∑
j

1(Xj = x, Tj = y,∆j = 1),

N•1(x, dy) =
∑
j

1(Xj ≤ x, Tj = y,∆j = 1),

N1•(dx, y) =
∑
j

1(Xj = x, Tj ≥ y),

R(x, y) =
∑
j

1(Xj ≤ x, Tj ≥ y),

and W : R2
+ → R is the weight function given by W (x, y) = R(x, y). We note

that, R(x, y) = nπ̂c(x, y) defined in our notation. It is straightforward to see Ψ2
c,n =

1
n2L

2
W in the case K = 1.

WLR SC refers to the previous log-rank test with weight W given by
W (x, y) =

∫ x
0
ŜCR((y − u)−)−1π̂c(du, y), where ŜCR is the Kaplan-Meier esti-

mator based on the data ((Ci − Xi, 1 − ∆i))
n
i=1. this specific test was proposed to

the general assumption Yi ⊥ Ci|Xi.

M&B refers to the conditional Kendall’s tau statistic in discussed in [Martin
and Betensky, 2005]. Let

Bij = {max(Xi, Xj) ≤ min(Ti, Tj)}

∩ {(∆i = ∆j = 1) ∪ (Tj > Ti,∆i = 1,∆j = 0) ∪ (Ti > Tj,∆i = 1,∆j = 0)}.

The conditional Kendall’s tau statistic is given by

τ̂b =
∑
i<j

1{Bij}sign((Xi −Xj)(Ti − Tj)).

MinP1 and MinP2 refers to the minimal p-value selection tests which are permu-
tation based methods proposed in [Chiou et al., 2018]. These tests are based on the
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underlying principle that, under quasi-independence, the distributions of Y |X ≤ t

and Y |X > t should not differ, where t denotes some cut-point. Given a collection
of possible cut-points t, the authors perform several two-sample log-rank tests for
comparing {(Ti,∆i) : Xi ≤ t} and {(Ti,∆i) : Xi > t} (under right-censored data),
and set as their test-statistic the minimum log-rank p-value obtained. To guarantee
meaningful comparisons, the authors consider cut-points that yield at least E events
in each group.

The first test proposed is the following:

MinP1:

1 Set m = 0

2 Set m = m + 1 and split the data into two groups {i : Xi ≤ Xm} and
{i : Xi > Xm}.

3 Check the groups are admissible by verifying E ≤
∑n

i=1 ∆i1{Xi<Xm} ≤
n− E. If the latter holds, perform a two-sample log-rank test for comparing
{(Ti,∆i) : Xi ≤ Xm} and {(Ti,∆i) : Xi > Xm}, and record the p-value
obtained. If the condition is not satisfied, record a p-value equal to 1.

4 If m < n return to Step 2

5 Set as test-statistic minp1 the smallest p-value obtained.

Alternatively, the authors propose a second test, which splits the data according
to whether or not, the entry times belong to the interval (t− ε, t+ ε), where t, again,
denotes a cut-point and ε > 0. Similarly to the previous case, we need to ensure that
each group contains at least R data points, this can be done by choosing a suitable
ε > 0.

MinP2:

1 Set m = 0

2 Set m = m+ 1 and split the data into two groups {i : Xi ∈ (Xm− εm, Xm +

εm)} and {i : Xi 6∈ (Xm − εm, Xm + εm)}, where εm is the smallest ε > 0

such that there are at least E data-points in each group. Record the value εm.

3 If m < n return to Step 2.

4 Set ε = maxm εm and m = 0
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5 Set m = m + 1. Verify E ≤
∑n

i=1 ∆i1{Tm−ε<Ti<Tm+ε} ≤ n − E which
checks that the partition of the data is admissible (under right-censoring). If
the latter holds, perform a two-sample log-rank test for comparing each group
and record the p-value. If the partition is not admissible record a p-value equal
to 1.

6 If m < n return to Step 5.

7 Set as test-statistic minp2 the smallest p-value obtained.

The rejection regions for these tests are computed by using a permutation ap-
proach.

5.C Efficient Implementation of Wild Bootstrap

Similarly to the work of [Chwialkowski et al., 2014], we can implement our wild
bootstrap efficiently by considering the identity tr(AB) =

∑
ij(A �B)ij , where

A andB denote n×n matrices, and� denotes the element-wise product. By using
this identity our test-statistic can be written as

Ψ2
c,n =

1

n2
tr(Kπ̂cL̃π̂c − 2Kπ̂cL̃B> +KBL̃B>)

=
∑
ij

(
K � (π̂cL̃π̂c − 2π̂cL̃B> +BL̃B>)

)
ij

=
∑
ij

M ij,

whereM = K� (π̂cL̃π̂c−2π̂cL̃B>+BL̃B>) is a V -statistic matrix. Then, the
wild bootstrap version of the preceding V -statistic is (ΨWB

c,n )2 = W>MW where
W = (W1, . . . ,Wn) ∈ Rn are the wild bootstrap weights. In this way, we only need
to compute O(n2) sum once, for each wild bootstrap, instead of computing several
(actually 6 times) O(n3) matrix multiplications and two O(n2) matrix multiplica-
tions for KW . In the experiments shown in this chapter, independent Rademacher
variables are used for wild bootstrap weights.

5.D Additional Discussions on Empirical Results

This section provides additional information and discussions on empirical findings.

Kernel choice
In kernel-based hypothesis testing, test power (i.e., the probability of rejecting H0

when it is false) can vary for different choices of kernel parameters, such as the
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bandwidth in Gaussian kernels [Gretton et al., 2012b]. Previous works [Gretton
et al., 2012b; Jitkrittum et al., 2018, 2016a, 2017; Sutherland et al., 2016] have pro-
posed to choose the kernel parameters by maximizing a proxy for the test power.
Such objective has also been discussed in Chapter 3 for kernel choice on Manifold
testing. In the uncensored setting, the test power is (to a good approximation) in-
creased by maximising the ratio of the test statistic to its standard deviation under
the alternative. We conjecture that the same ratio represents a good criterion in the
setting of left-truncation and right-censoring, for which we have strong empirical
evidence. A formal proof remains a topic for future work.

In the censored case, the test power criterion takes the form Ψ2
c

σH1
, where σH1 is

the standard deviation of Ψ2
c under the alternative hypothesisH1. Thus, to maximise

the test power, we choose the kernel parameter θ by

θ∗ = arg max
θ

Ψ2
c

σH1

.

In practice, we use part of the data to compute Ψ2
c,n/(σ̂H1 + λ), where σ̂H1 is an

empirical estimate of σH1 and a regularisation parameter λ > 0 is added for nu-
merical stability. We then perform the test on the remaining data with the selected
θ∗. A 20/80 train-test split is suggested in Jitkrittum et al. [2017] for learning the
parameter, which is used in the experiment2. We use the regulariser λ = 0.01.

We next give our empirical estimate for the variance σ̂2
H1

. First, Ψ2
c,n can be

written as Ψ2
c,n = 1

n2

∑n
i=1

∑n
j=1 Jn((Ti,∆i, Xi), (Tj,∆j, Xj)), where Jn is defined

by

Jn((Ti,∆i, Xi), (Tj,∆j, Xj)) = ∆i∆jL(Ti, Tj)gn(Xi, Xj),

where

gn(Xi, Xj) =K(Xi, Xj)π̂
c
iiπ̂

c
jj − 2

n∑
l=1

K(Xi, Xl)π̂
c
iiBl,j

+
n∑
l=1

n∑
k=1

K(Xk, Xl)Bk,iBl,j,

and π̂c
ii = π̂c(Xi, Ti) and Bk,i = 1{Xi≤Xk<Ti≤Tk}/n. This “V -statistic” form sug-

gests that the variance can be estimated by

2We note that, no additional sample points are introduced for training the kernel parameter θ.
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n 50 100 150 200 250 300 350 400 450 500

KQIC IMQ 0.08 0.05 0.03 0.05 0.04 0.05 0.05 0.07 0.07 0.05

Table 5.4: Type-I error for IMQ kernels, with α = 0.05, censoring level 25%, 100 trials,
and increasing sample size n.

σ̂2
H1

=
1

n

n∑
i=1

(
1

n

n∑
j=1

Jn(i, j)

)2

−

(
1

n2

n∑
i=1

n∑
j=1

Jn(i, j)

)2

,

where Jn(i, j) = Jn((Ti,∆i, Xi), (Tj,∆j, Xj)).

Finally, some remarks on the performance of our kernel selection heuristic in
experiments. For simple cases, our kernel selection procedure makes little differ-
ence, since a broad range of kernel bandwidths yields good results, and the “me-
dian heuristic” (selection of the bandwidth as the pairwise inter-sample distance) is
adequate. On the other hand, our procedure results in large power improvements
for more complex cases such as periodic dependency at high frequencies, where
the median distance between samples does not correspond to the length-scale at
which dependence occurs. Similar phenomena have also been observed previously
in [Sutherland et al., 2016].

Inverse Multi-Quadratic (IMQ) kernel We further study the performance of the
IMQ kernel on our proposed test. The IMQ kernel has the form k(x, y) =

(c2 + ‖x − y‖2)b, for constant c > 0 and b ∈ (−1, 0). As proposed in [Gorham
and Mackey, 2017], we choose b = −1

2
. We select the parameter c by maximizing

a heuristic proxy for test power, as discussed above. The controlled Type-I error is
shown in Table 5.4, where X and Y are independent samples from Exp(1). Trun-
cation and right-censoring apply with censoring time independently generated from
exponential distribution. We report the test power of KQIC with IMQ kernel in later
sections.

5.D.1 Periodic Dependencies
As briefly mentioned in the main text, the parameter β controls the frequency of
sinusoidal dependence. At a given sample size, dependence becomes harder to
detect as the frequency β increases, both for our test and for competing methods.
We illustrate the datasets visually in Figure 5.7. For a fixed sample size, the test
power decreases as frequency increases, which is observed in our results in Figure
5.4. For high frequency cases, larger sample size is required to correctly reject the
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null as shown in Figure 5.5.

(a) Sample size: n = 50

(b) Sample size: n = 100

(c) Sample size: n = 200

(d) Sample size: n = 300

(e) Sample size: n = 500

Figure 5.7: Samples from periodic dependency model w.r.t. frequency coefficient β.

Type-I error is reported in Table 5.5, and is close to the desired level (subject
to finite sample effects).

5.D.2 Dependent Censoring
In this section we show that our test achieves correct Type-I error under the null
hypothesis even when considering dependent censoring times C. As stated in As-
sumption 5.1, we only require Y ⊥ C|X , which is a standard assumption, as also
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n 100 300 500 700 900 1100 1300 1500 1700 1900

KQIC Gauss 0.045 0.060 0.055 0.040 0.045 0.045 0.040 0.030 0.045 0.050
KQIC IMQ 0.050 0.055 0.045 0.030 0.020 0.040 0.025 0.020 0.015 0.020
WLR 0.030 0.045 0.050 0.025 0.045 0.015 0.015 0.030 0.025 0.040
WLR SC 0.035 0.060 0.030 0.025 0.060 0.070 0.045 0.055 0.050 0.060

Table 5.5: Type-I error with increasing sample size; α = 0.05, censoring level 25%, 200
trials.

Figure 5.8: Samples generated from H0 with periodic dependent censoring distributions.

considered in [Emura and Wang, 2010].

We generate the data as follows: Sample Xi ∼ Exp(1), then generate Yi ∼
Exp(1) (independent of Xi) and Ci|Xi ∼ Exp(ecos(2πγXi). Generate the observed
data point (Ti,∆i, Xi), where Ti = min{Yi, Ci} and ∆i = 1{Ti=Yi} and keep it as
a valid sample only if Ti ≥ Xi. Notice that in this case both left truncation and
right-censoring are present in the data. Also, notice that the null hypothesis holds
since the survival times Yi are quasi-independent of the entry times Xi. In Figure
5.8, we show the unobserved pairs (X, Y ) and the observed pairs (X,T ) where the
censoring variable is generated using different censoring frequencies γ. From the
plot, we see that the entry times X and survival times Y look quasi-independent,
but, due to the periodic dependency of the censoring distribution, the observed data
(X,T ) show a periodic trend, which looks similar to the observations in Figure
5.7. However, since this dependency is due to the censoring times C instead of the
survival times Y , our tests are able to recover H0 and achieve correct test level, as
shown in Table 5.6. The tests proposed in [Emura and Wang, 2010] are also valid
under Assumption 5.1, thus we include the results for WLR and WLR SC as well.
From Table 5.6, we observe that KQIC with both Gaussian and IMQ kernels, as well
as WLR achieve the correct test level; however, WLR SC has slightly higher type-I
errors when sample size is small and achieves correct test-level when sample size
becomes large (recall that WLR SC uses a data dependent weight, thus convergence
in this case might be slower).
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Table 5.6: Type-I error for periodic dependent censoring distributions, with α = 0.05 and
100 trials.

n 100 200 300 400 500 600 700 800 900 1000

KQIC Gauss 0.07 0.06 0.03 0.03 0.06 0.05 0.04 0.04 0.03 0.07
KQIC IMQ 0.07 0.06 0.04 0.01 0.03 0.04 0.05 0.05 0.06 0.07
WLR 0.07 0.05 0.03 0.01 0.03 0.04 0.05 0.04 0.03 0.07
WLR SC 0.10 0.08 0.09 0.13 0.13 0.04 0.09 0.05 0.04 0.06

Table 5.7: Censoring frequency γ = 0.5. Censoring level 30%

n 100 200 300 400 500 600 700 800 900 1000

KQIC Gauss 0.03 0.02 0.01 0.04 0.05 0.06 0.05 0.04 0.06 0.04
KQIC IMQ 0.02 0.03 0.03 0.03 0.04 0.05 0.05 0.04 0.04 0.04
WLR 0.02 0.02 0.03 0.05 0.04 0.04 0.04 0.04 0.05 0.05
WLR SC 0.06 0.12 0.17 0.15 0.10 0.11 0.06 0.04 0.05 0.05

Table 5.8: Censoring frequency γ = 1.2. Censoring level 35%

n 100 200 300 400 500 600 700 800 900 1000

KQIC Gauss 0.06 0.04 0.06 0.02 0.02 0.04 0.03 0.03 0.05 0.04
KQIC IMQ 0.05 0.04 0.05 0.01 0.02 0.04 0.04 0.03 0.03 0.04
WLR 0.04 0.02 0.04 0.02 0.02 0.04 0.04 0.03 0.05 0.03
WLR SC 0.09 0.10 0.13 0.15 0.10 0.08 0.05 0.03 0.03 0.04

Table 5.9: Censoring frequency γ = 3.0. Censoring level 40%

5.D.3 Censoring Level
We report the Type-I error for different censoring percentages, see Table 5.10. With
reasonable censoring level (e.g. < 90%), the Type-I errors are well controlled.
WLR SC has higher Type-I with small sample sizes, which is similarly observed in
Table 5.6. However, the Type-I error is less controlled at extremely high censoring
percentages, due to the lack for useful information obtained. In practise, we may
need to be careful dealing with extremely high censoring when applying the quasi-
independence tests.
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% censored 20 35 50 70 85 92 95

n = 200

KQIC Gauss 0.040 0.025 0.015 0.045 0.035 0.085 0.115
KQIC IMQ 0.040 0.060 0.050 0.055 0.070 0.100 0.185
WLR 0.055 0.035 0.040 0.050 0.030 0.075 0.120
WLR SC 0.045 0.105 0.075 0.120 0.060 0.035 0.075

n = 300

KQIC Gauss 0.055 0.040 0.055 0.045 0.060 0.090 0.065
KQIC IMQ 0.045 0.050 0.070 0.050 0.050 0.105 0.115
WLR 0.030 0.055 0.055 0.040 0.050 0.075 0.065
WLR SC 0.080 0.120 0.140 0.095 0.125 0.095 0.025

n = 500

KQIC Gauss 0.040 0.050 0.035 0.030 0.030 0.050 0.090
KQIC IMQ 0.065 0.030 0.050 0.040 0.080 0.100 0.050
WLR 0.035 0.035 0.050 0.035 0.040 0.060 0.075
WLR SC 0.060 0.035 0.055 0.075 0.065 0.035 0.015

n = 800

KQIC Gauss 0.045 0.030 0.030 0.065 0.030 0.065 0.080
KQIC IMQ 0.065 0.050 0.050 0.060 0.060 0.090 0.140
WLR 0.015 0.010 0.025 0.055 0.065 0.085 0.100
WLR SC 0.095 0.040 0.065 0.080 0.075 0.045 0.025

Table 5.10: Type-I error for different censoring level, with α = 0.05 and 200 trials,



Chapter 6

Deep Kernels for Hypothesis Testing

Summary We investigate the MMD-based two-sample testings with kernels pa-
rameterised by deep neural networks. While the deep neural networks are trained
to maximise test power, these tests are able to adapt to variations in distribution
smoothness as well as shape over space, and are especially suited to high dimen-
sions and complex data. By contrast, the simpler kernels used in prior kernel-based
hypothesis testings are spatially homogeneous and adaptive only in length-scale.
We provide theoretical analysis for the proposed kernel learning schemes and ex-
perimentally establish the superior performance of our deep kernels in hypothesis
testing on both benchmark and real-world data.

6.1 Introduction

As introduced in Chapter 2, the kernel-based non-parametric tests for two-sample
problems [Gretton et al., 2012a] has been shown to have good theoretical prop-
erties as well as state-of-the-art empirical performances. Problems that we en-
counter in practice, however, often involve distributions with complex structure,
where simple kernels will often map distinct distributions to nearby mean embed-
dings, making it hard to distinguish between distributions. Figure.6.1(a) shows an
example of a multi-modal dataset, where the overall modes align but the sub-mode
structure varies differently at each mode. A translation-invariant Gaussian kernel,
Eq.(2.4), only “looks at” the data uniformly within each mode as demonstrated in
Figure.6.1(b), requiring many samples to correctly distinguish the two distributions.
The distributions can be distinguished more effectively if we understand the struc-
ture of each mode, as with the more complex kernel illustrated in Figure.6.1(c).

To model these complex functions, we adopt a deep kernel approach [Wilson
et al., 2016; Sutherland et al., 2016; Jean et al., 2018; Li et al., 2017; Wenliang et al.,
2018], building a kernel with a deep network. In this chapter, we use the kernel of
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(a) Samples drawn from P (left) and Q (right).
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(c) Deep kernel contour

Figure 6.1: Illustration of the Blob example: (a) P and Q are mixtures of nine Gaussian
components with the same modes, but each component of P is an isotropic
Gaussian whereas the covariance of Q differs in each component. (b) and (c)
show the contours of a kernel, k(x, µi) for each of the nine modes µi; contour
values are 0.7, 0.8 and 0.9. A Gaussian kernel (b) treats points isotropically
throughout the space, based only on Euclidean distance ‖x−y‖. A deep kernel
(c) learned by our methods behaves differently in different parts of the space,
adapting to the local structure of the data distributions and hence allowing better
identification of differences between P and Q.

the form,

kω(x, y) = [(1− ε)κ(φω(x), φω(y)) + ε]q(x, y), (6.1)

where the deep neural network φω extracts features of samples, and κ is a simple
kernel (e.g., a Gaussian) on those features, while q is a simple characteristic kernel
(e.g. Gaussian) on the input space. With an appropriate choice of φω, this allows
for extremely flexible kernels which can learn complex behavior very different in
different parts of space. This choice is discussed further in Section 6.4.

These complex kernels, though, cannot feasibly be specified by hand or simple
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heuristics, as is typical practice in kernel methods. We select the parameters ω by
maximising the ratio of the MMD to its variance, which maximises test power at
large sample sizes. This procedure was proposed by Sutherland et al. [2016] as
introduced in Chapter 3, but we establish for the first time that it gives consistent
selection of the best kernel in the class, instead of simply choosing length-scales
of a Gaussian kernel [Sutherland et al., 2016] or taking a weighted sum Gaussian
kernels of different length-scales [Gretton et al., 2012b]. Previously, there were no
guarantees this procedure would yield a kernel which generalised at all from the
training set to a test set.

Another way to compare distributions is to train a classifier between them, and
evaluate its accuracy [Lopez-Paz and Oquab, 2016]. We show, perhaps surpris-
ingly, that our framework encompasses this approach (details in Section 6.3); but
deep kernels allow for more general model classes which can use the data more
efficiently.

We also train representations directly to maximise test power, rather than a
cross-entropy surrogate. We test our method on several simulated and real-world
datasets, including complex synthetic distributions, high-energy physics data, and
challenging image problems. We find convincingly that the learned deep kernels
outperform simple shallow methods, and learning by maximising test power out-
performs learning through a cross-entropy surrogate loss [Lopez-Paz and Oquab,
2016].

6.2 Testing with MMD

Recall the MMD-based non-parametric tests for two-sample problem shown in Sec-
tion 2.1. Using the empirical U-statistics estimator MMD2

u in Eq.(2.12) as the test
statistics, it can be shown that under the null hypothesis H0, n · MMD2

u, asymp-
totically converges to a weighted chi-square distribution depending on distribution
P and kernel k; and

√
n ·MMD2

u is asymptotically normally distributed under the
alternative hypothesis H1 : P 6= Q [Gretton et al., 2007, Theorem 8].

Proposition 6.1 (Asymptotics of MMD2
u). Under the null hypothesis, H0 : P = Q,

we have if Zi ∼ N (0, 2),

n ·MMD2
u

d→
∑
i

wi(Z
2
i − 2);

where d→ denotes convergence in distribution and wi are the eigenvalues of the P -
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covariance operator of the centered kernel,

k̃(x, y) := 〈k(·, x)− µP , k(·, y)− µP 〉∫
k̃(x, y)ψi(x)dP (x) = wiψi(y).

Under the alternative hypothesis, H1 : P 6= Q, a standard central limit theorem
holds [Serfling, 2009, Section 5.5.1]:

√
n · (MMD2

u −MMD2)
d→ N (0, σ2

H1
)

σ2
H1

:= 4
(
E[G̃12G̃13]− E[G̃12]2

)
where G̃ij := k(xi, xj) + k(yi, yj)− k(xi, yj)− k(yi, xj)

1, xi, xj ∼ P , yi, yj ∼ Q.

Although it is possible to construct a test based on directly estimating the null
distribution [Gretton et al., 2009a], it is both simpler and, if implemented carefully,
faster [Sutherland et al., 2016] to instead use a permutation test. Noting that the
samples from P and Q are interchangeable under the null H0 : P = Q [Dwass,
1957; Fernández et al., 2008], we can therefore estimate the null distribution of our
test statistic by repeatedly re-computing it with the samples randomly re-assigned
to SP or SQ. With the simulated null distribution via the permutation procedure
[Gretton et al., 2008], we are able to compute the p-value of our test statistics and
comparing with the predefined significance level concludes the test outcome.

Test Power
The main measure of efficacy of a null hypothesis test is its power: the probability
that, for a particular P 6= Q and n, we correctly reject H0. Proposition 6.1 im-
plies, where Φ is the standard normal CDF, that the probability of the tests statistic
exceeding the threshold r is

PH1

(
n ·MMD2

u > r
) d→ Φ

(√
nMMD2

σH1

− r√
nσH1

)
;

we can find the approximate test power by using the rejection threshold, found
via (e.g.) permutation testing. We also know via Proposition 6.1 that this r will
converge to a constant, and MMD, σH1 are also constants. For reasonably large n,
the power is dominated by the first term, and the kernel yielding the most powerful

1With observed samples, the empirical estimate MMD2
u(SP , SQ; k) = 1

n(n−1)

∑
i 6=j G̃ij
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test will approximately maximise [Sutherland et al., 2016]

J(P,Q; k) :=
MMD2(P,Q; k)

σH1(P,Q; k)
. (6.2)

Selecting Kernel from Approximate Test Power
The criterion J(P,Q; k) depends on the particular P and Q at hand, and thus we
typically will neither be able to choose a kernel a priori, nor exactly evaluate J
given samples. We can, however, estimate it with

Ĵλ(SP , SQ; k) :=
MMD2

u(SP , SQ; k)

σ̂H1,λ(SP , SQ; k)
, (6.3)

where σ̂2
H1,λ

is a regularised estimator of σ2
H1

given by2

σ̂2
H1,λ

=
4

n3

n∑
i=1

(
n∑
j=1

G̃ij

)2

− 4

n4

(
n∑
i=1

n∑
j=1

G̃ij

)2

+ λ. (6.4)

The λ-regularisation [Jitkrittum et al., 2017] is to avoid the vanishing denominator.
In the analysis, λ = n−

1
3 is chosen to balance the convergence rate in Theorem 6.3.

It is enough to set to be a small number in practise, e.g. λ = 10−8 for the presented
experiments to achieve good test power.

Given SP and SQ, we could construct a test by choosing k to maximise
Ĵλ(SP , SQ; k), then using a test statistic based on MMD(SP , SQ; k). This sam-
ple re-use, however, violates the conditions of Proposition 6.1, and permutation
testing would require repeatedly re-training k with permuted labels. Thus we
split the data, into training set StrP , S

tr
Q and testing set SteP , SteQ ; and get ktr ≈

arg maxk Ĵλ(S
tr
P , S

tr
Q ; k); then we compute the test statistic and permutation thresh-

old on SteP , SteQ using the learned ktr. This procedure was proposed for MMD2
u by

Sutherland et al. [2016], but the same technique works for a variety of tests [Gretton
et al., 2012a; Jitkrittum et al., 2016a; Lopez-Paz and Oquab, 2016]. Our learning
scheme adopts this framework and further studies it in Section 6.4.

Relationship to Other Approaches
One common scheme is to pick a deep network parametrised kernel kω based on
some proxy task, such as a related classification problem [Kirchler et al., 2020;

2This estimator, as a V -statistic, is biased even when λ = 0, although this bias is only O(1/N)
(see Theorem 6.3). Although Sutherland et al. [2016]; Sutherland [2019] gave a quadratic-time
estimator unbiased for σ2

H1
, it is much more complicated to implement and analyse, likely has higher

variance, and (being unbiased) can be negative, especially when the kernel is poor.
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Lopez-Paz and Oquab, 2016] or the KID score [Bińkowski et al., 2018]. Although
this approach can work quite well, it depends entirely on the features from the proxy
task applying well to distinguish the differences between P and Q, which can be
hard to know in general.

An alternative is to maximise simply MMDu [Fukumizu et al., 2009] (proposed
but not evaluated by Kirchler et al. [2020]). Ignoring σH1 means that, for instance,
this approach would choose to simply scale k → ∞, even though this does not
change the test at all. Even when this is not possible, Sutherland et al. [2016] found
this approach notably worse than maximising the objective in Eq. (6.3); we will
further confirm this in our experiments.

In generative modelling tasks, MMD-GANs [Li et al., 2017; Bińkowski et al.,
2018] also simply maximise MMDu to identify the differences between their
learned model Qθ and target P . If Qθ is quite far from P , however, an MMD-
GAN requires a “weak” kernel to identify a path for improving Qθ [Arbel et al.,
2018], while the ideal kernel is one which perfectly distinguishes P and Qθ and
would likely give no signal for improvement. Our proposed algorithm, theoreti-
cal guarantees, and empirical evaluations thus all differ significantly from those for
MMD-GANs.

6.2.1 Limits of Simple Kernels
We can use the criterion Ĵλ of Eq. (6.3) even to select parameters among a simple
family, such as the length-scale of a Gaussian kernel. Doing so on the Blob problem
of Figure 6.1 illustrates the limitations of using MMD with these kernels. In Figure
6.2 (b), we show how the maximal value of Ĵ changes as we see more samples from
P and Q, for both a family of Gaussian kernels (green dashed line) and a family
of deep kernels in Eq. (6.1) (red line). The optimal Ĵ is always higher for the deep
kernels; as expected, the empirical test power, shown in Figure 6.2(a), is also higher
for deep kernels.

Most simple kernels used for MMD tests, whether the Gaussian we used here
or Laplace, Inverse MultiQuadric (IMQ), even Automatic Relevance Determina-
tion (ARD) kernels, are all translation invariant: k(x, y) = k(x − t, y − t) for any
t ∈ Rd. All kernels used by Sutherland et al. [2016], for instance, were also of this
type. Hence the kernel behaves the same way across space, as in Figure 6.1(b). This
means that for distributions whose behavior varies through space, whether because
of changes in principal directions (as in Figure 6.1) where the shape becomes dif-
ferent, or because of some regions being much denser than others where a smaller
length-scale required [e.g. Wenliang et al., 2018, Figures 1 and 2], any single global
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Figure 6.2: Results on Blob-S and Blob-D given α = 0.05; see Section 6.6 for details. nb is
the number of samples at each mode, so nb = 100 means drawing 900 samples
from each of P and Q. We report, when increasing nb, (a) average test power,
(b) the value of Ĵλ, and (c) average Type-I error. (a) and (b) are on Blob-D,
and (c) is on Blob-S. Shaded regions show standard errors for the mean, and
the black dashed line in (c) shows α.

choice is suboptimal. Kernels which are not translation invariant, such as the deep
kernels Eq. (6.1), as shown in Figure.6.1(c), are able to adapt to the different shapes
necessary in different areas.

6.3 Relationship to Classifier-Based Tests

Another popular method for conducting two-sample tests is to train a classifier be-
tween two training sets StrP and StrQ , then assess its performance on test sets SteP
and SteQ . If P = Q, such classification should be impossible and the classification
performance will be at chance. The most common performance metric is the clas-
sification accuracy [Lopez-Paz and Oquab, 2016]. This scheme is fairly common
among practitioners, and Kim et al. [2016] showed it to be optimal in rate, but sub-
optimal in constant, in a limited setting3. We will call this approach a Classifier
Two-Sample Test based on Sign (C2ST-S).

Let f : X → R output the classification scores, and the classification accuracy

acc(P,Q; f) :=
1

2
P(f(X) > 0) +

1

2
P(f(Y ) ≤ 0);

3linear discriminant analysis between high-dimensional elliptical distributions, e.g. Gaussian
distributions, with identical covariances
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the empirical accuracy from samples SP and SQ is used as the C2ST-S test statistic,

âcc(SP , SQ; f) =
1

2n

∑
Xi∈SP

1(f(Xi) > 0) +
1

2n

∑
Yi∈SQ

1(f(Yi) ≤ 0).

âcc is unbiased for acc and has a simple asymptotically normal distribution under
the null. Although it is perhaps not immediately obvious this is the case, C2ST-S is
almost a special case of the MMD. Choose kernel of the form

k
(S)
f (x, y) =

1

4
1(f(x) > 0)1(f(y) > 0). (6.5)

Theorem 6.1. A C2ST-S test with f is equivalent to an MMD test with k(S)
f :

MMD(P,Q; k
(S)
f ) = |acc(P,Q; f)− 1

2
|

MMDb(SP , SQ; k
(S)
f ) = |âcc(SP , SQ; f)− 1

2
|.

where MMDb(SP , SQ; k
(S)
f )2 = 1

n2

∑
ij G̃ij is the biased estimator of MMD2.

Proof. The mean embedding µP under k(S)
f is simply

1

2
E1(f(X) > 0) =

1

2
P(f(X) > 0),

so the MMD is

1

2

∣∣∣P(f(X) > 0)− P(f(Y ) > 0)
∣∣∣ =

∣∣∣ acc(P,Q; f)− 1

2

∣∣∣.
The empirical version follows by taking the average over samples instead of the
expectation.

In the learning phase, the C2ST-S, however, selects f to by maximising cross-
entropy (approximately maximising âcc), while we maximise Ĵλ in Eq. (6.3). De-
spite k(S)

f is not differentiable, maximising Eq. (6.2) would exactly maximise acc

and hence maximise test power [Lopez-Paz and Oquab, 2016, Theorem 1].

Accessing f only through its sign allows for a simple null distribution, but it
ignores f ’s measure of confidence: a highly confident output extremely far from
the decision boundary is treated the same as a very uncertain one lying in an area of
high overlap between P and Q, dramatically increasing the variance of the statistic.
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A scheme we call C2ST-L instead tests difference in means of f on P andQ [Cheng
and Cloninger, 2019]. Choose kernel of the form

k
(L)
f (x, y) = f(x)f(y). (6.6)

Theorem 6.2. A C2ST-L is equivalent to an MMD test with k(L)
f :

MMD(P,Q; k
(L)
f ) = |Ef(X)− Ef(Y )|

MMDb(SP , SQ; k
(L)
f ) = | 1

n

∑
Xi∈SP

f(Xi)−
1

n

∑
Yi∈SQ

f(Yi)|.

Proof. The result follows as the kernel’s feature map is k(L)
f (x, ·) = f(x).

Now maximising accuracy (or a cross-entropy proxy) no longer directly max-
imises power. This kernel is differentiable, so we can directly compare the merits of
maximising Eq. (6.3) to maximising cross-entropy. In Section 6.6.2 that our more
direct approach maximising approximate test power is empirically superior.

Compared to using k(L)
f , however, Section 6.6.2 shows that the learned MMD

tests also obtain better performance using kernels like Eq. (6.1). This is analogous
to a similar phenomenon observed in other problems by Bińkowski et al. [2018]
and Wenliang et al. [2018]: C2ST methods learn a full discriminator function on
the training set, and then apply only that function to the test set. Learning a deep
kernel like Eq. (6.1) corresponds to learning only a powerful representation on the
training set, and then still learning f itself from the test set – in a closed form that
makes permutation testing simple.

6.4 Learning Deep Kernels

Choice of kernel architecture Most previous work on deep kernels has used
a kernel κ directly on the output of a featurisation network φω, kω(x, y) =

κ(φω(x), φω(y)). This is certainly also an option for us. Any such kω, however,
is characteristic if and only if φω is injective. If we select our kernel well, this is not
really a concern.4 Even so, it would be reassuring to know that, even if the optimi-
sation goes awry, the resulting test will still be at least consistent. More importantly,

4A characteristic kernel on top of even φω(x) = ωTx with a random ω will be almost surely
consistent [Heller and Heller, 2016], and in general the existence of even one good φω for a particular
P , Q pair is enough that a perfect optimiser would be able to distinguish the distributions [Arbel
et al., 2018, Proposition 1].
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Algorithm 3 Testing with a learned deep kernel
Input: SP , SQ, various hyperparameters used below;
ω ← ω0; λ← 10−8;
Split the data as SP = StrP ∪ SteP and SQ = StrQ ∪ SteQ ;

# Phase 1: train the kernel parameters ω on StrP and StrQ
for T = 1, 2, . . . , Tmax do
X ← minibatch from StrP ; Y ← minibatch from SteQ ;
kω ← kernel function with parameters ω; # as in Eq. (6.1)
M(ω)← MMD2

u(X,Y ; kω); # using Eq. (2.12)
Vλ(ω)← σ̂2

H1,λ
(X,Y ; kω); # using Eq. (6.4)

Ĵλ(ω)←M(ω)/
√
Vλ(ω); # as in Eq. (6.3)

ω ← ω + η∇AdamĴλ(ω); # updates to improve Ĵλ(ω) with Adam optimizer
end for
# Phase 2: permutation test with kω on SteP and SteQ
est ← MMD2

u(SteP , S
te
Q ; kω)

for i = 1, 2, . . . , nperm do
Shuffle SteP ∪ SteQ into X and Y
permi ← MMD2

u(X,Y ; kω)
end for
Output: kω , est , p-value := 1

nperm

∑nperm

i=1 1{permi≥est}

it can be helpful in optimisation to add a “safeguard” preventing the learned kernel
from considering extremely far-away inputs as too similar. We can achieve these
goals with the form in Eq. (6.1), repeated here:

kω(x, y) = [(1− ε)κ(φω(x), φω(y)) + ε] q(x, y).

Here φω is a deep network with parameters ω that extracts features, and κ is a base
kernel on those features which we use a Gaussian kernel with length-scale σφ, i.e.
κ(a, b) = exp

(
− 1

2σ2
φ
‖a− b‖2

)
. We choose 0 < ε < 1 and q as a Gaussian kernel

on input data with length-scale σq.

Proposition 6.2. Let kω be of the form Eq. (6.1) with ε > 0 and q being character-
istic. Then kω is characteristic.

Learning procedure The kernel optimisation and testing procedure is summarised
in Algorithm 3. For larger datasets, or when n 6= m, we use minibatches in the train-
ing procedure; for smaller datasets, we use full batches. We use the Adam optimiser
[Kingma and Ba, 2014] to update all the parameters. Note that the parameters ε, σφ,
and σq are included in ω.

Time complexity Let C1 denote the cost of computing an embedding φω(x), and
C2 the cost of computing Eq. (6.1) given φω(x), φω(y). Then each iteration of
training in 3 costsO (mC1 +m2C2), where m is the minibatch size; for the moder-
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ate m that fit in a GPU-sized minibatch anyway, the mC1 term typically dominates,
matching the complexity of a C2ST. Testing takes timeO (nC1 + n2C2 + n2nperm),
compared to O (nC1 + nnperm) for permutation-based C2STs. In either case, the
quadratic factors could be reduced with the block estimator approach [Zaremba
et al., 2013] if necessary , at the cost of test power. In our experiments in Section
6.6, the overall runtime of our methods was scarcely different from that of C2STs.

6.5 Theoretical Analysis

We now show that optimising the regularised test power criterion based on a finite
number of samples works: as n increases, our estimates converge uniformly over a
ball in parameter space, and therefore if there is a unique best kernel, convergence
is guaranteed. While Sutherland et al. [2016] gave no such guarantees, this result
allows us to trust that, at least for reasonably large n, if our optimisation process
succeeds, we will find a kernel that generalises nearly optimally rather than just
overfitting to Str. We first state a generic result, then show some choices of kernels,
particularly deep kernels Eq. (6.1), satisfy the conditions.

Theorem 6.3. Let ω parametrise uniformly bounded kernel functions kω in a Ba-
nach space of dimension D, with |kω(x, y)− kω′(x, y)| ≤ Lk‖ω − ω′‖. Let Ω̄s be a
set of ω for which σ2

H1
(P,Q; kω) ≥ s2 > 0 and ‖ω‖ ≤ RΩ. Take λ = n−1/3. Then,

with probability at least 1− δ,

sup
ω∈Ω̄s

|Ĵλ(SP , SQ; kω)− J(P,Q; kω)| ≤

(
C

s2n1/3

[
1

s
+

√
D log(RΩn) + log

1

δ
+ Lk

])
,

where C is a constant. If there is a unique best kernel ω∗, the maximiser of Ĵλ
converges in probability to ω∗ as n→∞.

A version with explicit constants and more details is given in Section 6.A (as
Theorem 6.4 and Corollary 6.1); the proof is based on uniform convergence of
the MMD and variance estimators using an ε-net argument. The following results
are shown in Section 6.A.4. We first show a result on simple Gaussian bandwidth
selection.

Proposition 6.3. Suppose each x ∈ X has ‖x‖ ≤ RX , and we choose the band-
width of a Gaussian kernel among a set whose minimum is at least 1/RΩ. Then the
conditions of Theorem 6.3 are met with D = 1 and Lk = 2RX/

√
e.
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We then establish our results for fully-connected deep kernels; it also applies
to convolutional networks with a slightly different RΩ (Remark 6.2). The constants
in Lk are given in Proposition 6.8.

Proposition 6.4. Take kω as in 6.4, with φω a fully-connected network with depth
Λ and D total parameters, whose activations are 1-Lipschitz with σ(0) = 0 (e.g.
ReLU). Suppose the operator norm of each weight matrix and L2 norm of each bias
vector is at mostRΩ, and each x ∈ X has ‖x‖ ≤ RX . Then kω meets the conditions
of 6.3 with dimension D and LK = O

(
ΛRΛ−1

Ω
RX+1
σφ

)
.

The dependence on s in Theorem 6.3 is somewhat unfortunate, but the ratio
structure of J means that otherwise, errors in very small variances can hurt us arbi-
trarily. Even so, “near-perfect” kernels (with reasonably large MMD and very small
variance) will likely still be chosen as the maximiser of the regularised criterion,
even if we do not estimate the (extremely large) ratio accurately. Likewise, near-
constant kernels (with very small variance but still small J) will generally have
their J under-estimated, and so are unlikely to be selected when a better kernel
is available. The εq component in Eq. (6.1) may also help avoid extremely small
variances.

GivenN data points, this result also gives insight into how many we should use
to train the kernel and how many to test. With perfect optimisation, Corollary 6.3
shows a bound on the asymptotic power of the test is maximised by training on
Θ
((
N
√

logN
) 3

4

)
points, and testing on the remainder.

6.6 Experimental Results

6.6.1 Comparison on Benchmark Datasets
We compare the following tests on several datasets:

• MMD-D: MMD with a deep kernel; our method described in Section 6.4.

• MMD-O: MMD with a Gaussian kernel whose length-scale is optimised as
in Section 6.4. This gives better results than standard heuristics.

• Mean embedding (ME): a state-of-the-art test [Chwialkowski et al., 2015;
Jitkrittum et al., 2016a] based on differences in Gaussian kernel mean em-
beddings at a set of optimised points.

• Smooth characteristic functions (SCF): a state-of-the-art test [Chwialkowski
et al., 2015; Jitkrittum et al., 2016a] based on differences in Gaussian mean
embeddings at a set of optimised frequencies.
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(a) Test power v.s. n; d = 10
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(b) Type-I error v.s. n; d = 10
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(c) Test power v.s. d; n = 4000
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(d) Type-I error v.s. d; n = 4000

Figure 6.3: Results on HDGM for α = 0.05. Left: average test power (a) and Type-I
error (b) when increasing the samples size n, keeping d = 10. Right: average
test power (c) and Type-I error (d) when increasing the dimension d, keeping
n = 4 000. Shaded regions show standard errors for the mean.

• Classifier two-sample tests: tests discussed in Section 6.3 including C2STS-S
[Lopez-Paz and Oquab, 2016] and C2ST-L [Cheng and Cloninger, 2019] as
described in Section 6.3. We set the test thresholds via permutation for both.

For synthetic datasets, we take a single sample set for StrP and StrQ and learn a ker-
nel/test locations/etc once for each method on that training set. We then evaluate its
rejection rate on 100 new sample sets SteP , SteQ from the same distribution. For real
datasets, we select a subset of the available data for StrP and StrQ and train on that; we
then evaluate on 100 random subsets, disjoint from the training set, of the remaining
data. We repeat this full process 10 times, and report the mean rejection rate and its
standard deviation of each test. Table 6.4 shows significance tests. Further details
are in Section 6.B.

Blob dataset Blob-D is the dataset shown in Figure 6.1; Blob-S has Q also equal
to the distribution shown in Figure 6.1(a), so that the null hypothesis holds. De-
tails are given in Table 6.5 (Section 6.B.1). The average test power are shown in
Figure 6.2(a) to demonstrate the limits of simple kernels. MMD-D and C2ST-L
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Table 6.1: Higgs (α = 0.05): average test power±standard error for N samples. Bold
represents the highest mean per row.

n ME SCF C2ST-S C2ST-L MMD-O MMD-D

1 000 0.120±0.007 0.095±0.022 0.082±0.015 0.097±0.014 0.132±0.005 0.113±0.013
2 000 0.165±0.019 0.130±0.026 0.183±0.032 0.232±0.017 0.291±0.012 0.304±0.035
3 000 0.197±0.012 0.142±0.025 0.257±0.049 0.399±0.058 0.376±0.022 0.403±0.050
5 000 0.410±0.041 0.261±0.044 0.592±0.037 0.447±0.045 0.659±0.018 0.699±0.047
8 000 0.691±0.067 0.467±0.038 0.892±0.029 0.878±0.020 0.923±0.013 0.952±0.024

10 000 0.786±0.041 0.603±0.066 0.974±0.007 0.985±0.005 1.000±0.000 1.000±0.000

Avg. 0.395 0.283 0.497 0.506 0.564 0.579

are the clear winners in power, with MMD-D better in the higher-sample regime,
and MMD-D is more reliable than C2STs. Figure 6.2(b) shows that Ĵ is higher
for MMD-D than MMD-O, in addition to the actual test power being better, as dis-
cussed in Section 6.2. All methods have controlled Type-I error.

High-dimensional Gaussian mixtures (HDGM) Here we study bi-modal Gaus-
sian mixtures in increasing dimension. Each distribution has two Gaussian compo-
nents; in HDGM-S, P and Q are the same, while in HDGM-D, P and Q differ in
the covariance of a single dimension pair but are otherwise the same. Details are in
Table 6.5 (Section 6.B.1). We consider both increasing n while keeping dimension
d = 10 and increasing d while keeping n = 4000, with results shown in Figure 6.3.
Again, MMD-D has generally the best test power across a range of problem settings,
with reasonable Type-I error.

Higgs dataset [Baldi et al., 2014] We compare the jet φ-momenta distribution (d =

4) of the background process, P , which lacks Higgs bosons, to the corresponding
distribution Q for the process that produces Higgs bosons, following Chwialkowski
et al. [2015]. As discussed in these previous works, φ-momenta carry very little
discriminating information for recognizing whether Higgs bosons were produced.
We consider a series of tests with increased number of samples n. We report average
test power (comparing P to Q) in Table 6.1, and average Type-I error (comparing
P = Q) in Table 6.6 (Section 6.B.3). As before, MMD-D generally performs the
best; although the improvement over MMD-O here is not dramatic, MMD-D does
notably outperform C2ST. All methods maintain reasonable Type-I errors.

MNIST generative model The MNIST dataset contains 70 000 handwritten digit
images [LeCun et al., 1998]. We compare true MNIST data samples P to samples
Q from a pretrained deep convolutional generative adversarial network (DCGAN)
[Radford et al., 2016]. Samples from both distributions are shown in Figure 6.4 (in
Section 6.B.2). We consider tests for increasing numbers of samples n, and report
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Table 6.2: MNIST (α = 0.05): average test power±standard error for comparing N real
images to N DCGAN samples.

n ME SCF C2ST-S C2ST-L MMD-O MMD-D

200 0.414±0.050 0.107±0.018 0.193±0.037 0.234±0.031 0.188±0.010 0.555±0.044
400 0.921±0.032 0.152±0.021 0.646±0.039 0.706±0.047 0.363±0.017 0.996±0.004
600 1.000±0.000 0.294±0.008 1.000±0.000 0.977±0.012 0.619±0.021 1.000±0.000
800 1.000±0.000 0.317±0.017 1.000±0.000 1.000±0.000 0.797±0.015 1.000±0.000

1 000 1.000±0.000 0.346±0.019 1.000±0.000 1.000±0.000 0.894±0.016 1.000±0.000

Avg. 0.867 0.243 0.768 0.783 0.572 0.910

Table 6.3: Mean test power on Blob (nb = 40), HDGM (N = 4000, d = 10), Higgs (N =
3000) and MNIST (n = 400) for α = 0.05. See Section 6.6.2 for the naming
scheme; S+C corresponds to C2ST-S, L+C to C2ST-L, and D+J to MMD-D.
L+M is the method proposed by Kirchler et al. [2020].

S+C L+C G+C D+C L+M G+M D+M L+J G+J D+J

Blob 0.835 0.942 0.901 0.900 0.851 0.960 0.906 0.952 0.966 0.985
HDGM 0.472 0.585 0.287 0.302 0.494 0.223 0.539 0.635 0.604 0.659
Higgs 0.257 0.399 0.353 0.384 0.321 0.254 0.379 0.295 0.364 0.403
MNIST 0.646 0.706 0.784 0.803 0.845 0.680 0.760 0.935 0.976 0.996

Avg. 0.553 0.658 0.581 0.597 0.628 0.529 0.646 0.704 0.727 0.761

average test power (for P to Q) in Table 6.2 and average Type-I error (P = Q)
in Table 6.7 (in Section 6.B.3). MMD-D substantially outperforms its competitors
in test power, with the desired Type-I error. ME also does well in this case: it is
perhaps particularly suited to this problem, since it is capable of identifying either
modes dropped by the generative model or spurious modes it inserts.

6.6.2 Ablation Study
We now study in more detail the difference between MMD-D and closely related
methods. Recall from Section 6.3 that there are two main differences between
MMD-D and C2STs: first, using a “full” kernel Eq. (6.1) rather than the sign-based
kernel Eq. (6.5) or the intermediate linear kernel Eq. (6.6). Second, training to max-
imise Ĵλ Eq. (6.3) rather than a cross-entry surrogate. MMD-D uses a full kernel
Eq. (6.1) trained for test power; C2ST-S effectively uses the sign kernel Eq. (6.5)
trained for cross entropy.

In this section, we consider the performance of several intermediate models
empirically, demonstrating that both factors help in testing. All are based on the
same feature extraction architecture φω; some models add a classification layer with
new parameters w and b,

fω(x) = wTφω(x) + b,
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Table 6.4: Paired t-test results (α = 0.05) for the results of Section 6.6.1. For HDGM,
we fix d = 10 (corresponding to Figure 6.3a). X indicates MMD-D achieved
statistically significantly higher mean test power than the other method, × that
it did not.

Dataset ME SCF C2ST-S C2ST-L MMD-O

Blob X X X × ×
HDGM X X X X X
Higgs X X X × ×
MNIST X X X X X

which is treated as classification logits. The model variants we consider is

• S A kernel 1(fω(x) > 0)1(fω(y) > 0); corresponds to a test statistic of the
accuracy of f (Theorem 6.1).

• L A kernel fω(x)fω(y); corresponds to a test statistic comparing the mean
value of f (Theorem 6.2).

• G A Gaussian kernel κ(φω(x), φω(y)).

• D The deep kernel Eq. (6.1) based on φω.

We combine the model variants with a suffix describing the optimisation objective:

• J Choose ω, including possibly w and b, to optimise the approximate test
power Eq. (6.3).

• M Choose ω, including possibly w and b, to maximise the value of the empir-
ical MMD between two samples.5

• C Choose ω, including w and b, to optimise cross-entropy using the classifier
that specifies the probability of x belonging to P as 1/ (1 + exp(−fω(x))).6

Table 6.3 presents results for all of these methods (except for S+J, which is non-
differentiable and hence difficult to optimise). Performance generally improves as
we move from S to L to G to D, and from C to J, and from M to J.

5If a deep kernel is unbounded, directly maximising MMD will make optimised param-
eters of φω be infinite. Thus, for L+M, we consider a normalised linear deep kernel:
tanh(fω(x)/‖S‖F)tanh(fω(y)/‖S‖F), where S = [SP ;SQ] and ‖ · ‖F is the Frobenius norm.

6G+C and D+C take the fixed φω embeddings, then find the optimal length-scale/etc by optimis-
ing Ĵλ.
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Architecture design of deep kernels
For Blob, HDGM and Higgs, φω is a five-layer fully-connected neural network,
with softplus activations. In general, we expect the fully-connected networks, to be
reasonable choices for datasets where strong structural assumptions are not known.
For MNIST dataset, φω is a convolutional neural network (CNN) that contains four
convolutional layers and one fully-connected layer. The structure of the CNN fol-
lows the structure of the feature extractor in the DCGAN’s discriminator [Radford
et al., 2016] . In general, we expect GAN discriminator architectures to work well
for image datasets, as the problem is closely related.



Appendices

6.A Proofs and Derivations

Section 6.A.2 proves the main results under some assumptions about the kernel
parametrisation, using intermediate results about uniform convergence of our esti-
mators in Section 6.A.3. Section 6.A.4 then shows that these assumptions hold for
different settings of kernel learning.

6.A.1 Preliminaries
Given a kernel kω and sample sets {Xi}ni=1 ∼ P n, {Yi}ni=1 ∼ Qn, define the n× n
matrix

G̃
(ω)
ij = kω(Xi, Xj) + kω(Yi, Yj)− kω(Xi, Yj)− kω(Xj, Yi);

we will often omit ω when it is clear from context. The U -statistic estimator of the
squared MMD Eq. (2.12) is

η̂ω =
1

n(n− 1)

∑
i 6=j

G̃ij.

The squared MMD is ηω = E[G̃12]. The variance of η̂ω is given by Lemma 6.1.

Lemma 6.1. For a fixed kernel kω and random sample sets {xi}ni=1, {yi}ni=1, we
have

Var[η̂ω] =
4(n− 2)

n(n− 1)
ξ

(ω)
1 +

2

n(n− 1)
ξ

(ω)
2 =

4

n
ξ

(ω)
1 +

2ξ
(ω)
2 − 4ξ

(ω)
1

n(n− 1)
, (6.7)

where

ξ
(ω)
1 = E

[
G̃

(ω)
12 G̃

(ω)
13

]
− E

[
G̃

(ω)
12

]2

, ξ
(ω)
2 = E

[(
G̃

(ω)
12

)2
]
− E

[
G̃

(ω)
12

]2

.
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Thus as n→∞,
nVar[η̂ω]→ 4ξ

(ω)
1 =: σ2

ω.

Proof. Let U denote the pair (X, Y ), and hω(U,U ′) = kω(X,X ′) + kω(Y, Y ′) −
kω(X, Y ′) − kω(X ′, Y ), so that G̃(ω)

ij = gω(Ui, Uj). Via Lemma A in Section 5.2.1
of Serfling [2009], we know that Eq. (6.7) holds with

ξ
(ω)
1 = VarU [EU ′ [gω(U,U ′)]]

= EU [EU ′ [gω(U,U ′)]EU ′′ [gω(U,U ′′)]]− EU [EU ′ [gω(U,U ′)]]
2

= E[G̃
(ω)
12 G̃

(ω)
13 ]− E[G̃

(ω)
12 ]2

and
ξ2 = VarU,U ′ [gω(U,U ′)] = E

[(
G̃

(ω)
12

)2
]
− E

[
G̃

(ω)
12

]2

.

We use a V -statistic estimator Eq. (6.4) for σ2
ω:

σ̂2
ω = 4

 1

n

n∑
i=1

(
1

n

n∑
j=1

G̃
(ω)
ij

)2

−

(
1

n2

n∑
i=1

n∑
j=1

G̃
(ω)
ij

)2
 .

As a V -statistic, σ̂2
ω is biased. In fact, Sutherland et al. [2016] and Sutherland [2019]

provide an unbiased estimator of Var[η̂ω] – including the terms of order 1
n(n−1)

.
Although this estimator takes the same quadratic time to compute as Eq. (6.4), it
contains many more terms, which are cumbersome both for implementation and
for analysis. Eq. (6.4) is also marginally more convenient in that it is always at
least non-negative. As we show in Lemma 6.3, the amount of bias is negligible as
n increases. In practice, we expect the difference to be unimportant – or the V -
statistic may in fact be beneficial, since underestimating σ2 harms the estimate of
η/σ2 more than overestimating it does.

Similarly, although we use the U -statistic estimator Eq. (2.12), it would be very
similar to use the biased estimator n−2

∑
ij G̃ij , or the minimum variance unbiased

estimator n−1(n−1)−1
∑

i 6=j(k(Xi, Xj) +k(Yi, Yj))−2n−2
∑

ij k(Xi, YJ). Show-
ing comparable concentration behavior to Proposition 6.5 is trivially different, and
in fact it is also not difficult to show σ2

ω is the same for all three estimators (up to
lower-order terms).

6.A.2 Main results
We will require the following assumptions. These are fairly agnostic as to the kernel
form; Section 6.A.4.2 shows that these assumptions hold (and gives the constants)
for the kernels Eq. (6.1) we use in the paper.
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(A) The kernels kω are uniformly bounded:

sup
ω∈Ω

sup
x∈X

kω(x, x) ≤ ν.

For the kernels we use in practice, ν = 1.

(B) The possible kernel parameters ω lie in a Banach space of dimension D.
Furthermore, the set of possible kernel parameters Ω is bounded by Rω,
Ω ⊆ {ω | ‖ω‖ ≤ RΩ}.

Section 6.A.4.2 builds this space and its norm for the kernels we use in the
paper.

(C) The kernel parametrisation is Lipschitz: for all x, y ∈ X and ω, ω′ ∈ Ω,

|kω(x, y)− kω′(x, y)| ≤ Lk‖ω − ω′‖.

Proposition 6.8 in Section 6.A.4.2 gives an expression for Lk for the kernels
we use in the paper.

We will first show the main results under these general assumptions, using
uniform convergence results shown in Section 6.A.3, then show Assumptions (B)
and (C) for particular kernels in Section 6.A.4.2.

Theorem 6.4. Under Assumptions (A) to (C), let Ω̄s ⊆ Ω be the set of kernel
parameters for which σ2

ω ≥ s2, and assume ν ≥ 1. Take λ = n−1/3. Then, with
probability at least 1− δ,

sup
ω∈Ω̄s

∣∣∣∣∣ η̂ωσ̂ω,λ − ηω
σω

∣∣∣∣∣ ≤ 2ν

s2n1/3

(1

s
+

2304ν2

√
n

+

[
4s

n1/6
+ 1024ν

]

·

[
Lk +

√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)])

,

and thus, treating ν as a constant,

sup
ω∈Ω̄s

| η̂ω
σ̂ω,λ
− ηω
σω
| = OP

(
1

s2n1/3

[
1

s
+ Lk +

√
D

])
.



6.A. Proofs and Derivations 165

Proof. Let σ2
ω,λ := σ2

ω + λ. Using |η̂ω| ≤ 4ν, we begin by decomposing

sup
ω∈Ω̄s

| η̂ω
σ̂ω,λ
− ηω
σω
| ≤ sup

ω∈Ω̄s

| η̂ω
σ̂ω,λ
− η̂ω
σω,λ
|+ sup

ω∈Ω̄s

| η̂ω
σω,λ
− η̂ω
σω
|+ sup

ω∈Ω̄s

| η̂ω
σω
− ηω
σω
|

= sup
ω∈Ω̄s

|η̂ω|
1

σ̂ω,λ

1

σω,λ

|σ̂2
ω,λ − σ2

ω,λ|
σ̂ω,λ + σω,λ

+ sup
ω∈Ω̄s

|η̂ω|
1

σω,λ

1

σω

|σ2
ω,λ − σ2

ω|
σω,λ + σω

+ sup
ω∈Ω̄s

1

σω
|η̂ω − ηω|

≤ sup
ω∈Ω̄s

4ν√
λ s (s+

√
λ)
|σ̂2
ω − σ2

ω|+
4νλ√

s2 + λ s
(√

s2 + λ+ s
) + sup

ω∈Ω̄s

1

s
|η̂ω − ηω|

≤ 4ν

s2
√
λ

sup
ω∈Ω
|σ̂2
ω − σ2

ω|+
2ν

s3
λ+

1

s
sup
ω∈Ω
|η̂ω − ηω|.

Propositions 6.5 and 6.6 show uniform convergence of η̂ω and σ̂2
ω, respectively.

Thus, with probability at least 1− δ, the error is at most

2ν

s3
λ+

[
8ν

s
√
n

+
1792ν
√
ns2
√
λ

]√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)

+

[
8

s
√
n

+
2048ν2

√
ns2
√
λ

]
Lk +

4608ν3

s2n
√
λ
.

Taking λ = n−1/3 gives

2ν

s3n1/3
+

[
8ν

s
√
n

+
1792ν

s2n1/3

]√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)

+

[
8

s
√
n

+
2048ν2

s2n1/3

]
Lk +

4608ν3

s2n5/6
.

Using 1 ≤ ν, 1792 < 2048, we can get the slightly simpler upper bound

2ν

s3n1/3
+

[
8ν

s
√
n

+
2048ν2

s2n1/3

][
Lk +

√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)]

+
4608ν3

s2n5/6
.

It is worth noting that, if we are particularly concerned about the s dependence,
we can make some slightly different choices in the decomposition to improve the
dependence on s while worsening the rate with n.

Corollary 6.1. In the setup of Theorem 6.4, additionally assume that there is a
unique population maximiser ω∗ of J from Eq. (6.2), i.e. for each t > 0 we have

sup
ω∈Ω̄s:‖ω−ω∗‖≥t

J(P,Q; kω) < J(P,Q; kω∗).

For each n, let S(n)
P and S(n)

Q be sequences of sample sets of size n, let Ĵn(ω) de-



6.A. Proofs and Derivations 166

note Jλ=n−1/3(S
(n)
P , S

(n)
Q ; kω), and take ω̂∗n to be a maximiser of Ĵn(ω).7 Then ω̂∗n

converges in probability to ω∗.

Proof. By Theorem 6.4, supω∈Ω̄s|Ĵn(ω) − J(ω)| P→ 0. Then the result follows by
Theorem 5.7 of Van der Vaart [2000].

Corollary 6.2. In the setup of Theorem 6.4, suppose we use n sample points to
select a kernel ω̂n ∈ arg maxω∈Ω̄s Ĵλ(ω) and m sample points to run a test of level
α. Let r(m)

ω̂n
denote the rejection threshold for a test with that kernel of sizem. Define

J∗ := supω∈Ω̄s J(ω), and constants C, C ′, C ′′, N0 depending on ν, Lk, D, RΩ and
s. For any n ≥ N0, with probability at least 1− δ, this test procedure has power

P
(
m η̂ω̂n > r

(m)
ω̂n

)
≥ Φ

(
√
mJ∗ − C

√
m

n
1
3

√
log

n

δ
− C ′

√
log

1

α

)
− C ′′√

m
.

Proof. Let ω̂n ∈ arg maxω∈Ω̄s Ĵλ(ω). By Theorem 6.4, there are some N0, C de-
pending on ν, Lk, D, RΩ, and s such that as long as n ≥ N0, with probability at
least 1− δ it holds that

sup
ω∈Ω̄s

|Jλ(ω)− J(ω)| ≤ 1
2
Cn−

1
3

√
log

n

δ
=: εn.

Assume for the remainder of this proof that this event holds. Letting ω∗ ∈
arg max J(ω), we know because ω̂n maximises Ĵλ that Ĵλ(ω̂n) ≥ Ĵλ(ω

∗). Using
uniform convergence twice,

J(ω̂n) ≥ Ĵλ(ω̂n)− εn ≥ Ĵλ(ω
∗)− εn ≥ (J(ω∗)− εn)− εn = J∗ − 2εn.

Now, although Proposition 6.1 establishes that r(m)
ω → rω and it is even known

[Korolyuk and Borovskikh, 1988, Theorem 5] that |r(m)
ω − rω| is o(1/

√
m), the

constant in that convergence will depend on the choice of ω in an unknown way.
It’s thus simpler to use the very loose but uniform (McDiarmid-based) bound given
by Corollary 11 of Gretton et al. [2012a], which implies r(m)

ω ≤ 4ν
√

log(α−1)m no
matter the choice of ω.

We will now need a more precise characterisation of the power than that pro-
vided by the central limit theorem of Proposition 6.1. Callaert and Janssen [1978]
provide such a result, a Berry-Esseen bound on U -statistic convergence: there is

7In fact, it suffices for the ω̂∗n to only approximately maximise Ĵn, as long as their suboptimality
is oP (1).
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some absolute constant C ′BS = 2343CBS such that

sup
t
|PH1

(√
m
η̂ω − ηω
σ2
ω

≤ t

)
− Φ(t)| ≤ C ′BSE|G̃12|3

(σω/2)3
√
m
≤ CBSν

3

σ3
ω

√
m
.

Letting r(m)
ω be the appropriate rejection threshold for kω withm samples, the power

of a test with kernel kω is

P
(
mη̂ω > r(m)

ω

)
= P

(
√
m
η̂ω − ηω
σω

>
r

(m)
ω√
mσω

−
√
m
ηω
σω

)

≥ Φ

(
√
mJ(ω)− r

(m)
ω√
mσω

)
− CBSν

3

σ3
ω

√
m

≥ Φ

(
√
mJ(ω)− r

(m)
ω

s
√
m

)
− C ′′√

m
,

using a new constant C ′′ := CBSν
3/s3. Combining the previous results on J(ω̂n)

and r(m)
ω̂n

yields the claim.

Corollary 6.3. In the setup of Corollary 6.2, suppose we are given N data points
to divide between n training points and m = N − n testing points, and δ < 0.22

is fixed. Ignoring the Berry-Esseen convergence term outside of Φ, the asymptotic
power upper bound

Φ

(
√
mJ∗ − C

√
m

n
1
3

√
log

n

δ
− C ′

√
log

1

α

)

is maximised only when, as other quantities remain constant,

lim
N→∞

n(
C√
3J∗
N
√

logN
) 3

4

= 1.

Proof. Because the C ′ term is constant, we wish to choose

arg max
0<n<N

J∗

C

√
N − n−

√
N − n
n

1
3

√
log

n

δ
.

Clearly neither endpoint is optimal. Relaxing n to be real-valued, the optimum must
be achieved at a stationary point, where

−J∗

2C
√
N − n

+

√
log n

δ

2
√
N − nn 1

3

+
1

3

√
N − nn−

4
3

√
log

n

δ
−1

2

√
N − nn−

4
3

(
log

n

δ

)− 1
2

= 0.
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Multiplying by 2
√
N − nn 4

3

√
log n

δ
and rearranging, we get that a stationary point

is achieved exactly when

1

3
[n+ 2N ] log

n

δ
+ n︸ ︷︷ ︸

D

=
J∗

C
n

4
3

√
log

n

δ
+N︸ ︷︷ ︸

E

.

Now write, without loss of generality, n =
(
ANN

√
logN

) 3
4 , and so

D =
1

3

[
A

3
4
NN

3
4 (logN)

3
8 + 2N

][
3

4
logAN +

3

4
logN +

3

8
log logN︸ ︷︷ ︸

logn

+ log
1

δ

]

+A
3
4
NN

3
4 (logN)

3
8

E =
J∗

C
ANN

√
logN

√√√√√3

4
logAN +

3

4
logN +

3

8
log logN︸ ︷︷ ︸

logn

+ log
1

δ
+N.

We will show that D − E → 0 requires AN → C/(
√

3J∗), implying the result.

We first suppose AN = ω(1), further breaking into cases which result in dif-
ferent terms inside D and E becoming dominant:

If AN = Ω(N), D = Θ
(
A

3
4
NN

3
4 (logN)

3
8 logAN

)
,

E = Θ
(
ANN

√
log(N) log(AN)

)
.

If AN = Ω

(
N

1
3

√
logN

)
, AN = o(N), D = Θ

(
A

3
4
NN

3
4 (logN)

3
8 logN

)
,

E = Θ (ANN logN) .

If AN = ω(1), AN = o

(
N

1
3

√
logN

)
, D = Θ (N logN) ,

E = Θ (ANN logN) .

In each case, E = ω(D) and so D − E → −∞, contradicting that D = E. Thus a
stationary point requires AN = O(1) for a stationary point.

We now do the same for AN = o(1). First, clearly n ≥ 1; suppose that
in fact n = Θ(1), i.e. AN = Θ

(
1/(N

√
logN)

)
. In this case, we would have

D = 2
3
N log n

δ
+ Θ(1) and E = N + Θ(1), so that D = E requires 2

3
log n

δ
→ 1,

i.e. n → δ exp 3
2
≈ 4.5 δ. For δ < 0.22, this contradicts n ≥ 1. So we know that
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log n = ω(1). Now, the remaining options for AN all yield D − E →∞:

If AN = o(1), AN = Ω

(
1

logN

)
,D = Θ (N log n) , E = Θ (ANN log n) .

If AN = o

(
1

logN

)
, AN = ω

(
1

N
√

logN

)
,D = Θ (N log n) , E = Θ (N) .

Thus we have established that AN = Θ(1). Thus, we obtain that

D =
1

2
N logN +O (N) E =

√
3J∗

2C
ANN logN +O

(
N
√

logN
)
.

Asymptotic equality hence requires AN → C/(
√

3J∗).

6.A.3 Uniform convergence results

These results, on the uniform convergence of η̂ and σ̂2, were used in the proof of
Theorem 6.4.

Proposition 6.5. Under Assumptions (A) to (C), we have that with probability at
least 1− δ,

sup
ω
|η̂ω − ηω| ≤

8√
n

[
ν

√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)

+ Lk

]
.

Proof. Theorem 7 of Sriperumbudur et al. [2009] gives a similar bound in terms
of Rademacher chaos complexity, but for ease of combination with our bound on
convergence of the variance estimator, we use a simple ε-net argument instead. We
study the random error function

∆(ω) := η̂ω − ηω.

First, we place T points {ωi}Ti=1 such that for any point ω ∈ Ω, mini‖ω − ωi‖ ≤ q;
Assumption (B) ensures this is possible with at most T = (4RΩ/q)

D points [Cucker
and Smale, 2001, Proposition 5].

Now, E∆ = 0, because η̂ is unbiased. Recall that η̂ = 1
n(n−1)

∑
i 6=j G̃ij , and

via Assumption (A) we know |G̃ij| ≤ 4ν. This η̂, and hence ∆, satisfies bounded
differences: if we replace (X1, Y1) with (X ′1, Y

′
1), obtaining η̂′ = 1

n(n−1)

∑
i 6=j F̃ij
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where F̃ agrees with G̃ except when i or j is 1, then

|η̂ − η̂′| ≤ 1

n(n− 1)

∑
i 6=j

|G̃ij − F̃ij| =
1

n(n− 1)

∑
i>1

|G̃i1 − F̃i1|+
1

n(n− 1)

∑
j>1

|G̃1j − F̃1j|

≤ 2

n(n− 1)

∑
i>1

8ν =
16ν

n
.

Using McDiarmid’s inequality for each ∆(ωi) and a union bound, we then obtain
that with probability at least 1− δ,

max
i∈{1,...,T}

|∆(ω)| ≤ 16ν√
2n

√
log

2T

δ
≤ 8ν√

n

√
2 log

2

δ
+ 2D log

4RΩ

q
.

We also have via Assumption (C), for any two ω, ω′ ∈ Ω,

|η̂ω − η̂ω′| ≤
1

n(n− 1)

∑
i 6=j

|G̃(ω)
ij − G̃

(ω′)
ij |

≤ 1

n(n− 1)

∑
i 6=j

4Lk‖ω − ω′‖ = 4Lk‖ω − ω′‖

|ηω − ηω′| = |E
[
G̃

(ω)
12

]
− E

[
G̃

(ω′)
12

]
| ≤ E|G̃(ω)

12 − G̃
(ω′)
12 | ≤ 4Lk‖ω − ω′‖

so that ‖∆‖L ≤ 8Lk. Combining these two results, we know that with probability
at least 1− δ

sup
ω
|∆(ω)| ≤ max

i∈{1,...,T}
|∆(ωi)|+ 8Lkq ≤

8ν√
n

√
2 log

2

δ
+ 2D log

4RΩ

q
+ 8Lkq;

setting q = 1/
√
n yields the desired result.

Proposition 6.6. Under Assumptions (A) to (C), with probability at least 1− δ,

sup
ω∈Ω

∣∣σ̂2
ω − σ2

ω

∣∣ ≤ 64√
n

[
7

√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)

+
18ν2

√
n

+ 8Lkν

]
.

Proof. We again use an ε-net argument on the (random) error function

∆(ω) := σ̂2
kω − σ

2
kω .

First, choose T points {ωi}Ti=1 such that for any point ω ∈ Ω, mini‖ω − ωi‖ ≤ q;
again, via Assumption (B) and Proposition 5 of Cucker and Smale [2001] we have
T ≤ (4RΩ/q)

D. By Lemmas 6.2 and 6.3 and a union bound, with probability at
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least 1− δ,

max
i∈{1,...,T}

|∆(ω)| ≤ 448

√
2

n
log

2T

δ
+

1152ν2

n

≤ 448

√
2

n
log

2

δ
+

2

n
D log

4RΩ

q
+

1152ν2

n
.

Lemma 6.4 shows that ‖∆‖L ≤ 512Lkν, which means that with probability at least
1− δ,

sup
ω∈Ω
|∆(ω)| ≤ 448

√
2

n
log

2

δ
+

2

n
D log

4RΩ

q
+

1152ν2

n
+ 512Lkνq. (6.8)

Taking q = 1/
√
n gives the desired result.

Lemma 6.2. For any kernel k bounded by ν (Assumption (A)), with probability at
least 1− δ,

|σ̂2
k − Eσ̂2

k| ≤ 448

√
2

n
log

2

δ
.

Proof. We simply apply McDiarmid’s inequality to σ̂2
k. Suppose we change

(X1, Y1) to (X ′1, Y
′

1), giving a new G̃ matrix F̃ which agrees with G̃ on all but
the first row and column. Note that |G̃ij| ≤ 4ν, and recall

σ̂2
k = 4

 1

n3

∑
i

(∑
j

G̃ij

)2

−

(
1

n2

∑
ij

G̃ij

)2
 .

The first term in the parentheses of σ̂2
k changes by∣∣∣∣∣∣ 1

n3

∑
i

(∑
j

G̃ij

)2

− 1

n3

∑
i

(∑
j

F̃ij

)2
∣∣∣∣∣∣ ≤ 1

n3

∑
ij`

|G̃ijG̃i` − F̃ijF̃i`|.

In this sum, if none of i, j, or ` are one, the term is zero. The n2 terms for which
i = 1 are each upper-bounded by 32ν2, simply bounding each G̃ or F̃ by 4ν. Of the
remainder, there are (n− 1) terms where j = ` = 1, each |G̃2

i1 − F̃ 2
i1| ≤ 16ν2. We

are left with 2(n− 1)2 terms which have exactly one of j or ` equal to 1; the j = 1

terms are |G̃i1G̃i` − F̃i1G̃i`| ≤ |G̃i1 − F̃i1||G̃i`| ≤ (8ν)(4ν), so each of these terms
is at most 32ν2. The total sum is thus at most

1

n3

(
n232ν2 + (n− 1)16ν2 + 2(n− 1)232ν2

)
=

(
6

n
− 7

n2
+

3

n3

)
16ν2.
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The remainder of the change in σ̂2
k can be determined by bounding

|
∑
ij

G̃ij −
∑
ij

F̃ij| ≤
∑
ij

|G̃ij − F̃ij| =
∑
j

|G̃1j − F̃1j|+
∑
i>1

|G̃i1 − F̃i1|

≤ n(8ν) + (n− 1)(8ν) = (8ν)(2n− 1),

which then gives us∣∣∣∣∣∣
(

1

n2

∑
ij

G̃ij

)2

−

(
1

n2

∑
ij

F̃ij

)2
∣∣∣∣∣∣

=

∣∣∣∣∣ 1

n2

∑
ij

G̃ij +
1

n2

∑
ij

F̃ij

∣∣∣∣∣ ·
∣∣∣∣∣ 1

n2

∑
ij

G̃ij −
1

n2

∑
ij

F̃ij

∣∣∣∣∣
≤ (2 · 4ν)

2n− 1

n2
(8ν) = 64ν2

(
2

n
− 1

n2

)
.

Thus

|σ̂2
k − (σ̂′k)

2| ≤ 4

[(
6

n
− 7

n2
+

3

n3

)
16ν2 +

(
2

n
− 1

n2

)
64ν2

]
=

64ν2

n3

[
14n2 − 11n+ 3

]
≤ 896ν2

n
.

Because the same holds for changing any of the (Xi, Yi) pairs, the result follows by
McDiarmid’s inequality.

Lemma 6.3. For any kernel k bounded by ν (Assumption (A)), the estimator σ̂2
k

satisfies

|Eσ̂2
k − σ2

k| ≤
1152ν2

n
.

Proof. We have that Eσ̂2
k = 4

(
1
n3

∑
ij` E

[
G̃i`G̃j`

]
− 1

n4

∑
ijab E

[
G̃ijG̃ab

])
. Most

terms in these sums have their indices distinct; these are the ones that we care about.
(We could evaluate the expectations of the other terms exactly, but it would be
tedious.) We can thus break down the first term as

1

n3

∑
ij`

E[G̃i`G̃j`] =
1

n3

∑
ij`:|{i,j,`}|=3

E[G̃i`G̃j`] +
1

n3

∑
ij`:|{i,j,`}|<3

E[G̃i`G̃j`]

=
n(n− 1)(n− 2)

n3
E[G̃12G̃13] +

(
1− n(n− 1)(n− 2)

n3

)
q,

where q is the appropriately-weighted mean of the various E[G̃i`G̃j`] terms for
which i, j, ` are not mutually distinct. Since |G̃ij| ≤ 4ν, E[G̃i`G̃j`] < 16ν2 and
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so |q| ≤ 16ν2 as well. Noting that

n(n− 1)(n− 2)

n3
= 1− 3

n
+

2

n2

we obtain

| 1

n3

∑
ij`

E[G̃i`G̃j`]−E[G̃12G̃13]| =
(

3

n
− 2

n2

)
|−E[G̃12G̃13]+q| ≤

(
3

n
− 2

n2

)
32ν2.

(6.9)

The second term can be handled similarly:

1

n4

∑
ijab

E[G̃ijG̃ab] =
1

n4

∑
ijab:|{i,j,a,b}|=4

E[G̃ijG̃ab] +
1

n4

∑
ijab:|{i,j,a,b}|<4

E[G̃ijG̃ab]

=
n(n− 1)(n− 2)(n− 3)

n4
E[G̃ijG̃ab]

+

(
1− n(n− 1)(n− 2)(n− 3)

n4

)
r,

where r is the appropriately-weighted mean of the non-distinct terms, |r| ≤ 16ν2.
For i, j, a, b all distinct, E[G̃ijG̃ab] = E[G̃12]2. Here

n(n− 1)(n− 2)(n− 3)

n4
=

(n− 1)(n2 − 5n+ 6)

n3
= 1− 6

n
+

11

n
− 6

n3

and so
| 1

n4

∑
ijab

E[G̃ijG̃ab]− E[G̃12]2| ≤
(

6

n
− 11

n2
+

6

n3

)
32ν2. (6.10)

Recalling σ2
k = 4(E[G̃12G̃13]− E[G̃12]2),

|Eσ̂2
k − σ2

k| ≤ 128ν2

(
9

n
− 13

n2
+

6

n3

)
,

and since n ≥ 1, we have 13/n2 > 6/n3, yielding the result.

Lemma 6.4. Under Assumptions (A) and (C), we have

sup
ω,ω′∈Ω

|σ̂2
ω − σ̂2

ω′|
‖ω − ω′‖

≤ 256Lkν and sup
ω,ω′∈Ω

|σ2
ω − σ2

ω′ |
‖ω − ω′‖

≤ 256Lkν.



6.A. Proofs and Derivations 174

Proof. We first handle the change in σ̂k:

|σ̂2
kω − σ̂

2
kω′
| = 4

∣∣∣ 1

n3

∑
ij`

G̃
(ω)
i` G̃

(ω)
j` −

1

n3

∑
ij`

G̃
(ω′)
i` G̃

(ω′)
j`

− 1

n4

∑
ijab

G̃
(ω)
ij G̃

(ω)
ab +

1

n4

∑
ijab

G̃
(ω′)
ij G̃

(ω′)
ab

∣∣∣
≤ 4

n3

∑
ij`

|G̃(ω)
i` G̃

(ω)
j` − G̃

(ω′)
i` G̃

(ω′)
j` |+

4

n4

∑
ijab

|G̃(ω)
ij G̃

(ω)
ab − G̃

(ω′)
ij G̃

(ω′)
ab |.

We can handle both terms by bounding

|G̃(ω)
ij G̃

(ω)
ab − G̃

(ω′)
ij G̃

(ω′)
ab | ≤ |G̃

(ω)
ij G̃

(ω)
ab − G̃

(ω)
ij G̃

(ω′)
ab |+ |G̃

(ω)
ij G̃

(ω′)
ab − G̃

(ω′)
ij G̃

(ω′)
ab |

= |G̃(ω)
ij ||G̃

(ω)
ab − G̃

(ω′)
ab |+ |G̃

(ω)
ij − G̃

(ω′)
ij ||G̃

(ω′)
ab |

≤ 4ν
(
|G̃(ω)

ab − G̃
(ω′)
ab |+ |G̃

(ω)
ij − G̃

(ω′)
ij |
)
.

Using Assumption (C) and the definition of H ,

|G̃(ω)
ij − G̃

(ω′)
ij | ≤ 4Lk‖ω − ω′‖

so
|G̃(ω)

ij G̃
(ω)
ab − G̃

(ω′)
ij G̃

(ω′)
ab | ≤ 32νLk‖ω − ω′‖ (6.11)

and hence

|σ̂2
ω − σ̂2

ω′ | ≤ 256νLk‖ω − ω′‖.

Again using Eq. (6.11), we also have

|σ2
ω − σ2

ω′| ≤ 4|E
[
G̃

(ω)
12 G̃

(ω)
13

]
− E

[
G̃

(ω′)
12 G̃

(ω′)
13

]
|+ 4|E

[
G̃

(ω)
12

]2

− E
[
G̃

(ω′)
12

]2

|

≤ 4E|G̃(ω)
12 G̃

(ω)
13 − G̃

(ω′)
12 G̃

(ω′)
13 |+ 4E|G̃(ω)

12 G̃
(ω)
34 − G̃

(ω′)
12 G̃

(ω′)
34 |

≤ 256νLk‖ω − ω′‖.

6.A.4 Constructing appropriate kernels
We now show Propositions 6.3 and 6.4, which each state that Assumption (C) is
satisfied by various choices of kernel. The following assumption will be useful for
different kernel schemes.

(I) The domain X is Euclidean and bounded, X ⊆
{
x ∈ Rd : ‖x‖ ≤ RX

}
for

some constant RX <∞.
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We begin by recalling a well-known property of the Gaussian kernel, useful for both
Gaussian bandwidth selection and deep kernels. A proof is in Section 6.A.5.

Lemma 6.5. The Gaussian kernel κ(a, b) = exp
(
−‖a−b‖

2

2σ2

)
satisfies

|κ(a, b)− κ(a′, b′)| ≤ 1

σ
√
e

(‖a− b‖+ ‖a′ − b′‖) ≤ 1

σ
√
e

(‖a− a′‖+ ‖b− b′‖) .

6.A.4.1 Gaussian bandwidth selection (Proposition 6.3)
Lemma 6.5 immediately gives us Assumption (C) when we use Gaussian kernels:

Proposition 6.7. Define a one-dimensional Banach space for inverse length-scales
of Gaussian kernels γ > 0, so that kγ(x, y) = κ1/γ(x, y), with standard addition
and multiplication and norms defined by the absolute value, and k0 taken to be
the constant 1 function. Let Ω be any subset of this space. Under Assumption (I),
Assumption (C) holds: for any x, y ∈ X and γ, γ′ ∈ Γ,

|kγ(x, y)− kγ′(x, y)| ≤ 2RX√
e
|γ − γ′|.

Proof.

|kγ(x, y)− kγ′(x, y)| = |κ1 (γx, γy)− κ1 (γ′x, γ′y)|

≤ 1√
e
|γ‖x− y‖ − γ′‖x− y‖| = ‖x− y‖√

e
|γ − γ′|.

6.A.4.2 Deep kernels (Proposition 6.4)
To handle the deep kernel case, we will need some more assumptions on the form
of the kernel.

(II) φω(x) = φ
(Λ)
ω is a feedforward neural network with Λ layers given by

φ(0)
ω (x) = x φ(`)

ω (x) = σ(`)
(
W (`)
ω φ(`−1)

ω (x) + b(`)
ω

)
,

where the network parameter ω consists of all the weight matrices W (`)
ω and

biases b(`)
ω , and the activation functions σ(`) are each 1-Lipschitz, ‖σ(`)(x) −

σ(`)(y)‖ ≤ ‖x − y‖, with σ(`)(0) = 0 so that ‖σ(`)(x)‖ ≤ ‖x‖. Define a
Banach space on ω, with addition and scalar multiplication component-wise,
and

‖ω‖ = max
`∈{1,...,Λ}

max
(
‖W (`)

ω ‖, ‖b(`)
ω ‖
)
,
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where the matrix norm denotes operator norm ‖W‖ = supx‖Wx‖/‖x‖. (For
convolutional networks, see Remark 6.2.)

(III) kω is a kernel of the form Eq. (6.1),

kω(x, y) = [(1− ε)κ(φω(x), φω(y)) + ε] q(x, y),

with 0 ≤ ε ≤ 1, κ a kernel function, and q(x, y) a kernel with supx q(x, x) ≤
Q.

Note that this includes kernels of the form kω(x, y) = κ(φω(x), φω(y)): take
ε = 0 and q(x, y) = 1.

(IV) κ in Assumption (III) is a kernel function satisfying

|κ(a, b)− κ(a′, b′)| ≤ Lκ (‖a− a′‖+ ‖b− b′‖) .

This holds for a Gaussian κ via Lemma 6.5.

We now turn to proving Assumption (C) for deep kernels. First, we will need some
smoothness properties of the network φ.

Lemma 6.6. Under Assumption (II), suppose ω, ω′ have ‖ω‖ ≤ R, ‖ω′‖ ≤ R, with
R 6= 1. Then, for any x,

‖φω(x)‖ ≤ RΛ‖x‖+
R

R− 1
(RΛ − 1) (6.12)

‖φω(x)− φω′(x)‖ ≤
(

ΛRΛ−1

(
‖x‖+

R

R− 1

)
− RΛ − 1

(R− 1)2

)
‖ω − ω′‖. (6.13)

If R ≥ 2, we furthermore have

‖φω(x)‖ ≤ RΛ(‖x‖+ 2) (6.14)

‖φω(x)− φω′(x)‖ ≤ ΛRΛ−1 (‖x‖+ 2) ‖ω − ω′‖. (6.15)

The proof, by recursion, is given in Section 6.A.5. We are now ready to prove
Assumption (C) for deep kernels.

Proposition 6.8. Make Assumptions (I) to (IV) and Assumption (B), with RΩ ≥ 2.8

8Of course, if we know a bound of RΩ < 2, the result will still hold using RΩ = 2. It is also
possible to show a tighter result, via Eq. (6.12) and Eq. (6.13) or their analogue for R = 1; the
expression is simply less compact.
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Then Assumption (C) holds: for any x, y ∈ X and ω, ω′ ∈ Ω,

|kω(x, y)− kω′(x, y)| ≤ 2Q(1− ε)LκΛRΛ−1
Ω (RX + 2)‖ω − ω′‖.

Proof.

|kω(x, y)− kω′(x, y)| = (1− ε)|κ(φω(x), φω(y))− κ(φω′(x), φω′(y))|q(x, y)

≤ Q(1− ε)Lκ (|φω(x)− φω′(x)|+ |φω(y)− φω′(y)|)

≤ Q(1− ε)LκΛRΛ−1
Ω (‖x‖+ ‖y‖+ 4)‖ω − ω′‖

≤ Q(1− ε)LκΛRΛ−1
Ω (2RX + 4)‖ω − ω′‖.

Remark 6.1. For the deep kernels we use in the paper (Assumptions (II) to (IV)) on
bounded domains (Assumption (I)), we know Lk via Proposition 6.8; Theorem 6.3
combines Theorem 6.4, Corollary 6.1, and Proposition 6.8. If we further use a
Gaussian kernel q of bandwidth σφ, the last bracketed term in the error bound of
Theorem 6.4 becomes

2(1− ε)
σφ
√
e

ΛRΛ−1
Ω (RX + 2) +

√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)
.

The component RΛ−1
Ω (RX + 2), from Eq. (6.14), is approximately the largest that

φω could make its outputs’ norms; σφ will generally be on a comparable scale to
the norm of the actual outputs of the network, so their ratio is something like the
“unused capacity” of the network to blow up its inputs. This term is weighted
about equally in the convergence bound with the square root of the total number of
parameters in the network.

Remark 6.2. We can handle convolutional networks as follows. We define Ω in
essentially the same way, letting W (`)

ω denote the convolutional kernel (the set of
parameters being optimised), but define ‖ω‖ in terms of the operator norm of the
linear transform corresponding to the convolution operator. This is given in terms
of the operator norm of various discrete Fourier transforms of the kernel matrix
by Lemma 2 of Bibi et al. [2019]; see also Theorem 6 of Sedghi et al. [2019].
The number of parameters D is then the actual number of parameters optimised in
gradient descent, but the radius RΩ is computed differently.

6.A.5 Miscellaneous Proofs
The following lemma was used for Propositions 6.7 and 6.8.
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Lemma 6.5. The Gaussian kernel κ(a, b) = exp
(
−‖a−b‖

2

2σ2

)
satisfies

|κ(a, b)− κ(a′, b′)| ≤ 1

σ
√
e

(‖a− b‖+ ‖a′ − b′‖) ≤ 1

σ
√
e

(‖a− a′‖+ ‖b− b′‖) .

Proof. We have that

|κ(a, b)− κ(a′, b′)| =
∣∣∣∣exp

(
−‖a− b‖

2

2σ2

)
− exp

(
−‖a

′ − b′‖2

2σ2

)∣∣∣∣
≤ ‖x 7→ exp

(
− x2

2σ2

)
‖L · |‖a− b‖ − ‖a′ − b′‖| .

We can bound the Lipschitz constant as its maximal derivative norm,

sup
x

|x|
σ2

exp

(
− x2

2σ2

)
.

Noting that
d

dx
log

(
|x|
σ2

exp

(
− x2

2σ2

))
=

1

x
− x

σ2

vanishes only at x = ±σ, the supremum is achieved by using that value, giving

‖x 7→ exp

(
− x2

2σ2

)
‖L =

1

σ
√
e
.

The result follows from

|‖a− b‖ − ‖a′ − b′‖| ≤ ‖a− b− a′ + b′‖ ≤ ‖a− a′‖+ ‖b− b′‖.

This next lemma was used in Proposition 6.8.

Lemma 6.6. Under Assumption (II), suppose ω, ω′ have ‖ω‖ ≤ R, ‖ω′‖ ≤ R, with
R 6= 1. Then, for any x,

‖φω(x)‖ ≤ RΛ‖x‖+
R

R− 1
(RΛ − 1) (6.12)

‖φω(x)− φω′(x)‖ ≤
(

ΛRΛ−1

(
‖x‖+

R

R− 1

)
− RΛ − 1

(R− 1)2

)
‖ω − ω′‖. (6.13)

If R ≥ 2, we furthermore have

‖φω(x)‖ ≤ RΛ(‖x‖+ 2) (6.14)

‖φω(x)− φω′(x)‖ ≤ ΛRΛ−1 (‖x‖+ 2) ‖ω − ω′‖. (6.15)
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Proof. First, ‖φ(0)
ω (x)‖ = ‖x‖, showing Eq. (6.12) when Λ = 0. In general,

‖φ(`)
ω (x)‖ = ‖σ(`)

(
W (`)
ω φ(`−1)

ω (x) + b(`)
ω

)
‖

≤ ‖W (`)
ω φ(`−1)

ω (x) + b(`)
ω ‖

≤ ‖W (`)
ω ‖‖φ(`−1)

ω (x)‖+ ‖b(`)
ω ‖

≤ R‖φ(`−1)
ω (x)‖+R,

and expanding this recursion gives

‖φ(`)
ω (x)‖ ≤ R`‖x‖+

∑̀
m=1

Rm = R`‖x‖+
R

R− 1
(R` − 1).

Now, we have Eq. (6.13) for Λ = 0 because φ(0)
ω (x)− φ(0)

ω′ (x) = 0. For ` ≥ 1,

‖φ(`)
ω (x)− φ(`)

ω′ (x)‖ = ‖σ(`)
(
W (`)
ω φ(`−1)

ω (x) + b(`)
ω

)
− σ(`)

(
W

(`)
ω′ φ

(`−1)
ω′ (x)− b(`)

ω′

)
‖

≤ ‖W (`)
ω φ(`−1)

ω (x)−W (`)
ω′ φ

(`−1)
ω (x)‖+ ‖W (`)

ω′ φ
(`−1)
ω (x)−W (`)

ω′ φ
(`−1)
ω′ (x)‖+ ‖b(`)

ω − b
(`)
ω′ ‖

≤ ‖W (`)
ω −W

(`)
ω′ ‖‖φ

(`−1)
ω (x)‖+ ‖W (`)

ω′ ‖‖φ
(`−1)
ω (x)− φ(`−1)

ω′ (x)‖+ ‖ω − ω′‖

≤ ‖ω − ω′‖
(
R`−1‖x‖+

R

R− 1
(R`−1 − 1) + 1

)
+R‖φ(`−1)

ω (x)− φ(`−1)
ω′ (x)‖.

Expanding the recursion yields

‖φ(`)
ω (x)− φ(`)

ω′ (x)‖ ≤
`−1∑
m=0

Rm

(
R`−1−m‖x‖+

R

R− 1
(R`−m−1 − 1) + 1

)
‖ω − ω′‖

=
`−1∑
m=0

(
R`−1‖x‖+

R`

R− 1
− Rm+1

R− 1
+Rm

)
‖ω − ω′‖

=

(
`R`−1‖x‖+

`R`

R− 1
−
(

R

R− 1
− 1

) `−1∑
m=0

Rm

)
‖ω − ω′‖

=

(
`R`−1

(
‖x‖+

R

R− 1

)
− 1

R− 1

R` − 1

R− 1

)
‖ω − ω′‖.

When R ≥ 2, we have that R/(R − 1) ≤ 2 and R` > 1, giving Eq. (6.14) and
Eq. (6.15).
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6.B Experimental Details

6.B.1 Details of Synthetic Datasets
Table 6.5 shows details of four synthetic datasets. Blob datasets are often used to
validate two-sample test methods [Gretton et al., 2012a; Jitkrittum et al., 2016a;
Sutherland et al., 2016], although we rotate each blob to show the benefits of non-
homogeneous kernels. HDGM datasets can be regarded as high-dimension Blob
which contains two modes with the same variance and different covariance.

Datasets P Q

Blob-S
∑9

i=1
1
9
N (µbi , 0.03× I2)

∑9
i=1

1
9
N (µbi , 0.03× I2)

Blob-D
∑9

i=1
1
9
N (µbi , 0.03× I2)

∑9
i=1

1
9
N
(
µbi ,

[
0.03 ∆b

i

∆b
i 0.03

])
HDGM-S

∑2
i=1

1
2
N (µhi , Id)

∑2
i=1

1
2
N (µhi , Id)

HDGM-D
∑2

i=1
1
2
N (µhi , Id)

∑2
i=1

1
2
N

µhi ,
 1 ∆h

i 0d−2

∆h
i 1 0d−2

0Td−2 0Td−2 Id−2


Table 6.5: Specifications of P and Q of synthetic datasets. µb1 = [0, 0], µb2 = [0, 1], µb3 =

[0, 2], . . . , µb8 = [2, 1], µb9 = [2, 2], the same with Figure 6.1(a). µh1 = 0d,
µh2 = 0.5×1d, Id is an identity matrix with size d. ∆b

i = −0.02−0.002×(i−1)
if i < 5 and ∆b

i = 0.02 + 0.002× (i− 6) if i > 5. if i = 5, ∆b
i = 0 (same with

Figure 6.1a). ∆h
1 and ∆h

2 are set to 0.5 and −0.5, respectively.

6.B.2 Real Datasets and Visualizations
Higgs dataset can be downloaded from UCI Machine Learning Repository 9.
MNIST dataset can be downloaded via Pytorch 10. Figure 6.4 shows images from
two sets of MNIST digits: the Real-MNIST and “Fake”-MNIST.

6.B.3 Type-I errors on Higgs and MNIST
Table 6.6 shows average Type-I error on Higgs dataset when increasing number of
samples (n). Table 6.7 shows average Type-I error on Real-MNIST vs. Real-MNIST
when increasing number of samples (n).

9https://archive.ics.uci.edu/ml/datasets/HIGGS
10https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py
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(a) Real-MNIST (b) “Fake”-MNIST

Figure 6.4: Images from Real-MNIST [LeCun et al., 1998] and “Fake”-MNIST generated
from DCGAN [Radford et al., 2016].

n ME SCF C2ST-S C2ST-L MMD-O MMD-D

1000 0.048 0.040 0.043 0.048 0.059 0.037
2000 0.043 0.032 0.060 0.056 0.055 0.053
3000 0.049 0.043 0.046 0.053 0.051 0.069
5000 0.056 0.035 0.052 0.065 0.049 0.062
8000 0.050 0.034 0.065 0.067 0.056 0.037

10000 0.059 0.032 0.057 0.058 0.045 0.048

Avg. 0.051 0.036 0.054 0.058 0.050 0.051

Table 6.6: Results on Higgs (α = 0.05). We report average Type-I error on Higgs dataset
when increasing number of samples (N ). Note that, in Higgs, we have two
types of Type-I errors: 1) Type-I error when two samples drawn from P (no
Higgs bosons) and 2) Type-I error when two samples drawn from Q (having
Higgs bosons). Type-I reported here is the average value of 1) and 2). Since
Type-I error reported here is the average value of two average Type-I errors, we
do not report standard errors of the average Type-I error in this table.

n ME SCF C2ST-S C2ST-L MMD-O MMD-D

200 0.076±0.011 0.075±0.010 0.035±0.006 0.045±0.005 0.068±0.004 0.056±0.003

400 0.062±0.010 0.056±0.007 0.044±0.006 0.040±0.004 0.053±0.005 0.056±0.005

600 0.051±0.003 0.049±0.009 0.039±0.005 0.054±0.007 0.066±0.008 0.056±0.008

800 0.054±0.006 0.046±0.006 0.043±0.005 0.042±0.007 0.051±0.005 0.054±0.007

1000 0.047±0.006 0.045±0.010 0.038±0.006 0.046±0.005 0.041±0.007 0.062±0.006

Avg. 0.058 0.054 0.040 0.045 0.056 0.057

Table 6.7: Results on MNIST given α = 0.05. We report average Type-I error±standard
errors on Real-MNIST vs. Real-MNIST when increasing number of samples
(N ).



Chapter 7

Conclusions and Future Directions

In this thesis, we investigate the non-parametric hypothesis testing problems in-
cluding goodness-of-fit tests, two-sample tests and quasi-independence tests based
on kernel methods. In the setting of testing goodness-of-fit, the test statistics are
developed from relevant kernelised Stein discrepancies for practical data scenarios
such as Riemannian manifold data (Chapter 3) and data with censoring (Chapter
4). We analyse and compare the advantages and disadvantages of the effect of dif-
ferent Stein operators in performing the KSD-based tests for goodness-of-fit. In
the non-Euclidean data scenario, we compare the Stein discrepancies from different
differential orders with respect to the test functions; and in the censored data sce-
nario, we compare the Stein discrepancies based on important functions in survival
analysis. For non-Euclidean data, we perform model criticism based on the opti-
mised test locations adapted from Finite Set Stein Discrepancy (FSSD), to extract
the interpretable information when the proposed model fails to fit the observed data.

In the setting of testing quasi-independence, where the observed data are left-
truncated and right censored, our developed test is equivalent to simultaneously take
infinitely manly weighted log-rank tests by taking supremum over a rich-enough
class of unit ball RKHS function. Such a scheme alleviates the sensitivity of the test
performances from choosing appropriate weight functions and the proposed test
can achieve state-of-the-art performance with high test power and well-controlled
Type-I error at high censoring rate and with complicated censoring structures.

In the setting of the two-sample problem, the proposed translation non-
invariant deep kernel for MMD-based test adaptively learns the distribution features
to compare the samples more efficiently with smaller sample size, achieving better
test performances compared to existing state-of-the-art kernel-based tests. With the
deep kernel architectures that is capable of extracting useful features, complicated
data such as images of MNIST digits can be tested more efficiently.
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Future Work

Generalised Kernel Stein Discrepancy

The KSD-based goodness-of-fit tests developed in Chapter 3 and Chapter 4 rely
on identifying appropriate Stein operators for the specific data scenario. However,
there is not yet a systematic way to develop new Stein operators for practical scenar-
ios that did not appear in the literature before. As such, a unifying framework can
be useful to develop Stein operators and corresponding KSD-based tests or learning
scheme. Eq. (2.22) provides a Langevin-type diffusion Stein operator. For fixed
function g, consider the construction of Stein operatorAq,gf(x) = Tq(f(x)g(x)) =

g(x)(f ′(x) + f(x) log q(x)′) + g′(x)f(x). The technique to formulate the Stein
operator is referred to as standardisation [Anastasiou et al., 2021; Mijoule et al.,
2018], which was developed to analyse Gaussian approximation. The correspond-
ing KSD is defined as KSDg(p‖q;H) = supf∈B1(H) |Ep[Tq(f(x)g(x))]| . Different
choice of g may be appropriate in dealing with different scenarios. The Diffusion
KSD (DKSD) [Barp et al., 2019] had shed a light on using different diffusion func-
tion for construction of Stein discrepancy in the context of density estimation. In
addition, as the Stein operators are usually not unique, investigating whether there
is a better discrepancy beyond g ≡ 1, which is the KSD in Eq. (2.22) can be an
interesting direction to improve the proposed testing procedures.

Deep Kernel with Stein Discrepancy

With the success of using deep kernel architecture for MMD-based two-sample tests
where the non-translation invariant kernels are able to extract distribution features
to perform the test more efficiently compared to using the simple kernels, it is an
interesting direction to consider such deep kernel architecture on KSD-based test for
goodness-of-fit. When the observed data is of small sample size, the goodness-of-fit
test using KSD with simple (translation invariant) kernels may see very low power,
and much larger sample sizes are required to see the asymptotic trend. Moreover,
KSD is known to be less robust when the underlying distribution exhibits multi-
modal structures. Learning deep kernel architectures aim to extract more effective
features to compare distributions and improve the test efficiency at the scheme of
lower sample sizes. In addition, as a discrepancy measure between distributions,
another interesting direction to investigate is using deep kernel KSD for training
generative models.
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Censoring in Higher Dimensions
In Chapter 4 and 5, the hypothesis testing methods have been developed for uni-
variate data, where the censoring is naturally defined in R+. Despite such uni-
variate case of time-to-event data sees a wide range of applications such as clinical
data, e-commerce data, insurance data, etc., the method developed is only useful
for one dimensional setting. It will be very interesting to explore model valida-
tion or test of independence with censoring in higher dimensional space with the
presence of censoring. As the natural ordering is not straight-forward to define, the
development and analysis need to be treated carefully w.r.t. to the corresponding
definition of “censoring” notion. The generalisation of quantile notion to spatial
quantile [Chakraborty et al., 2014] can be potentially a useful tool to incorporate
censoring notion in higher dimensions.
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