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ActivityNET: Neural networks to predict public transport trip purposes from 
individual smart card data and POIs
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ABSTRACT
Predicting trip purpose from comprehensive and continuous smart card data is beneficial for 
transport and city planners in investigating travel behaviors and urban mobility. Here, we 
propose a framework, ActivityNET, using Machine Learning (ML) algorithms to predict passen-
gers’ trip purpose from Smart Card (SC) data and Points-of-Interest (POIs) data. The feasibility of 
the framework is demonstrated in two phases. Phase I focuses on extracting activities from 
individuals’ daily travel patterns from smart card data and combining them with POIs using the 
proposed “activity-POIs consolidation algorithm”. Phase II feeds the extracted features into an 
Artificial Neural Network (ANN) with multiple scenarios and predicts trip purpose under 
primary activities (home and work) and secondary activities (entertainment, eating, shopping, 
child drop-offs/pick-ups and part-time work) with high accuracy. As a case study, the proposed 
ActivityNET framework is applied in Greater London and illustrates a robust competence to 
predict trip purpose. The promising outcomes demonstrate that the cost-effective framework 
offers high predictive accuracy and valuable insights into transport planning.
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1. Introduction

Activity-based models aim to predict travel demand 
using trip purposes to understand and plan the trans-
port network usage under different socio-economic 
scenarios and land use structures. Transport planning 
with such models rely on travel surveys, which are 
relatively small sample sizes, are expensive to obtain 
and have relatively low update frequencies (collected 
only one day). Therefore, they are prone to bias when 
estimating travel demand for the whole population 
(Yang et al. 2019). On the other hand, collecting 
Smart Card (SC) data has shown great potential for 
investigating passengers’ daily activities at an unpre-
cedented scale, such as a much larger population and 
a longer period of data collection (Anda, Erath, and 
Fourie 2017). In addition, smart card data reveal an 
individual’s spatial-temporal activity pattern as 
a sequence of activity locations, activity start and end 
time, duration of the activity and land use in the 
proximity of alighting or boarding station (Faroqi, 
Mesbah, and Kim 2018), which could be further 
explored to derive the trip purpose of the travelers 
(Sari Aslam and Cheng 2018; Sari Aslam et al. 2020).

Trip purpose is essential for planning purposes, 
performance evaluation and the development of pub-
lic transit networks and services (Faroqi, Mesbah, and 
Kim 2018). The scope of the research expands to 
consumer behavior for commercial establishments 

(Longley, Cheshire, and Singleton 2018), urban mobi-
lity, and people flows for city planners (Yang et al. 
2019), the aspiration of the quality life for economists 
(Nakamura et al. 2016), and public health for policy 
and decision-makers, e.g. the spread of COVID-19 
(Ibrahim et al. 2020). Thus, longitudinal smart card 
data with volume and details need to be investigated 
for trip purposes, such as home, work, entertainment, 
eating, shopping, drop-offs/pick-ups, and part-time 
work activities. However, the majority of the trip pur-
pose identification models from smart card data are 
focused on only primary activities, such as home and 
work (Chakirov and Erath 2012; Devillaine, Munizaga, 
and Trepanier 2012; Zou et al. 2016; Yang et al. 2019; 
Sari Aslam, Cheng, and Cheshire 2019; Sari Aslam 
et al. 2019) but rarely secondary activities (Alsger 
et al. 2018; Sari Aslam et al. 2020). The reason is that 
the defined rules and number of constraints are lim-
ited and reduce the ability to identify trip purposes 
with high accuracy, specifically for secondary activities 
(Xiao, Juan, and Zhang 2016; Anda, Erath, and Fourie 
2017), which are complex compared to regular com-
muters’ activities. Therefore, there is a need to inves-
tigate trip purposes using data-driven Machine 
Learning (ML) approaches, which are flexible enough 
to capture complex information about trip purposes. 
Besides, they are capable of handling a non-linear 
problem with high accuracy (Xiao, Juan, and Zhang 
2016; Anda, Erath, and Fourie 2017).
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Although ML methods focused on clustering and 
classification of trips, passengers, and stations to investi-
gate travel patterns and behaviors from smart card data 
(Faroqi, Mesbah, and Kim 2018), trip purposes hardly 
investigated from individuals’ activities (Lee and 
Hickman 2014; Kusakabe and Asakura 2014; Han and 
Sohn 2016). The reason is that the model performance is 
low as compared to other methods due to the following 
reasons: First, the noise in unprocessed smart card data 
requires pre-processing steps before applying prediction 
models to achieve high accuracy (Dacheng et al. 2018; 
Zhang et al. 2020). Second, aggregated input features per 
user from a large volume of travel data, such as average 
travel duration, and average departure time of the first/ 
last trips (Goulet-Langlois, Koutsopoulos, and Zhao 
2016; Han and Sohn 2016), may not accurately represent 
activity points. Third, how robustly smart card data com-
bined with other data sources is a crucial step to present 
the semantic interpretations of activities (Yang et al. 
2019).

Therefore, in this study, we propose using the 
ActivityNET framework to predict passengers’ trip pur-
poses for each activity per individual from their smart 
card data. The feasible framework includes the following: 
The first phase of the study focuses on extracting spatio-
temporal activities from smart card data and combining 
these activities with points of interest (POIs) using an 
“activity–POI consolidation algorithm”. This part of the 
study offers an understanding of human mobility and 
urban flows from two big data sources in cities. In addi-
tion, the combined dataset provides input features under 
three sub-groups, such as activity characteristics, day 
characteristics, and land use characteristics. The second 
phase of the study uses input features with multiple 
scenarios and predict trip purposes with Artificial 
Neural Network (ANN) under primary (home and 
work) and secondary activities (entertainment, eating, 
shopping, child drop-offs/pick-ups, and part-time work 
activities) with high accuracy.

The contributions of this study are summarized as 
follows:

● The proposed “activity-POIs consolidation algo-
rithm” aims to explore how two large datasets, 
such as smart card data and POIs are combined 
for trip purpose prediction.

● The proposed ActivityNET framework uses mul-
tiple scenarios and predicts trip purposes of pri-
mary and secondary activities using ML 
algorithms with high precision.

● The trip purpose prediction model, ActivityNET, 
is a cost-effective method using smart card and 
POIs to help transport and urban planning.

The next section of the paper presents the data and 
methods with a logical framework. The following 
section (section 3) offers the results of a case study 

in London. Finally, discussion and conclusions of 
the work are presented in sections 4 and 5, 
respectively.

2. Data and methods

2.1. Dataset

2.1.1. Survey smart (Oyster) card data
Smart card data provided by Transport for London 
(TfL) called Oyster card, which is a payment method 
for public transport when a passenger taps in/out at 
a station in London. Automatically recorded Oyster 
card data have attributes, such as boarding and alight-
ing time, boarding and alighting station, and transport 
mode without trip purpose information. In addition, 
TfL allows each user to download their travel data 
(minimum of 2 months). A total of 19,792 trip records 
has been collected for this study. Trip purposes are 
labeled by volunteers under seven categories, which 
include home (3994 data points), work (2006 data 
points), entertainment (555 data points), eating (687 
data points), shopping (818 data points), child drop- 
offs/pick-ups (629 data points) and part-time work 
activities (427 data points). Besides, 5387 and 3729 of 
the activity points come from female and male volun-
teers, respectively. Data points are divided into four 
income bands: no income (2486 data points), earnings 
below £25,000 (1657 points), between £25,000 and 
£40,000 (2901 points), and more than £40,000 (2072 
points). Further, the collected data are divided into 
three age groups: less than 30 years old (3867 points), 
between 30 and 40 (3453 points), and more than 
40 years old (1796 points). In addition, under the 
occupation group, 4972 activities are titled as profes-
sional, 4144 points as students. At the end of the data 
collection and processing section, the collected data are 
anonymized under GDPR rules (ICO 2018).

2.1.2. Foursquare data
POIs data are collected using the Foursquare Location 
API and used in three ways in this study. The first is the 
opening/closing hours of the POIs. The second way is the 
classification of POIs into seven subtypes, i.e. home, 
work, entertainment, eating, shopping, outdoors & 
recreation, and travel & transport, as shown in Table 1. 
The final use is the number of check-ins, which are 
81,328,352 in Greater London. The details of the POI 
data and data pre-processing steps are illustrated in sec-
tion 2.2.1.2.

2.2. Methods

The proposed ActivityNET framework in Figure 1 
predicts trip purpose in two phases. In Phase I, two 
large data sources, namely smart card data and POIs, 
are combined using the proposed “activity-POIs 
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consolidation algorithm” after extracting activities. 
Thus, the location information, e.g. station name, 
from travel data, can be enhanced by dynamic socio- 
economic land use attributes. Phase II, extracted spa-
tial-temporal features are selected with multiple sce-
narios and passed into the model to predict trip 
purposes within sub-categories, e.g. home, work, 
entertainment, eating, shopping, child drop-offs/pick- 
ups, and part-time work activities. Hence, the reason 
for the trips is investigated, revealing why people spent 
their spare time within the city using smart card data 
with the help of POIs.

2.2.1. Phase I: data pre-processing
This section aims to increase the accuracy of the large 
travel datasets while cleaning SC data. First, single 
trips in a day are excluded. The reason is that 

insufficient information has failed to define an activity. 
Thus, 1060 single trips are excluded from the total of 
19,792 trip records. Besides, 499 missing trips, e.g. 
alighting time or station, boarding time or station, 
are also excluded, which create uncertainty to extract 
activities (Chakirov and Erath 2012). After the data 
pre-processing, the travel data in combination with 
POIs are used in the prediction model to explore trip 
purposes from travel data.

2.2.1.1. Extract activities. The definition of a trip is 
a one-way journey from one stop to another stop. An 
activity is the time duration between two consecutive 
trips, such as the alighting station of the first trip and 
the boarding station of the second trip. There is 
a sequence of activities in a day per individual with 
their characteristics, such as start-end time of the 
activity, the location of the activity, the day of the 
activity, which can be used to infer trip purposes.

Trip purpose (the reason for the trip) is to find an 
answer “why has an activity happened in a specific 
location and time”? To achieve this, the location of 
the transit data need to be enriched using other data 
sources, e.g. land use information. Then, it is possible 
to infer trip purposes based upon the type of activities, 
such as home, work, entertainment, eating, shopping, 
and other activities from POIs (Faroqi, Mesbah, and 
Kim 2018).

The assumptions of activity extraction are applied 
in this stage (Sari Aslam et al. 2020) using transfer 
time and walking distance between public transit 
stops, which were assumed to be 15 min (TfL 2019) 
and 800 m (RTPI 2018; Alsger et al. 2018; Sari Aslam 
et al. 2020), respectively. The resulting dataset consists 
of 18,232 trip records, which means 9,116 data points 
(activities) from smart card data.

2.2.1.2. Combining both datasets using activity-POIs 
consolidation algorithm. POIs from Twitter and 
Foursquare data have been used to investigate trip 
purposes, human mobility and urban flows to generate 
an understanding of transport and urban planning in 
cities (Rashidi et al. 2017). To infer activities from 
transit data, the highest probability of activity types 
has been determined from POIs (Alsger et al. 2018; 

Table 1. Activity types from Foursquare data.
Activity Types Activity Location Type

Home Residential building (apartment/condo), housing development, house (private)
Work Government building, library, medical center, office, parking, post office, radio station, recruiting agency, school, college and 

university, social club, TV station, warehouse, etc.
Entertainment Art gallery, pub, nightclub, arcade, theater, club, bar, concert hall, other nightlife, opera house, casino, event space, dance studio, 

etc.
Eating Coffee shop, sandwich bar, cafe, diner, bakery, burger house, restaurant, steakhouse, breakfast bar, taco franchise, bagel shop, etc.
Shopping Supermarket, corner store, pharmacy, mall, boutique, plaza, miscellaneous shop, farmers market, automotive shop, food and drink 

shop, bookstore, etc.
Outdoors and 

recreation
Park, playground, recreation center, rock climbing venue, ski resort, etc.

Travel and Transport Hotel, bus stop, tube station, bike rental/bike share, airport, etc.

Figure 1. The logical flow of activityNET framework (SC and NN 
refer to smart card data and neural networks, respectively).
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Sari Aslam et al. 2020). However, in this study, we 
have explained how both large datasets, i.e. smart card 
data and land use information (POIs), can be com-
bined and used for the machine learning algorithm to 
predict trip purposes.

Figure 2 presents the proposed “activity-POIs con-
solidation algorithm” with details in three sections. 
First, Figure 2(a) illustrates the proposed activity- 
POIs consolidation algorithm to explain how relevant 
POIs are filtered for each activity. The algorithm starts 
by selecting a station and an activity in that station. 
Then the activity is checked: “do we have POIs at the 
station within walking distance?” If yes, a POI is 
selected for that activity. Then, the activity-POI tem-
poral information match is tested against two condi-
tions: “the start time of the activity is later than (>) the 
opening time of POIs and the end time of the activity 
is earlier than (<) the closing time of POIs”. If the 
conditions are met, the number of check-ins is added 
under the activity types of the POI. Then, the algo-
rithm moves to the next POI for the same activity. 
Once all possible POIs have been checked, the activity 
has the total number of check-ins for each of the 
activity types: home (H), work (W), entertainment 
(ENT), eating (EAT), shopping (SHO), outdoor & 
recreational (REC), and travel & transport (TPO). 
This process is conducted for all activities in each 
station. Thus, the characteristics of land use informa-
tion using the check-ins of POIs are assigned to each 
activity with different weights. Figure 2(b) illustrates 
the same scenario using data characteristics under 

three categories, including spatial information match 
using the coordinates of both datasets, temporal infor-
mation match using the start/end time of activities 
from smart card data and opening/closing hours of 
POIs, and attractiveness of each activity using the total 
number of check-ins for the activity types from the 
POIs. The opening hours of the POIs may have some 
variation on different days. If this is the case, the ear-
liest and latest working hours are used for each POI, 
e.g. if opening/closing hours of a place are 10:00/15:00 
from Monday to Friday and 12:00/16:00 on Saturday 
and Sunday, the opening/closing hours are considered 
to be 10:00/16:00 for the place.

The third column visualizes the same scenario 
using an example. Figure 2(c) starts with the spatial 
information match for an activity (A1) at a station 
(Oxford Circus station) using “walking distance 
800 m”, which captured 3023 POIs for A1. The same 
example, further investigated for A1 considering the 
temporal information match, is displayed in Figure 2 
(d). The start/end times of A1 are 10:00/13:00 and the 
opening/closing hours of the first POI (POI1Sho) are 
9:00/22:00. According to the temporal information 
match, the time variables overlapped; thus, POI1Sho 
is moved next step and the number of check-ins is 
saved for corresponding activity types (POISHOs) in 
Figure 2(e). Then, the next POIs (POI2Wor and 
POI3Eat) are similarly checked based on temporal 
information. The number of check-ins for POI2Wor 
is added in POIWORs, but the number of check-ins 
for POI3Eat is not counted in POIEATs due to non- 

Figure 2. A workflow for combining the two datasets. First, the proposed activity-POIs consolidation algorithm filters relevant POIs 
for each activity (a). Second, data characteristics are presented under the three subsections: spatial information match, temporal 
information match, and attractiveness (b). Third, an example, with visualizations, is presented spatially (c), temporally (d), and for 
aggregated (sum) check-ins for the activity types (e). In addition, m refers to the number of POIs around the station.
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overlapping temporal information. After running this 
process for each of the 3023 POIs, the aggregated 
check-ins are saved under seven categories for A1 as 
the characteristics of land use information, as shown 
in Figure 2(e).

Note that the steps in Figure 2 may result in mem-
ory issues due to the processing of large datasets. The 
reason for this is that data processing packages – e.g. 
Pandas in Python – are designed to work with a low 
memory allowance. Therefore, PySpark is used to 
carry out the processing steps and analysis in this 
section.

As a result, combined input features are presented 
with details as temporal features (activity 
characteristics, day characteristics) and spatial features 
(land use characteristics) in Table 2.

2.2.2. Phase II: prediction of trip purposes
This section shows the structure of the model, training 
the model using input features, and the prediction of 
trip purposes using the trained model illustrated 
under “phase II” in Figure 1.

2.2.2.1. The structure of the artificial neural network 
with multiple scenarios. The artificial neural network 
is applied for predictive analysis to classify multi-class 
trip purposes using its non-linear pattern classification 
capabilities. The reason is that neural networks are 
capable of handling dimensionality of the problem 
using spatial dependencies in a large dataset with high 
accuracy and low computing time (Xiao, Juan, and 
Zhang 2016; Ibrahim et al. 2019), while statistical mod-
els are parametric and struggle from high computa-
tional complexity in large-scale scenarios. On the other 
hand, standard ML methods are narrow in architecture 
that cannot comprehensively handle non-linear large 
spatial-temporal data with high dimensionality.

The details of the structure of the model illustrated in 
Figure 3 are provided in the following subsections;

1. Input layer: The first layer of neural networks 
transfers the information from input features using the 
same dimensionality. Due to class imbalance issues (see 
section 2.1.1), (1) random over-sampling technique that 
duplicates data points randomly in the minority classes 

and (2) random under-sampling technique that removes 
data points from majority classes randomly (Brownlee 
2020a), are compared to (3) unchanged values in this 
section. In addition, the dimensionality of the layer is 
increased and decreased, including (input dimen-
sion = 11, with POIs) and excluding of spatial features 
(input dimension = 4, without POIs) to evaluate overall 
accuracy with different scenarios in the model (sec-
tion 3.2).

2. Hidden layers: These layers process the informa-
tion from the input layer to the output layer. In this 
section, the number of neurons and functions needs to 
be investigated. Even though there is no rule of thumb 
to choose the number of layers in neural network 
(Goodfellow, Bengio, and Courville 2017), two hidden 
layers are processed the transformation, one with 100 
and one with 60 units, which are activated using the 
Rectified Linear Unit (ReLU) (Glorot, Bordes, and 
Bengio 2011) to increase the nonlinearity of the 
model and improve the performance of the 
units (Dahl, Sainath, and Hinton 2013).

The dropout regularization technique (Hinton 
et al. 2012) is considered after hidden layers with 
a dropout rate of 0.5 to reduce overfitting. The 
cross-entropy loss was applied to the model as the 
training objective function. The model is compiled 
using the stochastic gradient descent Adam optimi-
zer (Kingma and Ba 2015) to minimize the loss 
function with an initial learning rate of 0.001. 
Different values of mini-batch gradient descents 
with different possible epochs are also investigated, 
and the best accuracy is attained using a batch size 
of 64 with 700 epochs during the training process.

Hyper-parameters such as the number of neurons, 
drop rate, optimizers, activation functions, loss func-
tions are tuned to decide the best possible parameters 
in the model using grid search techniques (one para-
meter is changed while others are unchanged) 
(Brownlee 2020b)

3. Output softmax layer: The output layer is acti-
vated using the softmax function to distribute the 
probability throughout each output class. The result 
of the given input feature is presented as the high 
probability value for predicting the output class.

Table 2. Input features to identify trip purposes.
Category Feature Definition

Trip purposes TRP_PURP The labeled activities for the reason of the trip
Activity characteristics ACT_DUR Duration of the activity (hours)

ACT_ST_TIME Start time of the activity in 24 hours
ACT_EN_TIME End time of the activity in 24 hours

Day characteristics Weekdays/ends If the activity has happened on weekdays (1)/ Otherwise (0)
Land use characteristics HOM Aggregated check-ins for home locations

WOR Aggregated check-ins for work locations
ENT Aggregated check-ins for entertainment locations
EAT Aggregated check-ins for eating locations
SHO Aggregated check-ins for shop locations
REC Aggregated check-ins for outdoors/recreation
TPO Aggregated check-ins for transport stations

GEO-SPATIAL INFORMATION SCIENCE 5



As a result, the proposed model is trained with 70% 
of the data (training data) and tested with the rest of 
the dataset (30% testing data).

2.2.2.2. Evaluating and validating the model perfor-
mance. Validation of the model is crucial for the study, 
and the model evaluation is illustrated under two sub- 
sections. The first approach of evaluating model perfor-
mance is achieved under three sub-categories (1) evalu-
ating the model performance with three measures 
presented, such as precision, recall, and F1-score 
(Brownlee 2020c), (2) plotting the confusion matrix to 
illustrate the prediction performance for each class inde-
pendently, and (3), comparing the effectiveness of the 
model to other baseline models using cross-validation.

The second approach of the validation focusses on 
the comparison of the accuracy obtained from the 
highest probability of land use information (Alsger 
et al. 2018; Sari Aslam et al. 2020). Thus, after phase 
1, we have inferred the activities from smart card data 
using the highest probability of POIs as a benchmark 
model and compared the results with the survey smart 
card data. The validation of activity type has been 
calculated as follows: 

VAT ¼
CAT

TATn

� 100 

Where AT is activity type, such as home, work, etc.,VAT 

is the percentage of validated activity type, CAT is the 
correctly identified activity points from labeled data 
using the highest probability of land use (POIs) values 
and TATn is the total number of n (check-ins) in activity 
type. Hence, CAT is normalized based on the total 
number of check-ins. As a result, the accuracy for 
each activity type is presented in section 3.2.2.

3. Results

3.1. The result of the multiple scenarios for input 
features to predict trip purposes

The classification methods have the potential to exam-
ine trip purpose within travel data (Kuhlman 2015; 
Alsger et al. 2018). However, the representation of trip 
purposes in each class with a different number of data 
points may create class imbalance issues in the ML 
approach (Brownlee 2020a). For instance, almost 60% 
of the activities in the survey data are primary activ-
ities, and 40% are secondary activities, which reveals 
that the count of each secondary activity is much lower 
than the count of each primary activity. Therefore, 
random over and under-sampling techniques are 
compared to unchanged values of each class to evalu-
ate overall accuracy. In addition, the classification 
accuracy using different scenarios such as including 
and excluding land use attributes (with/without POIs, 
respectively) are also evaluated in this stage to obtain 
the best possible model performance. According to the 
results in Figure 4, using random under-sampling 
techniques with POIs achieved an overall accuracy of 
94%. Conversely, without POIs this number decreases 
7% for an overall accuracy of 88%. The accuracy of 
using over-sampling techniques with POIs was 96%, 
and the accuracy without POIs was 89%. Finally, with-
out balancing any classes, the overall accuracy was 
89% and 83% with and without POIs, respectively. In 
addition, Figure 4(c,d) illustrate the convergence of 
the model accuracy and loss using under-sampling 
with POIs.

As a result of this section, training speed using the 
under-sampling technique has a lower impact com-
pared to the over-sampling technique. In addition, 
there is a consistent 6% to 7% accuracy difference 

Figure 3. The structure of the ANN model for the study. (11 neurons in the input layer, seven classes as trip purposes in the output 
layer).
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using each model with and without POIs shown in 
Figure 4(b). Therefore, the rest of the analysis is pre-
sented using random under-sampling with POIs.

3.2. The results of the validation process

We validated the results using two approaches. First, 
we evaluated the model performance using the testing 
data. Second, we compared the proposed model 
against benchmark models using the highest probabil-
ity of land use information from POIs.

3.2.1. Evaluating the model performance
This section presents the performance of prediction 
under three sub-sections. First, we evaluate the models 
using three performance metrics in each class, such as 
precision, recall, and F1-score (Brownlee 2020c). The 
best results in precision, recall, and F1 were attained 
for work activities (primary activities) and child drop- 
offs/pick-ups and part-time work activities (secondary 
activities) presented in Table 3.

Then, we present the confusion matrix to clarify the 
prediction performance for each class independently. 
The confusion matrix using test data in Figure 5 illus-
trates that the probability of a correct prediction is larger 
than misclassification. The lowest prediction score is for 
shopping activities, with 17% misclassified as entertain-
ment or eating activities. The misclassification may 

suggest that the temporal variation in the three activities 
is overlapping. For example, shorter duration shopping 
activities might be misclassified as eating, and longer 
duration shopping activities might be misclassified as 
entertainment. The best score among primary activities 
is fairly close, with 99% of home and 97% of work 
activities correctly predicted. The best prediction of infer-
ence among secondary activities is obtained for drop-offs 
/pick-ups (84%) and PT-work activities (81%) as a result 
of regular activity patterns. The rest secondary activities 
present similar outcomes with high temporal stability 
and regularity, such as 84% of entertainment activities, 
76% of eating activities.

The third one is the comparison of the model with 
other baseline models using 10-fold cross-validation. 
In this section, trip purpose prediction accuracy of 
ActivityNet is compared with several baseline models, 

Figure 4. The representation of the data points in each method (a) and the results of overall prediction with/without POIs using 
unchanged data (UD), random under- and over-sampling (RUS and ROS, respectively) techniques (b), the model accuracy (c) and 
loss (d) using random under-sampling with POIs.

Table 3. Prediction performance using precision, recall, and 
F1-score on test data.

Trip purposes Type of activities Precision Recall
F1- 

score

Home Primary activities 0.84 0.98 0.90
Work 0.99 0.97 0.98
Entertainment Secondary 

activities
0.73 0.84 0.78

Eating 0.74 0.76 0.75
Shopping 0.75 0.62 0.68
Child drop-offs/pick- 

ups
0.95 0.84 0.89

Part-time (PT) workers 0.89 0.81 0.85
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such as Random Forest (RF) (Breiman 2001), Support 
Vector Machine (SVM) (Cortes and Vapnik 1995), 
Logistic Regression Classifier (LR) and Naïve Bayes 
(NB). In the existing literature, these models have 
been adopted for trip purpose prediction from differ-
ent data sources, such as GPS, phone data, but smart 
card data. Therefore, they are considered baseline 
models to compare to the proposed model in this 
study.

As shown in Figure 6, the original data is randomly 
partitioned into 10 subsamples. The highest accuracy, 
between 86% and 99% with a 12% variance, is achieved 
using ANN. The second highest accuracy, 84%—89% 
with a 6% variance, is achieved using RF. The third 
highest accuracy, 78%—81% with the lowest variance, 
is captured using SVM. Finally, LR and NB produce 
the lowest accuracy results in the cross-validation 
analysis compared to the other classifiers. These 
results support the assertion that neural networks 
can build computation-intensive classification with 
high accuracy using transport smart card data and 
locational POIs information with the help of data pre- 
processing steps.

3.2.2. Validation of the model
This section aims to compare the accuracy of the 
proposed framework to existing models using the 
highest probability of land use information from 
POIs. Note that this part of the enrichment is obtained 
after phase 1. As a result, 51% of work and 49% of 
home activities, 44% of entertainment, 33% of eating, 
35% of shopping, 34% of D/P and 39% of PTW activ-
ities are identified as correct. As a result, the proposed 
ActivityNET framework demonstrates a higher suc-
cess rate as compared to rule-based techniques in the 
literature.

The reason for the low accuracy in the heuristic 
approaches is that the distribution of highly mixed 
land use provides lower accuracy than the distribution 
of single land use, such as residential or work centers. 
Besides, sophisticated techniques provide higher accu-
racy to predict trip purposes (Anda, Erath, and Fourie 
2017).

4. Discussion

This study aims to predict trip purposes using the 
spatial and temporal attributes of transport data and 
land use data derived from POIs with machine learn-
ing algorithms. Multiple scenarios, including spatial 
features with a random under-sampling technique, are 
investigated to optimize the accuracy of the model. 
The overall accuracy values of the model predictions 
for the training and testing datasets are 99% and 94%, 
respectively. To investigate the model robustness 
further, cross-validation is applied to represent the 
difference between the highest and lowest accuracies 
achieved in ANN versus other baseline methods. The 
results for each activity type are shown based on pre-
cision, recall (sensitivity), and F1-score, as well as 
confusion metrics. Our results show that the 
ActivityNET framework provides consistent accuracy 
and model stability in detecting trip purposes using 
machine learning techniques for further 
developments.

Figure 5. Inferring trip purposes using the confusion matrix 
with POIs (X and Y-axis corresponds to predicted and actual 
labels, respectively).

Figure 6. The accuracy of cross-validation using ANN and baseline methods.
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Using new big data sources, such as smart card data 
and POIs provides an excellent opportunity to explain 
where, when, and why people spend their time within 
urban settings. Both data sources have great opportu-
nities, such as investigating human mobility, urban 
flow and trip purposes with some limitations. For 
instance, smart card data may suffer from demo-
graphic details of passengers’ (Zhang, Cheng, and 
Sari Aslam 2019; Zhang, Sari Aslam, and Cheng 
2020), recording destination information for bus 
users (Gordon et al. 2013), and the trip purpose of 
the travelers, investigated further using land use attri-
butes such POIs. Similarly, regardless of the wide 
range of positive characteristics of POIs from four-
square data, e.g. quantifying the weight of the place 
using check-ins, using working hours of POIs to pre-
sent dynamics of the activity patterns in cities, POIs 
may suffer from over-representing of some of the 
locations, e.g. a small number of users with substantial 
check-ins in restaurant or shopping centers as com-
pared to workplaces (Rashidi et al. 2017). In addition, 
demographic biases in the dataset is an inevitable fact 
that the application is mainly used by younger age 
groups, e.g. less than 30 years old, as compared to 
older age groups in the cities (Longley and Adnan 
2016).

Even though the proposed framework provides 
high prediction accuracy compared to other ML mod-
els, trip purpose detection inherently involves uncer-
tainty (Xiao, Juan, and Zhang 2016; Faroqi, Mesbah, 
and Kim 2018) in terms of temporal and spatial simi-
larities in the dataset. For instance, long hours of 
shopping activity may be disturbed by eating activity 
(drinking coffee/tea) at a location in which both shop-
ping and eating places are available. Although it is 
difficult to separate those activities in individuals’ 
daily lives, there are no multiple activities in survey 
data for the analysis. Therefore, we assume that this is 
not an issue for the proposed framework.

Moreover, this study also shows a comparison 
between what-if scenarios and ML approaches. The ana-
lysis demonstrates that the highest probability of activity 
type is dependent on the distribution of land use. That 
means the distribution of highly mixed land use provides 
lower accuracy than the distribution of single land use 
such as residential or work centers. In addition, the land 
use information from POIs has limitations to represent 
primary locations. Moreover, the complex sequential 
relationship between spatial and temporal features can 
be captured by the ML approach with high accuracy to 
predict trip purposes.

5. Conclusion

The availability of big data sources such as smart card 
data and POIs provide a great opportunity to produce 
new insights into transport demand modeling. This 

study aims to predict trip purposes in a feasible frame-
work using the spatial and temporal attributes of 
transport data and urban functions derived from 
POIs to generate an understanding of human mobility 
and urban flow in cities.

The proposed framework, ActivityNET, is demon-
strated to provide improved accuracy in trip purpose 
prediction. First, the framework leverages the proposed 
“activity-POIs consolidation algorithm”, which com-
bines travel behaviors with socio-functional informa-
tion from POIs, e.g. activity characteristics (activity 
start and end time, activity duration), day characteris-
tics, and land use characteristics. Second, the frame-
work utilizes an ANN method to predict trip purposes 
of primary (home and work) and secondary activities 
(entertainment, eating, shopping, child drop-offs/pick- 
ups, and part-time work activities). Third, the proposed 
framework is applied in a case study in London and 
achieved 94% overall accuracy using random under- 
sampling techniques with POIs. In addition, high accu-
racy for primary activities, 99% for home and 97% for 
work, are obtained from smart card data. Furthermore, 
improved accuracies are achieved for secondary activ-
ities, with 84% for entertainment, 84% for drop-offs 
/pick-ups, 81% for PT-work, 76% for eating activities, 
and 62% for shopping activities. In summary, 
ActivityNET offers trip purpose prediction with high 
accuracy, which has the potential to inform transport 
and urban planning. Future work includes creating 
travel diaries using the results of ActivityNET as an 
alternative method for travel demand research.
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