
Dealing with a Missing Sensor in a Multilabel and
Multimodal Automatic Affective States Recognition

System
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Óptica y Electrónica (INAOE)

Puebla, México
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Abstract—Data from multiple sensors can boost the automatic
recognition of multiple affective states in a multilabel and multi-
modal recognition system. At any time, the streaming from any
of the contributing sensors can be missing. This work proposes
a method for dealing with a missing sensor in a multilabel and
multimodal automatic affective states recognition system. The
proposed method, called Hot Deck using Conditional Probability
Tables (HD-CPT), is incorporated into a multimodal affective
state recognition system for compensating the loss of a sensor
using the recorded historical information of the sensor and its
interaction with the other available sensors. In this work, we
consider a multilabel classifier, named Circular Classifier Chain,
for the automatic recognition of four states: tiredness, anxiety,
pain, and engagement; combined with a multimodal classifier
based on three sensors: fingers pressure, hand movements,
and facial expressions; which was adapted for coping with the
problem of a missing sensor in a virtual rehabilitation platform
for post-stroke patients. A dataset of five post-stroke patients who
attended ten longitudinal rehabilitation sessions was used for the
evaluation. The inclusion of HD-CPT compensated for the loss
of one sensor with results above those obtained with only the
remaining sensors available. HD-CPT prevents the system from
collapsing when a sensor fails, providing continuity of operation
with results that attenuate the loss of the sensor. The proposed
method HD-CPT can provide robustness for the naturalistic
everyday use of an affective states recognition system.

Index Terms—automatic affective states recognition, missing
sensor, multilabel classification, classifier chains, multimodal clas-
sification, fingers pressure, hand movements, facial expressions,
virtual rehabilitation
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I. INTRODUCTION

To increase the reliability of automatic affective states
recognition, affective computing systems often use multiple
types of sensors for providing complementary information
about a person’s affective states or for solving ambiguities
in the interpretation of the data. In single sensor systems, the
failure of the only input stream may be catastrophic. In multi-
sensor systems, when a subset of the sensors fails to operate
or a certain type of sensors is not available due to contextual
reasons (e.g. for privacy reasons, a patient may prefer to switch
off the video camera), it is sometimes possible to operate
with the remaining sensors. Consequently, it is convenient to
develop solutions to allow multi-sensor (multimodal) systems
to continue operating, but also important to do so to keep
a reliable performance even when a sensor is missing, i.e.
not merely surviving crashing. Moreover, a successful strat-
egy should aim to compensate and keep the performance
higher than the performance that would be obtained by only
using the remaining available sensors while ignoring the
information provided by the missing sensor. Integrating such
considerations in the multimodal affective computing systems
would facilitate their deployment in environments outside the
laboratory (naturalistic settings).

The work presented in this paper aims to address the need
to deal with a missing sensor in the context of a multilabel and
multimodal automatic affective states recognition system used
in a real hospital setting. The Hot Deck imputation method [1],
[2] using Conditional Probability Tables (CPTs) was incorpo-
rated into a multimodal affective states recognition system for
compensating the loss of a sensor using the recorded historical
information of the sensor and its interaction with the other



available sensors. The recognition system being considered
is based on a multilabel classifier named Circular Classifier
Chains (CCC) [3]–[5] used for the automatic recognition
of four states: tiredness, anxiety, pain, and engagement [5],
combined with a multimodal classifier called Fusion using
Semi-Naı̈ve Bayesian Classifier (FSNBC). The FSNBC is
based on three sensors [6]: PRE sensor for fingers pressure,
MOV sensor for hand movements, and FAE sensor for facial
expressions. This system is used in a virtual rehabilitation
platform for post-stroke patients. We explore how we can
preserve the reliability of the system when a sensor is missing.
The main novelty of the method is the use of the CPTs and
its integration into a multilabel and multimodal recognition
system. Although in this work we incorporated it into a
particular architecture, it can be used with any multimodal
system based on a probabilistic approach.

We evaluated the proposed approach by integrating it in an
application for post-stroke rehabilitation [5], [7]. The dataset
was recorded during ten longitudinal rehabilitation sessions
using a virtual rehabilitation platform named Gesture Therapy
[8], [9]. This application was chosen because it was used in a
real-hospital scenario, is multimodal (facial expressions, finger
pressures, and hand movements), and includes four (affective,
physical, or psychological) states of the patients: tiredness,
anxiety, pain, and engagement, in a multilabel scheme. By
being multilabel, we could investigate the effect of the pro-
posed approach to cope with different states, where sensors
may differ in their relevance to the estimation of the different
states. The four states were related to patients’ physical activity
sessions and were chosen through discussions with clinician
staff [5], [7].

Experiments in three simulations were carried out using
the dataset of post-stroke patients mentioned above. In each
simulation, a different sensor was treated as lost and the per-
formance of the system that incorporated the proposed method
Hot Deck using Conditional Probability Tables (HD-CPT) was
compared against the system with all the sensors available
and the system that just eliminated the corresponding sensor.
Our approach gave robustness to the system for continuing
working although a sensor was lost, it did not represent extra
computational cost and provided recognition performances that
were above the results of the computational model when only
the working sensors were considered.

In summary, the main contributions are the following:

1) We propose a novel extension of Hot Deck method
to work with Conditional Probability Tables (HD-CPT)
which can provide robustness for the naturalistic every-
day use of an affective states recognition system.

2) The integration of the HD-CPT method in a multilabel
and multimodal affective states recognition system.

3) The method does not add extra computational cost to
the model when a sensor is lost, and in general provides
better results that just ignoring the missing sensor.

4) The method was evaluated in a real world application
with competitive results.

II. RELATED WORK

The problem of learning using privileged information
paradigm [10] is closely related to the problem of a missing
sensor in some computational models. The potential of this
paradigm has been considered because of the possibility that
during the training phase, several sensors will be available,
and some of them will register “privileged information”, which
will not be easily acquired during the testing or deployment
phase. While this paradigm has been explored mainly in the
context of Support Vector Machines (SVM), new research has
emerged concerning other machine learning algorithms and in
the context of affective computing [11], [12].

One of the applications has been the implicit tagging
of emotional videos, in which the observer’s physiological
responses and nonverbal spontaneous behavior displayed when
interacting with the videos are used to label segments of a
video with the various emotions the video segments induce to
the observer [13]. An approach of implicit video emotion tag-
ging and recognition of affective states from Electroencephalo-
gram (EEG) signals was developed [14] through the use
of Canonical Correlation Analysis (CCA). Two new feature
spaces were created, one for the EEG and one for the video,
which encapsulated the relationships between the features of
both sources (EEG and video). Two SVMs were trained,
respectively, over each feature space. The SVM built over
video space uses the EEG features as privileged information
for implicit video tagging. The SVM from the EEG feature
space uses the features of the video as privileged information
to recognize the person’s emotional state. The experiments
showed higher performances in valence and arousal classi-
fications than simply using classical SVM classifications. A
drawback of this approach is that it does not provide a solution
for the case of more than two sensors.

To overcome the two-sensor limitation, a SVM model
with similarity restrictions in the mapping functions [15] was
developed to capture the relationship between EEG signals,
multiple user peripheral physiological signals (Electroocu-
logram (EOG), Electromyogram (EMG), Electrocardiogram
(ECG), Galvanic Skin Response (GSR), Respiration (RESP),
Skin Temperature (TEMP), and Plethysmogram (PLET)) and
the features of videos’ content. In this case, the EEG signals
and the different peripheral physiological signals represent
the privileged information in the implicit video tagging, i.e.,
during the test phase, only the video features are available. To
obtain the classification model, an optimization problem with
the SVM with the similarity restrictions in the mapping func-
tions was solved using the Lagrange multiplier and solving its
dual problem, which implies high computational costs.

Learning using privileged information has also been ap-
plied to model individual differences and general patterns in
the EEG signals of various subjects for automatic emotion
recognition [16]. This approach allows to use the individual
information of each subject as privileged information, or use
the general information of the subject group as privileged
information, which is only available during training. Two



Bayesian network structures were tested to predict binary
valence and arousal levels; the joint probability distribution
learned by the Bayesian networks, the tags could be estimated
from the features of EEG only, marginalizing on the privileged
information: the subject or the group of subjects. This ap-
proach was also studied using hierarchical Bayesian networks
to handle the generality and specificity of the EEG signals of
the group of individuals in automatic recognition of emotions
[17]. This approach also implies a high computational cost
for generating the structure of the Bayesian networks and for
obtaining their parameters.

Bayesian networks inherently allow the marginalization of
features and, for this reason, are useful for learning using
privileged information [18]. Bayesian structures have been
studied [18] with three general nodes: the class node y (the
emotion variable), the available information node x, and the
privileged information node x∗, and all possible connections
and directions of the arcs between these nodes. However, this
produces a complex structure and implies that the inference
process requires high computational resources.

The proposed method based on HD-CPT can be used in
computational models with more than two sensors and with
no extra computational costs. The proposed method does
not represent an overhead for the multilabel and multimodal
computational model (as shown in Sec. VIII). The creation
of the Conditional Probability Tables (CPTs) is simple, and
the process for choosing the required value is straightforward
based on the Conditional Probability Table (CPT).

III. PROPOSED METHOD

The proposed method estimates the values of the missing
sensor by applying the Hot Deck scheme [1] combined with
a strategy of selecting the required values according to the
probability distribution registered in the corresponding CPT.

A. Hot Deck

Hot Deck is a classical imputation method that replaces
missing values with observed values from a “similar” feature
vector [1]. The process involves replacing missing values of
one or more components of a feature vector ~xv (called the
receiver) with observed values provided by a feature vector
~xu (called the donor) which is similar to the receiver for the
non-empty components [2]. The final donor can be selected
randomly from a set of feature vectors that are potential
donors, or it can be selected deterministically using, for
example, the “nearest neighbour” [2].

B. Hot Deck using Conditional Probability Tables

Our novel methodological contribution is to extend Hot
Deck to work over Conditional Probability Tables (HD-CPT).
Since there should be historical information (or training data)
of the values of all variables, i.e., feature vectors with values
for all its components, then when a new feature vector has
missing values in some of its components, it should be possible
to make the imputation through the Hot Deck method using
the corresponding CPT.

Fig. 1. Schematic depiction of a multimodal binary classifier. The features
of m sensors are the inputs for m binary classifiers, respectively. Each binary
classifier predicts the presence (1) or the absence (−1) of a state yielding
the outputs Csh = class variable for the inference from sensor sh, h ∈
{1, 2, . . . ,m}. The predicted classes are the components of a feature vector
that is the input to a final binary classifier to performs a late fusion to predict
the final binary response.

In the context of multimodal binary classification, where
several sensors are involved, and the information of each
sensor is processed by a corresponding binary classifier, a
feature vector can be created whose components are the classes
predicted by the binary classifiers. Each binary classifier
predicts the presence or the absence of a state from information
received from a different sensor, respectively. The feature
vector is used as input to a final classifier that performs a
late fusion to predict the final binary response (Fig. 1). If a
sensor fails, it leads to the respective component in the feature
vector having a missing value. In this context, identical donor
feature vectors in the historical records can provide different
values for the missing value in the receiver feature vector.
In this situation, the missing value is imputed by selecting
the required value according to the probability distribution
registered in the corresponding CPT, given the values of the
other variables. An example in a three sensors problem is
depicted in Fig. 2.

IV. INTEGRATION OF THE PROPOSED METHOD INTO THE
BAYESIAN CLASSIFIERS ARCHITECTURE

We tested the approach in a real case scenario of a post-
stroke rehabilitation system that is based on a Bayesian
classifiers architecture. This is an interesting testbed based on
a probabilistic approach. We briefly present the architecture
here (for details see [5], [7]).

A. Circular Classifier Chains (CCC) with Fusion using Semi-
Naı̈ve Bayesian Classifier (FSNBC)

All the computational models are binary classifiers as-
sembled using the Semi-Naive Bayesian classifier (SNBC)
[19], [20] as the core model. The data of each sensor are
processed individually, providing each of them as input to



Fig. 2. An example of the proposed method: Hot Deck using Conditional
Probability Tables (HD-CPT). In this example there are three sensors: s1, s2,
and s3, resulting in three predicted classes: Cs1, Cs2, and Cs3. The historical
information has 11 feature vectors. A new feature vector is presented where
the third component has a missing value. The CPT of Cs3 given Cs1 and
Cs2 is built. For Cs1 = 1 and Cs2 = −1, there are 4 instances and they
are the donor feature vectors. The value for Cs3 is selected according to the
probability distribution when Cs1 = 1 and Cs2 = −1.

a different Multiresolution Semi-Naı̈ve Bayesian Classifier 2
(MSNBC2) [5], [7], [21] to estimate, in each case, the presence
or the absence of a same affective state. Then FSNBC (late
Fusion using SNBC) [6] is used for processing the prediction
(occurrence or not of the affective state) from the MSNBC2 of
each sensor and finally decides the occurrence of the affective
state (Fig. 3).

There are as many FSNBC as affective states, each one for
recognizing one affective state. These FSNBC are linked using
a CCC [3]–[5]. CCC integrates the dependency relationships
between the affective states to get the final recognition. CCC
is a multilabel model that consists of q base binary classifiers
linked in a circular chain that executes an iterative process for
propagating the predicted classes to the succeeding classifiers
until a fixed number of iterations is reached or until conver-
gence. The architecture is illustrated in Fig. 3. See [3]–[5] for
more details.

B. Incorporating the proposed method: HD-CPT

The proposed method provides a mechanism to deal with
a missing sensor in a probabilistic classifier. We show here
how it can be embedded in CCC-FSNBC. The mechanism
was operationalized in the MSNBC2 component (which is part
of FSNBC) since MSNBC2 processes each sensor separately.
When data from a sensor are lost, the data of the other working
sensors can help fill in the information of the missing sensor
to minimize the reduction in recognition performance (Fig. 3).
It is assumed that there is historical information of all the
working sensors in the classification process, so the predicted

classes of the missing sensor can be estimated with respect
to the classes predicted by the other working sensors in the
historical data; so it is possible to impute, through the proposed
method –HD-CPT–, the classes of the missing sensor from the
predicted classes of the other working sensors of that affective
state.

The imputation process in the MSNBC2 of the missing
sensor (the receiver) has to be made for estimating the
predicted class in each odd-size sliding window W of the
input signal corresponding to each sensor1, |W | = 3, 5, 7, 9, 11
(the predicted class of the Semi-Naı̈ve Bayesian Classifier
(SNBC) that corresponds to each W ) (Fig. 4). Then, the fusion
using SNBC within MSNBC2 predicts the class that MSNBC2
provides as input to FSNBC (as the contribution from the
missing sensor, which is one input modality). Specifically,
when a sensor is lost, the predicted classes of the working
sensors for the same odd-size sliding window |W |, in the
corresponding affective state, can provide the information
that HD-CPT needs to identify the donor vectors in the
historical records. Once the donor vectors are identified, then
the imputation for the predicted class in the respective odd-
size window |W | of the receiver can be done by selecting
the class, 1 or −1, according to the probability distribution
of the receiver classes given the classes of the donor vectors.
Indeed, the CPT of the classes of the receiver given the classes
of the donors is generated, and the selection of the class for
the receiver is made according to the probability distribution
registered in the CPT. The imputation process must be done
for the class of each odd-size window of the receiver, in this
case, five times.

After the imputation process has been made at the
MSNBC2s of the missing sensor, then the architecture of
CCC-FSNBC may attenuate the loss of the sensor at the
subsequence levels of FSNBC and CCC when the dependency
relationships of affective states are added in.

V. VIRTUAL NEUROREHABILITATION

Neurorehabilitation is the clinical process that patients
with sequelae of neural injury follow, aiming to recover or
compensate their former function. Virtual rehabilitation is
a submodality of occupational therapy where the neurore-
habilitation exercises occur with the patient immersed in a
virtual environment providing safety, opportune feedback, and
motivation [9]. There already exist several virtual rehabilitation
environments [9] with different virtues and limitations.

Gesture Therapy (GT) [5], [8], [9] is a virtual rehabilitation
platform designed to attend post-stroke patients in the recovery
of the mobility of their upper limbs. Therapeutic exercises
are disguised in the dynamics of reaching targets in serious
games that promote the mobility of the arm and hand, and
finger pressure. GT is controlled by means of a gripper and a
system for tracking the gripper’s colour ball and for registering
the finger pressure exerted on the pressure sensor in the gripper

1Each sensor provides a continuous input signal which is sampled, and the
samples are processed in windows of different sizes for classification [23].



Fig. 3. Circular Classifier Chains (CCC) - Fusion using Semi-Naı̈ve Bayesian Classifier (FSNBC), with the method of Hot Deck using Conditional Probability
Tables (HD-CPT). When a sensor fails, the sensor is managed in that condition in the corresponding MSNBC2s. For instance, if the PRE sensor is not
available, there are no more data from it, so the data of the other working sensors should supply information to recover the behaviour of the missing sensor,
to limit the reduction in the recognition performance of the CCC-FSNBC. This example is from the post-stroke patient rehabilitation dataset [5], [7], which
includes PRE, MOV, and FAE sensors; and the affective states of tiredness, anxiety, pain, and engagement. In this example, MSNBC2 operationalize five
odd-size sliding windows W , |W | = 3, 5, 7, 9, 11 Acronyms meanings: Cj = class variable (a categorical affective state), j ∈ {1, 2, . . . , q}, q = number of
affective states (in this example, q = 4). C ′

j , j ∈ {1, 2, . . . , q − 1} = predicted classes. Csjh = class variable for the inference of MSNBC2 for sensor sjh,
h ∈ {1, 2, . . . ,m}, m = number of sensors (in this example, m = 3).

Fig. 4. Imputation process of Hot Deck using Conditional Probability Tables (HD-CPT) for the class of the respective odd-size sliding window |W | =
3, 5, 7, 9, 11 of MSNBC2 of the missing sensor. Exemplification corresponds to the dataset of the rehabilitation of post-stroke patients [5], [7], which includes
the sensors of PRE, MOV, and FAE. Since the input features are numeric values, a discretization process called Proportional k-interval discretization (PKID)
[22] was used. In the example, the PRE sensor fails, and the other sensors, MOV, and FAE provide the information to find the donor vectors in the historical
records. The imputation is indicated for the window |W | = 3, but the process is similar for the other odd-size windows |W | = 5, 7, 9, 11. The imputation
can be done by selecting the class 1 or −1 according to the probability distribution registered in the Conditional Probability Table (CPT) of the classes of
the receiver given the classes of the donors.



Fig. 5. Schematic depiction of a person interacting with the virtual rehabil-
itation platform, Gesture Therapy. The person is holding the gripper, which
has a frontal sensor for registering finger pressure. The webcam follows the
gripper’s colour ball to control an avatar (in this case is the insecticide bottle
on the screen) in the game “garden pond” (virtual environment).

(Fig. 5). The tracker system estimates the 3D coordinates
of hand movements (MOV sensor) and the finger pressure
(PRE sensor) value at each video frame. GT also includes
capabilities for video recording so that the patient’s upper torso
and spontaneous facial expressions (FAcial Expression: FAE
sensor) can be captured while playing the games.

VI. DATASET

To illustrate the efficacy of our method, we apply it in
neurorehabilitation. A dataset of post-stroke patients [5], [7]
undergoing neurorehabilitation as administered through GT
was used to assess the proposed method, HD-CPT, for dealing
with a missing sensor. The dataset contains the records of 5
post-stroke patients who performed therapeutic exercises using
the GT platform during ten longitudinal sessions over a period
of about one month (each session was taken on a different day,
maximum 3 sessions per week.). Frontal videos of the patients
were recorded while playing the games. Meanwhile, data were
collected at each video frame and consisted of :

1) a finger pressure value (from PRE sensor),
2) a 3D hand position (from MOV sensor), and
3) a facial expression (from FAE sensor).

Data were labelled frame by frame by psychiatrists using
four binary values indicating the presence (1) or the absence
(−1) of each of the four states: tiredness, anxiety, pain,
and engagement. Fleiss’ κ suggested substantial agreement
for tiredness, moderate agreement for engagement and fair
agreement for anxiety and pain [7]. More than one state could
be present at the same time (multilabel classification scheme).

Feature vectors were generated with a sliding window W ,
of a predefined odd size |W | = 3, 5, 7, 9, 11, over consecutive
frames of the respective sensor data. For each step forward of
the sliding window, a new feature vector was generated, which
has the following components (each component is an average
of the respective calculation in the sliding window):

PRE 3 features: pressure (Pres), pressure speed (PresSpe)
and pressure acceleration (PresAce);

MOV 5 features: speed (Spe), acceleration (Ace) and dif-
ferential location by the axes: x (DifLx), y (DifLy),
z (DifLz); and

FAE 20 features from each frame of the patients’ frontal
video [24]. These features represent average dis-
tances or angles of geometrical figures over the
eyebrows, the eyes, and the mouth [25]. Then, the
feature vector contains 20 averaged values over the
sliding window.

All the feature vectors have four binary tags (from the
set {−1, 1}), one for each state (tiredness, anxiety, pain, and
engagement), representing the presence (1) or the absence
(−1) of the state. These tags were generated considering a
sliding window (synchronized through the frames with the
sliding windows of the feature vectors) and the majority label
in the sliding window was selected as the corresponding tag.

VII. EXPERIMENTS AND RESULTS

For evaluating the performance of the proposed method,
HD-CPT, incorporated into the multiresolution classifier
MSNBC2, we consider a missing sensor at a time and analyse
the corresponding results. There are three scenarios: (a) the
model where only the available sensors are considered, i.e.
where there is no influence of the missing sensor, (b) the
model where the missing sensor’s class is estimated according
to the proposed strategy, and (c) the model with all sensors
available. The results of the three models were contrasted to
see if the model of scenario (b) achieved a better performance
than the model of scenario (a) and show a close performance
to scenario (c).

The information of the missing sensor was estimated
through the HD-CPT method employing the information of
the remaining available sensors. Therefore, FSNBC received
two types of inputs from the MSNBC2s: inputs obtained from
the available sensors and inputs generated over estimations
for the missing sensor through HD-CPT. Experiments in three
situations were carried out to compare the performance of the
three models: (i) when PRE sensor fails, (ii) when MOV sensor
fails, and (iii) when FAE sensor fails.

CCC-FSNBC models were independently built for each
patient (in a within-subject setting for studying the system
performance for the customization to each patient) to predict
the occurrence of the four states (tiredness, anxiety, pain, and
engagement) in the multilabel classification scheme. There-
fore, we had 5 CCC models, one for each patient. For each
CCC, there were as many FSNBCs models as affective states,
so there were 4 FSNBCs. The corresponding MSNBC2s were
constructed using the sliding windows of odd-sizes 3 to 11:
|W | = 3, 5, 7, 9, 11; so 5 different window sizes were used.

Stratified 10-fold cross-validation across all the rehabilita-
tion sessions was applied for internal validity. The perfor-
mance of the respective computational models, for each patient
and for the three different sensor scenarios, was evaluated
using several metrics for multilabel classification [26]: Global



accuracy (GAcc), Mean accuracy (MAcc), Multi-label accu-
racy (MLAcc), and F -measure.

The results of the proposed method HD-CPT when a sensor
fails: PRE, MOV, or FAE are presented in Table I, Table II,
and Table III, respectively, and the results are summarized
as mean ± std. deviation across the 5 patients and across
the 10 folds of the cross-validation. Concerning the training
process, the CCC model was run with 8 iterations in each
experiment. The results are presented in the tables considering
the following order: First, the results of scenario (a), where
one sensor is absent and the other two remaining sensors are
only considered. Second, the results of scenario (b), where
the missing sensor has been treated according to the proposed
method HD-CPT. And third, the results of scenario (c), where
all the sensors are available.

A. Performance comparison when the PRE sensor fails
Table I presents the results of the proposed method HD-

CPT when the PRE sensor fails, called P̂RE-MOV-FAE. In
all cases, the results of CCC-FSNBC for P̂RE-MOV-FAE are
between the results of scenario (a) and the results of all the
sensors available –scenario (c)–, but there are no significant
differences for GAcc (Friedman test: χ2(2) = 5.709, p =
0.058), MAcc (Friedman test: χ2(2) = 4.508, p = 0.105),
MLAcc (Friedman test: χ2(2) = 5.992, p = 0.050), and F −
measure (Friedman test: χ2(2) = 5.992, p = 0.050).

TABLE I
PERFORMANCE COMPARISON ACROSS THE 5 PATIENTS AND THE 10 FOLDS

OF CROSS-VALIDATION (mean± std.dev.) WHEN THE PRE SENSOR
FAILS.

Sensors GAcc MAcc MLAcc F −measure

MOV-FAE 0.935± 0.066 0.975± 0.025 0.948± 0.053 0.952± 0.049

P̂RE-MOV-FAE 0.936± 0.064 0.976± 0.024 0.949± 0.052 0.953± 0.049
PRE-MOV-FAE 0.941± 0.059 0.977± 0.023 0.954± 0.046 0.958± 0.043

B. Performance comparison when the MOV sensor fails
Table II presents the results of the proposed method HD-

CPT when the MOV sensor fails, called PRE-M̂OV -FAE. In
all cases, the results of CCC-FSNBC for PRE-M̂OV -FAE are
between the results of scenario (a) and the results of all the
sensors available –scenario (c)–. The results of CCC-FSNBC
for PRE-MOV-FAE are significantly higher than the ones for
PRE-FAE and PRE-M̂OV -FAE (Friedman test, p < 0.05,
with post hoc analysis with Wilcoxon signed-rank tests with
Bonferroni correction, p < 0.017).

C. Performance comparison when the FAE sensor fails
Table III presents the results of the proposed method HD-

CPT when the FAE sensor fails, called PRE-MOV-F̂AE. In
all cases, the results of CCC-FSNBC for PRE-MOV-F̂AE are
between the results of scenario (a) and the results of all the
sensors available –scenario (c)–. The results of CCC-FSNBC
for PRE-MOV-FAE are significantly higher than the ones for
PRE-MOV and PRE-MOV-F̂AE (Friedman test, p < 0.05,
with post hoc analysis with Wilcoxon signed-rank tests with
Bonferroni correction, p < 0.017).

TABLE II
PERFORMANCE COMPARISON ACROSS THE 5 PATIENTS AND THE 10 FOLDS

OF CROSS-VALIDATION (mean± std.dev.) WHEN THE MOV SENSOR
FAILS.

Sensors GAcc MAcc MLAcc F −measure

PRE-FAE 0.915± 0.085 0.967± 0.033 0.929± 0.073 0.934± 0.069

PRE-M̂OV -FAE 0.924± 0.076 0.972± 0.028 † 0.938± 0.063 0.943± 0.060
PRE-MOV-FAE 0.941± 0.059 ‡ 0.977± 0.023 ‡ 0.954± 0.046 ‡ 0.958± 0.043 ‡
‡ means significant differences between CCC of PRE-MOV-FAE and CCC of PRE-FAE, and between CCC

of PRE-MOV-FAE and CCC of PRE-M̂OV -FAE (Friedman test, for GAcc χ2(2) = 25.861,
p < 0.05, for MAcc χ2(2) = 28.203, p < 0.05, for MLAcc χ2(2) = 24.356, p < 0.05, and
for F −measure χ2(2) = 22.946, p < 0.05, post hoc analysis with Wilcoxon signed-rank tests
with Bonferroni correction, p < 0.017).
† means significant differences between CCC of PRE-M̂OV -FAE and CCC of PRE-FAE
W = −2.851, p < 0.017

TABLE III
PERFORMANCE COMPARISON ACROSS THE 5 PATIENTS AND THE 10 FOLDS

OF CROSS-VALIDATION (mean± std.dev.) WHEN THE FAE SENSOR
FAILS.

Sensors GAcc MAcc MLAcc F −measure

PRE-MOV 0.851± 0.117 0.939± 0.045 0.875± 0.098 0.883± 0.093

PRE-MOV-F̂AE 0.860± 0.099 0.944± 0.040 0.885± 0.084 0.893± 0.081
PRE-MOV-FAE 0.941± 0.059 ‡ 0.977± 0.023 ‡ 0.954± 0.046 ‡ 0.958± 0.043 ‡
‡ means significant differences between CCC of PRE-MOV-FAE and CCC of PRE-MOV, and between CCC

of PRE-MOV-FAE and CCC of PRE-MOV-F̂AE (Friedman test, for GAcc χ2(2) = 50.839,
p < 0.05, for MAcc χ2(2) = 50.667, p < 0.05, for MLAcc χ2(2) = 50.559, p < 0.05, and
for F −measure χ2(2) = 50.559, p < 0.05, post hoc analysis with Wilcoxon signed-rank tests
with Bonferroni correction, p < 0.017).

D. Training Times

The average training time of CCC-FSNBC in scenario (b),
where a sensor fails, P̂RE, M̂OV , or F̂AE was (mean ±
std. deviation) 125.27± 27.82 sec., or 2.09± 0.46 min. The
average training time of CCC-FSNBC for PRE-MOV-FAE –
scenario (c)– was (mean±std. deviation) 124.09±30.46 sec.
which corresponds to 2.07±0.51 min. Therefore, the proposed
method HD-CPT represented an average increase of 1.18 sec.,
approximately, in the average training time of CCC-FSNBC.

VIII. DISCUSSION

The problem of the absence of a sensor at the testing phase
has been explored with a strategy of imputation, which esti-
mates the values of the missing sensor through the HD-CPT
employing the information of the remaining available sensors.
According to the results, the performance of the chosen
strategy in a three-sensor problem was generally successful, as
the results fall between the use of all sensors and the baseline
of just eliminating one sensor. In particular, for the MOV
and FAE sensors, the estimated values contributed to improve
the performance of CCC-FSNBC with respect to scenario (a);
while for the PRE sensor the results were still better than
scenario (a), although the difference is lower. This could be
because the PRE sensor is the one that contributes more to the
recognition process. Therefore, these results suggest that when
a specific sensor fails, its predicted classes can be estimated
through the predicted classes of the remaining sensors using
the proposed strategy, but the results will depend on the
specific sensor. Moreover, the conjunction of information from
different sensors can contribute to the recognition of affective
states, but this is influenced by relations of complementarity,
redundancy, or noise between sensors. With respect to the



training process, HD-CPT increased the execution time by
1.18 sec., approximately in relation to the model of all sensors
available. So the proposed method does not represent an
overhead for the computational model.

IX. CONCLUSIONS AND FUTURE WORK

We have proposed a novel method, HD-CPT, for dealing
with the loss of a sensor in a multilabel and multimodal
affective states recognition system. We have exemplified the
use of the method in an existing platform for the recognition
of the affective states of patients during physical rehabilitation.
The proposed method was beneficial when one sensor failed,
achieving higher results in general than when not using such
mechanism (scenario (a)). HD-CPT does not add extra compu-
tational cost when a sensor is lost, which is an advantage over
other methods and gives robustness, preventing the system
from collapsing; it provides an alternative for the use of
automatic affective states recognition systems in naturalistic
everyday life. An issue to consider is which sensor fails and
which sensor is absolutely necessary, i.e., if the decrease in
performance due to the estimated values of a missing sensor
may be acceptable.

As future work, the problem of a missing sensor in systems
of affective computing should be studied with other sensors as
the ones from signals of EEG, functional Near-Infrared Spec-
troscopy (fNIRS), ECG, and GSR. A larger trial is necessary
to confirm whether this apparent trend can be generalized to
the population considered. The proposed method should be
studied for the case when more than one sensor fails.
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