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1 Benchmarking of DFT functionals applied to

hBN

Given the large diversity of the zoo of DFT functionals, it is not surprising that

different established force fields are not fitted to ab initio data obtained with

the identical functional. In the main document, however, we benchmarked the

accuracy of these models exclusively based on the specific functional chosen for

the generation of the training set of the hBN-GAP. This analysis is, therefore,

slightly biased and we aim to provide a more neutral picture by reporting the

performance of different functionals for basic crystalline properties of hBN. We

compare our selected functional, PBE [1] with the local dispersion correction

D3 [2] using Becke-Johnson damping [3], with two non-local dispersion inclu-

sive functionals, optB86b-vdW [4] and optB88-vdW [5], LDA [6], PBE, and

PBE using the local dispersion corrections of Tkatchenko and Scheffler (TS) [7].

Further, we perform all calculations for PBE+D3 with both software packages

VASP and QUANTUM ESPRESSO (QE) to verify they yield the same result.

Table S1: Comparison of lattice parameters for the different hBN phases be-
tween different DFT exchange-correlation functional and with respect to exper-
imental data.

Lattice Parameter [Å]

Bulk Monolayer Nanotube
a c a (10,0) (10,10)

LDA 2.49 6.49 2.49 4.30 2.49
PBE 2.51 8.47 2.51 4.34 2.51
PBE+TS 2.51 6.69 2.51 4.34 2.51
PBE+D3 (VASP) 2.51 6.61 2.51 4.34 2.51
PBE+D3 (QE) 2.51 6.62 2.51 4.34 2.51
optB88-vdW 2.51 6.58 2.51 4.34 2.51
optB86b-vdW 2.51 6.50 2.51 4.34 2.51
Experiment [8] 2.50 6.66 2.50 – –
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In table S1 we show the predictions of the tested functionals for the lattice

parameters of bulk and monolayer hBN as well as two nanotubes of different

chirality. While the in-plane lattice parameters of layered hBN as well as the

nanotubes geometries are almost independent of the functional selected, devia-

tions between functionals are observed for the equilibrium interlayer distance of

bulk hBN. The best agreement with experimental measurements [8] is achieved

by PBE+TS and PBE+D3. Conversely, PBE without dispersion corrections

overestimates the lattice parameter significantly by almost 2 Å. Despite their

high similarity, the predictions made by optB88-vdW and optB86b-vdW differ

by 0.08 Å. A high agreement for all systems is found between both software

packages.

Figure S1: Interlayer interaction curves for bulk hBN predicted by different
DFT functionals. The binding energy is computed as function of a varying
interlayer distance between sheet in AA′ stacking.

We also computed the binding curve between hBN sheets in the bulk phase

as shown in figure S1. The curves for LDA, PBE, and optB88-vdW agree very
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well with previous work [9]. Similar applies for the interaction energy predicted

by PBE+TS [10]. The binding curves predicted by optB88-vdW and optB86b-

vdW are almost identical with the exception of the small shift of the minimum

towards a shorter interlayer separation.

Eventually, we calculated the relative stability of the systems analysed in

table S1 relative to the bulk phase. The results shown in figure S2 demonstrate

once again the high similarity non-local vdW inclusive functionals. The large

and small values shown for PBE+TS and PBE are the result of the deep and

shallow potential well of the layer interaction curve, respectively.

Figure S2: Formation energies of several hBN configurations computed with
different DFT functionals. All energies are plotted relative to bulk hBN.
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2 Force correlation plots

Despite not being a sufficient criterion to assess the quality of a potential, com-

paring the average force error for a set of configurations with respect to DFT is

a natural and essential metric. We pick 1450 configurations from our previously

generated database at random which have not been used in the training process

and compute the forces with DFT, the hBN-GAP, and the force fields used in

the main text. The structures comprise between 98 and 200 atoms and include

397 single layers of hBN, 551 multilayered and bulk structures, as well as 502

nanotubes of different chiralities. Figure S3 shows the force correlation plots for

all potentials tested separately for each structure group and the related RMSE.

The hBN-GAP achieves a very high agreement with the DFT forces whereby

its RMSE is at least one order of magnitude smaller than that of its existing

analogues. This holds throughout all different configurations, despite the good

performance of Tersoff and ExTeP particularly for monolayers. All established

potentials struggle to make accurate predictions for multilayered hBN. Despite

a significantly better performance regarding macroscopic properties, the em-

ployed ILP corrections increase the RMSE of the bond-order potentials slightly.

The ReaxFF shows high deviations from DFT which might be reduced by using

a different parameter set than applied in this work. When changing the DFT

functional used as reference to compute the force error, small differences of up

to 20 meV/Å were observed.
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Figure S3: Comparision of atomistic forces predicted by different models with
respect to DFT (PBE+D3) for configurations in the validation set including
mono and multilayers as well as nanotubes. The RMSE is calculated for each
class of structures separately and is given in the units of eV/Å.

S6



3 Interlayer binding curve

As already emphasised above, predicting the binding energy curve of bulk hBN

accurately is an essential requirement for appropriately capturing the out-of-

plane elastic constant, C33. Here, we report the performance of our hBN-GAP

with respect to its DFT reference and in comparison with the established force

fields introduced in the main document. We note that Tersoff + ILP and ExTeP

+ ILP yield the same curve as the interaction is purely modelled by the ILP.

From figure S4 it can be seen that the hBN-GAP agrees very well with DFT. The

slowly decaying tail is accurately predicted due to the inclusion of a 2B-based

model with an extended cut-off of 10 Å. The ILP shows a small overbinding

but overall agrees very well with our the reference calculations too. In case of

ReaxFF a maximum appears at about 5.5 Å.

Figure S4: Interlayer interaction curves for bulk hBN predicted the hBN-GAP,
the chosen DFT functional (PBE+D3) and two other force fields. The binding
energy is computed as function of a varying interlayer distance between sheet
in AA′ stacking.

S7



4 Formation energy of nanotubes

In the main text we compute the formation energies of different hBN allotropes

including different nanotubes. Here, we extend this analysis to nanotubes of

charilities between 4 ≤ m,n ≤ 14. In contrast to the the previous analysis, here

the energies are given relative to a hBN monolayer. Therefore, it is sufficient

to compare the agreement of the hBN-GAP with its DFT reference only with

respect to the bond-order potentials Tersoff and ExTeP without the ILP ex-

tension as well as to the ReaxFF. From figure S5 it can be seen that both the

hBN-GAP and the Tersoff potential perform very well while the ExTeP shows

some inaccuracies regarding the energy difference between zigzag and armchair

nanotubes. From the inset, it can be seen that the ReaxFF suffers from a similar

issue although slightly less pronounced.

Figure S5: Relative formation energies of nanotubes of armchair and zigzag
predicted by DFT (PBE+D3), GAP and existing force fields as function of the
tube diameter. A hBN monolayer serves as reference for the formation energies.
For the sake of clarity, the ILP extended bond-order potentials are not plotted
here as the ILP has no contribution to the potential energy in nanotubes and
monolayers.
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5 Phonon dispersion curves for hBN monolayer

We report the phonon dispersion curves for a hBN monolayer computed with

the established models mentioned in the main text. Similar to the nanotubes

discussed above, it is sufficient to evaluate the performance of the bond-order

potentials Tersoff and ExTeP without ILP due to absence of a contribution for

isolated sheets. The respective dispersion curves are shown in figure S6. While

we also computed the phonons with the ReaxFF, no physically reasonable results

were obtained. This can be easily explained by the wrong prediction of the

equilibrium shape discussed in the main text. This observation is also persistent

throughout bulk hBN and nanotubes as well as for applying the parameter

set most recently developed for the adsorption of hBN on nickel [11]. Tersoff

and ExTeP provide an accurate description for the ZA mode except a small

overestimation at K. Both models, however, are not able to reproduce the

high-frequency modes, particularly LO and TO, and show high deviations with

respect to DFT.

Figure S6: Phonon dispersion curves calculated for monolayer hBN. The black
line corresponds to the reference DFT (PBE) calculations while the coloured
represents the Tersoff (left) and ExTeP (right) potentials. The computed dis-
persion curves are identical for their ILP extended analogues.
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6 Phonon dispersion curves for bulk hBN

Here, we present the phonons for bulk hBN computed with the hBN-GAP and

the established potentials included in the benchmarking. Instead of comparing

to DFT calculations, however, we evaluate the models’ performance based on

experimental measurements. Firstly, because a good agreement between exper-

iment and theoretical prediction is generally of highest priority. Secondly, the

the D3 Grimme dispersion correction method is not accessible in QE for DFPT

calculations. While this is not a significant problem for monolayer or nanotubes

due to the lack of dispersion interactions, it prevents an accurate prediction

of the dispersion curve of bulk hBN where vdW interactions between adjacent

layers play a key role.

Figure S7 shows the dispersion curves predicted by the hBN-GAP in compar-

ison to experiments [12–15]. For polar bulk materials, the induced macroscopic

electric field results in a non-degeneracy of the LO and the transverse optical

(TO) modes close to the Γ -point, also known as LO-TO splitting. While this

effect is captured by the Raman and infrared measurements, the hBN-GAP fails

to reproduce the shift of the LO branch due to the non-explicit treatment of

charges. All other all other features of the dispersion curve are very well pre-

dicted by hBN with the exception of a small deviation for the acoustic branches

between A and Γ.

In contrast to the monolayer, different phonon dispersion curves are obtained

by extending Tersoff and ExTep with ILP. As shown in figure S8 exclusively us-

ing either Tersoff or ExTeP results in the same spectrum as for the monolayer.

Due to the short cutoff of both potentials the sheets are not interacting and,

thus, the dispersion curves correspond to those of an isolated hBN sheet for
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Figure S7: Phonon dispersion curves for bulk hBN predicted by the hBN-
GAP compared to experimental measurements using IXR, infrared and Raman
spectroscopy. The continuous lines represent the calculated dispersion curves
whereas the open black circles corresponds to the IXR measurements [12]. The
blue diamonds and green triangles at the Γ-point visualise the Raman [13] and
infrared data [13–15].

each sheet which overlap. As expected, applying the ILP correction leads to

an improvement particularly for low frequencies between A and Γ. Moreover, a

small side-shift of the bands can be observed due to the newly introduced inter-

molecular interactions. However, high deviations for the optical modes remain.

Due to the lack of explicit charges, no LO-TO splitting can be described with

potentials shown in figure S8.
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Figure S8: Phonon dispersion curves for bulk hBN predicted by the established
potentials discussed in the manuscript compared to experimental measurements
using IXR, infrared and Raman spectroscopy. The continuous lines represent
the calculated dispersion curves whereas the open black circles corresponds to
the IXR measurements [12]. The blue diamonds and green triangles at the
Γ-point visualise the Raman [13] and infrared data [13–15].

7 Phonon dispersion curves for a (6,6) nanotube

In figure S9 we show the phonon dispersion curve for a hBN (6,6) nanotube

computed with the Tersoff and ExTeP as well as their agreement with DFT.

Due to the large number of bands, the absolute deviation of the density of

states (DOS) serves a appropriate metric to evaluate models. Analogously to

the phonons predicted for the hBN allotropes above, both potentials can not
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capture the high frequency modes accurately. The bundle of flat bands which is

located at about 150 meV according to DFT is predicted to be at a frequency

of 40 to 50 meV above in both cases.

Figure S9: Phonon dispersion curves calculated a (6,6) hBN nanotube predicted
by the Tersoff (top) and ExTeP potential (bottom). The black line corresponds
to the reference DFT (PBE) calculations while the coloured lines represent the
different established models. The DOS is calculated for both methods and
plotted against the DFT result on the right hand side.
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8 Benchmarking the efficiency of the hBN-GAP

So far, we were mainly concerned with evaluating the accuracy of the hBN-

GAP and have not focused on the efficiency advantages with respect to DFT.

However, the significantly reduced computational costs are the key benefit of

choosing the hBN-GAP over DFT. In order to quantify the saved resources we

benchmark the efficiency of our newly introduced model by performing MD sim-

ulations and compare the costs to AIMD performed in VASP and to the Tersoff

potential. As we expect a similar performance for all force fields discussed, in-

cluding one of them in this evaluation seems sufficient for our purposes.

Our system of choice for this benchmarking study is a orthorombic shaped

hBN monolayer with periodic boundary conditions. We add 15 Å of vacuum in

z-direction to minimise the interaction between periodic images in DFT. The

system size varies between 8 and 12800 atoms and simulations are conducted

in the NVT ensemble at 1000 K. The electronic structure setup is identical to

the one used for the generation of training data except a looser convergence

criterion of 10−4 eV and that all calculations are done at the gamma point. All

AIMD simulations are started with pre-converged wavefunctions to reduce the

number of required electronic convergence cyclce at the first timestep. Trajecto-

ries of 20000 timesteps are generated for hBN-GAP and Tersoff. For the VASP

AIMD simulations we compute a trajectory of 10 timesteps. All simulations are

performed on the Thomas cluster, the UK National Tier 2 High Performance

Computing Hub for Materials and Molecular Modelling. While for AIMD simu-

lations 72 cores spread over three nodes are used, all simulations with hBN-GAP

and Tersoff are done on one node only to minimise the communication time be-

tween nodes for very small system sizes. All measured simulations times are

normalised with the number of steps and number of cores used.
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Figure S10: Computational costs of the hBN-GAP in comparison with DFT
(PBE+D3) and the Tersoff potential as function of system size. The CPU time
per timestep is normalised with respect to the number of processors used.

Figure S10 shows the computational costs spent per timestep for the different

models and system sizes. Clearly, the hBN-GAP is several orders of magnitude

cheaper than DFT. This becomes more pronounced as we increase the number of

atoms. While both the hBN-GAP and the Tersoff potential scale roughly with

N log N, whereby N is the number of atoms, DFT scales cubically with number

of electrons making it unfeasible for large systems. This is also emphasised by

the missing data for DFT above 2048 atoms in figure S10. It was not possible

to perform 10 timesteps of AIMD with the computational and electronic setup

chosen for the larger systems considered in this study.
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9 Impact of box shape and size on the rippling

amplitude

To investigate the impact of the shape of the simulation box on the average

rippling amplitude we perform GAP MD for monoclinic and orthorombic cells

of hBN and graphene with varying size between 1800 and 10952 atoms. Both

in-plane lattice vectors of the monoclinic box are of length L while the measures

of the orthorombic box are L×
√
3
2 L, whereby L changes according to material

and system size. As we are mainly interested in the capabilities of the devel-

oped hBN-GAP to predict coherently moving ripples all systems analysed are

exposed to −1.0 % strain based on their equilibrium lattice parameter at 300 K.

We use the same simulation settings as described in the main document. All

systems are equilibrated for at least 50 ps before the maximum out-of-plane

displacement is measured and averaged for a sampling time ranging from 150

to 400 ps.

Figure S11 summarises the findings of this analysis. The difference in the

box shapes is reflected in distinct rippling patterns as shown in part B and C.

While the compression of the orthorombic cell results in a meander-shaped soli-

ton propagating through the sheet, triangularly formed ripples are observed in

the monoclinic simulation box. In part C of figure S11 we report the averaged

amplitude of the ripples as function of the minimum box length L0 which corre-

sponds to L and
√
3
2 L for monoclinic and orthorombic boxes, respectively. The

difference in the box length between graphene and hBN systems with identical

box shape and number of atoms is induced by the smaller lattice parameter of

graphene. Irrespective of the taken shape of the ripples, an almost linear trend

is observed for the rippling amplitude with respect to the system size. This
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holds true for both materials hBN and graphene which justifies the comparative

analysis based on the same box shape and system size.

A B

C

Figure S11: Analysis of the box shape and size dependence of the rippling
pattern and amplitude. (A): Average rippling amplitude as function of the
minimum box length L0. For monoclinic boxes L0 is equal to the length L
of the lattice vectors while in case of orthocombic cells it corresponds to the
lattice vector with minimum length of

√
3/2L. (B): Snapshot of the GAP-

MD trajectory of an isolated sheet of hBN in a orthorombic box with 7200
atoms. The atoms are coloured according to their out-of-plane displacement.
(C): Snapshot of the GAP-MD trajectory of an isolated sheet of hBN in a
monoclinic box with 7200 atoms. Atoms are identically colour coded as in case
of the orthorombic box.
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