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Dense prediction of label noise for learning building extraction from 14 

aerial drone imagery 15 

Label noise is a commonly encountered problem in learning building extraction 16 

tasks; its presence can reduce performance and increase learning complexity. 17 

This is especially true for cases where high resolution aerial drone imagery is 18 

used, as the labels may not perfectly correspond/align with the actual objects in 19 

the imagery. In general machine learning and computer vision context, labels 20 

refer to the associated class of data, and in remote sensing-based building 21 

extraction refer to pixel-level classes. Dense label noise in building extraction 22 

tasks has rarely been formalized and assessed. We formulate a taxonomy of label 23 

noise models for building extraction tasks, which incorporates both pixel-wise 24 

and dense models. While learning dense prediction under label noise, the 25 

differences between the ground truth clean label and observed noisy label can be 26 

encoded by error matrices indicating locations and type of noisy pixel-level 27 

labels. In this work, we explicitly learn to approximate error matrices for 28 

improving building extraction performance; essentially, learning dense prediction 29 

of label noise as a subtask of a larger building extraction task. We propose two 30 

new model frameworks for learning building extraction under dense real-world 31 

label noise, and consequently two new network architectures, which approximate 32 

the error matrices as intermediate predictions. The first model learns the general 33 

error matrix as an intermediate step and the second model learns the false positive 34 

and false negative error matrices independently, as intermediate steps. 35 

Approximating intermediate error matrices can generate label noise saliency 36 

maps, for identifying labels having higher chances of being mis-labeled. We have 37 

used ultra-high-resolution aerial images, noisy observed labels from 38 

OpenStreetMap, and clean labels obtained after careful annotation by the authors. 39 

When compared to the baseline model trained and tested using clean labels, our 40 

intermediate false positive-false negative error matrix model provides 41 

Intersection-Over-Union gain of 2.74% and F1-score gain of 1.75% on the 42 

independent test set. Furthermore, our proposed models provide much higher 43 

recall than currently used deep learning models for building extraction, while 44 

providing comparable precision. We show that intermediate false positive-false 45 

negative error matrix approximation can improve performance under label noise. 46 
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 49 

Introduction 50 

Building extraction involves learning mappings between remotely sensed aerial or 51 

satellite images and building labels from freely available vector data. The most 52 

commonly used source of labels, OpenStreetMap, though accurate to a large degree, 53 

contain various types of label noise (Mnih and Hinton, 2012; Ahmed et al., 2020; Zhang 54 

et al., 2020). Pixel-level predictions of building/non-building labels are performed, 55 

which is a binary dense prediction task. Label noise occurs when the observed label 56 

does not agree with the true label (Frénay and Verleysen, 2013; Frénay and Kabán, 57 

2014) (Fig. 1). Presence of label noise in training data can reduce performance, while 58 

noise in testing data can lead to underestimation of model performance (Ahmed et al., 59 

2020). However, most of the existing studies on deep learning-based building extraction 60 

do not acknowledge the presence of label noise. In general, complexity of the learning 61 

task is also increased under label noise (Garcia et al., 2015; Pelletier et al., 2017). 62 

Research on robust method of building extraction considering label noise requires 63 

formalization of the sources, processes and effects of noise on large scale freely 64 

available labels. Currently, the types of dense label noise processes have not been 65 

formalized in a comprehensively and inclusively in research. When building polygons 66 

are rasterized, the buildings are represented as superpixels in the prepared dense binary 67 

labels. Individual building polygon i.e. superpixel based errors are commonly 68 

considered as sources of noisy labels.  69 

 70 

 71 
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Coming from traditional remote sensing terminology, the most common are 72 

registration errors, where building polygons are present but not aligned, annotated or 73 

registered properly, and omission errors where buildings are left unlabeled (Mnih and 74 

Hinton, 2012; Ahmed et al., 2020; Zhang et al., 2020). However, alternative 75 

nomenclature has been proposed as well. Pixel-based nomenclature can be used to 76 

express label noise processes in multiple scales, and therefore provides a more 77 

generalized viewpoint. Even superpixel-based label noise processes are modeled using a 78 

composite of pixel-based processes (Mnih and Hinton, 2012; Zhang et al., 2020). This 79 

approach assumes that each pixel undergoing label noise is independent of and identical 80 

to label noise processes in other (even neighboring) pixels. This scenario is analogous to 81 

the use of label noise robust pixel-based building extraction methods such as logistic 82 

regression (Maas et al., 2016), random forests (Maas et al., 2019), compared to the use 83 

of deep learning-based label noise robust building extraction methods such as fully 84 

convolutional networks and U-Nets (Zhang et al., 2020). The primary difference 85 

between non-deep learning and deep learning-based building extraction is that the 86 

former usually uses features from only the pixel being classified, whereas the latter 87 

leverages context to predict dense labels for the entire image at once. Feature 88 

representation is an important part of deep learning based remote sensing image 89 

processing (Jing et al., 2021; He et al., 2021). Modeling of superpixel based label noise 90 

process has been conducted for the general computer vision task of semantic 91 

segmentation (Lu et al., 2016), but has largely been left unexplored for remote sensing 92 

applications. If building extraction can be modeled using a dense prediction approach, 93 

we argue that pixel-based label noise robustness approaches can also be extended to 94 

dense prediction-based label noise robustness approaches. 95 

 96 
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 97 
Figure 1. Some examples of large image tiles from our dataset. (a) Image (b) True clean 98 

dense labels (c) Observed dense labels from OpenStreetMap with real world noise 99 

 100 

There are various aspects of viewing the label noise generation process. 101 

Labeling tools used by human annotators also play a role in determining the label noise 102 

processes for dense prediction tasks (Frank et al., 2017). Simulated noise is common in 103 

label noise robust image classification scenarios (Ghosh et al., 2017; Rolnick et al., 104 

2017; Patrini et al., 2017) and can be extended to dense prediction-based building 105 

extraction as well, however, we have access to data with real-world dense label noise. It 106 

is also important to acknowledge the limitations of simulated noise when compared to 107 

real-world noise (Jiang et al., 2020). Label noise processes can broadly be categorized 108 

by their randomness (Frénay, B., & Verleysen, 2013). For example, if certain building 109 

superpixels are being omitted in the observed labels, the question arises, are these 110 
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buildings being selected totally at random, or are certain types of buildings, perhaps 111 

newly constructed buildings, being omitted. Randomness characterizes label noise 112 

processes. Identifying this randomness is crucial for modeling label noise robust 113 

learning systems. Randomness is unique to each dataset and is estimated prior to 114 

modeling solutions. 115 

 116 

We have quantified the effects of label noise on evaluation regimes for this 117 

dataset and found that deep neural networks for semantic segmentation are intrinsically 118 

robust to real world random label noise, specially aided if data augmentation and 119 

regularization are introduced (Ahmed et al., 2020). However, robustness to label noise 120 

is achieved as a by-product of overfitting-reduction schemes, and therefore the 121 

modelling of label noise is implicit. In this work, we explicitly model dense label noise 122 

as a subtask of building extraction, and show improved performance on independent test 123 

set.  124 

 125 

The primary objective of this study is to analyze label noise robustness of deep 126 

semantic segmentation networks using our proposed evaluation regime. State-of-the-art 127 

methods for deep learning-based building extraction from remotely sensed imagery 128 

usually perform model evaluation using noisy labels as ground truth, we test the effects 129 

of performing model evaluation against noisy labels and clean labels. Our contributions 130 

are as follows. We outline approaches for modeling dense label noise and formalize a 131 

multi-view and multi-scale taxonomy of label noise. We propose two new model 132 

frameworks for building extraction from aerial drone imagery under dense label noise, 133 

and consequently two new network architectures. Our network architectures 134 

approximate the dense label noise characterizing error matrices as an intermediate step 135 
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to improve performance. Approximating intermediate error matrices can generate label 136 

noise saliency/heat maps. We have made our dataset and method implementations 137 

publicly available 138 

(https://drive.google.com/uc?id=1UUGeewOaNzv_8kMGXOgEzR8_QKPlPsr8) 139 

(https://github.com/nahian-ahmed/dense-label-noise). 140 

Dense label noise models 141 

Preliminaries and definitions 142 

Formulations on label noise in non-dense approaches are well defined and studied 143 

(Frénay, B., & Verleysen, 2013; Frénay and Kabán, 2014). Label noise processes are 144 

defined based on the nature of the randomness of the process in question. The three 145 

types of noisy labels are -  146 

 147 

(1) Noisy completely at random (NCAR) labels, where labels are flipped completely 148 

independent of features and class label,  149 

(2) Noisy at random (NAR) labels, where labels are flipped independent of features 150 

but dependent on class label,  151 

(3) Noisy not at random (NNAR) labels, where labels are flipped depending on 152 

features and class label.  153 

 154 

These label noise models are equally highly apt at expressing label noise 155 

processes for classification on tabular data and image data. In image classification, each 156 

image is assigned a single label; though the feature is more complex, the target is still a 157 

single label and therefore the non-dense label noise models are sufficient in describing 158 

the noise processes. However, for dense prediction, tasks the notation and process 159 

https://drive.google.com/uc?id=1UUGeewOaNzv_8kMGXOgEzR8_QKPlPsr8
https://github.com/nahian-ahmed/dense-label-noise
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models for label noise need extension. We have formulated label noise models for our 160 

image segmentation task by extending the label noise models presented by Frénay, B., 161 

& Verleysen, (2013) and design according to pixel-wise and dense dependencies. Dense 162 

label noise models can represent complex non-linear and fully-connected statistical 163 

dependencies between the image tensors and label tensors. Fig. 2 shows the conceptual 164 

differences between the label generation process for the general classification, image 165 

classification, and dense prediction. 166 

 167 

 168 
Figure 2. Differences among general classification, image classification and dense 169 

prediction 170 

 171 

Given an observed noisy dense label �̃� ∈  {0,1}𝑛ℎ×𝑛𝑤 and its corresponding true 172 

clean dense label 𝒀 ∈  {0,1}𝑛ℎ×𝑛𝑤, where height and width of image tile is 𝑛ℎ and 𝑛𝑤 173 

respectively. Indexing 𝑛ℎ by 𝑖 and indexing 𝑛𝑤 by 𝑗 , 𝒀𝑖,𝑗 represents the pixel in 𝑖-th 174 

row and 𝑗-th column of a label tile,  �̃�𝑖,𝑗is considered to be noisy if �̃�𝑖,𝑗 ≠ 𝒀𝑖,𝑗. We 175 

extend the binary variable random in Frénay and Verleysen (2013) indicating presence 176 

of label noise, to dense prediction settings. We define the error matrix 𝑬 ∈  {0,1}𝑛ℎ×𝑛𝑤 177 

as the matrix indicating positions of pixels with label noise. Thus, 𝑬𝑖,𝑗 = 1 when �̃�𝑖,𝑗 ≠178 

𝒀𝑖,𝑗 and 𝑬𝑖,𝑗 = 0 if �̃�𝑖,𝑗 = 𝒀𝑖,𝑗. For binary labels, if the current observed pixel label �̃�𝑖,𝑗 179 

and its labeling error presence 𝑬𝑖,𝑗 is known, the true label 𝒀𝑖,𝑗 can directly be computed 180 

by flipping the observed label when the pixel label in question is deemed to be noisy. 181 
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Each element 𝑬𝑖,𝑗 is a binary random variable indicating if 𝒀𝑖,𝑗 is to be noised or not. 182 

The relationship among 𝒀, �̃� and 𝑬 in matrix form can be defined as 183 

 184 

 𝒀 = |�̃� − 𝑬| (1) 

 185 

All operations in Eq. (1) are element-wise matrix operations. Table 1 confirms 186 

Eq. (1) and shows the different cases that may arise from combinations of 𝒀𝑖,𝑗 and �̃�𝑖,𝑗. 187 

When the true label and observed label are the same (row no. 1 and 2 in Table 1), label 188 

noise is absent; when the true label and observed label are not equal (row no. 3 and 4 in 189 

Table 1), label noise is present. Given knowledge on the observed noisy label and error 190 

matrix, the clean label can directly be computed using Eq. (1).  191 

 192 

Table 1. The four possible cases arising from combinations of 𝒀𝑖,𝑗 and �̃�𝑖,𝑗 193 

No Case Label noise 𝒀𝑖,𝑗 �̃�𝑖,𝑗 𝑬𝒊,𝒋
+  𝑬𝒊,𝒋

−  𝑬𝑖,𝑗 |�̃� − 𝑬| 

1 True negative observed pixel label No 0 0 0 0 0 0 

2 True positive observed pixel label No 1 1 0 0 0 1 

3 False positive observed pixel label Yes 0 1 1 0 1 0 

4 False negative observed pixel label Yes 1 0 0 1 1 1 

 194 

The error matrix is the absolute difference between the true and observed labels 195 

 196 

 𝑬 =  |𝒀 − �̃�| = |�̃� − 𝒀| (2) 

 197 
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Let, the error matrix denoting false positive observed labels be 𝑬+ ∈  {0,1}𝑛ℎ×𝑛𝑤 198 

and the error matrix denoting false negative observed be 𝑬− ∈  {0,1}𝑛ℎ×𝑛𝑤. Thus, 𝑬 is 199 

the element-wise logical ‘or’ (expressed as summation) of 𝑬+ and 𝑬− in matrix form, 200 

 201 

 𝑬 = 𝑬+ +  𝑬−  (3) 

 202 

Fig. 3 shows an example of how label noise arises from disagreements between 203 

the true label and observed label, displaying that a few positive pixel labels were missed 204 

and a few true negative pixel labels were labeled as positives.  205 

 206 

 207 
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Figure 3. Example of how observed noisy dense labels differ from their corresponding 208 

true dense labels. A 16 x 16 pixel image is used for demonstration. The error matrix 𝐸is 209 

shown in the bottom right subfigure, indicating positions of noisy pixel labels. 210 

 211 

The label noise process involves the corruption of clean labels (Fig. 4). In 212 

general learning schemes for building extraction, it is assumed that the observed labels 213 

are clean and are directly used for learning/evaluation (Fig. 4(a)). However, 214 

acknowledgement of label noise assumes the intermediary distribution of clean labels 215 

over the images to be the clean labels and models the label noise process as the 216 

distribution of observed noisy labels over the true clean labels (Fig. 4(b)), which means 217 

that when label noise is present, the ground truth clean labels are unobserved 218 

 219 

 220 

 221 

Figure 4. Observed label generation processes (a) Modeled without noise-free labels (b) 222 

Modeled through noise-free labels 223 

 224 

Having defined the important concepts i.e. 𝒀, �̃� and 𝑬, for modeling dense label noise 225 

processes, we move on to define the statistical dependencies for learning dense prediction 226 

(Fig. 5). There are two main models - 227 



 
12 

  228 

● Pixel-wise models: perform pixel classification using features from only the 229 

corresponding input pixels (Fig. 5). Therefore, changing tile sizes does not have 230 

significant effects if the same pixels are provided for training and testing 231 

because only pixel-wise mappings are learned; features from neighboring pixels 232 

are not considered. Without context, the rooftop of a building and a road may 233 

appear identical to the model. However, learning pixel-wise mapping is common 234 

in non-deep learning approaches to building extraction. Given, the input tensor 235 

𝑻𝑎 and its dependent output tensor 𝑻𝑏, the pixel wise models learn,  236 

 𝑃(𝑻𝑖,𝑗
𝑏 |𝑻𝑖,𝑗

𝑎 ) (4) 

● Dense models: generates labels for pixels using features from all pixels of the 237 

input tensor (Fig. 5). The model estimates each 𝑃(𝑻𝑖,𝑗
𝑏 |𝑻𝑎) and then uses the 238 

product chain rule to learn 𝑃(𝑻𝑏|𝑻𝑎), 239 

 

𝑃(𝑻𝑏|𝑻𝑎) = ∏ ∏ 𝑃(𝑻𝑖,𝑗
𝑏 |𝑻𝑎)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (5) 

As Fig. 5 shows, we represent fully connected dense mappings using a red full 240 

red arrow with continuous line and pixel wise mappings using a blue half-arrow with 241 

dotted line.  242 

 243 
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 244 

Figure 5. Shortened symbology of statistical dependencies considered in pixel wise 245 

models and dense models. In the pixel-wise model, each 𝑻𝑖,𝑗
𝑏  is only dependent on 𝑻𝑖,𝑗

𝑎 . 246 

In the dense model, each 𝑻𝑖,𝑗
𝑏  is dependent on the the entire matrix 𝑻𝑎 indicating fully 247 

connectedness. 248 

 249 

Taxonomy of dense label noise models 250 

The three types of label noise in Frénay and Verleysen (2013) are categorized according 251 

to randomness. We refer to this approach as taxonomy characterized by randomness. 252 

However, in the context of dense prediction, structure (spatial information) in dense 253 

labels also plays a role in label noise processes. We define the taxonomy of dense label 254 

noise models. Given the two types of mapping models (pixel-wise and dense) and the 255 

three types of stochasticity defined label noise processes (NCAR, NAR and NNAR), 256 

there are six possible models (Fig. 6). 257 

 258 
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 259 

Figure 6. Statistical dependencies of different types of pixel based and dense label noise 260 

models. The dependency between 𝑋and 𝑌are not shown for brevity. 261 

 262 

(1) Pixel-wise NCAR model: NCAR models are class independent, therefore the 263 

only noise parameters for a pixel-wise NCAR model would be the probability of error 264 

𝑝𝑒 = 𝑃(�̃�𝑖,𝑗 ≠ 𝒀𝑖,𝑗). It is important to note that 𝑝𝑒 is constant for all pixels, and 265 

therefore NCAR models cannot model non-uniform label noise. All 𝑬𝑖,𝑗 would have the 266 

same values because the probability of a pixel being noisy is constant and not dependent 267 

on any variables. The error matrix 𝑬 is completely independent (pixel-wise NCAR 268 

model in Fig. 6). For binary classification (which is our case for the pixel-wise models) 269 

having 𝑝𝑒 = 1/2 would render the labels useless and inadequate to learn from (Angluin 270 
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and Laird, 1988). Furthermore, since NCAR models are class independent, asymmetric 271 

noise cannot be modeled as well. NCAR models assume that labels of all classes have 272 

equal chances of being observed as noisy labels. In real world settings, this is rarely the 273 

case. For example, in building extraction tasks, the positive class is much more prone to 274 

label noise. Furthermore, the positive class is also the minority class in most imbalanced 275 

building extraction datasets.  276 

 277 

(2) Pixel-wise NAR model: NAR models are able to model asymmetric and non-278 

uniform label noise processes. Each 𝑬𝑖,𝑗 is dependent on each 𝒀𝑖,𝑗, which in turn affects 279 

each �̃�𝑖,𝑗 (pixel-wise NCAR model in Fig. 6). The probability of a specific label being 280 

observed as another label is modelled using the transition matrix (Lawrence and 281 

Schölkopf, 2001; Pérez et al., 2007). We define the transition matrix for noisy dense 282 

binary labels as 283 

 284 

 𝜸 = [
𝛾0,0 𝛾0,1

𝛾1,0 𝛾1,1
]  

 285 

 
 = [

𝑃(�̃�𝑖,𝑗 = 0|𝒀𝑖,𝑗 = 0) 𝑃(�̃�𝑖,𝑗 = 0|𝒀𝑖,𝑗 = 1)

𝑃(�̃�𝑖,𝑗 = 1|𝒀𝑖,𝑗 = 0) 𝑃(�̃�𝑖,𝑗 = 1|𝒀𝑖,𝑗 = 1)
] (6) 

 286 

The conditional probabilities in Eq. (6) can be estimated from the observed and 287 

corresponding clean labels. It is important to note that, the transition matrix is the same 288 

for all �̃�𝑖,𝑗 (and hence for all 𝒀𝑖,𝑗). For uniform noise in dense binary labels, the 289 

transition matrix becomes 290 

 291 
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𝜸 = [

1 − 𝑝𝑒 𝑝𝑒

𝑝𝑒 1 − 𝑝𝑒
] (7) 

 292 

(3) Pixel-wise NNAR model: In the case of NNAR models, the error matrix 𝑬 is 293 

dependent on the features as well (pixel-wise NNAR model in Fig. 6). The observed 294 

pixel label �̃�𝑖,𝑗 is dependent on 𝑬𝑖,𝑗 and 𝒀𝑖,𝑗; if  𝑬𝑖,𝑗 = 1, 𝒀𝑖,𝑗 is flipped to get �̃�𝑖,𝑗, 295 

otherwise  �̃�𝑖,𝑗 = 𝒀𝑖,𝑗. The probability of error is a function of the pixel-wise feature 296 

and pixel-wise true label,  297 

 298 

 𝑝𝑒(𝑿𝑖,𝑗 , 𝒀𝑖,𝑗) = 𝑃(𝑬𝑖,𝑗 = 1|𝑿𝑖,𝑗 = 𝑥, 𝒀𝑖,𝑗 = 𝑦) (8) 

 299 

(4) Dense NCAR model: In the dense NCAR model, every �̃�𝑖,𝑗 is affected by the 300 

entire error matrix 𝑬, and not just 𝑬𝑖,𝑗 (which is the case for the pixel-wise NCAR 301 

model). Spatial information about label noise in terms of context (as opposed to pixel-302 

based information) can be modeled. Every 𝑬𝑖,𝑗 need not be constant; however, they are 303 

still completely independent (of each other and of any other random variable) and thus 304 

completely random (dense NCAR model in Fig. 4). 305 

 306 

(5) Dense NAR model: The dense NAR model allows modeling asymmetric 307 

dense label noise, which is not possible using the dense NCAR model. Unlike the pixel-308 

wise NAR model, the transition matrix for each �̃�𝑖,𝑗 can be distinct and independent of 309 

each other. The transition matrix for �̃�𝑖,𝑗 in a dense NAR model can be defined as  310 
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𝜸(𝑖,𝑗) = [

𝛾0,0
(𝑖,𝑗)

𝛾0,1
(𝑖,𝑗)

𝛾1,0
(𝑖,𝑗)

𝛾1,1
(𝑖,𝑗)

] (9) 

The error matrix 𝑬 is directly dependent on the true dense label 𝒀 (dense NAR 311 

model in Fig. 6), but independent of the dense features 𝑿. 312 

 313 

(6) Dense NNAR model: In the dense NNAR model all pixels from the image 314 

affect the probabilities of label noise in certain observed pixels (dense NNAR model in 315 

Fig. 6). Every 𝑬𝑖,𝑗 is affected by the entire image tensor 𝑿, and every �̃�𝑖,𝑗 is affected by 316 

the entire error matrix 𝑬. The error matrix can be estimated based on the observed dense 317 

label �̃� and dense feature tensor 𝑿. We essentially model the conditional distribution of 318 

the error matrix 𝑬, given the feature tensor 𝑿 and the observed dense label �̃� (Eq. (10)). 319 

This estimated error matrix can then be used for generating the true labels using Eq. (1). 320 

 321 

 

𝑃(𝑬| �̃�, 𝑿) = ∏ ∏ 𝑃(𝑬𝑖,𝑗|�̃�, 𝑿)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (10) 

 322 

Materials and methods 323 

Data 324 

The dataset consists of 258 large 512x512 ultra-high-resolution aerial image tiles over 325 

the Kutupalong mega camp collected by the United Nations International Organization 326 

for Migration on September 17, 2018. Kutupalong is the largest of the camps, 327 

comprised of several sub-camps, situated in the south-eastern border region of 328 

Bangladesh which acted as the corridor for the Rohingya refugees migrating from 329 
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Myanmar. For our case, 𝑛ℎ = 𝑛𝑤 = 512. The observed noisy labels are collected from 330 

OpenStreetMap. The true clean labels are obtained by relabeling performed by the 331 

authors. The dataset is randomly split in half for denoting training and testing data. 332 

Images have three channels/bands — Red, Green and Blue — with a spatial resolution 333 

of 10 cm. These images have very high data quality i.e. without cloud or shadow cover 334 

being collected by low flying unmanned aerial vehicles (UAVs) and capture fine-335 

grained details of the physical environments where the buildings are located. The 336 

general error matrices are computed using Eq. (2), whereas the FP and FN error 337 

matrices are computed without taking the absolute value, rather using the signed/un-338 

signedness of the difference matrix. Our dataset is relatively smaller than most 339 

commonly used datasets for building extraction (such as Massachusetts, Potsdam and 340 

Vaihingen datasets), this is because we have had to re-label all of our training and test 341 

data by hand for obtaining the noise-free true clean labels, which is very time-342 

consuming. Moreover, datasets for semantic segmentation/dense prediction with the 343 

corresponding observed labels (with real-world label noise) and counterpart clean labels 344 

are virtually non-existent. Our dataset is unique in that aspect, since, having access to 345 

the observed noisy labels and clean labels is crucial for obtaining ground truth error 346 

matrices (Eq. (1)). It is important to note that the error matrices are only required for 347 

pretraining the dense label noise prediction models, during testing/evaluation the 348 

models directly output building maps corrected by error matrices.   349 

Model frameworks 350 

The true clean dense label is solely dependent on the feature tensor in all six noise 351 

models (caption of Fig. 6). The features (from satellite/aerial images), used for 352 

approximating true labels, can be compared to the observed noisy label to obtain the 353 

error matrix; the features have an important role in determining the observed label. 354 
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Therefore, the dense NNAR model is most suitable for expressing commonly observed 355 

registration errors. Currently, deep learning is the state-of-the-art system for automated 356 

building extraction (Vakalopoulou et al., 2015; Huang et al., 2016; Chen et al., 2017; 357 

Yuan, 2017; Yang et al., 2018; Ji et al., 2018; Xu et al., 2018; Shrestha and Vanneschi, 358 

2018; Boonpook et al., 2021; Sun et al., 2021). Fig 7(a) and 7(b) show the generally 359 

used learning systems for deep learning-based building extraction i.e. with clean labels 360 

(Fig. 7(a)) and with noisy labels (Fig. 7(b)). We propose two new models for automated 361 

building extraction, and consequently, two novel network architectures, where error 362 

matrices are approximated as an intermediate step (Fig 7(c) and Fig. 7(d)). As discussed 363 

later, we draw from the dense NNAR model in modelling our learning frameworks. The 364 

formulated dense noise models ultimately determine the architecture of the neural 365 

networks. The base network in Fig. 7(a) represents the statistical dependency between 366 

the feature and label tensors in the dense NNAR model (Fig. 6). Similarly, the error 367 

matrix network in Fig. 7(a) represents the statistical dependency between the feature 368 

and error matrix tensors in the dense NNAR model (Fig. 6). We elaborate on the model 369 

frameworks, network architectures, learning and evaluation approaches. 370 

 371 
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Figure 7. Training and testing approaches (a) With clean labels - control, CL model (b) 372 

With noisy labels - NL model (c) With intermediate error matrix approximation - I-EM 373 

model (d)  With intermediate FP and FN error matrices approximation - I-FPFN-EM 374 

model; BCE - binary cross entropy; FP - false positive, FN - false negative 375 

Intermediate error matrix (I-EM) model 376 

The first proposed intermediate error matrix (I-EM) model approximates error matrices 377 

as an intermediate step of approximating building/non-building predictions. The noisy 378 

observed labels are learned by the base network in Fig. 7(c) approximated as the mean 379 

of the distribution in Eq. (11). The noisy observed labels are learned by the error 380 

network in Fig. 7(c) approximated as the mean of the distribution in Eq. (12). Finally, 381 

the outputs from the error matrix (EM) model and the observed label model are used 382 

together by the cleaning network in Fig. 7(c) to learn noise free label approximation in 383 

Eq. (13). Viewing the model framework from an end-to-end fashion in terms of testing 384 

indicates (Testing in Fig. 7(c)) in Eq. (14).  385 

 386 

 387 

 

𝑃(�̃�|𝑿) = ∏ ∏ 𝑃(�̃�𝑖,𝑗|𝑿)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (11) 

 

𝑃(𝑬|𝑿) = ∏ ∏ 𝑃(𝑬𝑖,𝑗|𝑿)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (12) 
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𝑃(𝒀|�̃�, 𝑬) = ∏ ∏ 𝑃(𝒀𝑖,𝑗|�̃�, 𝑬)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (13) 

 

𝑃(𝒀|𝑿, 𝑬) = ∏ ∏ 𝑃(𝒀𝑖,𝑗|𝑿, 𝑬)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (14) 

Intermediate FP and FN error matrix (I-FPFN-EM) model 388 

The second proposed intermediate FP and FN error matrix (I-FPFN-EM) model 389 

approximates the FP and FN error matrices separately as an intermediate step of 390 

approximating building/non-building predictions. The noisy observed labels are learned 391 

by the base network in Fig. 7(d) approximated as the mean of the distribution in Eq. 392 

(11). The FP (false positive) error matrix is learned by the FP error network in Fig. 7(d) 393 

approximated as the mean of the distribution in Eq. (15). The FN (false negative) error 394 

matrix is learned by the FNM error network in Fig. 7(d) approximated as the mean of 395 

the distribution in Eq. (16). Finally, the outputs from the FP and FN error matrix 396 

models, and the observed label model are used together by the cleaning network in Fig. 397 

7(d) to learn noise free label approximation in Eq. (17). We refer to the FP error matrix 398 

model as the FP-EM model and the FN error matrix model as the FN-EM model. 399 

Viewing the model framework from an end-to-end fashion in terms of testing indicates 400 

(Testing in Fig. 7(d)) in Eq. (18).  401 

 

𝑃(𝑬+|𝑿) = ∏ ∏ 𝑃(𝑬𝑖,𝑗
+ |𝑿)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (15) 
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𝑃(𝑬−|𝑿) = ∏ ∏ 𝑃(𝑬𝑖,𝑗
− |𝑿)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (16) 

 

𝑃(𝒀|�̃�, 𝑬+, 𝑬−) = ∏ ∏ 𝑃(𝒀𝑖,𝑗|�̃�, 𝑬+, 𝑬−)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (17) 

 

𝑃(𝒀|𝑿, 𝑬+, 𝑬−) = ∏ ∏ 𝑃(𝒀𝑖,𝑗|𝑿, 𝑬+, 𝑬−)

𝑛𝑤

𝑗=1

𝑛ℎ

𝑖=1

 (18) 

Network architectures 402 

Each intermediate network has four downsampling blocks and four upsampling blocks. 403 

We use vanilla U-Nets with approximately 0.5 million parameters for intermediate 404 

learning steps. The U-Net/autoencoder architecture is common for building extraction 405 

tasks (Wang et al., 2020; Guo et al., 2020). The use of step-wise concatenation of 406 

models has been employed for building extraction (Shao et al., 2020). Each 407 

downsampling block has two convolutional layers punctuated by a single dropout layer, 408 

which is then downsampled to half the output row and column size using max pooling. 409 

Each upsampling block also has two convolutional layers punctuated by a single 410 

dropout layer, which is then upsampled to double the output row and column size using 411 

interpolation. We use the binary cross entropy loss function as it is commonly used for 412 

most binary building extraction tasks (Ahmed et al., 2020). For the I-EM model (Fig. 413 

8(a)) the outputs of the base network and error network are concatenated and fed to the 414 

cleaning network. For the I-FPFN-EM network the outputs of the base network, FP 415 

error matrix network and FN error matrix network are all fed into the cleaning network. 416 

Please note that intermediate predictions of observed labels and error matrices (general, 417 
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FP and FN) are in the form of soft pixel level labels i.e. they are not converted to hard 418 

labels based on threshold values. The I-EM model and I-FPFN-EM models have 419 

approximately 1.5 million and 2 million parameters respectively. S1 details the network 420 

architecture for NL, CL, EM, FP-EM and FN-EM models, Fig. S2 and Fig. S3 in 421 

supplementary material contains the detailed network architectures of the I-EM and I-422 

FPFN-EM model respectively. 423 

 424 

Figure 8. Proposed network architectures for building extraction under label noise (a) I-425 

EM model (b) I-FPFN-EM model 426 

Learning 427 

The I-EM model and I-FPFN-EM model are trained in two steps. 428 
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• Step 1 - Pre-training: For learning the parameters of the base and error 429 

networks. Individual auto-encoders with skip connections are trained. For the I-430 

EM model, the base network is trained using the images 𝑿 as features and �̃� as 431 

targets, the error network is trained using the images 𝑿 as features and 𝑬 as 432 

targets. For the I-FPFN-EM model, the base network is also trained using the 433 

images 𝑿 as features and �̃� as targets, the FP error network is trained using the 434 

images 𝑿 as features and 𝑬+ as targets, and the FN error network is trained 435 

using the images 𝑿 as features and 𝑬− as targets. 436 

• Step 2 - Transfer learning: After the base networks and error networks (general 437 

for I-EM; FP and FN for I-FPFN-EM) are trained, their outputs are concatenated 438 

and fed into the cleaning networks. In order to train the cleaning network, the 439 

layers in the base and error networks are frozen i.e. they are set as non-trainable. 440 

In this second step of training, the entire network is trained in an end-to-end 441 

fashion against clean labels. 442 

 443 

The baseline CL model and NL model both have approximately 0.5 million parameters. 444 

The I-EM model and I-FPFN-EM models have approximately 1.5 million and 1.5 445 

million parameters respectively. This larger number of parameters are due to the error 446 

matrix networks and the cleaning networks used in the I-EM model and the I-FPFN-EM 447 

models. The general error matrix sub-model in the I-EM model, and each of the false 448 

positive error matrix model and the false negative error matrix models all have 449 

approximately 0.5 million parameters. The time complexity of the I-EM model and I-450 

FPFN-EM model are also increased proportional to the increase of number of 451 

parameters with respect to the CL and NL models. The total time needed for training the 452 
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sub-models of the I-EM model is triple that of the CL or NL models, and the total time 453 

needed for training the I-FNFN-EM models is quadruple that of the CL or NL models. 454 

Method comparison 455 

In order to assess the qualitative and quantitative advantages/disadvantages of our two 456 

proposed models, we also compare against generally used model frameworks for 457 

automated building extraction. We compare four different deep learning-based building 458 

segmentation models, 459 

 460 

(1) Noisy label (NL) model (Ahmed et al., 2020): Dense building extraction with 461 

noisy labels. 462 

(2) Clean label (CL) model (Ahmed et al., 2020): Dense building extraction with 463 

clean labels (control). 464 

(3) I-EM model: The first proposed model described above. 465 

(4) I-FPFN-EM model: The second proposed model described above. 466 

 467 

Other than the CL and NL models in Ahmed et al., (2020), no other study 468 

presents dataset/methods for dense prediction of label noise using clean and noisy labels 469 

with real world noise. The threshold value determines the boundary value and 470 

consequently the binary class label of each pixel. We vary the threshold for each model 471 

with low (0.25), medium (0.5) and high (0.75) values to convert the soft labels (between 472 

0 and 1 inclusive) to hard labels (0 or 1). 473 

Performance evaluation metrics 474 

We calculate the total number of true positives (TP), true negatives (TN), false positive 475 

(FP) and false negative (FN) predictions on the approximately 33 million pixels of 476 
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testing data. Concurring to most building extraction scenarios, our dataset is also quite 477 

imbalanced, being negative heavy. Therefore, we calculate the precision (Eq. (19), 478 

recall (Eq. (20)), F1-score (Eq. (21) and Intersection-over-Union (IoU) (Eq. (22)).  479 

 480 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

 481 

 
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (20) 

 482 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (21) 

 483 

 
𝐼𝑜𝑈 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (22) 

 484 

Results and discussion 485 

Quantitative evaluation of performance 486 

The CL model provides the control/baseline against which we compare our two 487 

proposed models since it represents the ideal scenario when the investigator has access 488 

to both images and clean labels. Our I-FPFN-EM model at 0.5 medium threshold (row 489 

no. 11 in Table 2) has the highest IoU score (0.78514), which provides a gain of 2.74% 490 

over the traditional CL model trained on clean labels (0.75768) and a gain of 25.65% 491 

over the observed noisy labels with IoU score of  0.52857. Similarly, our I-FPFN-EM 492 

model at 0.5 threshold has the highest F1-score (0.87964), which provides a gain of 493 
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1.75% over the traditional model trained on clean labels with an F1-score of 0.86214, 494 

and gain of 18.8% over the observed noisy labels with an F1-score of 0.69159. 495 

Compared to the idealistic CL model, our I-FPFN-EM model has a better F1-score and 496 

IoU score for high threshold value (0.75) as well, and has comparable/nearly identical 497 

performance for low threshold value (0.25). At a threshold value of 0.75, the I-FPFN-498 

EM model (row no. 12 in Table 2) has an F1-score of 0.86009 which is 3.45% higher 499 

than the F1-score of the CL model (0.8255) at a threshold value of 0.75. The I-FPFN-500 

EM model at a threshold value of 0.75, achieves an IoU score of 0.75453, providing a 501 

gain of 5.16% over the CL model with an IoU score of 0.70285, at a threshold value of 502 

0.75. Our I-FPFN-EM model provides better performance over traditional methods, for 503 

the general threshold of 0.5 and the high threshold of 0.75. 504 

 505 

The I-EM has slightly poorer/comparable performance to the CL model. This 506 

indicates the importance of differentiating FP and FN error matrices as features, instead 507 

of approximating an intermediate general error matrix, since that is the primary 508 

conceptual difference between the I-EM model and I-FPFN-EM model. A lower 509 

threshold means higher recall and lower precision. A higher threshold means higher 510 

precision and lower recall. The threshold value determines the precision recall trade-off. 511 

However, both the I-EM and I-FPFN-EM models have much higher recall and slightly 512 

lower precision for corresponding threshold values when compared to the CL model. In 513 

our case of highly imbalanced data, higher recall is preferred over higher precision.  514 

 515 

Table 2. Performance of the four compared models for building extraction under label 516 

noise and the fidelity of observed labels 517 

No. Model Threshold Precision Recall F1-score IoU 
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1 

NL 

0.25 0.79584 0.82862 0.8119 0.68336 

2 0.50 0.91337 0.56184 0.69572 0.53342 

3 0.75 0.98292 0.0948 0.17291 0.09464 

4 

CL 

0.25 0.79586 0.91111 0.84959 0.73851 

5 0.50 0.88502 0.84041 0.86214 0.75768 

6 0.75 0.93973 0.73603 0.8255 0.70285 

7 

I-EM 

0.25 0.74541 0.93536 0.82965 0.70889 

8 0.50 0.84473 0.85928 0.85194 0.74207 

9 0.75 0.89968 0.76947 0.8295 0.70867 

10 

I-FPFN-EM 

0.25 0.76109 0.94634 0.84366 0.7296 

11 0.50 0.86551 0.89424 0.87964 0.78514 

12 0.75 0.92819 0.80131 0.86009 0.75453 

13 OBSERVED - 0.82165 0.59708 0.69159 0.52857 

 518 

Separated error matrices in the form of FP error matrix and FN error matrix is 519 

crucial to surpassing the baseline CL model performance, as our I-EM model has 520 

significantly poorer quantitative performance compared to the I-FPFN-EM model. 521 

Comparing the I-EM model and the I-FPFN-EM model performances at the three 522 

threshold values, the I-FPFN-EM model provides an F1-score increase of 1.4% 523 

(0.84366 compared to 0.82965) and IoU score increase of 2.071% (0.7296 compared to 524 

0.70889) at a threshold value of 0.25, F1-score increase of 2.77% (0.87964 compared to 525 

0.85194) and IoU score increase of 4.307% (0.78514 compared to 0.74207) at a 526 

threshold value of 0.5 and F1-score increase of 3.059% (0.86009 compared to 0.8295) 527 
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and IoU score increase of 4.586% (0.75453 compared to 0.70867) at a threshold value 528 

of 0.75. 529 

 530 

The traditional model trained against noisy labels (NL model), quite obviously 531 

has the poorest performance of the four tested models (row no. 1-3 in Table 2). At high 532 

threshold values (0.75) the NL model (row no. 3 in Table 2) predictions become 533 

practically useless, yielding an F1-score of 0.17291 and IoU score of 0.09464, whereas 534 

the CL, I-EM and I-FPFN-EM model have much better performance at a high threshold 535 

value of 0.75. The fidelity of noisy labels is also evaluated against the true clean labels 536 

(row no. 13 in Table 2). Though the NL model has the poorest performance among four 537 

tested models, predictions from the NL model have higher fidelity than the observed 538 

labels with real world noise. This is commonly observed for building extraction under 539 

real-world noisy conditions (Ahmed et al., 2020). 540 

Qualitative evaluation 541 

From a qualitative viewpoint, the predictions from the four models seem quite similar 542 

prior to intensive inspection and photo-interpretation. We show some examples of 543 

predictions on image tiles from the test set (Fig. 9). The CL model predictions (Fig. 544 

9(d)) have the best qualitative properties, followed by the I-FPFN-EM model 545 

predictions (Fig. 9(g)) which sometimes suffers from salt and pepper noise (all 546 

predictions in Fig. 9 were made at a threshold value of 0.5 and can be remedied using 547 

lower threshold values). Particularly, the I-FPFN-EM model predictions and I-EM 548 

model predictions (Fig. 9(f)) for buildings with rare colored roofs (orange painted 549 

corrugated metal roofs) contain salt and peppering. Rare colored building rooftops can 550 

be challenging to learn due to the comparatively small number of examples in the 551 

training set. The NL model predictions completely miss out on entire buildings with 552 
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orange-colored rooftops (Fig. 9(e)). The last row in Fig. 9 shows the issues of one-553 

storied building rooftops being obstructed partly or completely by vegetation. Building 554 

rooftops obstructed by trees and vegetation are not easily detected, as the vegetation 555 

over the rooftop is easily confused as non-building regions by the models (last row in 556 

Fig. (9)). However, for buildings with vegetation on the rooftops, the I-FPFN-EM 557 

model provides less peppering and errors compared to even the CL model (last row in 558 

Fig. (9))  559 

 560 

561 
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Figure 9. Examples of building predictions made by different models (a) Image (b) 562 

Noisy label (c) Clean label (d) Predictions from CL model (e) Predictions from NL 563 

model (f) Predictions from I-EM model (g) Predictions from I-FPFN-EM model 564 

Some examples of error matrices predicted during the intermediate step are 565 

shown in Fig. 10. The error matrices are sparse, and weakly correlated to the images as 566 

the real world label noise can be random at times. However, they can provide insights 567 

about location having higher probabilities of being mislabeled. The ground truth FP 568 

error matrix is shown in Fig. 10(b) and the predicted FP error matrix is shown in Fig. 569 

10(c). FP pixels are usually pixels adjacent to the clean building label boundary, but 570 

falling outside the boundary; this intuition is captured by the FP error matrix model as 571 

indicated by the predictions in Fig. 10(c). i.e. the regions adjacent to actual/clean 572 

boundaries have higher activations than other regions in the images, and thus have a 573 

higher probability of being an observed FP pixel. The predicted FP error matrix (non-574 

thresholded) provides a heat map indicating the probability of each observed positive 575 

pixel label actually being true negative pixels. 576 

FN pixels are less sparse than FP pixels since a major source of label noise in 577 

building extraction datasets comes from omitted/missed out buildings and shrunk label 578 

polygons. Fig. 10(d) shows the actual FN error matrix and Fig. 10(e) shows the 579 

predicted by the FN error matrix model. FN pixels are pixels within the clean building 580 

boundaries which are observed as non-building in the noisy labels, therefore regions in 581 

close proximity to the clean building boundaries but on the inner side have the highest 582 

probability of being observed as FN pixels, this is shown in Fig. 10(e). It is interesting 583 

to note that all pixels with significantly high FP error matrix activations lie outside and 584 

adjacent to the clean building boundaries whereas all pixels with significantly high FN 585 

error matrix activations lie inside the clean building boundaries; the modeling intuition 586 
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is expressed in the qualitative results.  587 

 588 

 589 

 590 

Figure 10. Examples of error matrix predictions (a) Image (b) FP error matrix (c) 591 

Predicted FP error matrix (d) FN error matrix (e) Predicted FN error matrix (f) General 592 

error matrix (g) Predicted general error matrix 593 
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The general error matrix predictions are shown in Fig. 10(f) and the predicted 594 

general error matrix predictions are shown in Fig. 10(g). Among the three types of error 595 

matrices (general, FP and FN) the general error matrices are least sparse, since they are 596 

the element wise addition of the FP and FN error matrices. The extra information 597 

provided by separated FP and FN matrices are crucial to approximating useful noise 598 

features. Experimental results on our dataset confirm this statement. The I-EM model 599 

results are poorer than the CL model (albeit providing higher recall values at all 600 

thresholds) qualitatively and quantitatively (in terms of F1-score and IoU score on the 601 

independent test set). The predicted intermediate observed label also affects the 602 

predicted true label. The outputs of hidden blocks of different models are shown in Fig. 603 

11, feature maps for learning error matrices (Fig. 11(b), 11(c), 11(d) are quite different 604 

from feature maps for learning base level building extraction (Fig. 11(a)). The 605 

activation maps in Fig. 11 are outputs of the blocks for each model architecture. The 606 

first feature map for each output is shown. The block outputs in Fig. 11 (U1-U4. the 607 

bottleneck and D1-D4) show discriminative properties of the learned mappings in terms 608 

of resolution and separability. 609 

 610 

 611 
(a) 612 

 613 
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(b) 614 

 615 
(c) 616 

 617 
(d) 618 

Figure 11. Outputs learned by hidden convolutional layers for building extraction and 619 

for error matrix approximation. (a) Clean label network (b) Error network (c) FP error 620 

network (d) FN error matrix network 621 

Conclusion 622 

In this work, we have provided a comprehensive taxonomy of label noise, in which the 623 

six formulated label noise models can be used to express any kind of label noise in 624 

building extraction tasks. Dense models are more apt than pixel-wise models for 625 

building extraction. We propose two new model frameworks for dense prediction based 626 

building extraction under label noise. The first model approximates the general error 627 

matrix as an intermediate step, but has poor performance improvements compared to the 628 

clean model. However, approximating the FP error matrix and the FN error matrix 629 

separately greatly improves performance over the idealistic scenario presented in the 630 

form of the CL model. Therefore, it is important to model the false positives and false 631 

negatives independently rather than using a general model for both types of pixel-level 632 

observed labels. Label noise in most building extraction cases is asymmetric, as also 633 
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observed for our case; there is a massive imbalance in the pixel-level label noise i.e. 634 

there are much more false negatives than false positives. Therefore, a general model is 635 

not sufficient in modeling the FP and FN noise processes to a degree that can aid the 636 

larger task of noise-free building extraction. Qualitative results show that the error 637 

matrix models (FP, FN and general) all capture the intuition behind the model 638 

framework. The FP error matrix dense model has higher activations for regions right 639 

outside and adjacent to the actual clean building boundaries. Similarly, FN error matrix 640 

dense model has higher activations for regions inside and adjacent to the actual clean 641 

building boundaries. Clean labels and corresponding observed labels with real-world 642 

label noise are rarely available in conjunction with each other, which are essential for 643 

obtaining the error matrices outlined in our proposed methodologies, and thus limit the 644 

applicability. 645 
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