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Figure 1: Various types of combinations of VSR and VFI. Our MBnet (f) is built on the interaction of VSR and VFI to exploit
better the space-time inter-dependence and make VSR and VFI mutually benefit each other. Compared with STARnet [13],
our MBnet feeds results of VFI back to VSR only once and achieves competitive results with much fewer parameters.

ABSTRACT
Video super-resolution (VSR) and video frame interpolation (VFI)
are inter-dependent for enhancing videos of low resolution and low
frame rate. However, most studies treat VSR and temporal VFI as
independent tasks. In this work, we design a spatial-temporal super-
resolution network based on exploring the interaction between VSR
and VFI. The main idea is to improve the middle frame of VFI by
the super-resolution (SR) frames and feature maps from VSR. In the
meantime, VFI also provides extra information for VSR and thus,
through interacting, the SR of consecutive frames of the original
video can also be improved by the feedback from the generated
middle frame. Drawing on this, our approach leverages a simple in-
teraction of VSR and VFI and achieves state-of-the-art performance
on various datasets. Due to such a simple strategy, our approach
is universally applicable to any existing VSR or VFI networks for
effectively improving their video enhancement performance.
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1 INTRODUCTION
To suit high-resolution and high-frame-rate displays such as UHD
4K TVs and players, video super-resolution (VSR) [29] (Fig.1(a))
and video-frame interpolation (VFI) [2] (Fig.1(b)) are often used
to achieve the conversion from a low-frame-rate (LFR) and low-
resolution (LR) video to a high-frame-rate (HFR) and high-resolution
(HR) video.

At present, most VSR networks (e.g. RBPN [12], TDAN [29],
EDVR [32]) and VFI methods (e.g. SepConv [23], AdaCoF [20],
DAIN [2]) are independently studied. However, the essence of both
VSR and VFI tasks is to supplement and generate pixels based on
adjacent pixel information in the same frame or from the adjacent
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reference frames. On account of the similarity between pixels of
the same object both in the time domain and the space domain, if
VSR and VFI tasks are processed separately, it will not be able to
make full use of the temporal and spatial inter-dependence.

Space-time video super-resolution (STVSR) [13, 33], strongly re-
quired in film slow-motion making and high-resolution television,
aims to automatically generate videos of high space-time resolu-
tion from LFR and LR input videos. To design an STVSR network,
one straightforward way is to cascade VSR and VFI networks in
a two-stage manner, either first enhancing spatial resolution and
then temporally interpolating HR frames (Fig.1(d)), or first interpo-
lating missing intermediate LR frames and then reconstructing all
HR frames (Fig.1(c)). However, such a simple cascaded connection
of VSR and VFI will introduce spatial and temporal irregularity
without alignment.

Therefore, this study focuses on the joint enhancement of VSR
and VFI. Different from STARnet [13], our MBnet (Fig.1(f)) is de-
signed on the basis of interaction between VSR and VFI at the pixel
level and does not need many iterations, enabling MBnet to be
conveniently combined with any existing independent VSR and
VFI networks. We find that the VSR network pays more attention
to the low-level context feature while the VFI network lays em-
phasis on high-level motion information, so they can be mutually
beneficial: VSR can benefit from the VFI feedback for higher frame
rate and more accurate motion estimation and compensation, and
VFI can get more context details from the VSR features. Drawing
on this, our approach leverages a simple interaction of VSR and
VFI and achieves state-of-the-art performance on various datasets.
Moreover, our design is a universally applicable structure that can
be easily combined with any independent VSR and VFI networks
to effectively improve their video enhancement results.

The main contributions of our work are four-fold:
1) We deeply explore why VSR and VFI are better to be joint

and how they mutually benefit from each other. Especially, our
VSR features are more suitable to enhance VFI than the features
extracted by the independent ResNet that used in [2, 22].

2)We propose an effective interaction structure between VSR and
VFI; it can also be conveniently used to combine most independent
VSR and VFI networks for STVSR, e.g. RBPN [12]. Moreover, our
proposed MBnet achieves competitive results on several popular
datasets compared to state-of-the-art methods.

3) In order to reduce the huge computational costs of the flow-
based VSR and VFI, we adopt a lightweight flow network on LR
frames and a flow refinement network onHR frames, which achieves
better performance with fewer parameters than typical flow nets
(e.g. PWCNet [27]) widely used in VSR and VFI tasks [13, 19, 34]

4) We get the flow to the middle frame by the Flow Refine Net
instead of directly use the interpolation of adjacent flows in [3, 16],
and we try a new supervised loss of flow, which adopts a latest
optical flow network [28] to get the referential flow for supervision
and achieves better perceptional experience.

2 RELATEDWORK
Our work is mainly related to deep learning based methods for
three video enhancement topics: VSR, VFI, and STVSR.

2.1 Video Super-Resolution (VSR)
Video super-resolution aims to reconstruct an HR video frame from
the corresponding LR frame (reference frame) and its neighbor-
ing LR frames (supporting frames). In recent years, a lot of image
super-resolution methods based on deep learning [4, 11, 36] have
emerged and gradually became the mainstream. However, sim-
ply adapting image super-resolution into video super-resolution
will bring temporal inconsistency and artifacts due to the mo-
tion between frames. A common solution is to introduce optical
flow [9, 27] and then warp the supporting frame to the reference
frame by using the predicted flow map, e.g. RBPN [12], ToFlow [34],
SOF-VSR [31]. Other methods adapt dynamic filters [17], non-local
spatio-temporal correlations [30, 35], channel attention[15] or de-
formable ConvLSTM [29, 32] tomake implicit motion compensation
for alignment. However, the cost of explicit flow calculation in HR
frames is huge if starting from scratch.

2.2 Video Frame Interpolation (VFI)
The aim of VFI is to synthesize non-existent intermediate frames
between original adjacent frames. Kernel-based VFI nets [2, 20]
adopt spatially adaptive separable convolution to enlarge the recep-
tion field, but they have limited ability when the displacement is
out of the kernel area. Similarly to VSR, most VFI networks [2, 14,
20, 22, 34] adopt optical flow for explicit motion compensation and
temporal alignment. Some methods [2, 20] combine kernel with
optical flow, and DAIN [2] also adopts the depth information to
optimize optical flow. Most methods use typical flow nets [9, 27]
to get the adjacent flow, and then synthesis the flow to the mid-
dle frame by interpolation, which induces huge computation costs
and may bring in errors. Thus, we adopt a lightweight optical flow
network [31] on LR frames and a flow refine network [26] to get
the middle flow on HR frames, and we try a new supervised flow
loss to achieve better perception. Recently, meta-learning is also
introduced into frame interpolation [7]; CAIN [8] adapts channel
attention into VFI; and EDSC [6] uses ConvLSTM to learn motion
offset for implicit motion compensation.

2.3 Space-Time Video Super-Resolution
STVSR was firstly proposed to extend SR to the space-time domain
in [24]. Recent studies [13, 33] show that single-stage STVSR can
be better than most two-stage concatenations of independent VSR
and VFI nets. Zooming-low-mo [33] used deformable ConvLSTM to
combine local context information with motion offset. FISR [19] put
forward a multi-scale temporal loss to make use of the alignment
information between several frames based on flow and warping.
STVUN [18] fuse features from different frames without explicit
motion information compensation, but its feature interpolation still
relies onwarping input frames by optical flow calculated from PWC-
Net [27]. STARnet [13] (Fig.1(e)), similarly to our work, achieved
joint learning of VSR and VFI via iterations between multi-scale
features from adjacent frames. It also adopts PWCNet [27] for flow
estimation. However, our network is based on the iterations be-
tween VSR and VFI at the pixel level, which does not need many
iterations and can be conveniently combined with most existing
independent VSR and VFI networks.



Figure 2: Diagram of our MBnet. It contains four sub-networks: 𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 , 𝑁𝐸𝑇𝑆𝑅 , 𝑁𝐸𝑇𝑟𝑒 and 𝑁𝐸𝑇𝐹𝐼 . It uses odd LR frames 𝐿𝑅𝑡−1
and 𝐿𝑅𝑡+1 as input to generate the odd HR frames 𝑆𝑅𝑡−1 and 𝑆𝑅𝑡+1 (𝑁𝐸𝑇𝑆𝑅) and the even HR frame 𝑆𝑅𝑡 (𝑁𝐸𝑇𝐹𝐼 ) between them
as output. It designs an interaction structure to exploit the inter-dependence between VSR and VFI to mutually benefit them
and thus improve STVSR.

3 PROPOSED METHOD
3.1 Overall Network Architecture
In this paper we propose a new network called MBnet (Fig.2) for
STVSR. We implement MBnet by designing a weighted shared in-
teraction structure to better meld spatial and temporal information
between VSR and VFI coarse-to-fine. Previous studies [13] show
that doing VSR before VFI can achieve better results than the other
way around. Hence, we feed the results of the VSR net to the VFI net,
and feedback the interpolated HR frames to the VSR net to refine
the results, and we adopt a lightweight optical flow network OFR-
net [31] on LR frames and a flow refinement network PACnet [26]
on HR frames to substantially reduce computational costs.

Taking two LR frames as input and generating three HR frames
as an example, when given LR and LFR video frame sequence 𝐿𝑅𝑡−1
and 𝐿𝑅𝑡+1 with size of ℎ × 𝑤 , our goal is to generate HR frames
𝑆𝑅𝑡−1, 𝑆𝑅𝑡 and 𝑆𝑅𝑡+1 with size of (ℎ × 𝑠𝑐𝑎𝑙𝑒) × (𝑤 × 𝑠𝑐𝑎𝑙𝑒) with
up-sampling scale, e.g. scale = 4. Specifically, as shown in Fig.2,
our MBnet consists of four sub-networks: 𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 (Sec.3.2) for LR
optical flow estimation between input LR frames 𝐿𝑅𝑡−1 and 𝐿𝑅𝑡+1;
𝑁𝐸𝑇𝑟𝑒 (Sec.3.2) for HR flow refinement of HR frames from adjacent
frames 𝑆𝑅𝑡−1 and 𝑆𝑅𝑡+1 to middle frame 𝑆𝑅𝑡 ; 𝑁𝐸𝑇𝑆𝑅 (Sec.3.3) for
VSR to generate HR frames 𝑆𝑅𝑡−1 and 𝑆𝑅𝑡+1; and 𝑁𝐸𝑇𝐹𝐼 (Sec.3.4)
for VFI to get HR middle frame 𝑆𝑅𝑡 .

3.2 LR Flow Net: 𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 and HR Flow
Refinement Net: 𝑁𝐸𝑇𝑟𝑒

𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 is designed to estimate the bidirectional optical flow from
two input LR frames. Typical optical flow networks usually need
a huge number of parameters to estimate dense flow maps, e.g.
PWCNet [27] hasmore than 8M parameters, while our𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 has
only 0.76M parameters. Considering the efficiency requirement by
STVSR, we adopt the light weight flow net OFRnet. OFRnet is a net
for coarse-to-fine multi-scale optical flow estimation with shared

Figure 3: Structure of LR Flow Net 𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 . The input
frames are downsampled by 4 to get a coarse flow, and then
the coarse flow will be refined in our multiscale pyramid
structure step by step. The output flows of three levels will
be restrained by multi-scale loss L 𝑓 𝑙𝑜𝑤 in Sec.3.5, thus our
𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 can deal with large displacements with no more
than 1/10 parameters of typical PWCnet [27].

weights (as shown in Fig.3), which can deal with large displacements
and complex scenes while keeping lightweight.

𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 estimates the bidirectional dense motion flow maps
𝑓 𝑙𝑜𝑤𝑡−1↔𝑡+1 of size 4(𝑐ℎ𝑎𝑛𝑛𝑒𝑙) × ℎ ×𝑤 between LR frames 𝐿𝑅𝑡−1
and 𝐿𝑅𝑡+1:

𝑓 𝑙𝑜𝑤𝑡−1↔𝑡+1 = 𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 [𝐿𝑅𝑡−1, 𝐿𝑅𝑡+1] . (1)

Here 𝑓 𝑙𝑜𝑤𝑡−1↔𝑡+1 includes 𝑓 𝑙𝑜𝑤𝑡−1→𝑡+1 (2×ℎ×𝑤 flow from frame
𝐿𝑅𝑡−1 to 𝐿𝑅𝑡+1) and 𝑓 𝑙𝑜𝑤𝑡−1←𝑡+1 (2×ℎ×𝑤 flow from frame 𝐿𝑅𝑡+1
to 𝐿𝑅𝑡−1).

The LR flows are used to warp corresponding adjacent LR frames
for VSR. However, VFI need HR flows from adjacent frames to the
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Figure 4: Detailed structure of Flow Refinement Net 𝑁𝐸𝑇𝑟𝑒 .
Apart from the encoder and decoder branch, we add a guid-
ance branch to introduce more detailed information from
HR frames to refine the HR flow.

middle frame. Re-computing HR optical flow from scratch requires
huge computational costs, and existent optical flow network needs
HR middle frame 𝑆𝑡 for calculation. Previous work use quadratic
interpolation [16, 22] or Flow Projection Layer [2, 3] to get the
middle flow, however, these methods will bring in artifacts and
errors especially at the edge of objects. Simply up-sampling LR flow
maps and interpolating to the middle frame can hardly generate
accurate HR optical flow. Considering these problems, we design a
𝑁𝐸𝑇𝑟𝑒 to get and refineHR flows to themiddle frame after quadratic
interpolation.

Given bidirectional LR optical flows 𝑓 𝑙𝑜𝑤𝑡−1↔𝑡+1 from Eq.1, we
first use quadratic interpolation of the bidirectional LR flows to
obtain 𝑓 𝑙𝑜𝑤𝑡−1→𝑡 (flow from frame 𝑡 −1 to frame 𝑡 ) and 𝑓 𝑙𝑜𝑤𝑡←𝑡+1
(flow from frame 𝑡 + 1 to frame 𝑡 ):

𝑓 𝑙𝑜𝑤𝑡−1→𝑡 = (1 − �̃�)2 𝑓 𝑙𝑜𝑤𝑡−1→𝑡+1 − �̃� (1 − �̃�) 𝑓 𝑙𝑜𝑤𝑡−1←𝑡+1, (2)

𝑓 𝑙𝑜𝑤𝑡←𝑡+1 = −̃𝑡 (1 − �̃�) 𝑓 𝑙𝑜𝑤𝑡−1→𝑡+1 + �̃�2 𝑓 𝑙𝑜𝑤𝑡−1←𝑡+1 . (3)

Here �̃� is the interpolation time and �̃�=0.5 for the middle frame 𝑡 .
Then by using HR frames 𝑆𝑅𝑡±1 (concatenation of 𝑆𝑅𝑡−1 and

𝑆𝑅𝑡+1 from Eq.5) in VSR as guidance, our Flow Refinement Net
𝑁𝐸𝑇𝑟𝑒 is aimed to refine and up-sample the LR flow 𝑓 𝑙𝑜𝑤𝑡−1→𝑡

from Eq.2 and 𝑓 𝑙𝑜𝑤𝑡←𝑡+1 from Eq.3 to get bidirectional HR dense
flowmaps 𝐹𝑙𝑜𝑤𝑡−1→𝑡 (flow from frame 𝑆𝑅𝑡−1 to 𝑆𝑅𝑡 ) and 𝐹𝑙𝑜𝑤𝑡←𝑡+1
(flow from frame 𝑆𝑅𝑡 to 𝑆𝑅𝑡−1):

[𝐹𝑙𝑜𝑤𝑡−1→𝑡 , 𝐹𝑙𝑜𝑤𝑡←𝑡+1] = 𝑁𝐸𝑇𝑟𝑒 [𝑓 𝑙𝑜𝑤𝑡−1→𝑡 , 𝑓 𝑙𝑜𝑤𝑡←𝑡+1, 𝑆𝑅𝑡±1] .
(4)

Our Flow Refinement Net 𝑁𝐸𝑇𝑟𝑒 is a small encoder-decoder net
with extra guidance branch, which extracts information from HR
images to guide input LR flow to generate HR optical flow. The
detailed structure is showed in Fig.4. Moreover, we try a new loss
to get better flows to help VFI produce better perception results,
and the details of new loss is explained in Sec.3.5.

3.3 LR VSR Net: 𝑁𝐸𝑇𝑆𝑅

𝑁𝐸𝑇𝑆𝑅 uses odd LR frames 𝐿𝑅𝑡±1 (concatenation of 𝐿𝑅𝑡−1 and
𝐿𝑅𝑡+1) and their warped LR frames 𝐿𝑅𝑡∓1→𝑡±1, the HR frames
𝑆𝑅
(𝑖−1)
𝑡±1 from 𝑁𝐸𝑇𝑆𝑅 of former iteration and warped HR frames

ˆ𝑆𝑅𝑡→𝑡±1 to generate corresponding oddHR frames 𝑆𝑅 (𝑖)
𝑡+1 and 𝑆𝑅

(𝑖)
𝑡−1

(in the first iteration 𝑖 = 1, HR frames are simply the bilinear up-
samples of LR frames):

[𝑆𝑅 (𝑖)
𝑡+1, 𝑆𝑅

(𝑖)
𝑡−1] = 𝑁𝐸𝑇𝑆𝑅 [𝐿𝑅𝑡±1, 𝑆𝑅 (𝑖−1)𝑡±1 , 𝐿𝑅𝑡∓1→𝑡±1, ˆ𝑆𝑅 (𝑖−1)𝑡→𝑡±1],

(5)
wherewarped LR frames𝐿𝑅𝑡∓1→𝑡±1 is the concatenation of𝐿𝑅𝑡−1→𝑡+1
and 𝐿𝑅𝑡−1←𝑡+1, with 𝐿𝑅𝑡−1→𝑡+1 = warp(𝐿𝑅𝑡−1, 𝑓 𝑙𝑜𝑤𝑡−1→𝑡+1) (to
warp𝐿𝑅𝑡−1 to time 𝑡+1) and𝐿𝑅𝑡−1←𝑡+1 = warp(𝐿𝑅𝑡+1, 𝑓 𝑙𝑜𝑤𝑡−1←𝑡+1)
(to warp 𝐿𝑅𝑡+1 to time 𝑡 − 1). Here function𝑤𝑎𝑟𝑝 means moving
all pixels of adjacent LR frames alongside the direction of flow
from Eq.1 to align to the current frame. Differently, warped HR
frames ˆ𝑆𝑅𝑡→𝑡±1 is the concatenation of ˆ𝑆𝑅𝑡−1←𝑡 and ˆ𝑆𝑅𝑡→𝑡+1
and then reshaped into LR by space to depth, and ˆ𝑆𝑅𝑡−1←𝑡 =

warp(𝑆𝑅𝑡 , 𝐹𝑙𝑜𝑤𝑡−1←𝑡 ) (to warp 𝑆𝑅𝑡 to time 𝑡 − 1), ˆ𝑆𝑅𝑡→𝑡+1 =

warp(𝑆𝑅𝑡 , 𝐹𝑙𝑜𝑤𝑡→𝑡+1) (to warp 𝑆𝑅𝑡 to time 𝑡 + 1). In order to warp
HR frames from Eq.6 in VFI back to VSR, we reverse the direction
of HR flow in Eq.4 to approximate the optical flow from time 𝑡 to
time 𝑡 − 1 and time 𝑡 + 1. Specifically, we warp the result of VFI
back to the adjacent frames to refine the HR frames, because the
feedback of VFI can alleviate the spacial relevance degeneration
of VSR by temporal alignment. Compared with feeding back the
warped frames of VSR, our refined flow brings in reliable warped
frames of VFI, which are closer to the adjacent frames and have
more relevant information, thus the VSR results are improved, es-
pecially when there is large displacement or fine texture. We only
iterate twice to mutually benefit VSR and VFI, and more iterations
cannot bring obvious further improvement. Finally, we get all the
output SR frames of VSR net and VFI net (𝑆𝑅 (2)

𝑡−1, 𝑆𝑅
(2)
𝑡 , 𝑆𝑅 (2)

𝑡+1) as
the output of the whole network.

In our baseline, we simply adopt RDNnet [36] for 𝑁𝐸𝑇𝑆𝑅 , whose
numbers of residual dense blocks and layers in each block can be
adjusted to control the depth and parameters of the network, as
complex scenes usually require deeper and more complex networks.
This module can be replaced by another VSR net, e.g. RBPN [12];
that is, our structure could be easily combined with other VSR nets.

3.4 HR VFI Net: 𝑁𝐸𝑇𝐹𝐼

Previous work [2, 22] has indicated that adding features from a
pretrained network can help the VFI net to better reconstruct the
middle frame, because only using adjacent frames will result in
context degeneration in VFI. However, their pretrained feature
extraction network comes from other semantic tasks (for example,
semantic segmentation). Unlike them, VSR and VFI are both related
to pixels generation with tighter feature correlation, thus features
from VSR can better help VFI. We also use HR frames from the VSR
net to refine the HR flow of the middle frame, which could help the
VFI net to reduce artifacts through more precise flow estimation
and temporal alignment.

Apart from the feature from VSR, we feed the warped frames
of the adjacent HR frames ˆ𝑆𝑅𝑡±1→𝑡 and the reshaped VSR feature
into a VFI net 𝑁𝐸𝑇𝐹𝐼 to synthesize the even middle frame between
them at time 𝑡 :

𝑆𝑅
(𝑖)
𝑡 = 𝑁𝐸𝑇𝐹𝐼 [ ˆ𝑆𝑅𝑡±1→𝑡 , feature], (6)

where ˆ𝑆𝑅𝑡±1→𝑡 is the concatenation of warped HR frames ˆ𝑆𝑅𝑡−1→𝑡

and ˆ𝑆𝑅𝑡←𝑡+1. Specifically, ˆ𝑆𝑅𝑡−1→𝑡 = warp(𝑆𝑅𝑡−1, 𝐹𝑙𝑜𝑤𝑡−1→𝑡 ) (to
warpHR frame 𝑆𝑅𝑡−1 to the time 𝑡 ); ˆ𝑆𝑅𝑡←𝑡+1 = warp(𝑆𝑅𝑡+1, 𝐹𝑙𝑜𝑤𝑡←𝑡+1)
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Lateral block (ch out=ch in)                   Downsampling block (ch out=ch in/s)
Upsampling block(ch out=ch in*s)           Plus

VFI Output

Figure 5: Structure of HR VFI Net 𝑁𝐸𝑇𝐹𝐼 . Each block con-
sists of two convolution layers followed by two ReLU layers
with different input and output channels, and another bilin-
ear up-sample layer in the upsampling block. For spacial SR
scale = 4, we set s = scale / 2 in the downsampling and up-
sampling blocks.

(to warp HR frame 𝑆𝑅𝑡+1 to time 𝑡 ); that is, HR frames from VSR
(Eq.5) are warped alongside the direction of flow from Eq.4 to align
to the middle frame. The context feature feature is the output of the
second convolution layer in the VSR net 𝑁𝐸𝑇𝑆𝑅 . It provides more
detailed context information for the VFI net, because the feature
of VSR is strongly associated with the reconstruction of pixels and
can remedy the lack of detailed context and edge information in
VFI, thus alleviating blur and producing more sharp-edged frames.
On the other hand, the result of VFI 𝑆𝑅𝑡 will be fed back to VSR
(Eq.5) for one more time to help VSR.

Considering temporal alignment of motion, we use a variant of
U-Net, GridNet [10] of three rows and six columns, for interpolation
frame synthesis. In order to fully use the context information from
the VSR net to better deal with large motion and complex scene, we
change the input of each row in GridNet into multi-scale varying
from LR to HR. The detailed structure is shown in Fig.5. This part
is also flexible: it can be enlarged or replaced by other VFI nets to
fit for user purposes in practice.

3.5 Loss Functions
Our MBnet includes four sub-networks, and we train them jointly
end to end. Hence, we need to consider three kinds of loss functions:
loss LR𝑆𝑅 for frame reconstruction, unsupervised loss LR 𝑓 𝑙𝑜𝑤

and supervised loss LR𝐹𝐿𝑂𝑊 for optical flow.
For the supervised loss, we adopt the L1 loss between the HR

ground truth frames {𝐻𝑅𝑡 }2𝑇+1𝑡=1 and our predicted SR frames {𝑆𝑅𝑡 }2𝑇+1𝑡=1 ,
in which 𝑇 frames are interpolated by VFI and 𝑇 + 1 frames are
generated by VSR (in our net 𝑇 = 1):

LR𝑆𝑅 =

2𝑇+1∑
𝑡=1
∥𝑆𝑅𝑡 − 𝐻𝑅𝑡 ∥1 . (7)

For the unsupervised loss of the optical flow of LR frames and
the refined flow of SR frames, we calculate L 𝑓 𝑙𝑜𝑤 as

L 𝑓 𝑙𝑜𝑤 =

2𝑇+1∑
𝑡=1

𝜆1L𝑆𝑅
𝑡 + 𝜆2L𝐿𝑅

𝑡

𝑇
, (8)

where the SR flow loss L𝑆𝑅
𝑡 is

L𝑆𝑅
𝑡 = ∥warp(𝑆𝑅𝑡−1, 𝐹𝑙𝑜𝑤𝑡−1→𝑡+1)−𝑆𝑅𝑡+1∥1+0.1∥Δ𝐹𝑙𝑜𝑤𝑡−1→𝑡+1∥1,

and the LR flow loss L𝐿𝑅
𝑡 is

L𝐿𝑅
𝑡 = ∥warp(𝐿𝑅𝑡−1, 𝑓 𝑙𝑜𝑤𝑡−1→𝑡+1)−𝐿𝑅𝑡+1∥1+0.1∥Δ𝑓 𝑙𝑜𝑤𝑡−1→𝑡+1∥1,

here LR flows of three levels (Fig3) will all be restrained step by step
with corresponding downsampling frames. The ∥Δ𝐹𝑙𝑜𝑤𝑡−1→𝑡+1∥1
and ∥Δ𝑓 𝑙𝑜𝑤𝑡−1→𝑡+1∥1 denote the L1 regularization term for the
smoothness of optical flow, and Δ means finite difference of flow
field.

In addition, we try a new supervised flow loss L𝐹𝐿𝑂𝑊 during
training. We use the pre-trained optical flow network RAFT [28]
to calculate the flow of ground truth frames 𝐻𝐹𝑡−1→𝑡 (flow from
𝐻𝑡−1 to 𝐻𝑡 ) and 𝐻𝐹𝑡←𝑡+1 (flow from 𝐻𝑡+1 to 𝐻𝑡 ),

𝐻𝐹𝑡−1→𝑡 = RAFT(𝐻𝑅𝑡−1, 𝐻𝑅𝑡 ), 𝐻𝐹𝑡←𝑡+1 = RAFT(𝐻𝑅𝑡+1, 𝐻𝑅𝑡 ),
(9)

and then use L1 loss to supervise our HR flow 𝐹𝑙𝑜𝑤𝑡−1→𝑡 and
𝐹𝑙𝑜𝑤𝑡←𝑡+1:

L𝐹𝐿𝑂𝑊 = ∥𝐹𝑙𝑜𝑤𝑡−1→𝑡 −𝐻𝐹𝑡−1→𝑡 ∥1 + ∥𝐹𝑙𝑜𝑤𝑡←𝑡+1 −𝐻𝐹𝑡←𝑡+1∥1 .
(10)

Hence the total loss is

L = L𝑆𝑅 + 𝜆𝑎 L 𝑓 𝑙𝑜𝑤 + 𝜆𝑏 L𝐹𝐿𝑂𝑊 . (11)

4 EXPERIMENTS AND ANALYSIS
4.1 Experimental Setup
We use four publicly available datasets, Vimoe90K [34], Middle-
bury [1], UCF101 [25] and Vid4 [21], in the experiments. We set
𝜆1 = 1.0, 𝜆2 = 0.5, 𝜆𝑎 = 𝜆𝑏 = 0.01 to balance different losses (de-
tailed experiments are shown in Table 5). We calculate the Peak
Signal-to-Noise Ratio (PSNR), the Structural Similarity Index (SSIM)
and Natural Image Quality Evaluator (NIQE) on each test set for
evaluation.

In order to compare with other video enhancement methods, we
focus on S×4 SR factor and T×2 interpolation in temporal domain
(scale = 4, �̃� = 0.5). For our baseline, we use 8 dense blocks with
8 layers for each block if no extra notice. The input frames are
cropped into patches of size 32×32 and augmented by rotating and
flipping randomly (same as in [33]). The Adam optimizer is used
for training with an initial learning rate of 1e-4, and the batch size
is set to 16 on Nvidia 1080Ti.

4.2 Ablation Studies
In the ablation studies, we train our baseline on the training set of
Vimeo-90K [34], and then test them on the same test folder 00001
of Vimeo-90K in the ablation studies, which includes 58 different
scenes and totally 406 frames.
Effect of interaction. We set VSR first and VFI second without
feedback as the control group without interaction. In order to elim-
inate the influence of network depth, we also double the numbers
of RDN blocks (D) and layers of each block (C), whose depth and
parameters are also doubled, and retrain our networks with differ-
ent sizes and test them on the same test set. The results in Table 2
indicate that the feedback is beneficial to both VSR and VFI in all
networks of different sizes, and the PSNR of nets with feedback is



Table 1: Ablation studies on different features (VSR or ResNet) for VFI, on w/ and w/o feedback for VSR, on different flow nets,
on different VSR nets and on different VFI nets. The best results are shown in bold. VSR feature and VFI feedback help a lot
in our MBnet, which indicates that VSR and VFI can mutually benefit.

VSR ResNet VFI OFR PWC RDN RBPN GridNet Unet VSR VFI Average
feature feature feedback net net net net PSNR SSIM PSNR SSIM PSNR SSIM

1
√ × √ √ × √ × √ × 33.48 0.922 30.98 0.906 32.41 0.915

2 × √ √ √ × √ × √ × 33.24 0.919 30.72 0.902 32.16 0.912
3 × × √ √ × √ × √ × 33.04 0.919 30.56 0.901 31.98 0.911
4

√ × × √ × √ × √ × 33.18 0.918 30.88 0.904 32.20 0.912
5

√ × √ × √ √ × √ × 33.23 0.919 30.83 0.903 32.20 0.912
6

√ × × √ × × √ √ × 32.64 0.911 30.15 0.894 31.57 0.904
7

√ × √ √ × × √ √ × 33.13 0.918 30.27 0.897 31.91 0.909
8

√ × √ √ × √ × × √
33.46 0.922 24.16 0.775 29.53 0.859

even higher than doubled layers nets without feedback. We also
compare the convergence with or without interaction when trained
from scratch. As shown in Fig.6, using interaction, from which
more effective information can be extracted, would lead to higher
performance, and the convergence of net with interaction is faster
and more stable. All these results suggest that VSR and VFI can
benefit from their interaction through our feedback structure.

Table 2: Ablation studies on the benefit of interaction (red
for the best results and blue for the second best). ‘D’ denotes
the number of RDN blocks and ‘C’ denotes the layer number
in each block. The models with interaction outperforms a
lot those models without interaction.

VSR PSNR VFI PSNR Average PSNR
D8C4 w/o interaction 32.29 29.88 31.26
D8C4 with interaction 32.78 30.26 31.70
D8C8 w/o interaction 32.53 30.06 31.47
D8C8 with interaction 33.25 30.74 32.17
D16C8 w/o interaction 33.02 30.31 31.85
D16C8 with interaction 33.87 31.17 32.72

Mutual benefit. Previous studies [2, 22] extract context feature to
help VFI through a pre-trained ResNet, while our MBnet collects
the output of the second convolution layer in the VSR net as context
feature and feeds it into the VFI net. From the results in Table 1, we
can make the following observations. First, the first three rows of
results show that, if we replace our VSR features with the features
from an extra ResNet as [2], the results (row 2) are better than using
no features (row 3) but worse than using our VSR features (row 1).
This indicates our features from VSR can provide useful information
for VFI than those from an independent feature extraction net; that
is, VFI can benefit from VSR to get more context details.

Secondly, if we warp the HR results 𝑆𝑡±1 of VSR itself instead
of the VFI result 𝑆𝑡 back to VSR (row4, row6), the last two rows of
results show that the PSNR of VSR declines about 0.3dB compared
with the net with the VFI feedback. This indicates that VFI can
provide more accurate motion information to VSR. This can be
attributed to the fact that the distance from frame 𝑡 to frame 𝑡 − 1
or frame 𝑡 + 1 is shorter than that from frame 𝑡 − 1 to frame 𝑡 + 1,

Figure 6: Convergence studies on w/ or w/o interaction. In-
teraction mechanism leads to not only higher performance
but also faster andmore stable convergence during training.

thus smaller motion and more similar pixels between frames could
provide more information to reconstruct the HR frames.
Effect of LR Flow Net 𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 . We compare our 𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 OFR-
net with the typical flow network PWCNet [27]. We replace our
OFRnet with a pre-trained PWCNet and fine-tune it with the loss
L𝐿𝑅
𝑡 end to end. The STVSR result of PWCNet is worse, because

PWCNet is based on synthetic datasets e.g. Flying Chairs [9] and
Sintel [5], thus it performs not well when handing complex mo-
tion in real world. Compared with fine-tuning pre-trained models,
initializing our flow net from scratch has a great advantage over
PWCNet in terms of both performance and parameter amount.
Effect of LR VSR Net 𝑁𝐸𝑇𝑆𝑅 . We replace the RDN blocks in our
𝑁𝐸𝑇𝑆𝑅 with RBPN blocks [12]. For fair comparison, we change the
RBPN to two LR frames as input and two HR frames as output and
retrain the whole networks from scratch. The results of VSR and
VFI without interaction (in row6) are worse than RDN blocks in
row4, then we introduce the feedback mechanism into the network
and the results of VSR clearly improves with 0.49 PSNR(in row7),
and the frame of VFI also benefits from interaction, that is, our
interaction structure can be applied to other VSR methods and
bring distinct improvement.



Table 3: Comparison with other methods (S×4, T×2).We use red for the best results and blue for the second best.

Method UCF101 Middlebury-other Vid4 Vimeo90K VSR VFI Parameters
PSNR SSIM NIQE PSNR SSIM NIQE PSNR SSIM PSNR SSIM NIQE PSNR PSNR (Million)

DBPN [11]+ToFlow[34] 28.112 0.902 8.630 26.012 0.808 5.901 - - 29.867 0.915 7.120 - - 10.5+1.1
DBPN [11]+DAIN [2] 28.175 0.902 8.755 26.268 0.809 5.869 - - 30.021 0.918 7.223 - - 10.5+24.0
DAIN [2]+RBPN [12] 27.631 0.909 8.932 25.744 0.811 5.814 - - 29.422 0.916 7.253 - - 24.0+12.7
RBPN [12]+DAIN [2] 28.729 0.919 8.769 26.766 0.821 5.522 - - 30.455 0.926 7.081 - - 12.7+24.0
RBPN+DAIN-joint 28.856 0.920 8.799 26.923 0.823 5.444 - - 30.623 0.927 7.183 - - 36.7

TDAN [29]+AdaCoF [20] 30.515 0.895 8.572 28.859 0.852 5.361 24.593 0.788 32.582 0.923 7.132 33.866 30.869 -
STARnet [13](SOTA) 29.111 0.924 8.787 27.115 0.827 5.423 - - 30.830 0.929 7.154 32.349 30.704 111.6

Zooming-slo-mo [33](SOTA) 30.733 0.911 8.805 28.396 0.855 5.375 24.418 0.775 32.919 0.926 7.165 34.213 31.194 11.1
Our MBnet 30.852 0.937 8.739 29.045 0.857 5.359 24.505 0.883 33.048 0.928 7.077 34.361 31.297 30.8

Effect of HR VFI Net 𝑁𝐸𝑇𝐹𝐼 . We also replace the GridNet of our
𝑁𝐸𝑇𝐹𝐼 with a Unet of three layers, and the PSNR and SSIM of
VFI results both decline a lot (row8). The GridNet structure has
a big enough receptive field and multi-stream to well exploit the
information from different scales, which is important for VFI.

Input                      Bic x4    w/o ℒ𝐹𝐿𝑂𝑊 w/ ℒ𝐹𝐿𝑂𝑊 GT

Figure 7: Visual comparison on w/ and w/o L𝐹𝐿𝑂𝑊 . Our su-
pervised flow loss L𝐹𝐿𝑂𝑊 could effectively alleviate the ar-
tifacts at the edge of texture.

Table 4: Ablation studies on the flow loss (red for the best
results and blue for the second best). Our flow loss L𝐹𝐿𝑂𝑊

leads to a little decline on PSNR (dB) and SSIM, but it im-
proves the image quality with reduced NIQE.

loss PSNR ↑ SSIM ↑ NIQE ↓
L𝑆𝑅 30.757 0.934 8.714
L𝑆𝑅 + 0.01L 𝑓 𝑙𝑜𝑤 30.852 0.937 8.739
L𝑆𝑅 + 0.01L 𝑓 𝑙𝑜𝑤 + 0.01L𝐹𝐿𝑂𝑊 30.772 0.936 8.692

Effect of supervised flow loss L𝐹𝐿𝑂𝑊 . All the models are tested
on the UCF101 dataset. As shown in Table 4, our proposed super-
vised flow loss L𝐹𝐿𝑂𝑊 could improve the image quality with the
lowest NIQE score. Although it brings in a decline in PSNR and
SSIM compared with L𝑆𝑅 + 0.01L 𝑓 𝑙𝑜𝑤 , its results are still better
than using L1 loss L𝑆𝑅 only. The visual comparison is illustrated in
Fig.7: our proposed supervised flow loss L𝐹𝐿𝑂𝑊 could effectively
alleviate the artifacts at the edge of texture. Because L𝐹𝐿𝑂𝑊 works
on the flow net to get a more accurate flow estimation for motion

Table 5: Ablation studies on the loss weight (red for the
best results and blue for the second best). The 𝜆1 and 𝜆2 are
weights of HR and LR optical flows, and smaller LR optical
flow weights 𝜆2 could improve the results of VFI. 𝜆𝑎 and 𝜆𝑏
are the weights of unsupervised and supervised optical flow
losses. Too small flow loss weights bring severe artifacts on
VFI frames, and too large flow loss weights result in more
unstable training and slower convergence.

𝜆1 𝜆2 𝜆𝑎 𝜆𝑏 VSR PSNR VFI PSNR Average PSNR
1.0 0.5 0.01 0.01 33.73 30.94 32.80
1.0 1.0 0.01 0.01 33.8 30.76 32.79
1.0 0.5 0.001 0.001 33.79 30.66 32.75
1.0 0.5 0.1 0.1 33.76 30.72 32.75
1.0 0.5 1.0 1.0 32.79 30.74 32.11

compensation instead of supervising the final frame reconstruc-
tion directly, it leads to better perceptional experience rather than
higher PSNR scores.
Effect of different loss weights. Because the HR flow has bigger
influence than LR flow especially on the middle frame from VFI,
we set 𝜆1 = 1.0, 𝜆2 = 0.5. As shown in Table 5, the coarser LR
flow could be better refined to HR with smaller LR optical flow
weights 𝜆2, thus smaller LR optical flow weights could improve the
results of VFI because of better HR flow estimation to the middle
fame, although result in a little decline on VSR frames. The initial
flow loss is almost 100 times bigger than the pixels loss, so the loss
balance weights are set to 𝜆𝑎 = 𝜆𝑏 = 0.01. In detail, if the weights
of unsupervised optical flow and supervised optical flow, 𝜆𝑎 and
𝜆𝑏 , are nearly same or larger than as the pixels loss of frames, the
training becomes more unstable and the network converges more
slowly, and, on the other hand, too small optical flow loss weights
will bring severe artifacts on the VFI results.

4.3 Comparison with state-of-the-arts
We compare our MBnet with other end-to-end STVSR methods
(Zooming-slo-mo [33] and STARnet [13]) and some combinations
of VSR and VFI nets, e.g. TDAN [29] + AdaCoF [20]. Table 3 shows
the quantitative results of S×4 and T×2 upsampling. For STARnet,
we use the STAR-ST-Lr version from the paper [13], because we use
the L1 loss to reconstruct frames only without the feature loss L𝑣𝑔𝑔



Figure 8: Results of S×4 and T×2 upsampling on Middlebury-other and Vimeo 90K (frame04 of RubberWhale, img2 of
00076/0172, img3 of 00076/0171, and im4 of 00006/0808). Our MBnet effectively mitigates motion blur, especially in the ar-
eas near the letters.

in [13]. For TDAN, AdaCoF and Zooming-so-mo, we retest them
on the same test set with their pre-trained models, and the input
frame number of Zooming-slo-mo is set to two for fair comparison.

The PSNR of our MBnet performs the best on most datasets. In
addition, our MBnet outperforms the Zooming-slo-mo by 0.13dB on
Vimeo-90K on average, and provides 0.15dB improvement on VSR
and 0.1dB on VFI. Compared to STARnet, we achieve competitive
results on all datasets with about 60% fewer parameters. This is
mainly benefited from our two light-weighted flow nets, LR flow net
𝑁𝐸𝑇𝑓 𝑙𝑜𝑤 and HR flow refinement net 𝑁𝐸𝑇𝑟𝑒 . We observe that joint
fine-tuning of VSR and VFI nets, e.g. RBPN+DAIN, could improve
the final results but the PSNR is promoted not more than 0.2dB. The
combination of state-of-the-art VSR and VFI networks, TDAN and
AdaCoF, are better than the end-to-end STARnet and comparable
to the state-of-the-art STVSR method Zooming-slo-mo on most
datasets, but Zooming-slo-mo has limited ability in dealing with
details, for example, the texture of orange sweater as shown in Fig.8
(the first row). Moreover, it will induce severe artifacts and motion
blur (lower rows in Fig.8). Our MBnet can better reconstruct the
context details with more accurate structures and alleviate motion
blur with fewer artifacts, through the effective interactions between
VSR and VFI.

5 CONCLUSION
This study focuses on the joint enhancement of VSR and VFI based
on weighted shared interaction structure. We find that the VSR
feature is beneficial to VFI and the VFI feedback can also provide
more motion information for VSR. Thanks to such a simple strat-
egy, our approach achieves state-of-the-art performance on various
datasets and is universally applicable to embrace any existing VSR
or VFI networks for effectively improving their video enhancement
performance. In response to the difficulty and huge computation
cost of flow estimation, we build two light flow nets and adopt a
coarse-to-fine refinement strategy. In addition, we put forward a
new supervised loss of flow, which adopts a latest optical flow net-
work to get the referential flow for supervision and achieves better
perceptional experience. In the future, we will further investigate
our model by combining it with more VSR and VFI lightweight
networks and considering higher up-sampling scales in the space
and time domains.
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