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ABSTRACT

We constrain the luminosity and redshift dependence of the intrinsic alignment (IA) of a nearly volume-limited sample of luminous
red galaxies selected from the fourth public data release of the Kilo-Degree Survey (KiDS-1000). To measure the shapes of the
galaxies, we used two complementary algorithms, finding consistent IA measurements for the overlapping galaxy sample. The global
significance of IA detection across our two independent luminous red galaxy samples, with our favoured method of shape estimation,
is ∼10.7σ. We find no significant dependence with redshift of the IA signal in the range 0.2 < z < 0.8, nor a dependence with
luminosity below Lr . 2.9 × 1010 h−2Lr,�. Above this luminosity, however, we find that the IA signal increases as a power law,
although our results are also compatible with linear growth within the current uncertainties. This behaviour motivates the use of a
broken power law model when accounting for the luminosity dependence of IA contamination in cosmic shear studies.
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1. Introduction

Galaxies that form close to a matter over-density are affected by
the tide induced by the quadrupole of the surrounding gravita-
tional field, and the distribution of stars will adjust accordingly.
This process, which starts during the initial stages of galaxy for-
mation (Catelan et al. 2001), can persist over their entire life-
time, as galaxies have continuous gravitational interactions with
the surrounding matter (e.g., Bhowmick et al. 2020), and leads
to the intrinsic alignment (IA) of galaxies.

This tendency of neighbouring galaxy pairs to have a similar
orientation of their intrinsic shapes is an important contaminant
for weak gravitational lensing measurements (e.g., Joachimi
et al. 2015). The matter distribution along the line-of-sight dis-
torts the images of background galaxies, resulting in apparent
correlations in their shapes. Intrinsic alignment contributes to the
observed correlations, complicating the interpretation. To infer
unbiased cosmological parameter estimates it is therefore crucial
to account for the IA contribution. This is particularly important
in the light of future surveys, such as Euclid1 (Laureijs et al.
2011) and the Large Synoptic Survey Telescope (LSST)2 at the
Vera C. Rubin Observatory (Abell et al. 2009), which aim to
constrain the cosmological parameters with sub-percent accu-
racy (for a forecast of the IA impact on current and upcoming

1 https://www.euclid-ec.org
2 https://www.lsst.org

surveys see Kirk et al. 2010; Krause et al. 2016, among others).
Some recent results on current weak lensing studies are available
in, for example, Aihara et al. (2018), Asgari et al. (2021), DES
Collaboration (2021).

To provide informative priors to lensing studies, it is essen-
tial to learn as much as possible from direct observations of IA.
It is, however, also important that such results can be related to
the properties of galaxies that give rise to the alignment signal in
cosmic shear surveys (Fortuna et al. 2021). Intrinsic alignment
studies are typically limited to relatively bright galaxies, which
often sit at the centre of their own group or cluster, and it is thus
possible to connect their alignment to the underlying dark mat-
ter halo alignment via analytic models (Hirata & Seljak 2004).
The picture becomes more complicated when considering sam-
ples that contain a significant fraction of satellite galaxies: The
alignment of satellites arises as a result of the continuous torque
exercised by the intra-halo tidal fields while the satellite orbits
inside the halo (Pereira et al. 2008; Pereira & Bryan 2010). This
leads to a radial alignment, which also depends on the galaxy
distance from the centre of the halo (Georgiou et al. 2019a).
At the same time, satellites fall into halos through the filaments
of the large-scale structure, and this persists as an anisotropic
distribution within the halo, which has been detected both in
simulations (Knebe et al. 2004; Zentner et al. 2005) and obser-
vations (West & Blakeslee 2000; Bailin et al. 2008; Huang et al.
2016; Johnston et al. 2019; Georgiou et al. 2019a). The com-
bination of these two effects complicates the picture. At small
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scales, where the satellite contribution is expected to be impor-
tant, their signal may be described using a halo model formal-
ism (Schneider & Bridle 2010; Fortuna et al. 2021), but their
contribution to IA on large scales remains poorly constrained
(Johnston et al. 2019); although it is expected that they are not
aligned, they do affect the inferred amplitude because they con-
tribute to the overall mix of galaxies. This prevents a straightfor-
ward interpretation of any secondary sample dependence of the
IA signal sourced by the central galaxy population, such as
the dependence on luminosity or colour, in mixed samples where
the fraction of satellites is relevant.

Observational studies have found discordant results regard-
ing the presence of a luminosity dependence of the IA signal,
with the bright end being well described by a steep power law
with index ∼1.2 (Hirata et al. 2007; Joachimi et al. 2011; Singh
et al. 2015), while less luminous galaxies do not show any sig-
nificant dependence of the IA signal with luminosity (Johnston
et al. 2019). A recent investigation using hydrodynamic simula-
tions by Samuroff et al. (2021) supports a flatter slope, in agree-
ment with Johnston et al. (2019) and Fortuna et al. (2021) at
low luminosities but in tension with previous studies that probe
more luminous galaxies. The interpretation of these results is
also affected by the presence of satellites, whose fraction varies
with luminosity and depends on the specific selection function of
the data. At low redshift, a cosmic shear survey is dominated by
faint galaxies, and improving our understanding of the IA signal
at low luminosities is one of the most urgent questions for IA
studies.

Another relevant aspect that is often neglected is the
dependence of IA on the shape measurement method (Singh &
Mandelbaum 2016). The tendency to align in the direction of the
surrounding tidal field is a function of galaxy scale (Georgiou
et al. 2019a), with the outermost parts – which are more weakly
gravitationally locked to the galaxy – showing a more severe
twist. It increases the IA signal associated with shapes measured
via algorithms that assign more importance to the galaxy out-
skirts. In contrast, lensing studies typically prefer shape meth-
ods that give more weight to the inner part of a galaxy. Account-
ing for this discrepancy is potentially relevant for future cosmic
shear studies.

In this work we focus on investigating the luminosity depen-
dence of the IA signal in the least constrained regime, Mr & −22.
We employ two different samples, which differ in mean lumi-
nosity and number density. We limit the analysis to the large-
scale alignment, for which a theoretical framework is already
available and where the luminosity dependence is known to
play a crucial role (Fortuna et al. 2021). We also provide esti-
mates of the satellite fractions present in our samples in order
to guide future work on the modelling of satellite alignment at
large scales. We also explore the dependence of our signal on
the shape measurement algorithm used to create the shape cata-
logue. We compare the signal as measured by two complemen-
tary algorithms: Deimos (DEconvolution In MOment Space;
Melchior et al. 2011), which has been widely used in IA stud-
ies (Georgiou et al. 2019a,b; Johnston et al. 2019), and lensfit
(Miller et al. 2007, 2013) which has been used for the cosmo-
logical analysis of the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS; Heymans et al. 2013) and the Kilo-Degree
Survey (KiDS; see Asgari et al. 2021, and references therein).

One of the main limitations for measuring IA is the necessity
of simultaneously relying on high-quality images and precise
redshifts to properly identify physically close pairs of galaxies
that share the same gravitational tidal shear. Wide field image
surveys provide high-quality images, but the uncertainty in the

photometric redshifts is too large for useful IA measurements.
Fortunately, using a specific selection in colours, it is possible
to obtain a sub-sample of galaxies with more precise photomet-
ric redshifts: the luminous red galaxies (LRGs). At any given
redshift, LRGs populate a well-defined region in the colour-
magnitude diagram, known as the red-sequence ridgeline. Using
this unique property, it is possible to design a specific algorithm
to select LRGs in photometric surveys, which results in both
precise and accurate redshifts (Rozo et al. 2016; Vakili et al.
2019, 2020). Luminous red galaxies have also been shown to
be strongly affected by the surrounding tidal fields, making them
an extremely suitable sample for exploring the behaviour of IA
at different redshifts and as a function of secondary galaxy prop-
erties, such as luminosity and type (central or satellites).

Joachimi et al. (2011) first studied the IA signal of an LRG
sample with photometric redshifts. In this paper we follow their
main approach but use a catalogue of LRGs selected by Vakili
et al. (2020) using the KiDS fourth public data release (KiDS-
1000 Kuijken et al. 2019).

The paper is structured as follows. In Sect. 2 we describe our
data and the characteristics of our two main samples. In Sect. 3
we introduce the two shape measurement methods employed in
the analysis and present the strategy adopted to calibrate the bias
in the measured shapes. Section 4 presents the estimators we
use to extract the signal from the data, while Sect. 5 illustrates
the theoretical framework we rely on when modelling the signal:
the way the model accounts for the use of photometric redshifts
as well as the way we account for astrophysical contaminants.
Finally, we present our main results in Sect. 6 and conclude in
Sect. 7.

Throughout the paper, we assume a flat Λ cold dark matter
cosmology with h = 0.7,Ωm = 0.25,Ωb = 0.044, σ8 = 0.8, and
ns = 0.96.

2. KiDS

The Kilo-Degree Survey is a multi-band imaging survey
designed for weak lensing studies, currently at its fourth data
release (KiDS-1000; Kuijken et al. 2019). The data are obtained
with the OmegaCAM instrument (Kuijken 2011) on the VLT
Survey Telescope (VST; Capaccioli et al. 2012). This combina-
tion of telescope and camera was designed specifically to pro-
duce high-quality images in the ugri filters, with best seeing-
conditions in the r-band, and a mean magnitude limit of ∼25
(5σ in a 2′′ aperture). These measurements are combined with
results from the VISTA Kilo-degree INfrared Galaxy survey
(VIKING; Edge et al. 2013), which surveyed the same area in
five infrared bands (ZY JHKs). This resulted in high-quality pho-
tometry in nine bands across approximately 1000 deg2 imaged
by the fourth data release3. The VIKING data are important for
the LRG selection at high redshift (Vakili et al. 2020): the Z band
is included in the red-sequence template and improves the con-
straints on the redshift of the high-redshift galaxies, while the Ks
band allows for a clean separation between galaxies and stars in
the (r − Ks) − (r − z) colour-colour space.

2.1. The LRG sample

Red-sequence galaxies are characterised by a tight colour-
redshift relation, so that at any given redshift they follow a nar-
row ridgeline in the colour-magnitude space. This relation can

3 The survey was recently completed, imaging a final total of
1350 deg2.
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Fig. 1. Photometric redshift distributions for our density (all) and shape
catalogues (lensfit and Deimos; see text for details). The orange his-
tograms show the distribution for the dense samples, which is limited
to zphot < 0.6, whereas the luminous sample (green) is restricted to
zphot < 0.8.

be exploited to select red galaxies from photometric data and
obtain precise photometric redshifts. Here we use the catalogue
of LRGs presented in Vakili et al. (2020). It uses a variation of
the redMagiC algorithm (Rykoff et al. 2014) to select LRGs
from the KiDS-1000 data. As detailed in Vakili et al. (2019)
and Vakili et al. (2020), the red-sequence template is calibrated
using the regions of KiDS that overlap with a number of spec-
troscopic surveys: SDSS DR13 (Albareti et al. 2017), 2dFLenS
(Blake et al. 2016), GAMA (Driver et al. 2011), together with
the GAMA G10 region, which overlaps with COSMOS (Davies
et al. 2015).

The algorithm is designed to return a sample of LRGs with a
constant comoving number density. It achieves this by imposing
a redshift-dependent magnitude cut that depends on mpivot

r (z), the
characteristic r-band magnitude of the Schechter (1976) func-
tion, assuming a faint-end slope α = 1 (for more details, see
Vakili et al. 2019, Sect. 3.1). We use this to define two sam-
ples that differ from each other in terms of their minimum lumi-
nosity relative to the luminosity Lpivot(z). We refer to them as
our luminous sample (high luminosity, low number density,
Lmin/Lpivot(z) = 1) and dense sample (lower luminosity, higher
number density, Lmin/Lpivot(z) = 0.5). To ensure that the two
samples are separate, we removed the galaxies in the dense sam-
ple that also belong to the luminous one. However, this does not
mean they do not overlap in their physical properties. In partic-
ular, they overlap partially in luminosity, a feature that we will
exploit later in the paper.

As shown in Fig. 1, the two samples also span different red-
shift ranges. The luminous sample extends from z = 0.2 to z =
0.8. After applying a conservative mask to select only objects
with a high probability to be red-sequence galaxies (correspond-
ing to objects with a clear separation from the star sequence in
the colour-colour diagram), we are left with 117 001 galaxies,
which comprise our density sample. By density sample–not to
be confused with the dense sample described above–we refer
to the sample used to trace galaxy positions, as opposed to the
shape sample, which is the sample used for the measurement
of galaxy orientations and is composed by the galaxies of the
corresponding density sample for which a given shape mea-
surement algorithm is able to measure the galaxy shape. The

density and shape samples used in this analysis are visible in
Fig. 1, where the density samples of the luminous and dense
samples are referred to as ‘all’ galaxies. The dense sample is
obtained with the same strategy, but we further impose z < 0.6
to ensure the completeness and purity of the sample (see Fig. 4 in
Vakili et al. 2020). This leads to a final sample of 173 445 galax-
ies. As shown in Vakili et al. (2020), the redshift errors are well
described by a Student’s t-distribution. The width of the distribu-
tion increases slightly with redshift, with typical values around
σz ∼ 0.014−0.019. For further details on the sample selection
and redshift estimation, we refer the interested reader to Vakili
et al. (2020).

We infer galaxy absolute magnitudes using Lephare4
(Arnouts & Ilbert 2011), assuming the dust extinction law
from (Calzetti et al. 1994) and the stellar population synthesis
model from Bruzual & Charlot (2003). We correct our mag-
nitudes to z = 0; the K-correction is provided by Lephare
and the correction for the evolution of the stellar populations
(e-correction) is computed with the python package EzGal5
(Mancone & Gonzalez 2012), assuming Salpeter initial mass
function (Chabrier 2003) and a single star formation burst at
z = 3. These corrections are based on the magnitudes used to
define the colours (MAG_GAAP), which are measured using Gaus-
sian apertures (Kuijken et al. 2019). Although ideal for colour
estimates, these underestimate the flux and should not be used to
compute the luminosity. For that purpose we correct6 them using
the Kron-like MAG_AUTO measured from the r-band images by
SExtractor (Bertin & Arnouts 1996).

The left panel of Fig. 2 shows the distribution in apparent
magnitude MAG_AUTO for galaxies in the dense and luminous
samples for which shapes were determined by lensfit or Deimos.
In Sect. 3 we describe the two shape measurement methods
and explain the difference in their number counts. We note that
the LRGs are much brighter than the limiting magnitude of
KiDS in the r-band. The corresponding distributions in abso-
lute magnitude in the rest-frame r filter, K+e corrected to z = 0,
are presented in the right panel of Fig. 2. This shows that the
dense sample overlaps somewhat with the luminous sample in
terms of luminosity, as a consequence of the photometric redshift
uncertainty7.

2.2. Satellite galaxy fraction estimation

Observations suggest that satellite galaxies are only weakly
aligned (see e.g., Georgiou et al. 2019a, for recent constraints)
and thus suppress the IA signal at large scales. We do not take
this into account in our analysis but provide here an estimate of

4 https://www.cfht.hawaii.edu/~arnouts/LEPHARE/
lephare.html
5 http://www.baryons.org/ezgal
6 The total flux in the x filter can be computed using mx = MAG_AUTOr+
(MAG_GAAPx − MAG_GAAPr), which implicitly assumes that colour gra-
dients are negligible.
7 The selection through the redshift-dependent apparent magnitude
cut results in an overlap in apparent magnitudes of the dense and
luminous samples. Because the cut is redshift-dependent, this implies
a threshold in luminosity: In the case of perfect redshifts, this would
result in a disjoint sample, because we removed the galaxies from the
dense sample that overlap with the luminous one. The photomet-
ric redshift uncertainty, however, assigns to galaxies with the same
apparent magnitude different luminosities, and thus a portion of the
dense sample extends above the luminosity threshold of the luminous
sample.
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Fig. 2. Magnitude distributions of the samples used in the analysis. Left panel: histograms of the apparent magnitude, MAG_AUTO in the r-band
for the galaxies in the dense (orange lines) and luminous (green lines) samples with shapes measured by lensfit (darker colours) and Deimos
(lighter colours). Right panel: histograms of the absolute magnitudes in the r-band (K + e corrected) for the same samples.

the fraction of satellites we expect in our samples. Such infor-
mation will be useful for future modelling studies.

We used the publicly available G3GGal and G3GFoFGroup
catalogues (Robotham et al. 2011) from the GAMA survey
(Driver et al. 2009, 2011; Liske et al. 2015). Since KiDS over-
laps with GAMA, these catalogues provide group information
for a subset of our galaxies, obtained with a Friends-of-Friends
algorithm. We cross-matched our LRG samples with the G3GGal
catalogue and selected galaxies with z < 0.21 (z < 0.32),
which provide a roughly volume-complete match to the dense
(luminous) sample. With the information in both group cat-
alogues, we identify both the brightest group galaxies and
ungrouped galaxies as centrals, and the rest as satellites. With
this strategy, we obtain fsat = 0.34 for our dense×GAMA
sample and fsat = 0.23 for the luminous×GAMA8. Since
our samples are selected to resemble the same galaxy popu-
lations at different redshifts, these estimates should be fairly
representative beyond the redshift range probed by our direct
comparison.

3. Shape measurements

In addition to precise redshifts, a successful IA measurement
requires accurate shape measurements. In this work, we compare
two different algorithms, Deimos and lensfit both in terms of
their ability to recover reliable ellipticity measurements and the
resulting IA signal. Exploring the dependence of the IA signal on
the shape measurement algorithm is important if one aims to pro-
vide informative priors to lensing studies (Singh & Mandelbaum
2016). Both algorithms have been used to analyse KiDS data:
Deimos to provide the shape catalogue (Georgiou et al. 2019b)
for a number of IA studies, while lensfit was used for cosmic
shear analyses (see Giblin et al. 2021, for the most recent shape
measurements).

8 These estimates refer to the full samples, but should be representative
for the shape samples as well.

3.1. DEIMOS

Deimos (Melchior et al. 2011) is a moment-based shape mea-
surement algorithm designed to measure the moments of the
surface brightness distribution from an image, which are sub-
sequently used to estimate the ellipticity. The main features of
Deimos are its rigorous treatment of the PSF moments to arbi-
trary order, the lack of model assumptions and the flexibility in
changing the size of the weight function so that it is possible
to assign more importance to different parts of a galaxy while
performing the shape measurement (bulge or outskirts).

The unweighted moments of the surface brightness G(x) are
defined as

Qi j ≡ {G}i j =

∫
G(x) xiy j dx dy, (1)

where (x, y) are the Cartesian coordinates with origin at the
galaxy’s centroid. The complex ellipticity is then defined in
terms of the second-order moments as

ε ≡ ε1 + iε2 =
Q20 − Q02 + 2i Q11

Q20 + Q02 + 2
√

Q20 Q02 − Q2
11

. (2)

In practice, unweighted moments cannot be used because of
noise in the images, and weighted moments have to be employed
instead. We will return to this issue later. Moreover, the galaxy
images are smeared and distorted by the atmospheric blurring
and the telescope optics, so that the observed image, G∗, is con-
volved with the PSF kernel P(x),

G∗(x) =

∫
G(x′) P(x − x′) dx′. (3)

The Deimos algorithm estimates the unweighted moments
by correcting the observed weighted moments of the galaxy sur-
face brightness for the convolution by the PSF. The underlying
mathematical framework is a deconvolution in moment space.
In order to measure the moments in Eq. (1) we then need to
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deconvolve them. This can easily be achieved in Fourier space,
where the convolution becomes a product. Using the Cauchy
product, we can write (Melchior et al. 2011):

{G∗}i j =

i∑
k

j∑
l

(
i
k

) (
j
l

)
{G}kl{P}i−k, j−l, (4)

which shows that the (i + j)-order convolved moments are deter-
mined by the same- or lower-order moments of the galaxy and
the PSF kernel. The deconvolution procedure to estimate the
galaxy moments is to invert the above hierarchical system of
equations, starting from the zeroth order.

As mentioned above, it is necessary to introduce a weight
function to avoid noise dominating the second-order moments
outside the galaxy light profile. In this work, we adopt an ellip-
tical Gaussian weight function with size rwf = riso, where riso
is the isophotal radius, defined as riso =

√
Aiso/π, following

Georgiou et al. (2019b). The area Aiso of the galaxy’s isophote is
computed using the ISOAREA_IMAGE by SExtractor (Bertin
& Arnouts 1996). The shape measurement procedure is the same
as described in Georgiou et al. (2019b) and we point the inter-
ested reader to their Sect. 2 for a detailed description of the algo-
rithm. In Appendix A we report our analysis of the measured
shape bias for different setups, which led to our final choice
reported above.

Using Deimos, we successfully measured the shapes of
96 863 galaxies from the luminous sample, ∼83% of the cor-
responding density sample, and 152 832 shapes from the dense
sample, roughly ∼88% of its density sample. The shape mea-
surements mainly fail9 for the faintest galaxies in the sample.

3.2. lensfit

The second shape catalogue is obtained using the self-calibrating
version of lensfit (Miller et al. 2013), described in more detail
in Fenech Conti et al. (2017). It is a likelihood-based model-
fitting method that fits a PSF-convolved two-component bulge
and disk galaxy model. This is applied simultaneously to the
multiple exposures in the KiDS-1000 r-band imaging, to get an
ellipticity estimate for each galaxy.

lensfit provides shapes for 84 785 galaxies from theluminous
sample (72% of the density sample), and for 121 500 galaxies
from the dense sample (70% of the density sample). The lower
completeness with respect to Deimos is largely explained by the
fact that lensfit has been optimised for cosmic shear studies, where
the signal is maximised for high-redshift galaxies, which are typ-
ically small and faint. Whilst lensfit could determine ellipticity
measurements for the large bright galaxies with MAG_AUTO < 20,
this model-fitting algorithm becomes prohibitively slow given the
large number of pixels that these bright galaxies span. There-
fore, the lensfit catalogue only contains galaxies fainter than
MAG_AUTO > 20 (hence the sharp cut-off in apparent magnitude in
Fig. 2). It performs better than Deimos for relatively faint and low
signal-to-noise (S/N) galaxies. As these are preferentially found
at higher redshifts, this also explains the different redshift distri-
butions, as illustrated in Fig. 1.

3.3. Image simulations

We want to measure the shapes of galaxies from images that
are corrupted by noise and blurred by the atmosphere and tele-
scope optics. These bias the inferred shapes and thus need to
9 We only considered shapes with flag_Deimos==0000, correspond-
ing to measurements that do not raise any flag (see Georgiou et al.
2019b).

be carefully corrected for. Although both Deimos and lensfit
are designed to do so, residual biases remain. These can be
expressed as (Heymans et al. 2006)

εobs
i = (1 + mi)ε true

i + ci, (5)

with i ∈ {1, 2} the ellipticity components introduced in Eq. (2).
Here ε true

i is the true ellipticity, while εobs
i is the output of the

shape measurement algorithm; mi is the multiplicative bias and ci
is the additive bias. Differently from what is done in lensing stud-
ies (e.g., Kannawadi et al. 2019), here we calibrated the elliptic-
ity rather than the shear. Our aim is to determine the biases in
our shape measurements using realistic image simulations, with
a precision that is better than the statistical error on our IA signal.

We stress that although it is important to start with an algo-
rithm that does not lead to a large bias in the first place, what
matters the most is to calibrate the residual bias on realistic
image simulations in order to properly account for galaxy blend-
ing and the different observing conditions (Hoekstra et al. 2017;
Kannawadi et al. 2019; Samuroff et al. 2018; MacCrann et al.
2020). We use dedicated image simulations generated with the
COllege pipeline (COSMOS-like lensing emulation of ground
experiments; Kannawadi et al. 2019). These simulations repro-
duce the observations from the Cosmic Evolution Survey (COS-
MOS, Scoville et al. 2007), for which we have both KiDS
imaging (KiDS-COSMOS) and deeper images from the Hubble
Space Telescope (HST). We use the HST observations to gener-
ate our input catalogue and simulate the KiDS observations by
varying the observation conditions. Under the assumption that
COSMOS is representative of our galaxy sample (in practice
we only require that it covers the S/N and size parameter space,
while we do not need the galaxy distributions to match) we study
the m-bias properties of the LRGs in our KiDS-COSMOS field
and use the bias model obtained from this set of galaxies to cali-
brate our full sample.

The image simulations used in this work differ slightly from
those presented in Kannawadi et al. (2019) because we required
a larger number of simulated LRGs for our calibration. To
achieve this, we adopted the ZEST catalogue (Zurich Estimator
of Structural Type; Scarlata et al. 2007; Sargent et al. 2007) for
the input galaxy parameters. We generated 52 KiDS-like images
by varying the observing conditions and rotating the galaxies.
We used 13 different PSF sets and four rotations per each image.
Since our underlying galaxy selection is identical for both the
lensfit and Deimos shape catalogues, we employed the same
suite of simulations for both calibrations.

The shape measurement bias depends on the size, S/N, radial
surface brightness profile and ellipticity of the galaxy, as well
as the observing conditions. Of these, the size and S/N are the
most relevant, and we use these to capture the dependence of the
bias for our set of simulated galaxies. Rather than the intrinsic
size of the galaxy, we use a proxy for how well it is resolved:
R quantifies the relative size of the PSF compared to the size
of the galaxy. Here, we adopt two slightly different definitions,
depending on the shape algorithm employed. For Deimos we
use

RDEIMOS = 1 −
T PSF

T gal , (6)

where T PSF = QPSF
20 + QPSF

02 and T gal = Q∗gal
20 + Q∗gal

02 , where
Q∗gal

i j are the unweighted moments of the PSF-convolved surface
brightness profile (see Eqs. (4) and (1)). In the case of lensfit we
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Fig. 3. Average multiplicative bias, m = (mε1 + mε2 )/2, as a function of (a) the galaxy resolution, R, and (b) the signal-to-noise ratio, S/N. Each
point is measured on the same number of simulated galaxies and the error bars are estimated using bootstraps. For a comparison we also display in
the background the weighted distribution of the two definitions of R and the S/N in the real data for the dense shape samples (pink: lensfit; blue:
Deimos). The solid lines show the polynomial fit to m(R) and m(S/N), which guided the construction of the two-dimensional bias surface.

use

Rlensfit = 1 −
r2

PSF(
r2

ab + r2
PSF

) , (7)

where r2
PSF =

√
P11P22 − P2

12 and rab = re
√

q. Here, Pi j are
the lensfit PSF weighted quadrupole moments (see Eq. (2) in
Giblin et al. 2021), measured with a circular Gaussian function
of size 2.5 pixels; re is the half-light radius measured along the
major axis of the best-fit elliptical profile by lensfit, which is an
estimate of the true galaxy size before PSF-convolution, while q
is the axis ratio, such that rab is the azimuthally averaged size of
the galaxy. As we can see, R can in practice only assume values
between 0 and 1, where 1 corresponds to galaxies with sizes that
are much larger than the PSF.

We evaluate the multiplicative bias m in bins of S/N and R
that contain an equal number of galaxies and the error bars are
computed using 500 bootstrap realisations. The resulting biases
are presented in Fig. 3 for both lensfit and Deimos. We find that
the two components ε1,2 show similar dependencies, and, there-
fore, we calibrate the bias for the two components jointly. The
additive bias for both components is consistent with zero, and
thus we do not consider it further in our calibration.

For both m(S/N) and m(R), we find that lensfit has a small
bias and thus also our correction is small; in general, it performs
better than Deimos for poorly resolved galaxies and low S/N. It
is, however, prohibitively slow when measuring shapes for large
galaxies, limiting the lensfit sample to galaxies with mr > 20.
In contrast, Deimos shows a large bias for low values of R: the
galaxy size correlates with its ellipticity, and we find that remov-
ing the highly elliptical galaxies significantly reduces the bias.
However, once we calibrate the shapes of those galaxies, we
recover a very similar signal for the full shape sample and the
one cut in ellipticity. Similarly, we have also tested that adding
inverse-variance weights to account for these noisy galaxies does
not significantly improve our signal. This motivates our choice
to keep all galaxies in our sample and not to introduce additional
weighting; we assume that the measurements are dominated by
shape noise only.

We can see that m(R) for both Deimos and lensfit is well
described by a polynomial curve, which we truncate at degree 3

and 4, respectively, while m(S/N) is well described by the expan-
sion: d(S/N) = d1/

√
S/N +d2/(S/N). We combine the two indi-

vidual bias dependencies into a single bias surface as detailed
in Appendix A. The specific functional forms for the two shape
methods differ to better adapt the surface to our observed bias.
We use these empirical relations to infer the m-bias associated
with each galaxy, given its S/N and R.

To ensure that our empirical correction performs well on
our sample, we selected sets of galaxies from the image sim-
ulations that resemble our LRG samples by reproducing the
observed distributions in S/N and R. We measured the residual
biases for these samples, defined as the difference in the esti-
mated m-bias (inferred using our model for the bias) and the
bias measured directly from the simulations for the given set
of galaxies. For the Deimos shape method, we find an aver-
age residual of −0.002± 0.007 for the dense-like sample, while
this is −0.002 ± 0.008 for the luminous-like sample. Simi-
larly, in the case of lensfit the residuals for the luminous-like
and dense-like galaxies are, respectively, −0.0014± 0.0013 and
−0.0019±0.0020. As we will see later, this is much smaller than
the uncertainty in the IA measurements: the average bias intro-
duced by the shape measurement process is subdominant and
does not affect our best estimate of the IA amplitude.

The LRGs are relatively bright and we thus expect the shape
measurements to be shape noise-dominated. This also implies
that the Deimos and lensfit measurements are correlated. To
quantify this, we show the distribution of the difference between
the m-corrected ellipticities measured by the two algorithms in
Fig. 4. The distribution is more peaked than a Gaussian, and
well described by a Student’s t-distribution centred on zero,
with ν = 4.30 (degrees of freedom) and with scale parameter
σ = 0.08. This is to be compared to the intrinsic ellipticity of
galaxies, which is about εrms = 0.12 based on Deimos mea-
surements for galaxies with apparent magnitude mr < 20. It is
interesting to note that our sample is considerably rounder than
a typical cosmic shear sample, as expected for an LRG sample
(see for example van Uitert et al. 2012); this implies that it might
be affected differently by a weighting scheme in a lensing anal-
ysis. The differences between the Deimos and lensfit measure-
ments are caused by differences in how each method deals with
noise in the images.
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Fig. 4. Histogram of the difference of the ε1 component of the ellip-
ticity measured by the two shape measurement algorithms, lensfit and
Deimos, on a common sub-sample of galaxies, after applying the m-
bias correction as described in the text. The ε2 component shows the
same behaviour. The distribution is more peaked than a Gaussian (red
dashed line) and is best described by a Student’s t-distribution with
ν = 4.3, and a width σ = 0.08 with zero mean (black solid line).

4. Correlation function measurements

We measured the IA signal using the two-points statistic wg+,
defined as the projection along the line-of-sight of the cross-
correlation between galaxy positions and galaxy shapes. It mea-
sures the tendency of galaxies to point in the direction of another
galaxy as a function of their comoving transverse separation, rp,
and comoving line-of-sight separation, Π. To quantify the align-
ment signal in our data, we employed the estimator presented in
Mandelbaum et al. (2006)10,

ξ̂g+(rp,Π) =
S +D − S +RD

RSRD
, (8)

where RD and RS are catalogues of random points designed to
reproduce the galaxy distribution of the density and shape sam-
ples, respectively. We indicate with D the density sample that
provides the galaxy positions, while S + is the shape sample, such
that the quantity

S +D =
∑
i, j

γ+(i| j), (9)

gives us the tangential shear component of the galaxy pair (i, j),
γ+(i| j), where i is extracted from the shape sample and j from
the density sample. γ+, in turn, is defined as

γ+(i| j) =
1
R
<

[
εi exp(−2iφi j)

]
, (10)

where< denotes the real part; εi is the complex ellipticity asso-
ciated with the galaxy i, εi = ε1,i + iε2,i, whose components 1,2
are measured by the shape measurement algorithms presented
in Sect. 3; φi j is the polar angle of the vector that connects the
galaxy pair; R = ∂ε/∂γ is the shear responsivity and it quantifies

10 Instead of normalising by RSRD, we actually normalise by the density
– randoms vs. shapes pair count, RDDS. This significantly speeds up the
computation and has been tested to have negligible impact (Johnston
et al. 2019).

by how much the ellipticity changes when a shear is applied: for
an ensemble of sources, R = 1 − ε2

rms.
The galaxy clustering signal is computed with the standard

estimator (Landy & Szalay 1993),

ξ̂gg(rp,Π) =
DD − 2DRD − RDRD

RDRD
. (11)

To measure our clustering and IA signals, we used uniform
random samples that reproduce the KiDS footprint, accounting
for the masked regions; to these we assigned redshifts randomly
extracted from the galaxy unconditional photometric redshift
distributions. For each sample, we constructed the random sam-
ple to match their redshift distribution.

To account for the spatial variation in the survey systematics,
we applied weights to the galaxies when computing the signal,
as discussed in Vakili et al. (2020). These weights are designed
to remove the systematic-induced variation in the galaxy number
density across the survey footprint. For a detailed discussion of
how the weights are generated and tested, we refer to Sect. 4 in
Vakili et al. (2020). To capture the variation in the survey sys-
tematics along the line-of-sight, we split each sample into three
redshift bins and assigned the weights to those sub-samples. We
tested that this procedure does not induce a correlation between
the galaxy weights and the redshifts themselves. We also ver-
ified that the impact of the weights is very small and can be
neglected when considering the split in luminosity of the sam-
ples (see Sect. 6.1). We applied such weights to both the density
and shape samples.

In this work, we measured the clustering and IA signals
using an updated version of the pipeline presented in Johnston
et al. (2019), which makes use of the publicly available software
Treecorr (Jarvis et al. 2004)11 for clustering correlations. ξg+

and ξgg are then projected by integrating over the line-of-sight
component of the comoving separation, Π,

ŵgi(rp) =

∫ Πmax

−Πmax

dΠ ξ̂gi(rp,Π) i = {+, g}. (12)

The largest scales probed in this analysis are limited by the
effective survey area (∼777 deg2). We set a maximum transverse
separation of 60 h−1 Mpc and measure the signal in 10 logarith-
mically spaced bins, from rp,min = 0.2 h−1 Mpc.

We performed the measurements for three different setups:
we adopt Πmax = 120 h−1 Mpc as the fiducial case, but repeated
the analysis for Πmax = 90 h−1 Mpc and Πmax = 180 h−1 Mpc
(see Appendix E). We always bin our galaxies in equally spaced
bins with ∆Π = 10 h−1 Mpc. We observe an extended signal to
Π > 180 h−1 Mpc, but the signal is comparable to the noise at
those distances.

Our choice of Πmax is conservative since the uncertainties
in the photometric redshifts are σz < 0.02(1 + z) for both the
denseand luminous samples (Vakili et al. 2020), and if we
choose Πmax based on the 1σ uncertainty in the photometric red-
shifts (Joachimi et al. 2011), we could potentially reduce Πmax to
70 h−1 Mpc. However, this might be too optimistic given that the
error on σz increases with redshift. The choice of Πmax is moti-
vated by two opposite necessities: to maximise the S/N, we want
to minimise the amount of signal that we discard, whilst we also
want to avoid adding uncorrelated pairs that would increase the
noise. To find the best balance, we calculate the S/N of our sig-
nal as a function of (rp,Π) by dividing the measured wgg(rp,Π)
by the root-diagonal of the jackknife covariance. We truncate at

11 https://github.com/rmjarvis/TreeCorr
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Πmax based on the 10 σ detection, which roughly corresponds to
Πmax = 120 h−1 Mpc. In addition to these considerations, there is
a further motivation to limit the integral to modest line-of-sight
separations: as discussed in Appendix C, the contamination from
galaxy-galaxy lensing has a shallower dependence on the line-
of-sight separation; as we move along the Π direction, we see
an increase in the contamination with a mild increase in the IA
signal, until lensing dominates.

The error bars are computed via a delete-one jackknife
re-sampling of the observed volume. The covariance matrix is
constructed as

Covjack. =
N − 1

N

N∑
α=1

(wα − w̄)(wα − w̄)>, (13)

where wα is the signal measured from jackknife sample α, while
w̄ is the average over N samples; > denotes the transpose of the
vector.

The number of regions N is ultimately set by the size of
the survey and the scales we aim to probe. A maximum value
of rp = 60 h−1 Mpc corresponds to an angular separation of ∼8
degrees (dense sample) and ∼6 degrees (luminous sample) at
the lowest redshifts probed in the analysis. However, to increase
the number of jackknife regions, we decided to set the minimum
angular scale to 5 degrees, which strictly satisfies our require-
ment only for z & 0.2. This is motivated by the fact that the
majority of our galaxies are at high redshift and hence only .5%
of our galaxies have unreliable error estimates in the last rp-bin.
The total number of jackknife regions that we are able to obtain
for our samples is N = 37. We corrected our inverse covariance
matrices, which enter into our likelihood estimations, as recom-
mended in Hartlap et al. (2007): because of the presence of noise,
the inverse of a covariance matrix obtained from a finite number
of jackknife (or bootstrap) realisations is a biased estimator of
the true inverse covariance matrix.

5. Modelling

The linear alignment model (Catelan et al. 2001; Hirata & Seljak
2004) predicts a linear relation between the contribution to the
shear induced by IA and the quadrupole of the gravitational field
responsible of the tidal effect. This can be expressed as

γI = (γI
+, γ

I
×) = −

C1

4πG
(∂2

x + ∂2
y , ∂x∂y)Φp, (14)

where the partial derivatives are with respect to comoving coor-
dinates and provide the tangential and cross components of the
shear with respect to the x-axis; Φp is the gravitational poten-
tial at the moment of galaxy formation, assumed to take place
during the matter-dominated era (Catelan et al. 2001); C1 is a
normalisation constant and G is the gravitational constant.

Using Eq. (14), by correlating the intrinsic shear with itself
or with the matter density field δ, we can construct the rele-
vant equations for the IA correlation functions (Hirata & Seljak
2004). In Fourier space, the matter density-shear power spectrum
(δI) becomes

PLA
δI (k, z) = AIAC1ρc

Ωm

D(z)
Plin
δδ (k, z). (15)

Here, D(z) is the linear growth factor, normalised to unity at
z = 0, ρc is the critical density of the Universe today, and
Plin
δδ is the linear matter power spectrum. We set C1 = 5 ×

10−14 h−2M−1
� Mpc3 based on the IA amplitude measured at low

redshifts using SuperCOSMOS (Brown et al. 2002), which is the
standard normalisation for IA power spectra.

Galaxies are biased tracers of the matter density field, and at
large scales this relation is linear, δg ∼ bgδ. We can thus relate
the galaxy position–intrinsic shear power spectrum to the matter
density–intrinsic shear power spectrum via the galaxy bias bg:

PLA
gI (k, z) = bgPLA

δI (k, z), (16)

which is the power spectrum of interest for our analysis.
A successful modification of the LA model replaces the

linear matter power spectrum in Eq. (15) with the non-linear
one, to account for the non-linearities arising at intermedi-
ate scales (Bridle & King 2007). This so-called NLA model
was succesfully employed in a number of studies (e.g., Blazek
et al. 2011; Joachimi et al. 2011) and here we follow the same
approach to model our signal. More sophisticated treatments
of the IA signal, which include the modelling of the mildly or
fully non-linear scales, have been developed in the last decade
(Schneider & Bridle 2010; Blazek et al. 2019; Fortuna et al.
2021), but given the scales probed in our analysis (see Sect. 5.3)
and the homogeneous characteristics of the galaxy population
studied, the NLA model provides a sufficient description for
this work. Unless stated otherwise, in the following we always
assume the NLA model as our reference choice. To generate the
linear matter power spectrum we use Camb12 (Lewis et al. 2000;
Lewis & Bridle 2002), while the non-linear modifications are
computed using Halofit (Smith et al. 2002) with the imple-
mentation presented in Takahashi et al. (2012). In the rest of the
paper, we simply refer to the non-linear matter power spectrum
as Pδδ(k, z).

5.1. Incorporating the photometric redshift uncertainty into
the model

The use of photometric redshifts results in an uncertainty in the
estimated distance of the galaxies, which has to be included in
the model. In particular, if we express the correlation function ξgI
in terms of the two components of the galaxy separation vector r,
(rp,Π), we can map the redshift probability distribution into the
probability that the true values of rp and Π correspond to their
photometric estimates. Here, we follow the approach derived in
Joachimi et al. (2011) and use their approximated expression,

ξ
ph
gI (r̄p, Π̄, z̄m) =

∫
d``
2π

J2

(
`θ(r̄p, z̄m)

)
×CgI

(
`; z̄1(z̄m, Π̄), z̄2(z̄m, Π̄)

)
. (17)

The observables are: z̄1 and z̄2, the photometric redshift esti-
mates of the pair of galaxies for which we are measuring the
correlation, and their angular separation θ. These can be related
to (r̄p, Π̄, z̄m), through the approximate relations

zm =
1
2

(z1 + z2), (18)

rp ≈ θχ(zm), (19)

Π ≈
c

H(zm)
(z2 − z1), (20)

where χ(zm) and H(zm) are, respectively, the comoving distance
and the Hubble parameter at redshift zm, and c is the speed of
light.

12 https://camb.info
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The conditional redshift probability distributions are incor-
porated into the angular power spectrum CgI, which can be
expressed in terms of the three-dimensional power spectrum
PgI(k, z),

CgI(`, z̄1, z̄2) =

∫ χhor

0
dχ′

pn(χ′|χ(z̄1))pε(χ′|χ(z̄2))
χ′2

× PgI

(
` + 1/2
χ′

, z(χ′)
)

(21)

where we have implicitly assumed the flat-sky and Limber
approximations, and n and ε indicate the density and shape
sample respectively. p(χ′|χ) are the conditional comoving dis-
tance probability distributions, which are related to the redshift
distributions via p(χ′|χ)dχ = p(z|z̄)dz. When computing our
predictions, we bin our photometric data and compute the corre-
sponding p(z|z̄) ≡ p(zspec|zphot) per each bin; z1 and z2 in Eq. (18)
corresponds to the mean values of the probability distribution
with z1 being the mean of the ith bin and z2 of the jth bin. In
Appendix B we show the redshift distributions entering our anal-
ysis. We refer the interested reader to Appendices A.2 and A.3
in Joachimi et al. (2011) for the full derivation of Eq. (21). The
exact same formalism can then be applied to the clustering sig-
nal, where CgI → Cgg, J2 → J0 and the redshift distributions are
those corresponding to the density sample.

The projected correlation functions wg+ and wgg can then be
obtained as:

wg+(rp) =

∫
dΠ̄

∫
dzmW(z̄m)ξph

gI (r̄p, Π̄, z̄m) (22)

and

wgg(rp) =

∫
dΠ̄

∫
dzmW(z̄m)ξph

gg(r̄p, Π̄, z̄m), (23)

where the redshift window function W(z) is defined as
(Mandelbaum et al. 2011):

W(z) =
pi(z)p j(z)
χ2(z)dχ/dz

[∫
dz

pi(z)p j(z)
χ2(z)dχ/dz

]−1

, (24)

where pi, j(z) with i, j ∈ S ,D are now the unconditional redshift
distributions for the shape and density samples, and χ(z) is the
comoving distance to redshift z.

5.2. Contamination to the signal

All possible two-point correlations between galaxy shapes and
positions contribute to the estimator in Eq. (12). Following the
notation in Joachimi & Bridle (2010), here we consider: the cor-
relation between the intrinsic shear and the galaxy position (g+),
which is the quantity we aim to constrain; but also the correlation
between gravitational shear and galaxy position, sourced by the
galaxy lensing of a background galaxy by a foreground galaxy
(gG); and the apparent modification of the galaxy number counts
due to the effect of lensing magnification, which affects both the
correlations with the intrinsic shear and the gravitational shear
(mI and mG).

Among these effects, galaxy-galaxy lensing is the main con-
taminant to our signal. While IA requires physically close galax-
ies, galaxy-galaxy lensing occurs between galaxies at different
redshifts. This implies that the level of contamination depends
on our ability to select close pairs of galaxies, which ultimately
depends on the photometric redshift precision. For this reason,

the width and the tails of the redshift distributions play an impor-
tant role in the amount of contamination. Since our p(zspec|zphot)
are quite narrow (see Appendix B) we do not expect this to be a
major effect in our data. Nevertheless, we fully model both lens-
ing and magnification effects, and account for them when inter-
preting the signal. We note that the sign of the gI and gG terms
are opposite, such that adding the lensing to the model allows us
to remove its suppressing contribution and capture the true IA
signal.

It is convenient to write the various correlations in terms of
the projected angular power spectra: indicating with n the den-
sity sample (that provides the galaxy positions) and with ε the
shape sample, we have

C(i j)
nε (`) = C(i j)

gI (`) + C(i j)
gG (`) + C(i j)

mI (`) + C(i j)
mG(`), (25)

where, in a flat cosmology, these read

C(i j)
gG (`) = bg

∫ χhor

0
dχ

p(i)
n (χ)q( j)

ε (χ)
χ2 Pδδ

(
` + 1/2
χ

, χ

)
, (26)

C(i j)
mI (`) = 2(α(i) − 1)C(i j)

IG (`), (27)

and

C(i j)
mG(`) = 2(α(i) − 1)C(i j)

GG(`). (28)

Here α(i) is the slope of the faint-end logarithmic luminosity
function13. The lensing weight function, qX , X ∈ {n, ε} is defined
as

qX(χ) =
3H2

0Ωm

2c2

χ

a(χ)

∫ χhor

0
dχ′pX(χ′)

χ′ − χ

χ′
. (29)

C(i j)
IG is the intrinsic-shear power spectrum. It models the corre-

lation between the shearing of source galaxies by a foreground
matter overdensity and the simultaneous IA of galaxies located
near that overdensity:

C(i j)
IG (`) =

∫ χhor

0
dχ

p(i)
n (χ)q( j)

ε (χ)
χ2 PδI

(
` + 1/2
χ

, χ

)
; (30)

C(i j)
GG is instead defined as:

C(i j)
GG(`) =

∫ χhor

0
dχ

q(i)
n (χ)q( j)

ε (χ)
χ2 Pδδ

(
` + 1/2
χ

, χ

)
. (31)

We note that with respect to the usual shear power spectrum,
we require here that one of the samples refers to the density
sample, n.

To account for these sources of contamination in the fit, we
replace ξgI with ξnε , which can be obtained from Eq. (25). The
prediction for ξobs is then used to constrain the measured signal
ŵg+. In Appendix C we expand further on the impact of lens-
ing on our measurements, while in Appendix D we describe our
strategy to measure the values of α(i) in our data.

13 Formally, the magnification of the lensfit sample is also affected by
the slope of the luminosity function at the bright end of mr = 20. We
ignore such complexity: we find magnification to be a subdominant
effect for the faint distant galaxies, thus the contribution of low-redshift
galaxies is expected to be negligible for our analysis.

A76, page 9 of 20



A&A 654, A76 (2021)

5.3. Likelihoods

We perform the fits to the data using a Markov chain Monte
Carlo (MCMC) that samples the multi-dimensional parameter
posterior distributions and finds the set of parameters that max-
imise the likelihood. We assume a Gaussian likelihood of the
form L ∝ exp(−χ2/2), where

χ2 = χ2
wgg

+ χ2
wg+

(32)

and we simultaneously fit for the galaxy bias, bg and the IA
amplitude, AIA.

To correct for the effects of a partial-sky survey window,
we also introduce an integral constraint, IC, when modelling the
clustering, signal,

wgg → wgg + IC. (33)

This term, which becomes important only on large scales, has the
function of capturing the bias that arises from a mis-estimation
of the global mean density (Roche & Eales 1999). We treat this
term as a nuisance parameter, such that our parameter vector
reads

λ = {bg, AIA; IC}. (34)

We limit our fits to the quasi-linear regime, rp > 6 h−1 Mpc,
to ensure that the linear bias approximation is satisfied and the IA
signal is well described by the NLA model. To perform our fits,
we make use of the Emcee (Foreman-Mackey et al. 2013) pack-
age as implemented in the cosmology software CosmoSIS14

(Zuntz et al. 2015). When analysing the chains, we exclude the
first 30% of samples for a burn-in phase.

6. Results

The left panels in Fig. 5 show the measurements of the projected
position-shape correlation function wg+ for the luminous (top
panel) and dense (bottom panel) samples. We present results for
both the lensfit (dark green triangles) and Deimos (light green
squares) shape catalogues. As described in Sect. 5.3, we simulta-
neously fit the IA and the clustering signals. We show the result-
ing best-fit models to measurements with rp > 6 h−1 Mpc of wg+

and wgg as solid lines in the figures. The estimates from the two
shape measurement algorithms are fit independently, but given
that the corresponding clustering signal is the same, here we only
show the best-fit curve for the Deimos fit. The clustering mea-
surements use the full density samples, and thus do not rely on a
successful shape measurement.

We observe similar signals for the Deimos and lensfit sam-
ples, with the lensfit measurements having a lower S/N, because
of the lack of shape measurements for galaxies with mr < 20. We
note that we do not necessarily expect to observe the same sig-
nal, because Deimos contains more bright, low-redshift galax-
ies, whereas the lensfit sample includes fainter, distant galaxies
(see Figs. 1 and 2). If the alignment signal depends on luminosity
or redshift, the two shape samples would give different signals.
In Appendix F we restrict the comparison to the sample of galax-
ies with shape measurements from both methods, and find that
the average difference 〈rp∆wg+〉 = 0.003 ± 0.13 is negligible,
especially compared to the amplitude of the IA signal quantified
as 〈rpwg+〉 = 0.90 ± 0.17 (Deimos shapes; see Appendix F for
details).

14 http://bitbucket.org/joezuntz/cosmosis/wiki/Home

We also show the models that provide the best-fit to the com-
bined wgg and wg+ measurements in Fig. 5, and report the values
for the bias bg and IA amplitude AIA in Table 1. The results for
Deimos and lensfit are consistent.

Our constraints on the galaxy bias of the dense and
luminous samples are in broad agreement with the values pre-
sented in Vakili et al. (2020): We find a larger bias for the
luminous sample than for the dense one, as expected by its
higher luminosity and the higher redshift baseline.

6.1. Luminosity dependence

Previous studies of LRGs (Joachimi et al. 2011; Singh et al.
2015) have found a significant dependence of their IA signal
with luminosity, with more luminous galaxies showing stronger
alignments. On average our LRG sample probes somewhat lower
luminosities than those earlier studies, but the overlap with these
earlier works also enables a direct comparison. Thanks to the
large range in luminosity it covers, the dense sample is particu-
larly suited to explore the dependence with luminosity. To do so,
we use the Deimos shape catalogue15 and split the dense LRG
galaxies in five sub-samples: D1, D2, and D3, correspond to the
lowest three quartiles in luminosity; the remaining two, D4 and
D5, are obtained by splitting the highest luminosity quartile into
two equally sized samples. The motivation to split the quartile
with the highest luminosities is that it encompasses a very large
range in luminosity, which complicates the interpretation if the
signal depends on luminosity (see below). Relevant details for
the sub-samples are listed in Table 1. We keep the dense and
luminous samples separate, in order to better isolate the effect
of the luminosity dependence from any redshift evolution of the
sample itself. For instance, as listed in Table 1, the mean redshift
of the sub-samples increases somewhat from D1 to D5.

We cross-correlate the Deimos shape catalogues for the indi-
vidual sub-samples with the positions of galaxies in the full
dense sample. In this way, we can disentangle the luminosity
dependence of the IA signal from the luminosity dependence of
the density tracer (brighter galaxies are typically found in denser
environments). The measurements and the best-fit models are
presented in Fig. 6. In Table 1 we list the best-fit values for the
galaxy bias bg and IA amplitude AIA, as well as the reduced χ2,
as before, using the measurements for rp > 6 h−1 Mpc. We also
show the measurements in Fig. 7 as orange stars as a function of
L/L0, where L0 = 4.6 × 1010 h−2L�.

We repeat the same analysis for the luminous sample, which
we divide in three bins, with a similar bin refining approach
as for the dense sample (in this case L1 contains half of
the luminous galaxies, while L2 and L3 the remaining quar-
ters). The best-fit amplitudes for these samples are reported in
Table 1, and presented as green stars in Fig. 7. In the lumi-
nosity range where the luminous and dense samples overlap,
we find the results between the two samples to be compatible.
The luminous sample seems to show a more pronounced lumi-
nosity dependence compared to the dense sample, which can
either be an effect of being brighter overall (from L1 to L3,
L/L0 = 0.46, 0.64, 1.01) or due to the satellite fraction being
lower (see Sect. 2.2), or a combination of the two. We note that
the measurements of the L3 sample appear to scatter more than
the covariance predicts, which results in higher χ2. A similar
issue is present in the D4 sample and it is visible in Fig. 6.

15 The internal cut at mr < 20 in lensfit makes it less suitable for this
analysis, as we have fewer galaxies at high luminosities.
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Fig. 5. Projected correlation functions (IA and clustering signal) measured in this work and the best-fit curve predicted by our model. Left:
projected position-shape correlation function, wg+, measured for our luminous (top panel) and dense (bottom panel) samples. We show results
for shapes measured with Deimos (light squares) and lensfit (dark triangles). The best-fit models to the data with rp > 6 h−1 Mpc (indicated by
the vertical dashed line), are shown as well, with the same colour scheme (Deimos: dash-dotted lines, lensfit: dashed lines). For clarity, the lensfit
results have been slightly offset horizontally. Right: projected clustering signal, wgg, of the dense and luminous samples. The dot-dashed lines
corresponds to the best-fit models. As we do not include a scale-dependent bias in our model, the mismatch between data and prediction at small
scales is expected.

Table 1. Properties of the individual galaxy samples used in our analysis and the corresponding best-fit galaxy bias (bg) and IA amplitude (AIA) as
constrained by our model.

Samples 〈z〉 ND NS [Lmin, Lmax] 〈L〉/L0 bg AIA χ2
red

Deimos
dense 0.44 173 445 152 832 0.38 1.59+0.04

−0.04 3.69+0.66
−0.65 0.78

luminous 0.54 117 001 96 863 0.64 2.06+0.04
−0.04 4.03+0.81

−0.79 1.19
D1 0.41 173 445 39 108 [0.09, 1.13] 0.21 1.60+0.04

−0.04 3.02+1.53
−1.48 1.00

D2 0.42 173 445 39 322 [1.13, 1.43] 0.27 1.60+0.04
−0.04 1.21+1.63

−1.64 0.91
D3 0.43 173 445 39 229 [1.43, 1.92] 0.35 1.59+0.04

−0.04 4.11+1.48
−1.48 1.05

D4 0.45 173 445 19 333 [1.92, 2.81] 0.49 1.59+0.04
−0.04 3.02+2.37

−2.33 1.52
D5 0.45 173 445 19 235 ≥2.81 0.89 1.59+0.04

−0.04 8.39+1.04
−1.30 0.47

L1 0.53 117 001 48 588 [0.29, 2.66] 0.46 2.06+0.04
−0.04 1.80+0.96

−0.95 1.17
L2 0.55 117 001 24 208 [2.66, 3.51] 0.65 2.06+0.04

−0.04 4.95+1.24
−1.21 1.19

L3 0.56 117 001 24 067 ≥3.51 1.00 2.06+0.04
−0.04 5.71+1.57

−1.60 2.03
lensfit
dense 0.49 173 445 121 500 0.33 1.60+0.04

−0.04 4.94+1.24
−1.22 1.52

luminous 0.63 117 001 84 785 0.59 2.06+0.04
−0.04 2.95+1.49

−1.42 1.54
Deimos + lensfit
Z1 (z ≤ 0.585) 0.44 56 754 56 754 0.63 2.01+0.06

−0.06 3.84+1.10
−1.06 0.22

Z2 (z > 0.585) 0.70 57 613 57 613 0.61 2.39+0.08
−0.08 3.97+2.02

−2.04 2.43

Notes. The galaxy properties are summarised by: the mean redshift, 〈z〉; the number of galaxies in the density (shape) sample, ND (NS); the mean
luminosity in terms of a pivot luminosity L0 = 4.6 × 1010 h−2L�; the bias, bg. To compute the ratio 〈L〉/L0, we only consider the galaxies in the
corresponding shape sample. For our L-cuts sub-samples, we also provide the range in luminosity they probe, [Lmin, Lmax], in units of 1010 h−2L�.
Similarly, we provide in brackets the cut adopted to split our sample in two redshift bins. When cross-correlating different samples, ND refers
to the density sample used in the correlation and the bias is the best-fit bias of the density tracer as obtained for that given measurement. All
measurements are performed assuming Πmax = 120 h−1 Mpc. Since the best-fit parameters and the medians of the marginal posterior distributions
are in agreement, we quote the marginal values, while the χ2 refers to the maximum likelihood. In all cases, the degrees of freedom are 5; the
p-values are all above 0.03, with the majority of them being in the range 0.3–0.7.
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are plotted on top of the data points, and the fits are performed for
rp > 6 h−1 Mpc. All but the yellow points have been slightly offset
horizontally; to better visualise the goodness of fit, the corresponding
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Fig. 7. Luminosity dependence of the IA amplitude as measured by
different observational studies (Joachimi et al. 2011; Singh et al. 2015;
Johnston et al. 2019; Fortuna et al. 2021); our new measurements on the
LRG samples are shown as star markers. We provide horizontal error
bars to indicate that the measurement is performed on a bin in lumi-
nosity, here plotted as the weighted standard deviation of the luminos-
ity distribution of each sample, with the marker placed at the weighted
mean. The solid (dashed) black line shows the median of the distribu-
tion of the MCMC sample associated with the double (single) power
law; the shaded area corresponds to the 68% confidence region.

The horizontal error bars in Fig. 7 indicate the weighted stan-
dard deviation of the luminosity distribution within the bin for
each sample, with the measurement placed at the luminosity-
weighted mean of the bin. If the range is too large, and the IA
signal varies within the bin, the resulting amplitude is difficult
to interpret, and may even appear discrepant. For instance, when
we combine the D4 and D5 samples we obtain AIA = 6.70+1.15

−1.14.
We note, however, that the luminosity range probed by this com-
bined bin is particularly extended, and the high signal measured
is mainly driven by the galaxies in the high luminosity tail of

Fig. 8. Constraints on the double power law parameters described in
Eq. (35) by jointly fitting all the measurements in Fig. 7. The red crosses
indicate the value of the parameters that maximise the likelihood, while
the blue squares correspond to the medians.

the bin (D5, AIA = 8.39+1.04
−1.30). The other half of the bin has a

relatively low signal with very large uncertainties (D4, AIA =
3.02+2.37

−2.33). This is relevant because it suggests that the alignment
of galaxies with luminosities below L/L0 ∼ 0.60−0.70 hardly
depends on luminosity, and thus with a similar amplitude to D1
and D3, the smaller sample is less constraining. As soon as we
exceed this approximate threshold, the signal increases signifi-
cantly, suggesting a luminosity dependence. This overall picture
is enhanced when we also consider previous results for LRGs
(Joachimi et al. 2011; Singh et al. 2015; Johnston et al. 2019;
Fortuna et al. 2021)16. These are also shown in Fig. 7. We inves-
tigate how well the current measurements support the picture of
a single or double power law by fitting the data points in Fig. 7,
assuming them to be uncorrelated. For each data point, we only
use the quoted L/L0 as we do not have the underlying luminosity
distribution for most of the measurements. We propose a double
power law with knee at Lbreak, amplitude Aβ and slopes β1,2:

A(L) = Aβ

(
L

Lbreak

)β
with

{
β = β1 for L < Lbreak

β = β2 for L > Lbreak
(35)

and fit for

λ =
{
Aβ, β1, β2, Lscale

}
, (36)

where Lscale = Lbreak/L0. We explore the parameter space using
a MCMC and assuming a Gaussian likelihood. Figure 8 shows
our parameter constraints, while the model prediction is shown
in Fig. 7 as a solid black line. Our best-fit parameters are reported
in Table 217. We repeat the same analysis assuming a single

16 The GAMA points (Johnston et al. 2019) have been adjusted to
homogenise the units convention, as discussed in Fortuna et al. (2021).
17 We note that the parameters that maximise the likelihood differ from
the medians of the posterior distributions as a consequence of the degen-
eracies between the parameters. This is particularly evident for β1,
which has negative slope, β1 = −0.75.
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Table 2. Best-fit parameters of the single and double power law fit on the measurements in Fig. 7.

Model Aβ β1 β2 Lbreak χ2/d.o.f. d.o.f.

Double power law 3.28+2.41
−1.17 (2.01) 0.26+0.42

−0.77 (−0.75) 1.17+0.21
−0.17 (1.11) 0.64+0.45

−0.24L0 (0.39L0) 1.36 (1.33) 22
Single power law 5.98+0.27

−0.27 (6.0) 0.93+0.11
−0.10 (0.92) – L0 1.61 (1.61) 24

Notes. The listed values correspond to the medians of the marginal posterior distributions, and the associated errors correspond to the 16th and
84th percentiles, while in brackets we report the parameters that maximise the likelihood. The same scheme is adopted for the corresponding
reduced χ2. Lbreak is the pivot luminosity that enters in the denominator of the power law argument. For convenience, the slope of the single power
law model is here reported as β1.
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Fig. 9. Projected correlation function, wg+, measured on our different
cuts in redshift of the luminous sample. The best-fit curves are plotted
on top of the data points, and the fits are performed for rp > 6 h−1 Mpc.
The red points are slightly displaced for clarity and the corresponding
best-fit curve has been displaced accordingly.

power law, as parametrised in Joachimi et al. (2011). The best-
fit parameters are also reported in Table 2. The larger χ2/d.o.f.
of the single power law compared to the double power law sug-
gests that the latter is a better description of our current data,
although the scatter between the points at low L is still too large
to draw definitive conclusions and the data are also mildly incon-
sistent in that regime. The degeneracy between the parameters,
and in particular between Aβ and Lscale, shows that the data can
weakly constrain the model. Nevertheless, the emerging pic-
ture seems to support more the broken power law scenario pre-
sented in Fortuna et al. (2021), but with a transition luminosity
around 0.4−0.6L0, also in line with the results from simulations
by Samuroff et al. (2021). The double power law is also sup-
ported by the fact that the alignment of redMaPPer clusters (van
Uitert & Joachimi 2017; Piras et al. 2018), not included in this
analysis, forms a smooth extension towards higher mass of the
alignment observed for the high luminosity LRGs. This result is
hard to reconcile with a single shallow power law, but finds a
natural framework in the double power law scenario, where the
slope of the relation at high luminosities recovers the trend in
Joachimi et al. (2011), Singh et al. (2015).

We caution that this analysis does not aim to be fully com-
prehensive, but rather to provide a sense of the current trends. A
proper analysis should jointly fit all of the measurements incor-
porating the full luminosity distributions of each sample, as well
as accounting for the presence of satellites, which might sup-
press the signal at low luminosities.

6.2. Redshift dependence

Having assessed that the two shape measurements produce com-
patible IA signals and that their calibrations are robust, we merge
the two shape catalogues to span the largest possible range in
redshift. This allows us to extend the sample from the low-z, high
S/N galaxies, where only Deimos provides shapes, to the high-
z, low S/N galaxies, where we preferentially measure the shapes
via lensfit. In the case of overlap between Deimos and lensfit, we
select the Deimos shapes. We only focus on the luminous sam-
ple as we are interested in a long redshift baseline with the same
luminosity cut. In this way, we can probe the redshift evolution
of the sample, without confusing the results with any luminosity
dependence.

Our final catalogue contains 115 322 galaxies that we split at
z = 0.585, which roughly provides two equally populated bins.
We call these two samples Z1 and Z2. The measurements for wg+

are presented in Fig. 9. The best-fit values for the two redshift
bins are listed in Table 1 and agree within their error bars, despite
their mean redshift being 〈z〉 = 0.44 and 〈z〉 = 0.70, respectively.

We note that the χ2 of our Z2 sample is quite high: This is
driven by the poor fit of the clustering signal. We attribute this
to our photo-z, which at high redshift are less reliable. We note,
however, that the uncertainty in the IA amplitude is large enough
to absorb the inaccuracies in p(zspec|zphot), such that modifying
the redshift distributions has little impact on the recovered IA
amplitude.

Figure 10 compares our results with the best-fit amplitudes at
various redshifts found by previous studies (Joachimi et al. 2011;
Singh et al. 2015; Johnston et al. 2019). The colour of the data
points reflects the luminosity of the sample used to measure the
signal18. As previously discussed, galaxies with different lumi-
nosities may manifest different levels of IA, and hence even with
a lack of redshift dependence, we should still expect points at dif-
ferent amplitudes: the bottom part of the plot should be mainly
populated by darker points and the upper part by brighter points.
Figure 10 confirms this scenario: overall, the points exhibit a
similar alignment and the scatter between the different points
is consistent with the extra luminosity dependence. We can con-
clude that there is little evidence for a strong redshift dependence
of the IA signal.

7. Conclusions

We have constrained the IA signal of a sample of LRGs
selected by Vakili et al. (2020) from KiDS-1000, which images
∼1000 deg2. These data allowed us to investigate the luminosity
dependence and the redshift evolution of the signal. To do so,
18 The colour of the marker corresponds to the bin centre, which may
not be sufficient if the range in luminosity is large, as it is typically
the case for these samples. The information provided by the colour has
therefore only qualitative meaning and should be considered as such.
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we measured the shapes of the LRGs with two different algo-
rithms, Deimos and lensfit. We used custom image simulations
to calibrate and correct the residual biases that arise from mea-
surements of noisy images.

We used the calibrated ellipticities to compute the projected
position-shape correlation function wg+ and analyse the signals
obtained by the two different algorithms independently, thus
exploring the dependence of IA on the specific shape method
employed. We found lensfit measurements to be overall noisier
than the Deimos ones and we attributed this to the prevalence
of faint galaxies in the sample, due to the internal magnitude
cut in the lensfit algorithm. Because bright galaxies typically
carry more alignment signal, this cut, which removes galaxies
with mr < 20, can potentially reduce the IA contamination in
KiDS cosmic shear analyses, which employ lensfit as the shape
method. For a sub-sample of galaxies, where both shape methods
return successful measurements of the shapes, we find a remark-
able agreement in the measured wg+, with a difference in the
signal of 0.003 ± 0.13 (amplitude of a fitted power law).

We explored the luminosity dependence and the redshift
evolution independently, selecting our galaxies in such a way
that ensures the two do not mix. Within the luminosity range
probed by the measurements our results agree with previous
studies (Joachimi et al. 2011; Singh et al. 2015; Johnston et al.
2019). However, a single power law fit, as was used in Joachimi
et al. (2011) and Singh et al. (2015) does not describe the mea-
surements well. Instead, our results suggest a more complex
dependence with luminosity: for Lr . 2.9 × 1010 h−2Lr,� the IA
amplitude does not vary significantly, whereas the signal rises
rapidly at higher luminosity. This also has implications for the
width of the luminosity binning, as the use of broad bins may
complicate the interpretation of the measurements. Analyses that
aim to combine these measurements to model the luminosity
dependence should incorporate the underlying luminosity dis-
tributions to properly link the signal to the galaxy luminosity.
Nevertheless, we provide a preliminary fit on the current mea-
surements available in the literature and found that the data are
best described by a broken power law. This result can already

be used by cosmic shear analyses to improved their modelling
of the IA carried by the red galaxy population. We remind the
reader that this sample is not representative of the galaxy popu-
lation. Different galaxy samples carry different alignment signals
and should thus be individually modelled as described in Fortuna
et al. (2021).

To probe the redshift dependence of the IA signal with the
largest baseline to date, we merged the Deimos and lensfit cat-
alogues. We find no evidence for redshift evolution of the IA
signal. This result is in line with previous studies of LRG sam-
ples (Joachimi et al. 2011; Singh et al. 2015), and it is consistent
with the current paradigm that IA is set at the moment of galaxy
formation. However, it is also possible that galaxy mergers coun-
teract the evolution of the tidal alignment, such that the net signal
does not change. Further improvements in the measurements are
needed to distinguish between scenarios.
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Appendix A: m-bias calibration

In this Appendix, we detail our procedure to calibrate the m-bias
in our shape measurements. We follow the same procedure for
both deimos and lensfit, but we present the results separately.

A.1. DEIMOS

One of the key features of deimos that was exploited by
Georgiou et al. (2019a) is that the weight function that is used to
measure the moments of the surface brightness distribution can
be adjusted. As explained in Sect. 3, we follow Georgiou et al.
(2019b) and adopt a Gaussian weight function with a width riso.
However, not only the radial profile can be changed, but one can
also choose between a circular or an elliptical weight function.
Hence, before proceeding with the shape calibration, we investi-
gate which choice of weight function would suit our data best.

In both cases, the weight function is centred on the centroid
of the galaxy, with the size and ellipticity iteratively matched to
those measured for the galaxy (see Georgiou et al. 2019b, for
details). While an elliptical weight function matches the shape
of an elliptical galaxy better, a circular one generally performs
better on small and faint objects.

The circular weight function performs similar to the elliptical
weight function for low-to-intermediate S/N (S/N< 60), but with
an overall constant bias of ∼ 0.2 as the S/N increases. Hence, the
elliptical weight function performs significantly better for more
than half of the (real) galaxy sample, which motivates our choice
to adopt an elliptical weight function in our analysis.
deimos measured the shapes of 13 301 simulated LRGs

from our image simulations, and we use these to calibrate our
ellipticity estimates. To do so, we first explore the dependence
of the m-bias on the individual galaxy parameters S/N and R,
as discussed in Sect. 3. Figure 3 indicates that m(R) is well
described by a polynomial curve, which we truncate at degree
3, p(R) = p1R + p2R2 + p3R3, while m(S/N) is well described
by: d(S/N) = d1/

√
S/N + d2/(S/N).

We have tested different combinations of the two functions
m(S/N) and m(R), and explored if higher-order polynomials are
needed: while the fit to m(R) is indeed better described by a poly-
nomial of degree 5, we stress that we are not interested to repro-
duce all of the noisy features in the data, but rather to capture the
trend in the two components. We therefore keep the number of
the parameters as low as possible. This is also motivated by the
fact that the image simulations suffer from galaxy repetitions.

The final expression for our empirical correction for the
deimos measurements is then:

m(S/N,R) = b0 +
1 + d(S/N)

1 + p(R)
. (A.1)

To find the best-fit parameters in A.1, we re-computed the
value of the m−bias by binning the data in 64 regions using the
k−means algorithm19. We then measured the bias for the two
components ε1,2 in each region, identifying the bin coordinate
in S/N and R as their mean value within the bin. We then fit
the average of the two components (m1 + m2)/2 with equation
A.1. Some of the galaxies have very small shape measurement
errors, and to avoid them dominating the fit, we also added an
intrinsic scatter σint to our error-bars. This accounts for the fact
that the number of unique galaxies in our simulations is limited
and mitigates the importance of the highly resolved ones. The

19 https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html

Table A.1. Best-fit parameters for the empirical correction of the two-
dimensional multiplicative bias surface (Sect. 3.3).

Parameter deimos lensfit

b0 −0.895 0.1794
d1 5.238 −5.081
d2 −0.006 1.292
p1 −1.900 −0.972
p2 5.147 0.669
p3 −3.148 0.783
p4 – −0.698

intrinsic scatter σint is chosen such that the reduced χ2 is ∼ 1.
The best-fit parameters are reported in Table A.1. We stress here
that since we are only correlating shapes with positions, we are
not interested in a perfect calibration of the bias per galaxy but
rather want to ensure that the mean ellipticity of an ensemble is
unbiased.

A.2. lensfit

In the case of lensfit we follow a very similar procedure to
calibrate the residual m-bias. lensfit successfully measured the
shapes of 17 573 simulated galaxies, which are used for the cali-
bration. The dependence of the m-bias with S/N can be described
by the same parametrisation that we used for the deimos sam-
ple, d(S/N), while m(R) is better described by a polynomial of
degree four, p(R) = p1R + p2R2 + p3R3 + p4R4.

The combination that best reproduces our measurements
of the m-bias in k-means cells of the two-dimensional space
(S/N,R) is

m(S/N,R) = b0 + d(S/N) + p(R) , (A.2)

with the specific values of the parameters reported in Table A.1.
We note that compared to deimos, the lensfit-bias is small, and
hence so is our correction.

Appendix B: Redshift distributions

We describe here the redshift distributions, p(zspec|zphot),
employed in our analysis as reported in Sect. 5 and which are
used in the computation of the angular power spectra in Eq. (25).
We bin the galaxies for which we have spectroscopic redshifts in
bins of ∆zdensephot = 0.0146(1 + z) and ∆zluminousphot = 0.0139(1 + z)
with an iterative procedure; this constructs unequal binning
whose size increases with z. The last bin is adjusted to avoid
spurious results: If the maximum redshift found with the itera-
tive procedure exceed the maximum redshift of the sample, we
remove the last bin and extend the second-to-last up to zmax. In
the case of the luminous sample we further increase the scatter
at high redshift to account for the increasing uncertainty of our
photometric redshifts: for z > 0.7 we increase the bin width to
∆zluminousphot = 0.027. We adopt the same approach for the Z1 and
Z2 samples, for which we use, respectively, σz = 0.0133 and
0.0190. We use the resulting spec-z histograms in our analysis.
We employ the same conditional redshift distributions for both
our density and shape samples; while this is a very good approx-
imation for deimos, lensfit lacks bright galaxies that would pop-
ulate our spec-z, and thus this approximation might partially be
responsible for the worse fit of the model.
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Fig. B.1. The p(zspec|zphot) of our dense and luminous samples.

We tested that our IA constraints are only marginally depen-
dent on the width of the bins adopted, and the changes in the
best-fit amplitude are subdominant to the statistical uncertainty.

Appendix C: Contamination from galaxy-galaxy
lensing

As discussed in Sect. 5.2, galaxy-galaxy lensing is the main
astrophysical contaminant to our signal. Here, we focus on its
dependence on the line-of-sight integration range. The lensing
and the IA signals scale differently with distance: this can be
used to maximise the signal and avoid an excess of contamina-
tion. In this Appendix we therefore explore in more detail the
modelling of the galaxy-galaxy lensing and how this has guided
our choice for the value of Πmax.

Figure C.1 shows the amount of lensing contamination as a
function of the maximum Π used in the integral along the line-
of-sight. We illustrate it by plotting the cumulative contribution
of the galaxy-galaxy lensing over the one of IA for different
values of the truncation, Πmax. To generate the signal, we used
the p(zspec|zphot) associated with the dense sample and evalu-
ated the correlation functions at the mean redshift of the sam-
ple, assuming the fiducial bias and IA amplitude reported in
Table 2. The ratio is almost constant in rp, thus we plot it for
fixed rp = 10 h−1 Mpc. We also note that the lensing signal has
negligible impact for negative Π because the source is in front of
the lens in that case.

In principle, if one had perfect knowledge of the galaxy-
galaxy lensing contribution, extending the integration up to very
large line-of-sight separations would allow us recover the full IA
signal from the measurements, without discarding any informa-
tion. In practice, even though we fully model the galaxy-galaxy
lensing contribution, we are limited by the accuracy of the lens-
ing modelling we rely on, and thus it is safer to truncate the inte-
gral to values of Π that are not severely affected by it.

We use Fig. C.1 to choose the fiducial Πmax that enters in
Eq.(12): although the specific values of the ratio depend on the
input parameters (bg, AIA), it provides a realistic estimate of the
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Fig. C.1. Ratio of the cumulative galaxy-galaxy lensing signal over the
cumulative IA signal as a function of Πmax at the mean redshift of the
dense sample, z = 0.44.

amount of contamination for our LRG samples. We chose as
our fiducial setup a conservative value of Πmax = 120 h−1 Mpc,
which ensures that the mean contamination is below ∼ 20% of
the signal.

Appendix D: Contamination from magnification

The changes in the galaxy number counts determined by lensing
magnification arise as a result of two competing effects: on one
hand, the lensing locally stretches the sky, diluting the observed
number density; on the other hand, it enlarges the apparent sizes
of the galaxies without modifying the surface brightness: at the
faint end, this allows the detection of galaxies that are intrinsi-
cally fainter than the magnitude limit, enhancing the observed
number density.

The theory of magnification for flux-limited surveys is well
established and allows us to relate the changes in the number
density to the differential galaxy count n(m) over a given band
magnitude range from m to m + dm (Bartelmann & Schneider
2001; Joachimi & Bridle 2010):

α(m) = 2.5
d log[n(m)]

dm
. (D.1)

The case of a non-flux-limited sample, such as our LRG sam-
ple, is more complicated and we lack a proper theoretical
framework for the interpretation of α. Here, we follow von
Wietersheim-Kramsta et al. (2021) and calibrate α using ded-
icated mocks, which we present in Appendix G. We remind
the reader that our samples are selected by imposing a lumi-
nosity threshold, which implies a redshift-dependent magnitude
selection.

The calibration works as follows: the mocks provide the
reference relation between the convergence κ and the slope α,
which we can measure as the difference in the number density of
a ‘magnified’ sample and a ‘non-magnified’ one,
n(< m) − n0(< m)

n0(< m)
≈ 2(α − 1)κ . (D.2)

Here, n(< m) is the local number density of magnified
sources with magnitudes below m, while n0(< m) is the underly-
ing true number density without the enhancement due to the flux
magnification and the simultaneous lensing dilution.
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We used our mocks to measure α in Eq. (D.2), obtained as
the mean value of κ on sufficiently small patches of the sky. To
partition the sky we used the public available python module
Healpy20 (Zonca et al. 2019), based on the HEALPix pixelliza-
tion of the sphere21 (Górski et al. 2005). We used this value of α
to calibrate the magnitude range over which the observable α in
equation D.1 best agrees with the true one obtained from equa-
tion D.2. If the mocks reproduce the data selection function to
good accuracy, this provides the optimal magnitude range to use
to measure α via observable quantities (Eq. (D.1)) in the data.

To evaluate equation D.1 we used the r−band magnitude and
we ensured that the magnitude distribution of the mocks and the
data agree to high accuracy. We find that, when applied to the
data, the method results in values of α that depend somewhat on
the binning scheme employed along the redshift baseline. While
the values of α are robust against changing the bins at intermedi-
ate and high redshifts, the very low-z bins are poorly constrained
by the method. However, at such low redshifts magnification is
negligible, and our samples contain only a few galaxies, so it is
reasonable to expect the same value of α to hold for the entire
sample. Moreover, the LRG selection ensures a constant comov-
ing number density, which reduces the sensitivity to magnifica-
tion even further.

We find α ∼ 1.5 for both our dense and luminous sample.
In Appendix E we show that the effect of including magnifica-
tion is subdominant in our analysis.

Appendix E: Systematic tests and significance of
the detection

To ensure the robustness of our analysis, we performed a number
of tests for residual systematics. We present the results of these
in this Appendix. Many of these are commonly used to test weak
gravitational lensing signals.

In one of the most basic tests, the galaxy shapes are rotated
by 45 deg and the correlation between ε× and galaxy position,
wg× is measured. This correlation is expected to vanish, and any
detection of a non-vanishing signal is therefore an indication of
residual systematics. Table E.1 reports the reduced χ2

ν,null, which
we used to assess the significance of the signal against the null
hypothesis for both wg+ and wg×. We choose a significance level
of 5%: for p−values below 0.05 we discard the null hypothesis.
We can see that all of our wg× measurements have a p−value
above 0.05 and thus support the null hypothesis. In contrast, we
observe a significant detection for all of our wg+ measurements,
for both deimos and lensfit shapes.

As a further look into possible systematics in the data, we
measured the signal for a very large value of the line-of-sight
truncation, Πmax = 1000 h−1 Mpc, using our dense sample.
Extending the value of Πmax to very large separations introduces
uncorrelated pairs into the estimator, and thus we expect the IA
signal to vanish, while the galaxy-galaxy lensing can potentially
arise. We find a signal consistent with a null detection, with
χ2
ν,null = 0.35 and p−value of 0.96.

We also investigated the impact of specific choices for the
setup of our modelling, with a particular focus on how our results
depend on the value of the Πmax adopted in the analysis. To do
so, we repeat our analysis of the dense sample using two dif-
ferent values of Πmax: 90 and 180 h−1 Mpc. Table E.2 reports
our results. We find compatible results that also agree with our
fiducial value of Πmax = 120 h−1 Mpc.

In Table E.2 we also report the results when we include mag-
nification in the modelling for the dense sample, or ignore it for
the luminous sample. The resulting parameter estimates agree
with the baseline results (also see Sect. 6), suggesting magnifi-
cation is small in our data, as expected from theory (Unruh et al.
2020).

Table E.1. Reduced χ2 statistics to assess the significance of our signals wg+ and wg× against the null hypothesis.

Sample Shapes Signal χ2
ν,null p−value

dense deimos wg+ 8.01 (7.56) 4.88 × 10−13 (4.35 × 10−6)
wg× 0.59 (0.36) 0.83 (0.83)

lensfit wg+ 3.52 (4.99) 0.0001 (0.0005)
wg× 0.66 (0.64) 0.76 (0.63)

luminous deimos wg+ 9.46 (5.85) 6.66 × 10−16 (0.0001)
wg× 0.37 (0.33) 0.96 (0.85)

lensfit wg+ 2.48 (1.49) 0.006 (0.20)
wg× 0.40 (0.40) 0.95 (0.81)

Notes. A detection of wg× would hint at the presence of unaccounted systematics in the measurements. The numbers in brackets refer to the signal
for rp > 6 h−1 Mpc.

20 https://healpy.readthedocs.io/en/latest/
21 http://healpix.sourceforge.net
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Table E.2. Tests of the modelling setup.

Sample bg AIA χ2
red

deimos

dense (120, baseline) 1.59+0.04
−0.04 3.69+0.66

−0.65 0.78
dense (90) 1.60+0.04

−0.04 3.99+0.73
−0.72 0.67

dense (180) 1.58+0.05
−0.05 3.50+0.69

−0.70 0.71
dense (120, w/o magnification) 1.59+0.04

−0.04 3.67+0.66
−0.64 0.78

dense (120, w/o lensing and magnification) 1.59+0.04
−0.04 3.47+0.67

−0.66 0.78
luminous (120, baseline) 2.06+0.04

−0.04 4.03+0.81
−0.79 1.19

luminous (120, w/o magnification) 2.06+0.04
−0.04 4.01+0.82

−0.81 1.19
luminous (120, w/o lensing and magnification) 2.06+0.04

−0.04 3.84+0.80
−0.80 1.19

Notes. The value of Πmax adopted for the measurement is reported in brackets. The same value is assumed in the model. The tests
are always performed using the deimos shape catalogue.

Appendix F: IA dependence on the shape
measurement method

Singh & Mandelbaum (2016) compared the IA signal measured
with different shape methods and found that the signal depends
on the specific algorithm employed. Georgiou et al. (2019b)
explored this further, and used deimos to show that the IA
signal depends on the width of the weight function. Since dif-
ferent methods use different weight functions, the difference in
the IA detection can be linked to the parts of the galaxies they
probe.

In this Appendix, we therefore explore how the IA signal
depends on the shape measurement methods used in our analy-
sis. To ensure this is done consistently, we only selected galaxies
that belong to both our deimos and lensfit catalogues, irrespec-
tive whether they are part of the luminous or dense sample.
We identify 173 499 galaxies in common between the two shape
catalogues.
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Fig. F.1. Difference in the wg+ measurements as measured by deimos
and lensfit. The indigo dashed line shows the best-fit amplitude of the
difference, here parametrised as A/rp. Similarly, the light blue dashed
line illustrates the best-fit amplitude for the deimos sample, both per-
formed for rp > 6 h−1 Mpc. The shaded areas delimit the 1σ contour of
the fit.

We measure wg+ for this sub-sample for both shape cat-
alogues, and show the difference in the signal, ∆wg+ =
wg+,DEIMOS − wg+,lensfit (indigo squared markers) in Fig. F.1. The
error bars are computed via bootstrap; we are only interested in
the shape noise contribution: We are measuring the difference of

signals obtained using the same sample of galaxies and thus the
sample variance should vanish. We generated 215 re-samplings
with replacement of our input galaxies and provided the same
input catalogue to both our deimos and lensfit measurement of
wg+. The error bars are then computed as the standard deviation
of the difference in the measured signal for this ensemble.

To quantify the amplitude of the signal to the potential differ-
ences in measurement method, we fit both wg+,DEIMOS and ∆wg+

with a curve of the form f (rp) = A/rp, for rp > 6 h−1 Mpc. The
best-fit amplitudes are, respectively, 0.90±0.17 and 0.003±0.13,
which means that we detect a signal that is more than six sigma
above the uncertainty due to the choice in the shape measure-
ment algorithm adopted.

Appendix G: Mock catalogues

To investigate the impact of magnification bias on the interpre-
tation of our measurements, we generated two mock catalogues
that resemble our LRG samples. Our simulated catalogues are
obtained from the KiDS photometric mock catalogue presented
in van den Busch et al. (2020), which is based on the MICEv2
simulation22 (Fosalba et al. 2015a; Crocce et al. 2015; Fosalba
et al. 2015b; Carretero et al. 2017; Hoffmann et al. 2015) and
is specifically designed to reproduce the KiDS photometry. We
did not run the LRG selection algorithm on the mock, but rather
used their observed location in the redshift-colour space (u − g,
g − r, r − i, i − z) to select them in the mock.

Table G.1. Parameters of the Student’s t-distributions that best-fit the
residuals (zphot − zspec)/σz of our samples.

Sample ν µ s

dense 3.79 0.06 0.90
luminous 3.99 −5.43 × 10−6 0.86

We first apply a broad colour selection using the MICE
z_cgal ‘spectroscopic’ redshift. After assigning the photo-z
to our mocks, we repeat the selection replacing the spectro-
scopic redshift with the photometric one. The photometric red-
shifts are designed to reproduce the distributions reported in
Sect. 3.3 of Vakili et al. (2020). To do so, we draw a random

22 http://maia.ice.cat/mice/
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value from a Student’s t−distribution centred on zspec − µσz
and with the scale parameter equal to sσz, with µ, ν and s
the Student’s t−parameters fitted to the full distribution (of the
real data). We remind the reader that ν defines the peakiness
of the distribution, µ its mean and s sets the width. In the
limit of the Student’s t−distribution approaching a Gaussian
(ν → ∞), s can be interpreted as the standard deviation of the
distribution.

We note that our samples differ from Vakili et al. (2020),
since we excluded the galaxies that overlap with the luminous
sample from the dense sample. We therefore recomputed the
parameters of the Student’s t−distributions specifically for our
samples and report these in Table G.1. Some care has to be
taken when assigning σz to the mocks. The per-galaxy σz of
the LRG samples correlates with the magnitude of the galaxy.
We, therefore, identify the closest real galaxy in the (z,mr) space
to each galaxy in the mock, and assign it the corresponding σz.
We repeat the process for one iteration, replacing the ‘spectro-

scopic’ redshift with the preliminary estimate of the photometric
one. We note that this procedure results in multiple assignments
of the same σz to the mock galaxies, but this is not a concern as
we do not require it to be unique.

Since we require a high fidelity reproduction of the line-of-
sight distribution of our galaxies, we divide our samples and their
corresponding mock catalogues in thin redshift slices and match
the galaxy number density per slice. At this step, we do not
require a perfect match. In this way, we still have enough galax-
ies to apply the same mpivot

r (z) cut as for our real data. We repeat
these steps iteratively until the number densities are matched
between the samples. We tested that the final p(zspec|zphot) of
our mocks are in good agreement with the data p(zspec|zphot) (see
Fig. G.1) and that the resulting clustering signal at large scales
reproduces the one in our data.

We generate two sets of mock catalogues: a magnified one
and one without magnification. We use these for the calibration
of α as discussed in Appendix D.

Fig. G.1. Comparison between the redshift distributions of the data and those reproduced by the mocks. Left: The photometric redshift distribution
of our data is shown as an orange hatched histogram, while the solid red line shows the distribution of the photometric redshifts of the mock,
obtained from the true (’spectroscopic’) redshifts (blue solid line) as detailed in the text. Right: Comparison of the mock spectroscopic redshift
distribution (solid blue line) and the estimated spectroscopic distribution of our data (light blue line).
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