
NeuroImage 244 (2021) 118606 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Deep learning from MRI-derived labels enables automatic brain tissue 

classification on human brain CT 

Meera Srikrishna 

a , b , Joana B. Pereira 

c , d , Rolf A. Heckemann 

e , Giovanni Volpe 

f , Danielle van 

Westen 

g , h , Anna Zettergren 

i , Silke Kern 

j , Lars-Olof Wahlund 

c , Eric Westman 

c , Ingmar Skoog 

i , 1 , 
Michael Schöll a , b , k , l , 1 , ∗ 

a Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden 
b Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden 
c Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden 
d Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmo, Sweden 
e Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden 
f Department of Physics, University of Gothenburg, Gothenburg, Sweden 
g Department of Clinical Sciences, Diagnostic Radiology, Lund University Sweden 
h Department of Imaging and Function, Skånes University Hospital, Lund, Sweden 
i Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), University of Gothenburg, 

Gothenburg, Sweden 
j Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden 
k Dementia Research Centre, Institute of Neurology, University College London, London, UK 
l Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden 

a r t i c l e i n f o 

Keywords: 

Brain image segmentation 
computed tomography (CT) 
Deep learning 
Convolutional neural networks (CNN) 

a b s t r a c t 

Automatic methods for feature extraction, volumetry, and morphometric analysis in clinical neuroscience typi- 
cally operate on images obtained with magnetic resonance (MR) imaging equipment. Although CT scans are less 
expensive to acquire and more widely available than MR scans, their application is currently limited to the visual 
assessment of brain integrity and the exclusion of co-pathologies. CT has rarely been used for tissue classifica- 
tion because the contrast between grey matter and white matter was considered insufficient. In this study, we 
propose an automatic method for segmenting grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), 
and intracranial volume (ICV) from head CT images. A U-Net deep learning model was trained and validated 
on CT images with MRI-derived segmentation labels. We used data from 744 participants of the Gothenburg 
H70 Birth Cohort Studies for whom CT and T1-weighted MR images had been acquired on the same day. Our 
proposed model predicted brain tissue classes accurately from unseen CT images (Dice coefficients of 0.79, 0.82, 
0.75, 0.93 and 0.98 for GM, WM, CSF, brain volume and ICV, respectively). To contextualize these results, we 
generated benchmarks based on established MR-based methods and intentional image degradation. Our findings 
demonstrate that CT-derived segmentations can be used to delineate and quantify brain tissues, opening new 

possibilities for the use of CT in clinical practice and research. 
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. Introduction 

Image-based tissue classification is an integral part of many analysis
rocedures in neuroimaging. It involves distinguishing tissue classes in
 brain image based on, for example, signal intensity and prior prob-
bility maps. Specifically, mapping grey matter (GM), white matter
WM), cerebrospinal fluid (CSF), brain volume (BV) and intracranial
Abbreviations: CT, X-ray computed tomography; MRI, Magnetic resonance imaging;
olume; CNN, Convoluted neural networks; AD, Alzheimer’s disease; HD, Hausdorff d
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olume (ICV) has widespread applications in quantitative brain anal-
sis and morphological research ( Driscoll et al., 2009 ; Erickson et al.,
014 ; Fotenos et al., 2008 ; Gautam et al., 2014 ; Grieve et al., 2013 ).
mportantly, it enables measurement of brain atrophy in cortical and
ubcortical brain regions ( Pini et al., 2016 ) and their relationship with
ognitive decline during ageing and in neurodegenerative diseases. In
 GM, Grey matter; WM, White matter; CSF, Cerebrospinal fluid; ICV, Intracranial 
istances; VE, Volumetric error. 
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ine with this, GM atrophy associated with neurodegeneration is a com-
on biomarker used to characterize neurodegenerative disorders. 

The most frequently used structural neuroimaging modalities are X-
ay computed tomography (CT) and magnetic resonance (MR) imaging.
T uses dedicated X-ray equipment to generate 3D image volumes of
he body, whereas MR uses electromagnetic fields to record and map
he spatial variation of images according to the properties of the tissues
 Jacobs et al., 2007 ; Westbrook and Talbot, 2018 ). In clinical settings,
T and MR imaging are the main examination tools for the structural as-
essment of brain abnormalities in dementia disorders ( Ashburner et al.,
997 ; Pasi et al., 2011 ; Wattjes et al., 2009 ). 

Due to its high spatial resolution and tissue contrast, MRI is cur-
ently the most common imaging modality used to measure brain at-
ophy ( Despotovi ć et al., 2015 ). However, CT equipment is substan-
ially more common than MR equipment (Supplementary Fig. 1). In
urope, there were 1.24 CT scanners for every MR scanner in 2017
( Eurostat 2021 )source: European statistics, ("Eurostat, Medical tech-
ology,")), and in China, the ratio was 2.56 in 2013 ( He et al., 2018 ).
oreover, CT scans can be acquired more rapidly, suiting the needs of

eople with dementia, as restlessness and reduced ability to cooperate
s common in this patient group ( Hort et al., 2010 ; Musicco et al., 2004 ;
tewart, 2001 ). Most primary healthcare centres and hospitals refer pa-
ients with cognitive symptoms for CT scanning for visual assessment
f brain integrity and exclusion of co-pathologies (Dane Rayment et al.,
016 ; Musicco et al., 2004 ). Evidence suggests that visual ratings of
rain volume changes derived from CT are usable predictors for demen-
ia diagnostics with comparable diagnostic properties to visual assess-
ent of MR scans ( Sacuiu et al., 2018 ; Thiagarajan et al., 2018 ). Yet,

uantitative analysis of CT images for cortical atrophy and white matter
hanges remains largely unexplored. 

Brain image segmentation on CT is a challenging task due to lower
oft-tissue contrast in comparison to MR imaging. Few studies have
roposed the extraction of brain volumes from CT using typical MR
mage analysis software such as FSL ( Cauley et al., 2020 , 2018 ) or
reesurfer ( Manniesing et al., 2017 ). In other studies, methods have
een developed to identify brain tissue classes directly from head CT
ased on techniques such as region growing ( Sandor et al., 1991 ),
daptive intensity thresholding ( Gupta et al., 2010 ), mixed modelling
 Aguilar et al., 2015 ) and probabilistic classification using Hounsfield
nits ( Kemmling et al., 2012 ). However, these studies produced coarse
egmentations and lacked thorough evaluation. 

Recently, deep learning methods have shown promise for extract-
ng valuable information from CT scans. Convolutional neural networks
CNN) are a type of deep learning network predominantly used for
mage analysis. CNNs trained on MR datasets have been used experi-
entally for skull stripping ( Kleesiek et al., 2016 ), detection of atrophy

n Alzheimer’s disease (AD) ( Suzuki, 2017 ), segmentation of fine brain
tructures ( Gibson et al., 2018 ), multimodal imaging-based predictions
 Lu et al., 2018 ), and creation of pseudo-CT images from other modali-
ies for attenuation correction ( Han, 2017 ; Liu et al., 2018 ). In CT, deep
earning methods have a wide range of applications such as segmen-
ation and detection of tumours ( Mlynarski et al., 2019 ), ischemic le-
ions ( Clèrigues et al., 2019 ), and intracranial haemorrhages ( Lee et al.,
019 ); prediction of AD by classification ( Gao et al., 2017 ); and re-
onstruction of low dose CT ( Chen et al., 2017 ). In particular, U-Net,
 CNN developed in 2015 for biomedical image segmentation, allows
mage information classification at a pixel level. Until now, few stud-
es have explored U-Net based semantic segmentation of tissue classes
 Van De Leemput et al., 2019 ) and brain extraction from head CT scans
 Akkus et al., 2019 ). Evidence from these studies suggests that using
eep learning methods trained with suitable labels can extract valuable
nformation from head CT data reducing the necessity to use MR imag-
ng. 

The aim of this study was to develop a method for automatically
egmenting GM, WM, CSF, and ICV from any given brain CT scan. We
rained this model using MRI-derived segmentation labels and assessed
2 
he model’s accuracy by comparing CT segmentation results with MR
egmentation results. Our findings show that robust, accurate and re-
roducible segmentation of brain tissue classes in CT can be obtained
sing our model, which is of great interest for the first-line clinical as-
essment of neurodegenerative diseases. 

. Materials and methods 

.1. CT and MR image datasets 

We obtained paired CT and MR datasets from the Gothenburg H70
irth Cohort Studies. These multidisciplinary longitudinal epidemiolog-

cal studies include six birth cohorts with baseline examinations at the
ge of 70 to study the elderly population of Gothenburg, Sweden. For
he present study, we included same-day acquisitions of CT and MR im-
ges from 744 participants (52.6% female, mean age 70.44 ± 2.6 years)
f the cohort born in 1944, collected from 2014 to 2016. The full study
etails are reported elsewhere ( Rydberg Sterner et al., 2019 ). 

The H70 study was approved by the Regional Ethical Review Board
nd by the Radiation Protection Committee in Gothenburg, Sweden.
tudy participants gave informed consent in writing before data collec-
ion. Brain imaging was conducted at Aleris Röntgen Annedal in Gothen-
urg (Aleris Healthcare AB, Stockholm, Sweden). CT images were ac-
uired on a 64-slice Philips Ingenuity CT system with a slice thickness of
.9 mm, an acquisition matrix of 512 × 512 and voxel size 0.5 × 0.5 × 5.0
m 

3 (Philips Medical Systems, Best, Netherlands). MR scanning was
onducted on a 3-Tesla Philips Achieva system (Philips Medical Sys-
ems) using a T1-weighted sequence with the following parameters: field
f view 256 × 256 × 160 voxels, voxel size: 1 × 1 × 1 mm 

3 , echo time:
.2 ms, repetition time: 7.2 ms, flip angle: 9° ( Rydberg Sterner et al.,
019 ). 

.2. Deep learning model development 

.2.1. Image pre-processing 

All images were pre-processed using SPM12
 http://www.fil.ion.ucl.ac.uk/spm ), running on MATLAB 2018a,
nd Pincram ( Heckemann et al., 2015 ). CT and MR images were con-
erted to NIfTI format. Before pre-processing, the quality and integrity
f all the scans were assessed. Each image was aligned to the AC–PC
ine. 

.2.1.1. Segmentation. The GM, WM, and CSF labels were derived
rom the MR images using the unified segmentation routine in SPM12
 Ashburner and Friston, 2005 ). We used Pincram software to label the
ntracranial volume on each MR image. In the following, we will refer
o the GM, WM, CSF, and ICV segmentation output from the MR image
rocessing as MR labels . 

.2.1.2. Co-registration. To enable training of the model, the CT im-
ges and MR labels needed to be represented in a common image ma-
rix. To achieve this, we paired each CT image with the corresponding
same participant) MR image and applied the co-registration function in
PM12 with 12 degrees of freedom ( Ashburner and Friston, 2007 ). We
pplied the resulting affine transformation to the MR labels. SPM12 co-
egistration module optimises the transformation by minimizing or max-
mizing an objective function or cost function ( Ashburner et al., 1997 ).
ormalized mutual information was used for optimization. The align-
ent of the MR labels with the CT image was visually assessed for each
ata set. Ten data sets were excluded due to faulty co-registrations. 

.2.2. Data preparation 

The 734 pre-processed datasets consisting of CT images and their
aired, co-registered MR labels were subdivided into training and cross-
alidation groups. We opted for three-fold cross-validation and devel-
ped three models for each tissue class. For this, the datasets were ran-
omly split into three folds ( Fig. 1 ). For each model, one fold was held

http://www.fil.ion.ucl.ac.uk/spm
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Fig. 1. Processing stages: CT and T1-weighted MR scans from 734 70-year-old individuals from the Gothenburg H70 Birth Cohort Studies were split into training, 
validation, and unseen test datasets. In the pre-processing stage, CT-MRI pairs were co-registered. MR images were pre-processed with SPM12 to extract grey matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF) tissue class labels and with Pincram to obtain intracranial volume (ICV) masks. A U-Net deep learning model 
was developed and underwent training to predict ICV, GM, WM, and CSF, with CT images and paired MR labels as training inputs. 
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ut as the unseen test dataset, and two folds were further grouped into
00 training and 100 validation datasets. The model parameters were
rained using the training datasets and fine-tuned with the validation
ataset. The performance of the model was gauged on the unseen test
atasets. 

.2.3. Model training 

The deep learning model used in the training stage was developed
n Python 3.7, using TensorFlow 2.0 and Keras 2.3.1. The models were
rained using an Nvidia GeForce RTX 2080 Ti graphical processing unit
ith 11 GB of random-access memory (Nvidia Corp., Santa Clara, CA,
SA). We used U-Net to carry out semantic segmentation, where each
oxel in the input CT image is assigned a unique tissue class. The archi-
ecture of the model is depicted in Fig. 2 . 

The CT images were used as training inputs, and the MR labels were
sed as training labels. The U-Net was designed to accept 2D slices of
12 × 512 pixels. Each input image was processed as a stack of 30 2D
lices, and each slice was used as training input. In total, 12,000 train-
ng slices and 3,000 validation slices were used. Once the datasets were
repared and grouped, the model was created with 1,177,649 trainable
yper-parameters. The inputs were fed into the model, and learning was
xecuted using the Keras module. The batch size was 16. Callback fea-
ures were used (early stopping, automatic reduction of learning rate
ith respect to rate of training). The model was trained for 50 epochs
ith 750 samples per epoch in approximately 540 mins. 

The decoder path of U-Net learned the specific features of the in-
ut images with the hyperparameters. The encoder path mapped these
eatures to the respective pixel. In the initial epoch, the trainable pa-
ameters were selected at random for learning and feature specification
forward propagation). Once an epoch was completed, the model pre-
icted the segmentation on the inputs. The loss between the prediction
nd inputs was calculated, and the trainable parameters were corrected
3 
ith respect to the loss (error backpropagation). As we are performing
ixel-wise classification, binary cross-entropy was employed as the loss
unction. We used the adaptive moment estimator (Adam) optimizer
 Kingma and Ba, 2014 ) with a learning rate of 10 − 5 to estimate these
arameters. All weights were initialized by a normal distribution with
 mean of 0 and a standard deviation of 0.01, and all biases were ini-
ialized to 0. Once the trainable parameters were adjusted, the model
roceeded to the next epoch. The propagation algorithms were repeated
or all epochs, and parameters were updated. The training stopped when
he model was saturated or when the number of epochs was completed.

.3. Deriving CT based segmentation maps 

Once the training was completed, the models were saved for the au-
omated segmentation of CT scans. Deep learning-based CT segmenta-
ion is executed in Python 3.7, using TensorFlow 2.0 and Keras 2.3.1.
he model prediction is independent of MRI, and pre-processing of CT

mages is not necessary. To segment a CT image using trained U-Net
odels, it is provided as an input to the model. The model then predicts

arious brain tissue class maps from CT scans using the trained hyper-
arameters in less than one minute per dataset. The segmentation maps
re probability maps or confidence maps, with each pixel specifying the
robability of belonging to the particular tissue class. They are real im-
ges within the [0,1] interval. These segmentation maps can be used
or either visualization or volumetric analysis. BV maps were derived
y adding GM and WM tissue class maps. 

.4. Evaluation 

To assess the method, we performed two sets of evaluations. In the
rst set, the model predictions were assessed using evaluation metrics
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Fig. 2. Model architecture: Overview of internal layers in U-Net utilized to perform brain tissue class segmentation. U-Net comprises symmetrically aligned CNNs with 
two processing paths: the encoder path (for capturing the context of the input image using the label images) and the decoder path (for the localization and placement 
of extracted features to corresponding voxels). Intermediate layers capture various feature representations. Feature maps represent the output of intermediate layers. 
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sed for segmentation similarity comparison. The second assessment in-
olved comparing the CT-based deep learning-derived segmentation al-
orithm with various MR-based classification algorithms. We also esti-
ated the loss of accuracy incurred when using CT instead of MRI for

rain tissue classification. 

.4.1. Assessment of model predictions 

For this assessment, the MR labels were employed as the standard
r reference criterion for comparison and evaluation. Following the ap-
roach suggested by the MRbrainS challenge ( Mendrik et al., 2015 ), an
nline framework to evaluate segmentation models in MR imaging, the
omparison of similarity between the predicted masks and standard cri-
erion in this study was assessed using four measures: continuous Dice
oefficient, Pearson correlation of volumetric measures, Hausdorff dis-
ances (HD) and volumetric error (VE). 

.4.1.1. Continuous Dice coefficient (d c ). We used the continuous Dice
core, a variant of the Dice coefficient that assesses spatial similarity
etween binary images and real-valued probability maps ( Shamir et al.,
019 ). 

.4.1.2. Correlation of volumetric measures (r). For the present study,
e calculated the correlations between the volumetric measures derived

rom MR labels and the predicted segmentation labels. The MR labels
4 
ere binarized segmentations, whereas the predictions were real-valued
robability maps. Hence, the predicted ICV masks were binarized by
lobal thresholding at 0.5. The 30 slices were stacked to obtain a 3D
mage, and the sum of the pixels was computed to obtain the volume. 

In case of the predicted GM, WM and CSF masks, we utilized a data-
riven binarization technique. After stacking the slices to obtain a 3D
mage, at each voxel, we compared the intensities between all three
issue class probability maps. For each voxel, the tissue class with max-
mum intensity was assigned to it. This binarization approach logically
ssigns a single class to a particular voxel without discarding informa-
ion. 

.4.1.3. Volumetric error (VE). Is a measure that considers the volumes
f the segments to indicate similarity. It is the absolute volumetric dif-
erence divided by the sum of the compared volumes. For a given MR
abel T and the predicted CT segmentation P , if V T and V P are volumes
f T and P , then VE is derived as: 

 𝐸 = 

2 ||||𝑉 𝑇 − 𝑉 𝑃 
|
|
|
|

𝑉 𝑇 + 𝑉 𝑃 

.4.1.4. Hausdorff distance (HD). HD measures the maximum Eu-
lidean distance of a set to the nearest point in the other set. In this
tudy, four HD variants were calculated for evaluating the model: 
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Fig. 3. Application of Gaussian filter with various standard deviation on T1 images. (a) depicts the original T1 weighted MR image and (b-e) shows the degraded 
T1 MR image by applying Gaussian blur with standard deviation 𝜎 of 0.5, 1, 1.5 and 2. 
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i  
i Average HD (AHD) – the average of directional HDs from T to P and
P to T 

ii Forward HD (FHD) – directional HD from T to P 
iii Reverse HD (RHD) – directional HD from P to T 
iv Modified HD (MHD) – maximum of directional HDs from T to P and

P to T 

.4.2. Comparison between deep learning-based CT segmentation and 

stablished tissue classification algorithms 

Since standard automated methods for CT brain tissue segmentation
re not commonly available, we performed additional analyses using
issue classification algorithms that work on MR images for reference.

e performed three comparisons using continuous Dice coefficients and
orrelation of volumetric measures with binarization by global thresh-
lding. 

.4.2.1. Comparison of SPM with other tissue classification algorithms. To
enerate a benchmark for assessing the output of tissue classification
lgorithms, we compared MR labels generated with SPM12 (MRI spm 

)
ith those derived from two other segmentation algorithms: FSL FAST

MRI fsl ) ( Zhang et al., 2001 ) and NiftySeg (MRI niftyseg ) ( Cardoso et al.,
011 ) for a subset of the data (n = 234). Further details of the evaluation
re provided in Supplementary material S1. 

.4.2.2. Comparison of model performance when training with alternative

R labels. To understand the impact of the MR image segmentation al-
orithm on model predictions, we trained three U-Net models with iden-
ical architectures and input CTs (from datasets not used in the previous
nalysis) but with MR labels generated with three distinct segmentation
lgorithms: SPM12, FSL FAST, and NiftySeg. For detailed steps, refer to
upplementary material S2. After training the models, we acquired three
ets of predictions from SPM-trained models (CT spm 

), FSL-trained mod-
ls (CT fsl ), and NiftySeg-trained models (CT niftyseg ) for the same subset
CTs of the MR images used in the previous analysis) of unseen data and
ompared these predictions. 

.4.2.3. Comparison of CT based segmentation with MRI based segmenta-

ion and estimating the loss of accuracy in using CT instead of MRI. To
nderstand the difference in the segmentations derived from the two
odalities, we first compared CT segmentations directly with MR seg-
entations in GM, WM and CSF tissue classes. After that, we compared

he MRI-MRI overlap agreement to the CT-MRI overlap agreement. We
ompared CT spm 

with MRI fsl , using MRI spm 

as the benchmark. MRI fsl 
as an arbitrary choice. We observed that MRI fsl agrees with the MRI spm 

eference significantly more strongly than CT spm 

( Fig. 4 , Supplementary
ig. 6). To appraise the loss of accuracy incurred by using CT instead of
R imaging for tissue classification, we conducted an analysis where we

un FSL on a degraded MR image. Degradation was achieved by intro-
ucing varying amounts of blur using Gaussian filtering with standard
eviation ( 𝜎) of 0.5, 1, 1.5 and 2 to the T1 MR image ( Fig. 3 ). We then
5 
etermined which amount of blur degraded the image sufficiently to
ring the MRI spm 

-MRI fsl overlap down to the levels similar to CT spm 

-
RI spm 

( Fig. 8 , Supplementary Fig. 6, 8). 

. Results 

The model output was assessed based on how well it predicted brain
issue segmentation labels in the test datasets. For each CT image, we
etermined the GM, WM, CSF, and ICV labels and their volumes. Ex-
mples of the predicted segmentations of different tissue class labels
erived from test CTs are shown in Figs. 4 and 5 . 

.1. Assessment of model predictions 

Table 1 presents all averaged resulting metrics obtained for this anal-
sis. Continuous Dice coefficients were calculated to evaluate the spa-
ial overlap between predicted CT tissue maps and MR labels of the test
ataset, yielding d c of 0.79, 0.82, 0.75, 0.93 and 0.98 in GM, WM, CSF,
V and ICV, respectively. These coefficients indicate very good to ex-
ellent spatial overlap between segmentations that were independently
erived from CT and MRI. The boundary measures, AHD and MHD, were
ound to be low for WM (4.10 ± 1.8, 1.19 ± 0.8 mm) and CSF (4.43 ± 1.5,
.42 ± 0.6 mm). Pearson r coefficients were calculated between the vol-
mes of predicted masks and the MR labels ( Fig. 6 ). Strong correlations
f r = 0.93, r = 0.96, r = 0.91, r = 0.98 and r = 0.97 were observed for GM,
M, CSF, BV and ICV volumes, respectively. A trend of underestimation
as observed mainly in predicting WM and CSF volumes ( Fig. 7 ). Low
E of 0.03 ± 0.04, 0.03 ± 0.02, and 0.02 ± 0.01 was observed in WM, ICV,
nd BV, respectively, and somewhat higher VE of 0.06 ± 0.03, 0.06 ± 0.04
or GM and CSF, respectively. 

.2. Comparison between deep learning-based CT segmentation and 

stablished tissue classification algorithms 

MRI spm 

showed strong agreement both in terms of continuous Dice
oefficients and in volumetric correlations with MRI fsl and MRI niftyseg 

 Table 2. a, Supplementary fig. 2, 3). When we compared the CT seg-
entations of U-Net model predictions trained MR labels derived from

PM, FSL FAST, and NiftySeg, there was strong volumetric correlation
nd spatial overlap between all pairings in GM and WM. There was a
trong volumetric correlation in CSF but less spatial overlap in compar-
son to GM and WM ( Table 2. b, Supplementary fig. 4, 5). 

CT segmentations showed strong spatial overlap and volumetric cor-
elation with MR segmentations derived from all three segmentation
lgorithms, notably GM and WM ( Table 2. c, Supplementary fig. 6, 7).
e compared the spatial overlap between CT spm 

-MRI spm 

with MRI spm 

-
RI fsl and MRI spm 

-dMRI fsl , where d implies degraded T1 images by
aussian filtering. By comparing d c values for these pairings, we ob-

erved that performing tissue classification with CT instead of MR imag-
ng incurs a loss of accuracy similar to or less than that of performing
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Table 1 

Model evaluation metrics in test datasets ( n = 234). Continuous Dice score (d c ) expresses the 
extent of spatial similarity between CT predictions and MR labels, Pearson’s correlation coef- 
ficient (r) measures the linear relationship between volumetric measures, AHD, MHD, RHD, 
FHD are boundary measures, and VE expresses the absolute volumetric difference between 
CT segmentation outputs and MR labels. The volumes of CT predictions and MR labels are 
given by V CT and V MR , respectively 

Metrics Model GM WM CSF ICV BV 

dc Model 1 0.77 ± 0.05 0.81 ± 0.07 0.73 ± 0.06 0.99 ± 0.008 0.93 ± 0.009 
Model 2 0.79 ± 0.03 0.83 ± 0.02 0.75 ± 0.06 0.98 ± 0.01 0.94 ± 0.008 
Model 3 0.8 ± 0.03 0.83 ± 0.02 0.76 ± 0.06 0.97 ± 0.006 0.93 ± 0.009 
Mean 0.79 0.82 0.75 0.98 0.934 

r Model 1 0.92 0.94 0.9 0.96 0.96 
Model 2 0.96 0.98 0.91 0.98 0.99 
Model 3 0.93 0.97 0.92 0.99 0.99 
Mean 0.93 0.96 0.91 0.97 0.98 

VE Model 1 0.06 ± 0.3 0.03 ± 0.04 0.06 ± 0.05 0.02 ± 0.02 0.03 ± 0.02 
Model 2 0.06 ± 0.03 0.03 ± 0.02 0.06 ± 0.04 0.04 ± 0.02 0.02 ± 0.01 
Model 3 0.07 ± 0.03 0.03 ± 0.03 0.07 ± 0.06 0.02 ± 0.01 0.02 ± 0.02 
Mean 0.06 0.03 0.06 0.03 0.02 

AHD Model 1 4.85 ± 2 4.36 ± 2 4.52 ± 1.5 3.75 ± 2.1 4.13 ± 2.24 
Model 2 4.82 ± 1.9 4.10 ± 1.8 4.7 ± 1.5 3.80 ± 1.1 4.15 ± 2.06 
Model 3 4.60 + 1.6 4.10 1.8 4.43 ± 1.5 3.86 ± 1.1 4.07 ± 1.7 
Mean 4.7 4.19 4.57 3.8 4.12 

MHD Model 1 1.72 ± 1 1.24 ± 0.8 1.45 ± 0.7 0.91 ± 1 1.34 ± 0.5 
Model 2 1.72 ± 0.9 1.19 ± 0.8 1.50 ± 0.6 0.93 ± 0.3 1.37 ± 0.7 
Model 3 1.67 ± 1 1.19 ± 0.8 1.42 ± 0.6 0.92 ± 0.3 1.38 ± 0.8 
Mean 1.71 1.21 1.46 0.92 1.36 

RHD Model 1 1.67 ± 1 1.16 ± 0.8 1.38 ± 0.7 0.865 ± 1 1.21 ± 0.7 
Model 2 1.64 ± 0.9 1.10 ± 0.8 1.40 ± 0.7 0.93 ± 0.3 1.23 ± 0.6 
Model 3 1.60 ± 1 1.11 ± 0.8 1.41 ± 0.7 0.92 ± 0.3 1.38 ± 0.7 
Mean 1.7 1.2 1.45 0.91 1.28 

FHD Model 1 1.72 ± 0.9 1.24 ± 0.8 1.45 ± 0.7 0.91 ± 1 1.34 ± 0.5 
Model 2 1.72 ± 0.9 1.19 ± 0.7 1.50 ± 0.6 0.86 ± 0.3 1.37 ± 0.7 
Model 3 1.67 ± 0.9 1.19 ± 0.8 1.42 ± 0.6 0.85 ± 0.3 1.24 ± 0.7 
Mean 1.64 1.12 1.37 0.87 1.31 

V CT 

(litres) 
Model 1 0.61 ± 0.06 0.51 ± 0.06 0.28 ± 0.05 1.65 ± 0.19 1.13 ± 0.12 
Model 2 0.6 ± 0.06 0.52 ± 0.06 0.27 ± 0.04 1.59 ± 0.24 1.12 ± 0.11 
Model 3 0.59 ± 0.07 0.5 ± 0.08 0.27 ± 0.06 1.67 ± 0.19 1.1 ± 0.15 
Mean 0.71 0.41 0.38 1.64 1.12 

V MR 

(litres) 
Model 1 0.58 ± 0.05 0.54 ± 0.06 0.29 ± 0.04 1.64 ± 0.18 1.11 ± 0.11 
Model 2 0.56 ± 0.05 0.57 ± 0.05 0.28 ± 0.04 1.60 ± 0.24 1.09 ± 0.11 
Model 3 0.55 ± 0.07 0.52 ± 0.08 0.27 ± 0.05 1.66 ± 0.18 1.08 ± 0.14 
Mean 0.56 0.54 0.28 1.63 1.09 

Table 2 

Comparison of CT segmentations and MR segmentation algorithm ( n = 234). Continuous Dice score (d c ) expresses the extent of the 
spatial similarity. Pearson’s correlation (r) measures the linear relationship between volumetric measures. (a-c) shows the MRI-MRI, 
CT-CT, and CT-MRI comparison, respectively. 

a. Comparison of SPM, FSL FAST and NiftySeg 

Tissue class 
MRI spm -MRI fsl MRI spm -MRI niftyseg MRI fsl -MRI niftyseg 

d c r value d c r value d c r value 

GM 0.88 ± 0.015 0.82 0.88 ± 0.018 0.82 0.86 ± 0.02 0.94 
WM 0.89 ± 0.02 0.95 0.94 ± 0.01 0.96 0.90 ± 0.02 0.98 
CSF 0.84 ± 0.05 0.78 0.84 ± 0.05 0.79 0.87 ± 0.08 0.91 

b. Comparison of model predictions from U-Nets developed from SPM-derived, FSL FAST-derived and NiftySeg-derived labels 

Tissue class 
CT spm -CT fsl CT spm -CT niftyseg CT fsl -CT niftyseg 

d c r value d c r value d c r value 

GM 0.85 ± 0.009 0.98 0.85 ± 0.009 0.98 0.85 ± 0.008 0.98 
WM 0.84 ± 0.013 0.99 0.87 ± 0.013 0.99 0.85 ± 0.009 0.98 
CSF 0.76 ± 0.04 0.92 0.73 ± 0.04 0.94 0.77 ± 0.02 0.98 

c. Comparison of model predictions from U-Net developed from SPM-derived labels with MRI segmentations derived using SPM, FSL FAST and 
NiftySeg 

Tissue class 
CT spm -MRI spm CT spm -MRI fsl CT spm -MRI niftyseg 

d c r value d c r value d c r value 

GM 0.8 ± 0.02 0.93 0.79 ± 0.02 0.94 0.78 ± 0.02 0.93 
WM 0.83 ± 0.02 0.96 0.85 ± 0.02 0.96 0.85 ± 0.015 0.97 
CSF 0.76 ± 0.06 0.79 0.76 ± 0.04 0.83 0.76 ± 0.04 0.7 

6 
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Fig. 4. Segmentation across various sections. Columns (a-d) depicts GM, WM, CSF and ICV segmentations superimposed on the corresponding section of paired T1 
weighted MR image. The last column (e) shows the 3D visualization of derived tissue class segmentations projected on the paired T1 MR image 
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issue classification on an MR image that has been degraded through
he application of Gaussian filtering with a standard deviation of 1.5
 Fig. 8 ). The overlap across various modality comparisons was incon-
istent across tissue classes, notably CSF. In WM, the average and best
esults of CT spm 

-MRI spm 

are comparable to the worst results of MRI spm 

-
MRI fsl ( 𝜎 = 1.5) and MRI spm 

-MRI fsl . In CSF, the average results of
T spm 

-MRI spm 

overlapped with the worst results of MRI spm 

-dMRI fsl . 

. Discussion 

This study shows that deep learning can be applied to assess brain
issue classes quantitatively using only CT images. To this date, this kind
f assessment required MR scanning. The significance of the proposed
ethod is that it renders quantitative assessment of neurodegenerative

hange accessible to many more patients, as CT scans are far more ac-
essible, cheaper, and more rapidly acquired than MR scans. 

We evaluated our deep learning model by comparison with crite-
ion standard MR labels obtained with established tissue classification
ools using standard measures of label agreement. We found that, with
roper optimization and validation, U-Net based deep learning makes
T-based brain tissue segmentation and quantification feasible. The re-
ulting measures have significant potential as diagnostic biomarkers for
adiologists and other clinicians. 

We compared CT labels to MR labels using three measures (distance,
verlap, and volume). The results indicate a strong performance of the
eep learning model. High Dice coefficients and strong volumetric cor-
elations show that the predictions were similar in terms of both spatial
verlap and density. Across all models, volumetric correlation and over-
ap measures were highest for ICV, followed by WM and GM and low-
st for CSF predictions. This does not imply that the model performed
ifferently on CSF. As the labels differ in shape and surface-to-volume
atio, the same amount of perturbation will have substantially different
ffects on the overlap measure ( Rohlfing et al., 2004 ). Strong volumet-
ic correlation with low volumetric error observed in GM, WM, and ICV
ndicates there was a high quantitative similarity between the model-
erived volumes with respect to MR images. The low values of AHD
nd MHD suggest that the predicted segmentations have good bound-
7 
ry agreement with the reference. The high similarity between FHD and
HD shows that the boundary measures have low susceptibility to the
irectionality of distance measurements. The slight difference of perfor-
ance within models indicates a minimal existence of training bias. To

lleviate training bias, average of segmentation maps derived from each
odel can be used. Even though all three models’ performances showed
 good overlap with errors, we compensated for training bias by evalu-
ting the mean metrics across the three models. Taken together, these
istinct evaluation metrics indicate that our model performed well. 

After assessing the model’s performance as a tool for tissue classifi-
ation or segmentation, we compared SPM-based MR segmentations to
ther MR image segmentation algorithms. The three algorithms showed
trong agreement overall but an inconsistent picture across the tissue
lasses. Nevertheless, we found no reason to prefer one segmentation
lgorithm to another for generating training labels. In comparing model
redictions from U-Nets trained with SPM-, FSL FAST-, and NiftySeg-
erived MR labels, CT segmentation predictions trained with SPM input
trongly agree with other predictions. Comparing CT segmentation from
odels trained with SPM labels also shows strong agreement to its MRI

ariants. This can be seen as an advantage. The U-Net model is trained to
earn boundary patterns and intensity differences and to predict accord-
ngly. Even though the model is provided with MR labels derived from
ne segmentation algorithm, the model detects the information present
n CT and does not introduce label-dependent information outside the
nput CT image. 

However, when we looked into the overlap agreement between
T spm 

-MRI spm 

and MRI spm 

-MRI fsl , we observed a large difference in the
greement in all three tissue classes. FSL agrees with the SPM reference
ignificantly more strongly than CT. However, the best CT segmenta-
ion results for GM and WM were better than the worst FSL values; for
SF, even average CT-based values are better than bottom-quartile FSL
esults ( Fig. 8 ). This shows that even though the CT segmentation re-
ults are in the same ballpark, we incur a loss of accuracy. This may be
navoidable, considering that CT images contain less information that
istinguishes the tissues. To get a better idea of the loss of information,
e asked what degradation process would reduce the amount of salient
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Fig. 5. Input CT images predicted tissue class maps (GM, WM, CSF and ICV) generated with U-Net models from three datasets (a, b, c) in comparison to respective 
MR labels. The Dice scores between the predicted CT segmentation and paired MR labels are indicated below the maps. 
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nformation in an MR image to the level of CT in this context. We found
hat applying Gaussian blurring with a sigma of 1.5 leads to approxi-
ately equivalent tissue classification accuracy. In future work, we will

ddress the relevance of this loss of accuracy for diagnostic accuracy. 
Various automated approaches and evaluation methods for CT seg-

entation have been described previously. Gupta et al., 2010 used
8 
ough estimates of tissue probability based on domain knowledge
o improve segmentation by adaptive thresholding and evaluated
heir method using manual contours on high confidence regions.
emmling et al., 2012 used MR images to create a probabilistic atlas in
tandard MNI152 space that was transformed into the CT image space to
xtract GM, WM, and CSF. This method depended on both tissue speci-
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Fig. 6. Correlation between model-predicted CT-derived tissue class volumes and MRI-derived label volumes observed in the test datasets of several models (n = 234, 
a-d: model 1, e-h: model 2 and i-l: model 3). The lines and r -values indicate the relationship between CT- and MRI-derived volumes. 
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city of the probabilistic atlas and spatial warping between CT and MR
mages. Since no quantitative evaluation was carried out in that study,
e cannot directly compare the performance of their method with our
odels. Cauley et al., 2018 focused mainly on the feasibility of direct

egmentation of CT using FSL software, which is traditionally employed
9 
o segment MR images. The CT segmentations derived from MR image
egmentation softwares lacked sharpness, and hence it is challenging to
pply these softwares directly to CT images. Moreover, the results were
ot evaluated against visual ratings or MR segmentations. Studies on
D CT brain segmentation have been conducted using feature extrac-
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Fig. 7. Box plots visualizing individual tissue class vol- 
umes. Overall, CT-derived segmentations produced a 
small number of outliers with respect to paired MR la- 
bels. CT-derived WM and CSF volume predictions were 
generally somewhat underestimated, and GM volume 
and BV predictions were slightly overestimated. 

Fig. 8. Distribution of Dice scores between CT-MRI. Continuous Dice coefficients between CT segmentation derived from SPM, MRI segmented using FSL and 
degraded with Gaussian blur of standard deviation 1.5 in GM, WM, and CSF observed a subset of data (n = 234). 
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ion along with support vector machine-based classifiers and modified
-Nets. Our model outperforms Manniesing et al., 2017 with respect to
ice coefficients and HDs. With temporal features, this method yielded
ice coefficients of 0.81 and 0.79 with HD of 12.65 and 14.85 mm

or WM and GM, respectively. Without temporal features, this method
chieves Dice coefficients of 0.79 and 0.78 for WM and GM. Our model’s
erformance is comparable to the one reported by Van De Leemput et al.,
019 in terms of overlap measures in WM and GM. This method used
odified U-Nets trained and validated on fewer datasets with manually

nnotated labels. The networks trained with 4D CT combined spatial
nformation from 3D images with lower noise and temporal features.
10 
espite having access to less information, our model achieved compa-
able results. 

One of the strengths of our model development is the nature and
umber of data sets. To our knowledge, most of the methods used in
revious studies were applied to a few data sets from specific case stud-
es and used MR images or MR-based atlases to perform brain segmenta-
ion. In the present study, we trained models to learn MR labels from CT
cans and then segmented tissue classes directly from CT images. Inter-
ediate layers of CNN retain multiple subsets of feature sets like edge,

ontour, intensity, and uniformity. The model-predicted tissue maps are
 result of the evaluation from these collected feature sets. 
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Another unique feature of our model development is the use of MR
abels for training and comparison. One of the considerable limitations
f applying deep learning methods to medical image analysis for diag-
ostic decisions is the lack of well-annotated data sets ( Willemink et al.,
020 ). Depending on the annotation protocol, annotation labels can
e highly operator-dependent. Manual annotations are labour-intensive,
ater-dependent, time consuming, and challenging to reproduce. Intra-
nd inter-operator variability are rarely considered and quantified. In
he case of the Gothenburg H70 Birth cohort, we have a large number
f paired CT and MRI datasets acquired within short intervals. Despite
he cost and the longer scanning time, MRI is a widely used modality
or brain tissue class segmentation. MR-derived labels are well-suited for
ocalization and classification of brain tissue. Our model has the advan-
age that it was trained on MR labels generated with standard research
ools in a reproducible manner. These labels are highly consistent and
herefore more likely to enable replication of strong performance across
ifferent studies than manually drawn training labels. Despite its many
imitations, manual annotations are by many considered the gold stan-
ard for CT tissue classification. In future work, we plan to compare
anual CT annotations to deep learning-derived CT-based model pre-
ictions trained from MR-derived labels. 

Aside from these strengths, our study also has some limitations. Cur-
ently, we train the U-Net with images representative of an elderly pop-
lation, obtained from a single cohort, with little variance in age across
articipants. The model can be utilized for CT tissue classification of
dult population mainly above 50 years of age. The CT tissue classifica-
ion of paediatric to young adulthood brain by deep learning models pre-
ominantly trained on healthy elderly population will be challenging.
aediatric brain is characterized by dynamic changes in developmen-
al trajectories of cortical, subcortical GM and WM, with white matter
argely unmyelinated in normal new-born brain. CSF volumes increase
bout 2% per year during typical paediatric development ( Giedd et al.,
015 ; Weisenfeld et al., 2006 ). Moreover, paediatric brain scans have
ow tissue contrast and exhibit varied signal intensity characteristics in
omparison to fully developed brain ( Gousias et al., 2013 ). In future
ork, we need to assess the usefulness of our model by applying it to
ther cohorts and age groups. We may then find that to be more gener-
lly applicable. The model needs to be trained and tested on a greater
ariety of data sets collected from populations that are more diverse in
erms of age, gender, and acquired on various CT scanners. The appli-
ability of the model may need to be improved by training on cohorts
epresentative of the clinical target populations – for example, on per-
ons referred to a memory clinic. 

Although CNNs can be useful image analysis tools, they also present
hallenges in tracking the features recorded across intermediate layers.
ence, the transparency of the model development is limited, similarly

o other models using deep learning. 
In terms of deep learning-based architectures, fully CNNs (F-CNNs),

-Nets, residual networks and recurrent neural networks are avail-
ble for organ/tumour segmentation in MRI. Recently, Zeng and
heng, 2018 developed context-guided, multi-stream fully convolu-
ional networks trained using T1 and T2 weighted MR images to map MR
olumetric data to tissue class labels. Chen et al., 2018 utilized residual
etworks and summation of feature maps from different layers for brain
egmentation. The study also proposed an auto-context residual net-
ork that uses multi-modality information from T1-inversion recovery
ulse sequence, T2-weighted-fluid-attenuated inversion recovery, and
1 weighted images, which performed better than residual networks,
rained using T1 weighted images alone. Roy et al., 2019 developed
uickNAT, which is inspired by an encoder/decoder-based U-Net archi-

ecture enhanced with unpooling layers along with dense connections
ithin each encoder/decoder block to perform brain tissue classifica-

ion on T1-weighted MRIs. This study used Freesurfer-derived labels for
re-training and manual labels for fine-tuning. Henschel et al., 2020 de-
eloped FastSurfer, a neuroimaging pipeline that includes a whole-brain
RI segmentation into 95 classes. FastSurfer is an improved version
11 
f QuickNAT that introduces competitive dense blocks and spatial in-
ormation aggregation. Wu et al., 2019 ; Zhang et al., 2021 use U-Net
nd its variants for tissue classification of MR brain images. Due to its
ncoder/decoder pattern and skip connections, U-Net and its variants
erform fast and efficient semantic segmentation, even when the train-
ng examples are sparse and varied regarding their source, modality,
nd nature. Many of the MR-based deep learning algorithms use multi-
odal information to train or improve their models for segmentation.
he availability of publicly available datasets and standard segmenta-
ion algorithms aids testing, validation and comparison of developed
odels to existing models. In the future, we plan to compare other MR

rain segmentation models for brain tissue classification in CT. In par-
icular, we plan to assess the impact of transfer-learning based models
ith pre-trained models such as VGG as base models, as well as the im-
act of exchanging loss functions on semantic segmentation of head CT
mages. 

The objective of the current study is to investigate the possibility of
utomated tissue classification in CT. As a next step, we plan to inves-
igate the clinical usability and diagnostic value of CT-based measures
rimarily in neurodegenerative diseases and aim to study the correla-
ion of these measures with neuropsychological test results, blood and
SF biomarkers, and expert visual assessments. By combining data sets
f patients with neurodegenerative diseases, we intend to create a well-
nnotated database with variability. By cascading new CNN layers in the
rchitecture and combining measures from other modalities, we aim to
reate a model for both tissue segmentation and disease indication us-
ng CT. Finally, we aim to continue to validate and optimize the model
ayers, parameters, and predictions to enable patch-based multi-task 3D
earning to extract brain atrophy measures from CT. 

. Conclusion 

In this study, we propose a method to perform semantic segmenta-
ion on head CT to distinguish brain tissue classes. The quantitative val-
dation results indicate that the method has clinical potential and war-
ants further development. Thus, we will validate our approach on var-
ous cohorts, including patients with neurodegenerative disorders and
dapt it for implementation as a clinical diagnostic support tool. 
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