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Abstract— Total laryngectomy (TL) affects critical functions 

such as swallowing, coughing and speaking. An artificial, 

bioengineered larynx (ABL), operated via myoelectric signals, 

may improve quality of life for TL patients. To evaluate the 

efficacy of using surface electromyography (sEMG) as a control 

signal to predict instances of swallowing, coughing and speaking, 

sEMG was recorded from submental, intercostal and diaphragm 

muscles. The cohort included TL and control participants. 

Swallowing, coughing, speaking and movement actions were 

recorded, and a range of classifiers were investigated for 

prediction of these actions. Our algorithm achieved F1-scores of 

76.0 ± 4.4 % (swallows), 93.8 ± 2.8 % (coughs) and 70.5 ± 5.4 % 

(speech) for controls, and 67.7 ± 4.4 % (swallows), 71.0 ± 9.1 % 

(coughs) and 78.0 ± 3.8 % (speech) for TLs, using a random 

forest (RF) classifier. 75.1 ± 6.9 % of swallows were detected 

within 500 ms of onset in the controls, and 63.1 ± 6.1 % in TLs. 

sEMG can be used to predict critical larynx movements, although 

a viable ABL requires improvements. Results are particularly 

encouraging as they encompass a TL cohort. An ABL could 

alleviate many challenges faced by laryngectomees. This study 

represents a promising step toward realising such a device. 

 

Index Terms—Artificial larynx, coughing, total laryngectomy, 

pattern recognition, speech, surface electromyography (sEMG), 

swallowing. 

I. INTRODUCTION 

N estimated 177,422 individuals worldwide were 

diagnosed with laryngeal cancer in 2018 [1]. In moderate 

to severe cases, total laryngectomy (TL) is often necessary 

during treatment. TL involves complete removal of the larynx, 

including vocal cords. The trachea is re-connected to a stoma 

created at the base of the neck, through which individuals 

respirate. The mouth and nose remain connected to the 

oesophagus. 299 patients underwent TL in the UK in 2014 [2], 

and 3,414 in the USA in 2008 [3]. Laryngectomees face many 
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critical physiological and social challenges, with impaired 

swallowing, coughing and speaking. Dysphagia incidence as 

high as 71.8 % has been reported [4], comprising problems 

such as increased swallow durations, avoidance of certain food 

types and poor bolus clearance. Coughing remains as one 

mechanism to clear mucus from the airway. However, the 

stoma cover must be removed each time a TL coughs. As the 

urge to cough is often sudden, the stoma cover may become 

clogged if not removed in time. 

Speech, impaired due to removal of vocal cords, may be 

enabled through oesophageal speech, trachea-oesophageal 

puncture (TEP) with speech prosthesis or use of an 

electrolarynx (EL) [5]. These methods however assist with 

speech only, no other functions such as swallowing and 

coughing. Oesophageal speech can be difficult to learn, an EL 

is not hands-free, and TEP requires regular maintenance and is 

often not hands-free either. Additional drawbacks exist from a 

social aspect, with reported worsening of self-image and social 

isolation [6]. An artificial bioengineered larynx (ABL), 

consisting of a tracheal prosthesis with a valve enabling 

respiration, has recently been developed [7]. One patient 

reported improved breathing, swallowing and smell, and was 

also able to speak quietly while the tracheostomy was closed. 

An ABL would improve quality of life for laryngectomees, 

by enabling normal larynx functions such as swallowing and 

coughing and supporting more natural speech. An ABL must 

be safe and intuitive for the user, opening and closing 

correctly to generate coughing pressures and expiration flow 

rates following aspiration (entry of a foreign object, such as 

food, into the airway). An ABL must close quickly to enable 

swallow functionality, mitigating aspiration as a regular larynx 

does, as well as enable speech by vibrating as the vocal cords 

do when air passes through. To provide intuitive control of an 

ABL, this paper investigates using surface electromyography 

(sEMG) as a native signal to predict larynx movements. 

Prediction of user intention by sEMG pattern recognition 

has been extensively investigated for applications including 

prosthetic limbs and exoskeletons [8], [9], [10], and functions 

associated with the larynx [11], [12]. Commonly targeted 

muscle groups in such studies are the suprahyoid (SH) 

muscles, located in the submental space underneath the chin, 

and infrahyoid (IH) muscles, located in the anterior neck.  

Amft and Troster [13] used sEMG of the IH muscles to 
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distinguish between swallow and non-swallow events based 

on a signal segmentation and similarity search method. A true 

positive rate (TPR) of 82 % was achieved; however, positive 

predictive value (PPV) was just 17 %; swallowing was 

predicted almost 5 times as frequently as it occurred. Roldan-

Vasco et al. [11] classified swallow phases, using sEMG from 

the masseter, orbicularis oris, submental, and IH muscles. 

Support vector machine (SVM) and artificial neural network 

(ANN) classifiers were compared, with the SVM resulting in 

superior classification of oral phase (TPR: 90 ± 6 %, PPV: 90 

± 5 %) and pharyngeal phase (TPR: 92 ± 4 %, PPV: 94 ± 4 

%). Swallow detection has also been investigated with 

alternative methods to sEMG. Using tongue pressure on the 

hard palate, and a time-delayed ANN, to classify swallow 

events, Hadley et al. [14] achieved a TPR of 90 %, and a PPV 

of 80 %. These studies demonstrate the feasibility of detecting 

swallow events. Auscultation and accelerometery are further 

means by which swallows are commonly analysed [15], [16]. 

However, popular transducer locations in these studies, such 

as the cricoid cartilage [17], are affected by TL. We expect 

sEMG to be more suitable for our aims, as it permits recording 

of relevant signals from locations distant to the larynx.  

We investigated voluntary cough detection in a prospective 

study [18]. Using signal amplitude thresholding of sEMG of 

the intercostal and diaphragm muscles, we detected 79 % of 

coughs 100 ms in advance of exhalation. For control, 

thresholding is unsatisfactory, as other movements involving 

the intercostal and diaphragm muscles will cause a high false 

positive rate. A pattern recognition approach may provide 

more robust detection. IH muscle sEMG pattern recognition 

has been applied to speech related tasks such as pitch 

estimation [12], [19]. A silent speech recognition system for 

laryngectomees has also been developed, using sEMG from a 

cohort of muscle groups [20]. Although promising, many of 

these results are not applicable for laryngectomees, as the IH 

muscles are often removed or significantly reduced during TL. 

For an ABL, a delay in swallow detection presents a risk of 

aspiration. An acceptable delay may be inferred from the 

duration of the late oral and pharyngeal phases, when the 

bolus is propelled toward the oropharynx as the swallow reflex 

is initiated, and contraction of the SH and thyrohyoid muscles 

results in larynx ascension and contributes to closure of the 

airway. Transition from pharyngeal to oesophageal phase 

occurs after the upper oesophageal sphincter opens, allowing 

the bolus to pass through [21]. Thus, if a control signal is not 

delivered prior to the latter stage of the pharyngeal phase, 

aspiration may occur. The late oral phase ranges from 308 ± 

32 ms to 900 ± 300 ms, and the pharyngeal phase from 648 ± 

194 ms to 1500 ± 450 ms [11], [22], [23]. Thus, a maximum 

delay of 500 ms may be reliable, conservative, and safe [14] . 

We investigated sEMG pattern recognition of swallow, 

cough and speech actions, within a cohort inclusive of TLs. 

Previous work typically focused on binary classification, 

aspects of a specific function, or on an alternative goal such as 

pitch estimation. We extend this to investigate a range of 

larynx functions, recording from muscle groups available in 

post-laryngectomy users. Accurate, timely classification of 

user action is necessary to inform and actuate state changes of 

our envisioned ABL. Validation of using sEMG to distinguish 

between critical larynx functions in laryngectomees is an 

essential precursor to an implantable EMG control system, and 

therefore constitutes a significant step toward ABL control. 

II. METHODS 

The study was approved by UCL ethics committee, project 

5697/006. Fig. 1 illustrates our classification algorithm, from 

data collection to determination of results. 

A. Data collection 

1) Cohort: recruitment target of 10 participants (5 TL, 5 

control). TL participants were recruited via the UK National 

Association of Laryngectomee Clubs, control participants 

were recruited internally. Eligibility criteria: over 18 years old; 

no neuromuscular disorder nor disease affecting voice (other 

than TL). All participants gave informed consent.  

2) Experimental protocol: Each participant attended 3 

sessions, on separate days. In each session, they carried out 

actions in a pseudorandomised order, during which sEMG was 

recorded. Recordings in each session were as follows: 

▪ Swallowing: 15 recordings, 1 swallow per recording: 5 

dry (saliva only); 5 liquid (water); 5 solid (banana). 

▪ Coughing: 3 recordings, 5 voluntary coughs [24] per 

recording for a total of 15 coughs per session. 

▪ Speaking: 3 recordings, each with 10 randomly selected 

phrases from the Harvard Sentences [25], read aloud. 

▪ Everyday movements: 6 recordings of: standing, 

reaching overhead, twisting, walking, and sitting. 

Across 30 sessions (10 participants, 3 sessions each), this 

protocol amounted to a total of 810 specified recordings. 

3) Hardware setup (Fig. S1): The skin was cleaned with an 

alcohol wipe. Two submental electrodes (EL513, 10 mm 

diameter, BIOPAC Systems UK) were placed on the midline, 

posterior to the mental protuberance, with 20 mm 

interelectrode distance. Three electrodes (EL503, 11 mm 

diameter, BIOPAC) were placed on the right 9th/10th 

intercostal space close to the anterior axillary line, with 35 mm 

interelectrode distance. The posterior two electrodes formed 

the intercostal recording dipole. The anterior electrode and a 

single electrode placed on the left 9th/10th intercostal space 

formed the diaphragm recording dipole. Two reference 

electrodes (EL503) were placed on the midline over the 

sternum. Two wireless EMG recorders (BIOPAC BN-EMG2 

BioNomadix, 2 kHz sampling rate, 2,000× gain, 5 to 500 Hz 

bandpass filter) were placed at the waist and on the head to 

minimise relative cable length and motion artefacts. 

In addition to sEMG, reference measures were recorded 

simultaneously, to assist in identifying onset and offset of each 

action. High-speed video of the neck and submental region 
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was recorded during swallowing, using a laterally positioned 

Photron FastCam SA1.1 camera (500 fps, 512×512 pixels). 

Pneumotachometry was recorded during coughing (2 kHz, 

BIOPAC DA100C pressure transducer, TSD160A linear 

pneumotachometer). Sound was recorded during speech (2 

kHz, RSPro Unidirectional Electret Condenser Microphone). 

No reference was recorded for movement actions as the exact 

timing was not of interest. Movement recordings were 

considered confounding measurements to impact the efficacy 

of the classification algorithm as they would in practical use.  

B. sEMG pre-processing 

All data processing and analysis was carried out using 

MATLAB 2018a (The MathWorks Inc., USA). 

The recordings were visually assessed in time, frequency, 

and time-frequency domains for 50 Hz powerline interference 

and harmonics. A digital comb filter (order 40) with notches at 

the 50 Hz harmonics was applied to contaminated recordings 

to preserve for use. The recordings were also inspected for 

artefacts due to the wireless EMG modules temporarily losing 

connection with the data acquisition unit (an issue related to 

our purchased wireless sensors). These were characterised by 

exceptionally large spikes in signal amplitude followed by 

approximately 1 second of absent data. They were detected 

through amplitude thresholding and visual assessment, and 

replaced with the mean of the signal after artefact removal. 

Additionally, a 50 Hz notch filter (order 2) was applied to 

all recordings to attenuate powerline interference. 

C. Data segmentation 

Onset and offset times of each action were determined 

using a combination of amplitude thresholding of the sEMG 

signal envelope [26], [27], and the reference measure for each 

activity (swallow – video, speech – audio, cough – 

pneumotachometry). Different amplitude thresholds and 

muscles were used for each action (Table I), selected through 

empirical observation. and trial and error (see supplemental 

material for additional information). 

The reference measures provided an approximation of 

action timings. For swallows, the high-speed videos were 

used. For the control group, the initial ascension of the larynx 

and subsequent return to base position provided the reference 

timings. In the TL group, movement of the bolus was 

identified, and the onset/offset of movement in the anterior 

neck in surrounding video frames used as timing reference.  

Reference timings for coughs were based on peaks of the 

derivative air flow rate (points of greatest change) and zero-

crossings in the pneumotachometry signal. Given n coughs per 

recording (n was not always 5, due to participants miscounting 

or stopping), the 2n largest peaks were located to give an 

initial approximation of reference onset and offset. Onsets 

were adjusted to the earliest zero-crossing occurring within 1 

second prior, to approximate the transition from inhalation to 

larynx closure. Reference timings were manually marked 

where this method was unsuitable, due to one of the following: 

unusable pneumotachometry data, in which case an estimate 

was made using sEMG; peaks in the derivative airflow not 

associated with a cough (e.g from a sharp breath); multiple 

peaks detected for a single onset or offset, due to a particularly 

strong cough, or weak cough elsewhere in the signal.  

Reference timings for speech were determined by applying 

the MATLAB Voice Activity Detector to the sound recordings 

to identify speech intervals. 

Once reference timings were set, for each recording the 

final onset/offset of each action were determined as follows:  

▪ Signal envelope extracted via moving average filter, 

applied over 40 ms to full wave rectified sEMG signal. 

▪ Amplitude threshold calculated from signal envelope, 

according to Table I. 

 

 

 
Fig. 1.  Development process of algorithm for prediction of larynx 

function. CV = cross-validation. CV was 5-fold meaning a train/test ratio 

of 80:20 per CV iteration. The prepared dataset was split into two groups 

(controls and TLs). A separate model was developed for each group, with 

both models following the procedure from ‘CV Split’ onward. 

TABLE I: 

sEMG CHANNEL AND THRESHOLD FOR EACH ACTION. 

Action sEMG Channel Threshold 

Swallow Submental 𝜇 + 0.5𝜎 

Cough Intercostal†, diaphragm† 𝜇 + 𝜎 

Speech Submental 𝜇 + 0.25𝜎 

 is the mean of the rectified signal envelope, and  its standard 

deviation (derived from entire envelope, not noise-level activity only). 
†Digitally high-pass filtered with cut-off at 50 Hz, using a 20th-order 

Chebyshev type-1 filter, to attenuate ECG interference. (Note: the filter 

was only for class labelling. During the feature extraction phase this 

high-pass filter was not applied). 
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▪ sEMG segments crossing the threshold were marked, 

corresponding to the “Active segments” in Fig. 2. 

▪ These segments were compared with the corresponding 

reference timings for the recording. 

▪ If a segment coincided with the reference, the first/last 

threshold crossings were taken as action onset/offset. 

▪ If multiple segments coincided with the same reference 

(due to fluctuations around the threshold) the first 

crossing of the first segment and last crossing of the 

last segment were used as onset and offset. 

▪ If a segment of sEMG activity did not coincide with the 

marked reference timings, it was not considered as 

belonging to one of the specified actions (swallow, 

cough, speech) and therefore, disregarded.  

▪ For coughs, onset/offset was taken as the earliest/latest 

of the threshold crossings between the intercostal and 

diaphragm channels. 

Fig. 2 displays an example of this procedure for a swallow 

recording (Fig. S2 – cough, Fig. S3 – speech). 

Processed sEMG recordings were divided into 128 ms 

frames, with 64 ms overlap. Each frame between action onset 

and offset was assigned that action’s class label (swallow, 

cough, or speech). Transition frames (those involving a 

change in action) were assigned the class label of the majority 

of the data in the frame. Null frames encapsulated all activity 

(primarily baseline sEMG between actions, and movement 

activity) outside swallowing, coughing or speech, resulting in 

a total of 4 classes: swallow; cough; speech; and null.  

D. Feature extraction  

15 features, listed with equations in supplemental Table S1, 

were extracted from the time domain (TD), frequency domain 

(FD), and time-frequency domain (TFD) for each of the 3 

channels, resulting in a 45-fold feature vector characterising 

each frame. TD features were: mean absolute value (MAV); 

Teager-Kaiser operator (TKO) [28]; zero-crossing rate (ZCR); 

slope-sign change (SSC); Willison amplitude (WAMP); and 

waveform length (WL). FD features were: mean frequency 

(MNF); median frequency (MDF); modified mean frequency 

(MMNF); and modified median frequency (MMDF). The 

multiscale variance of wavelet coefficients (WVAR) was 

extracted as a TFD feature: the signal was decomposed to the 

4th level using the “db4” wavelet filter with the maximal 

overlap discrete wavelet transform algorithm [29]. The 

variance of the resulting 4 sets of detail coefficients and 1 set 

of approximation coefficients returned a 5-fold feature vector. 

These features were selected due to either their high 

efficacy in sEMG prediction studies [12], [30] or their ability 

to distinguish between the target class and ECG artefacts 

(present in the intercostal and diaphragm channels) [31].  

The ZCR, WAMP, and SSC features use a threshold to 

reduce the impact of noise-level fluctuations in the signal, 

often set between 10 - 50 mV [30]. However, Kamavuako et 

al. [32] reported that low thresholds may be advantageous 

when ZCR and SSC are part of an ensemble of features. A 

threshold of zero offered a reasonable trade-off between 

performance and generalisation across sessions and subjects. 

Thus, we chose a low, but non-zero, threshold of 5 µV.  

E. Model development 

The dataset was first divided into a TL group and a control 

group, with separate models developed for each group. A 

randomised, 5-fold cross-validation (CV) split was applied to 

each group for model training and testing, in a stratified 

(maintaining approximately equal class proportions) manner. 

Partitioning was recording-based rather than frame-based, to 

preserve the sequential nature of the data for post-processing 

and further analysis. A leave-one-participant-out model was 

also developed for each group (TL/control), the results of 

which are included as supplemental material.  

During each iteration of CV, features in the training set 

were scaled to the range [-1, 1]. The parameters used for this 

transformation were applied to the test set. 

Hyperparameter selection used nested, grid-search CV [33].  

During training, a nested CV loop was established by dividing 

the training set into 5 further subsets. Within each subset, the 

null class was undersampled to the size of the speech class, to 

reduce processing time. Classifiers were trained with each 

combination of their hyperparameters. The combination with 

highest average F1-score across the 5 subsets of the nested 

loop was selected for classifier training in the outer loop.  

The classifiers investigated in this study were an ANN, 

random forest (RF), SVM with radial basis function (RBF) 

kernel, and linear discriminant analysis (LDA). Table II shows 

the hyperparameter ranges included in the grid-search. The 

ANN was trained using the scaled conjugate gradient 

backpropagation method [34], and contained one hidden layer. 

The SVM was implemented using the LIBSVM package [35]. 

F. Post-processing 

To reduce spurious predictions arising from isolated 

misclassifications, a sequential smoothing method was applied 

to the output of the classifier. A class change required two 

successive frames of the same class to be predicted. 

G. Measurement of event-based performance  

Predictive performance was measured in relation to events 

and the individual frames comprising them. Event-based 

performance is presented in terms of TPR, PPV and F1-score. 

 
Fig. 2.  An example of the data segmentation and labelling process 

for a swallow (denoted as Sw. in lower right plot). The reference-

threshold combination reduced spurious activations, while more 

precisely identifying the location of action onset and offset than if only 

one of threshold detection or reference timings was used.  
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F1-score is a measure of the harmonic mean of TPR and PPV: 

𝐹1 = 2 ×
𝑃𝑃𝑉 × 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
 (1) 

An event is comprised of N successive frames of a 

particular class. True positives (TP), false positives (FP) and 

false negatives (FN) for an event were defined as follows: 

▪ TP: At least 1 of N frames comprising an event 

correctly classified (at least 2 when the post-processing 

strategy is implemented). 

▪ FP: Incorrectly predicted frame(s). Each sequence of 

FP frames of the same class is counted as 1 FP. 

▪ FN: 0 of N frames comprising an event correctly 

classified.  

Event-based results are calculated in this way to assess class 

performance individually. It is feasible for one event 

comprising multiple frames to be marked as both a TP with 

respect to one class, and a FP with respect to another.   

H. Measurement of frame-based performance  

Frame-based performance is presented in the form of a 

confusion matrix, with TPR and PPV also given.  

I.  Swallow detection delay 

In addition to predictive performance, swallow detection 

delay was calculated for positively identified swallows. This 

was measured as the difference between true onset (Section 

II.C) and predicted onset following post-processing (i.e. after a 

second successive swallow frame has been detected). 

III. RESULTS  

A. Data collection 

Demographics for the 10 participants are provided in Table 

III. All TLs had a TEP prosthesis. Fig. 3 shows sEMG from a 

TL participant (ECG has been filtered for illustration purposes 

- see Fig. S4 for unfiltered version). 818 sEMG recordings 

were captured, more than the amount specified by the protocol 

(810 total), as in some cases a recording had to be paused and

 

partially repeated. Table S2 displays the amount of data 

contributed, in number of frames, per participant. 

B. sEMG pre-processing 

142/818 sEMG recordings across 13 sessions were 

contaminated with 50 Hz noise and harmonics and digitally 

filtered as outlined in Section II.B. 

C. Data segmentation 

32/95 cough recordings were marked manually: 8/32 due to 

unusable pneumotachometry data, and 24/32 due to detected 

peaks in the derivative airflow requiring manual correction. 

D. Event-based performance 

Fig. 4 summarises the results of the event-based analysis 

with post-processing strategy for the control and TL group 

(see Table S3 for tabular version of results). The RF classifier 

achieved greatest event-based performance, as measured by 

F1-score. Results were also calculated using a leave-one-

participant-out CV method (Table S4). 

E. Frame-based performance 

Given the RF classifier achieved greatest event-based 

performance, (Section III.D), results in this section and III.F 

are based on this strategy. Average frame-based results for 

each class, across the 5 folds, are outlined in Table IV for the 

control group and Table V for the TL group.  

F. Swallow detection delay 

Detection delays for the swallow events are shown in Fig. 5. 

Delays are plotted cumulatively over intervals of 64 ms, the 

frame rate used in this study, and are presented as a proportion 

of all swallows (not as a proportion of positively-identified 

swallows only). Missed swallows consist of both undetected 

swallows and those with a detection delay exceeding 500 ms 

(this analysis does not take processing time into account). In 

the control group 75.1 ± 6.9 % of swallows were detected 

within 500 ms, 63.1 ± 6.1 % in the TL group. 

IV. DISCUSSION 

Our study is the first investigation of sEMG for predicting 

larynx movements to include laryngectomees, specifically 

accounting for key anatomical differences, in a multiclass 

TABLE II  

LIST OF CLASSIFIERS AND ASSOCIATED HYPERPARAMETERS 

Classifier Hyperparameter Range 

ANN nNeurons 10 log-spaced values from 10 to 103 

 Transfer func. Tanh, sigmoid, ReLU 

RF nTrees 50, 100, 200, 300, 500 

 mTry √NF, 10:10:70% * NF 

SVM c 10 log-spaced values from 10-3 to 102 

 g 10 log-spaced values from 10-4 to 10 

LDA - - 

nNeurons is the number of hidden layer neurons, nTrees the number 

of decision trees comprising the RF, mTry the number of features 

evaluated at each node, NF the number of features, c is the penalty 

parameter and g is the gamma parameter in the RBF kernel function. 

TABLE III 

DEMOGRAPHICS OF STUDY PARTICIPANTS 

 Control (n = 5) TL (n = 5) 

Age (mean ± SD) 32 ± 5.1 69.6 ± 9.8 

Female, Male 2, 3 1, 4 

 

 
Fig. 3.  Example of multichannel sEMG signals. Active sections from 

recordings for each action have been extracted and concatenated: speech 
(blue), swallow (orange), cough (green) and movement (black). 
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classification problem of this nature. The discussion relates to 

the RF classifier (best performance in control and TL groups). 

Speech F1-scores were 70.5 ± 5.4 % (control) vs 78.0 ± 3.8 

% (TL). TL participants had high sEMG across all channels 

during speech. Activity was concentrated in the submental 

channel in the controls, with only some using intercostal and 

diaphragm muscles. This inconsistency likely contributed to 

inferior speech performance as the model is trained on mixed 

participant data. The heavier breathing (increased intercostal 

and diaphragm activity) during speech in the TL group is to 

maintain pressure through a TEP speech prosthesis  [36], [37]. 

For swallowing, aspiration rate is a key consideration due to 

the risks of respiratory conditions that may develop following 

incomplete airway clearance. A low, but non-zero, rate is, 

however, acceptable, with 3 % reported in older (69-85 years), 

non-laryngectomy populations [38]. Although not directly 

analogous to swallow detection delay performance, aspiration 

rate provides a benchmark for an ABL. The rate of undetected 

swallows is 10.5 ± 4.0 % (control) and 28.3 ± 7.4 % (TL). 

Using 500 ms as the longest acceptable delay (Fig. 5), missed 

swallow rate is 24.9 ± 6.9 % (control) and 36.9 ± 6.1 % (TL). 

A model tailored to a specific participant may improve 

performance, reducing missed swallow rate [14], [39]. 

During a cough, sEMG increases after larynx closure (end 

of inhalation), making advanced prediction of a natural cough 

challenging. An ABL should include high-level user control to 

close the ABL to build-up pressure in the lungs, in preparation 

for a cough. The detection demonstrated in this study would 

trigger the ABL opening. Alternatively, the trigger could be a 

preset, user-specific, pressure [24]. Accurate cough detection 

is also important to reduce false positive swallows and speech.  

As we present a novel sEMG classification problem, 

comparisons with other studies are limited. TPR and PPV for 

swallows in the control group compare favourably to those of 

Amft and Troster [13]. TPR is improved from 82 % in Amft 

and Troster to 89.5 ± 4.0 %, and PPV from 17 % to 66.6 ± 7.9 

%. As swallow detection preceded bolus classification in their 

work, overestimation was likely preferable to underestimation.  

Our TPR is equal to Hadley et al. (90 %), but their PPV is 

larger (80 %) [14]. Speech was a common cause of false 

swallows in Hadley et al., as in our study (Tables IV and V).  

 Roldan-Vasco et al. [11] achieved TPRs of 90 ± 6 % and 

92 ± 4 % for oral and pharyngeal phases of swallowing, with 

PPV of 90 ± 5 %, and 94 ± 4 % respectively.  This is superior 

to our control group frame-based results for swallows: TPR 

(57 ± 3 %); PPV (77 ± 8 %). This may be due to various 

reasons beyond the selection of features or classifiers 

themselves. A lesser number of sEMG channels were used in 

our study (3 vs 8). The range of actions included in our study 

confounded swallow prediction, as evidenced by 45/593 

swallow frames misclassified as speech, and 208/593 as null 

(Table IV). Additionally, Roldan-Vasco et al. discarded 

transition frames from both training and testing, whereas we 

assigned them to the class of the majority of the frame’s data. 

Using a participant-dependent 10-fold CV approach with 

 
 

 
Fig. 4.  Overview of event-based results for both groups. 

TABLE IV 
 FRAME-BASED RESULTS FOR THE CONTROL GROUP  

 
Predicted Class  

Null Swallow Cough Speech TPR (%)  

T
ru

e 
C

la
ss

 

Null 

(n=18152) 
17631 

(438) 

208 

(46) 

41 

(14) 

392 

(172) 

97 

(1) 

Swallow 

(n=593) 

208 

(33) 

340 

(23) 
0 

45 

(18) 

57 

(3) 

Cough 

(n=365) 

125 

(30) 
0 

239 

(27) 

1 

(1) 

66 

(6) 

Speech 

(n=2492) 

1457 

(104) 

20 

(7) 
0 

1015 

(205) 

40 

(5) 

 PPV (%) 
91 

(0.5) 

77 

(8) 

86 

(4) 

70 

(7)  
 

Results presented are the mean frame results across 5 folds, with 
standard deviation in parentheses. 

TABLE V 
 FRAME-BASED RESULTS FOR THE TL GROUP 

 
Predicted Class  

Null Swallow Cough Speech TPR (%)  

T
ru

e 
C

la
ss

 

Null 

(n=20278) 

19634 

(757) 

106 

(34) 

33 

(13) 

505 

(70) 

97 

(0.4) 

Swallow 

(n=754) 

390 

(24) 

336 

(56) 
0 

28 

(9) 

44 

(3) 

Cough 

(n=444) 

238 

(69) 
0 

175 

(44) 

31 

(20) 

40 

(8) 

Speech 

(n=3186) 

894 

(155) 

4 

(4) 

10 

(11) 

2278 

(311) 

71 

(6) 

 PPV (%) 
93 

(1) 

75 

(8) 

80 

(9) 

80 

(2) 
 

Results presented are the mean frame results across 5 folds, with 

standard deviation in parentheses. 
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accelerometer data, Li et al. [40] reported F1-scores of 94 % 

for coughing and 93 % for speech. Our results are similar for 

cough, 93.8 ± 2.8 % (control, event-based) and lower for 

speech, 70.5 ± 5.4 %. However, the segment size in Li et al., 

2.56 s, would be too long for ABL control as the actions in our 

study are typically shorter than this segment size.  

There is a discrepancy between frame-based and event-

based swallow, cough and speech results in our study. PPV is 

greater than TPR for the frame-based results (Tables IV and 

V), but smaller for event-based results (Fig. 4). This is in part 

due to our event scoring criteria. Positive event detection (true 

and false) required only two successive frames (two due to 

post-processing method) of the same class to be detected, 

incurring higher TPR and lower PPV. In a functional ABL, 

operated using sEMG, frames comprising an event may be 

unequal in importance given the need for early detection of 

swallows for example. Additionally, the risk associated with 

missing a swallow event is greater than that imposed by over-

prediction. A system which tends towards positive event 

detection, further informed by latency analysis, is desirable. 

Hence the design of our event scoring criteria. 

The discrepancy between frame-based and event-based 

results may also be a consequence of the semi-automatic 

method of determining event onset/offset. Manual labelling, as 

in Roldan-Vasco et al. [11], is cumbersome for large datasets 

and automation reduces researcher bias. Although our 

reference-threshold method mitigated imprecision, there were 

still observed instances of imprecise event onset/offset. 

Furthermore, merging multiple segments crossing the 

amplitude threshold, while overlapping with the same 

reference segment, resulted in classing some near-baseline 

sEMG frames as swallow, cough or speech (Fig. S3 illustrates 

this issue). Such frames were likely detrimental in training and 

testing the algorithm, with frames frequently misclassified as 

the null class, although this is also attributable to class-

imbalance. Our main goal was to detect the event overall; 

thus, classing these frames as null was undesirable, as it would 

split one event into multiple, artificially raising the TPR for 

events. A solution may be to use two separate sets of timings, 

one for sEMG frames with elevated activity, and one for event 

onset/offset. A model could be trained and evaluated in terms 

of frames on the former, and event detection on the latter. 

We expect an EMG-controlled ABL would require target 

user data to be present in the training set. This training set may 

either consist of data from multiple TLs, inclusive of the target 

user, or of data exclusive to the target user. The substantial 

performance gap between Table S3 and Table S4 indicates a 

leave-one-participant-out approach is not viable (at least with 

respect to our model design and number of participants).  

Our study has limitations. There is a small sample size (5 

controls, 5 TLs). This has particular ramifications for the 

leave-one-participant-out models (Table S4). A larger sample 

size may return a model less sensitive to differences between 

individuals. There are more actions involving the larynx and 

selected muscles than those we examined, such as yawning or 

sneezing. Involuntary coughs may also yield patterns distinct 

from the voluntary coughs in our study. We consider breathing 

to be covered by the null set, and did not explicitly aim to 

identify this action. However, as breaths range in intensity, a 

deep breath could exhibit high activity in the intercostal and 

diaphragm channels which may confound predictions. Control 

group participants were familiar with sEMG practices which 

may have contributed to cleaner sEMG recordings. Analysis 

of swallow onset delays did not account for processing time as 

this work was carried out in MATLAB which would not be 

used for real-world implementation of an ABL. The maximum 

acceptable delay will be reduced by the duration required to 

read-in EMG data and produce the output class. Additionally, 

the time taken to actuate the mechanical aspect of the ABL 

would need to be factored in for real-world implementation. 

Reference onset/offset times for swallowing were determined 

by a single assessor. In an experiment with the control group, 

we shifted video times randomly, in an approximately uniform 

manner, by either -200, -100, 0, 100 or 200 ms. Frame-based 

and event-based TPR and PPV differed by < 1 % from the 

original results. Thus, unless disagreement between assessors 

over video timings is large, the difference in overall outcome 

is negligible. Further limitations are that our model consists of 

same-session data present in training and testing sets, we have 

not accounted for variation in sEMG across days, and that we 

did not normalise data across sessions or participants, due to 

the lack of a specific baseline signal to normalise to. 

Future work will address some of these limitations and 

focus on a real-time system and participant-specific model, 

including analysis of performance on unseen days. Deep 

learning methods and more sophisticated neural networks 

accounting for the time-series nature of sEMG signals may 

improve predictions of larynx function. Although the current 

algorithm was designed for an ABL control system, it may be 

beneficial to other areas such as dysphagia monitoring. 

 
Fig. 5.  Cumulative swallow detection delay. Control group (orange): 

75.1 ± 6.9 % detected within 500 ms, 63.1 ± 6.1 % in the TL group 

(blue). The number of missed swallows (undetected swallows plus those 

detected after 500 ms) across 5 CV folds is indicated by the horizontal 
lines, dashed = average, dotted = standard deviation. 
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V. CONCLUSION 

sEMG was used to predict the larynx functions of swallow, 

cough and speech, through a pattern recognition approach. 

This was achieved for a control group and a laryngectomy 

group, specifically accounting for muscles excised during total 

laryngectomy. Improvements are needed however, particularly 

in relation to how quickly a swallow can be detected. 

Additionally, it would be useful to investigate a wider range of 

larynx functions as some movements, outside the scope of this 

study, may share similar muscle activity to swallows, coughs, 

or speech. This work presents the possibility of improved 

treatment for those requiring total laryngectomy, using sEMG 

as a control signal for an artificial, bioengineered larynx. 
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