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Abstract11

The advances in artificial intelligence (AI) that are transforming many fields have yet to make an impact in12

hearing. Hearing healthcare continues to rely on a labor-intensive service model that fails to provide access to13

the majority of those in need, while hearing research suffers from a lack of computational tools with the14

capacity to match the complexities of auditory processing. This Perspective is a call for the AI and hearing15

communities to come together to bring about a technological revolution in hearing. We describe opportunities16

for rapid clinical impact through the application of existing technologies and propose directions for the17

development of new technologies to create true artificial auditory systems. There is an urgent need to push18

hearing forward toward a future in which AI provides critical support for the testing of hypotheses, the19

development of therapies, and the effective delivery of care worldwide.20

Introduction21

Hearing was once at the forefront of technological innovation. The cochlear implant (CI), which restores22

hearing through direct electrical stimulation of the auditory nerve, was a revolutionary advance and remains23

the most successful neural prosthetic in terms of both performance and penetration1,2. Even hearing aids, now24

considered staid, once led the way in the miniaturization of digital electronics3. But innovation has stalled and25

hearing healthcare is struggling to meet a growing global burden; the vast majority of those with hearing loss26

do not receive treatment, and those who do often receive only limited benefit.27

Recent advances in artificial intelligence (AI) have the potential to transform hearing. Machines have already28

achieved human-like performance in hearing-related tasks such as automatic speech recognition (ASR) and29

natural language processing (NLP). AI is also starting to have an impact in medicine; for example, eye screening30

technologies based on deep neural networks (DNNs) are already in worldwide use. But there are few31

applications related to hearing per se and AI remains absent from hearing healthcare. In this Perspective, we32

describe opportunities to use existing technologies to create clinical applications with widespread impact, as33

well as the potential for new technologies that faithfully model the auditory system to enable fundamental34

advances in hearing research.35

The disconnect between AI and hearing has deep roots. In contrast to modern machine vision, which began36

with the explicit goal of mimicking the visual cortex4 and continues to draw inspiration from the visual system5,37

work in modern machine hearing has never prioritized biological links. The earliest attempts at ASR were, in38

fact, modeled on human speech processing, but this approach was largely unsuccessful. The first viable ASR39

systems arose only after the field made a deliberate turn away from biology (with rationale neatly summarized40

by IBM’s Frederick Jelinek: “Airplanes don’t flap their wings”6) to focus on modelling the statistical structure41

of the temporal sequences in speech and language via hidden Markov models.42



The recent incorporation of deep neural networks into machine hearing systems has further improved their43

performance in specific tasks, but it has not brought machine hearing any closer to the auditory system in a44

mechanistic sense. Biological replication is not necessarily a requirement: many of the important clinical45

challenges in hearing can be addressed using models with no relation to the auditory system7 (e.g. DNNs for46

image classification), or models that mimic only certain aspects of its function8,9 (e.g. DNNs for sound source47

separation). But for the full potential of AI in hearing to be realized, new machine hearing systems that match48

both the function of the auditory system and key elements of its structure are needed.49

We envision a future in which the natural links between machine and biological hearing are leveraged to50

provide effective hearing healthcare across the world and enable progress on hearing’s most complex research51

challenges. To motivate this future, we first provide a brief overview of the auditory system and its disorders52

and describe the potential of AI to address urgent and important needs in hearing healthcare. We then outline53

the steps that must be taken to bridge the present disconnect between AI and hearing and suggest directions54

for future work to unite the two fields in working toward the development of true artificial auditory systems.55

The auditory system and its disorders56

The auditory system is a marvel of signal processing. Its combination of microsecond temporal precision,57

sensitivity over more than five orders of sound magnitude, and flexibility to support tasks ranging from sound58

localization to music appreciation is still without parallel in other natural or artificial systems. This remarkable59

performance is achieved through a complex interplay of biomechanical, chemical, and neural components that60

implement operations such as signal conditioning, filtering, feature extraction, and classification in61

interconnected stages across the ear and brain to create the experience of auditory perception (Fig. 1a).62

The complexity of the auditory system is reflected in its disorders. The system is susceptible to disruption at63

any of its stages, resulting in a variety of perceptual impairments such as deafness (a loss of sensitivity to64

sounds), hyperacusis (an increase in sensitivity that causes sounds to become uncomfortable or painful) or65

tinnitus (the constant perception of a phantom sound, often a ringing or whistling). In order to help identify66

the underlying causes of a perceptual impairment, hearing assessments are designed to provide clinicians with67

a wide range of data reflecting the status of the different processing stages, including: mechanical and acoustic68

measurements of the ear; electrophysiological and imaging measurements of the ear and brain; and69

psychoacoustic and cognitive measurements of perception (Fig. 1b-d).70

Despite this wealth of data, the diagnosis and treatment of hearing disorders are often problematic. The71

primary difficulties arise from the multifactorial nature of the disorders and our limited understanding of their72

mechanistic underpinnings. A particular perceptual impairment can be associated with many different73

pathologies, and a particular pathology can be associated with many different perceptual impairments. AI can74

help to disentangle the links between pathologies and perceptual impairments to improve diagnosis and75

treatment, as well as to advance our understanding of the fundamentals of hearing and provide insight into76

the causes of complex disorders.77

In Table 1, we provide an overview of opportunities for AI to address a range of challenges in hearing and78

specify the scale of the problem underlying each challenge, the nature of the technology needed to solve the79

problem, and the current state of the art. We address each of these challenges in detail in the sections below.80

Applying existing technologies to meet pressing needs in hearing healthcare81

The need for improved hearing healthcare is urgent: hearing disorders are a leading cause of disability,82

affecting approximately 500 million people worldwide and costing nearly $750 billion annually10. The current83

care model, which is heavily reliant on specialized equipment and labor-intensive clinician services, is failing84

to cope: approximately 80% of those who need treatment are not receiving it10. Fortunately, many of the most85

pressing problems in hearing healthcare can be framed as classification or regression problems that can be86



solved by training existing AI technologies on the appropriate clinical datasets. In this section, we give87

examples of how AI could make an impact in two areas of hearing healthcare: clinical inference and automated88

service.89

Clinical inference90

The use of information about a patient and their symptoms to identify a condition, predict its course, and91

determine the optimal treatment is fundamental to all healthcare. Existing technologies such as convolutional92

neural networks (CNNs) are well suited to such problems and have already achieved excellent performance in93

many diagnostic tasks. The application of these technologies to hearing could bring immediate improvements94

in the diagnosis and treatment of some of the most common conditions.95

One example is middle ear infection (otitis media), which is the most frequent reason for children to visit the96

doctor, take antibiotics, and have surgery11. Despite its prevalence, the diagnosis of different middle ear97

conditions by clinicians remains problematic: accuracy has been estimated at 50% for non-specialists and 75%98

for specialists12. Worse still, the great majority (>80%) of those with middle ear conditions live in low- and99

middle-income countries (LMICs) with little or no access to care at all. Thus, the application of AI to the100

diagnosis of middle ear conditions could bring dramatic improvements in both efficacy and accessibility.101

Proof of concept has already been established. For example, one recent effort used transfer learning to train102

publicly-available CNNs (e.g. Inception-V3) on a database of ear drum images (Fig. 1d) to identify six different103

middle ear conditions with 90% accuracy13. Commercial products based on similar technology have recently104

become available14. If such products can be used reliably during routine health checks without the need for105

specialist resources, their impact will be profound.106

Beyond diagnosis, there is also uncertainty regarding the appropriate course of treatment for many hearing107

conditions that AI could help to resolve. For example, if there is a persistent buildup of fluid in the middle ear,108

grommets (tubes) can be inserted into the ear drum to ventilate the middle ear, allowing the fluid to drain out109

and improving hearing. But performing this procedure in children is resource intensive and carries risk. Since110

many cases resolve spontaneously, surgery is not usually performed until after several months of “watchful111

waiting” to identify persistent cases. The development of applications with the ability to consider ear drum112

images together with other information about patient history, genetics, etc. to predict time to resolution could113

help to avoid either unnecessary waiting or unnecessary surgery.114

Assembling the comprehensive datasets required to make the best use of AI for clinical inference in hearing115

healthcare will be a challenge. In high-income countries where care is available, patients are often served by116

specialists across multiple sectors, with each holding vital pieces of information. Efforts are underway to join117

existing hearing datasets15 and create new disease or treatment registries for analysis16. But technologies118

developed based on data from high-income countries may not be appropriate for use in LMICs with different119

populations, so it is critical to ensure that resources are allocated to building datasets that faithfully reflect the120

global burden of hearing loss10.121

Automated service122

At present, nearly all hearing healthcare services -- from initial screening and consultation through to follow-123

up and rehabilitation -- are provided in-person by highly-trained staff using specialized equipment. This “high-124

touch” model restricts care to places where the required resources are readily available, thus excluding many125

LMICs, as well as remote locations in high-income countries17. COVID-19 has exacerbated the problem: even126

in places with the required resources, vulnerable patients may be unwilling or unable to seek in-person care127

and staff may be unable to provide it safely18. Fortunately, many of the most common services in hearing128

healthcare can be readily automated or controlled remotely through telemedicine.129



One such service is the measurement of an audiogram, the standard clinical test for hearing loss. An130

audiogram is obtained by presenting tones at different frequencies and intensities to determine a listener’s131

sensitivity threshold for each frequency. The automation of this process in standard clinical conditions (i.e.132

with medical-grade earphones in a sound-proof chamber) is straightforward, and recent studies demonstrated133

that approaches based on active learning and Gaussian process regression can provide more comprehensive134

measurements in less time than the standard manual approach19,20.135

The challenge in designing automated audiogram measurement applications is that neither the specifics of the136

equipment nor the environment can be guaranteed in a non-clinical setting21. AI can potentially help by137

framing the problem as audiogram inference rather than audiogram measurement. Given a sufficient training138

dataset of paired audiograms measured under ideal and non-ideal conditions (perhaps supplemented by data139

augmentation) along with calibration routines to determine background noise levels, earphone properties,140

etc., it should be possible to infer the true audiogram from non-ideal measurements.141

Another example of a basic service that could be readily automated is the fitting or mapping of a CI, a142

procedure in which a clinician establishes the dynamic range of electrical stimulation by adjusting the current143

emitted while asking the listener to report the magnitude of their sensation. This procedure is performed144

when the implant is first activated as well as periodically thereafter to compensate for ongoing changes in the145

device, the stimulation interface, and the brain. Proof-of-concept studies have established that an automated146

fitting using Bayesian networks can achieve results that are comparable to a standard fitting22 and that the147

process can be done by the patient themselves without the need for a clinician23.148

Automated service for CIs could significantly improve both access and outcomes. Most LMICs have few, if any,149

CI surgeons, so patients are often forced to travel a great distance to receive their implant. But without follow-150

up services such as device adjustment and speech training, the full potential benefit of the CI will not be151

realized24. Thus, technologies that allow follow-up services to be provided at home or in a local clinic could152

have a dramatic impact. In the long-term, access to CIs may be increased even further through AI-assisted153

surgery. While fully-automated implantation is unlikely in the near future, supporting technologies for surgery154

planning and real-time image enhancement25,26 could enable surgeons with limited experience.155

Mimicking auditory function to improve the performance of hearing devices156

There are not yet any biological treatments for most forms of hearing loss, so treatments are generally limited157

to the provision of assistive devices (Fig. 2). For profound deafness, the only available option is to provide158

direct electrical stimulation of the auditory nerve through a CI. For mild or moderate loss of hearing, a hearing159

aid (HA) may be able to help the ear process sound by providing suitable amplification. The signal processing160

in hearing devices improved rapidly during their early development but in recent years progress has been161

stagnant27–29. This is not due to lack of effort: the number of research papers and patents related to hearing162

devices continues to grow exponentially29,30. The real problem is the complexity of the challenges involved in163

improving real-world device performance and the inability of traditional engineering approaches to meet164

them.165

Some commercial devices are already using AI in a limited capacity. For example, there are devices that166

automatically adjust their settings based on the user’s current environment (e.g. indoors or outdoors) using167

either pre-trained DNNs31 or active learning with Gaussian processes to track each individual user’s168

preferences over time32. Work is ongoing to allow future devices to combine the capacity of DNNs with169

adaptive personalization by collecting continuous data from each user (e.g. through ASR or sensor-based170

measures of listening effort).171

But the most promising use of AI in hearing devices is in replicating or enhancing functions that are normally172

performed by the auditory system33. By using DNNs to transform incoming sounds, AI could dramatically173



improve the signal processing in hearing devices. This approach is particularly well suited to address the most174

common problem reported by device users: difficulty understanding speech in a setting with multiple talkers175

or substantial background noise (the so-called “cocktail party” problem). Recent work has already176

demonstrated that DNNs can improve the understanding of speech-in-noise for device users. In just a few177

years, this “deep denoising” has progressed rapidly from separating the voice of a known talker from steady-178

state noise to separating multiple unknown talkers in reverberant environments34.179

With denoising DNNs, hearing devices can parse complex acoustic environments just as the brain normally180

would, using source separation and selective attention to turn speech-in-noise into speech-in-quiet.181

Commercial products including deep denoising are already available35,36. While the real-world performance of182

these products has not been rigorously tested, lab studies using deep denoising have demonstrated that the183

performance of HA users in recognition tasks can match or even exceed normal levels37. Similar approaches184

being developed for CIs38,39 and hybrid electro-acoustic devices40 have also produced promising initial results.185

Separating different sound sources is a critical first step toward helping listeners overcome difficulties186

understanding speech in noise in the real world. But the real challenge is determining which sound source to187

amplify. In some situations, e.g. a single talker in a background of continuous fan noise, the source is of interest188

may be obvious. But in others, e.g. a room full of multiple talkers, a source that is of primary interest one189

minute may become a distraction the next. To address this problem, efforts are underway to bring hearing190

devices under “cognitive control” by monitoring the brain’s selective attention. When a listener is attending191

to a particular sound source, the fluctuations in their brain’s neural activity track the fluctuations in the192

amplitude of the attended source. Thus, the attended source can be inferred from correlations between193

recorded neural activity and possible sources of interest. Initial studies suggest that recordings that are194

sufficient to identify the attended source can be obtained from a single electrode within the ear canal, which195

could easily be integrated with a hearing device41–43.196

Analysis of neural activity may also enable the development of entirely new processing strategies to improve197

hearing by correcting the distortions in neural activity caused by hearing loss44. In the case of CIs, for example,198

the ideal sound-to-current mapping would be that which evokes the same patterns of neural activity as those199

that would be present in the auditory system of a listener with normal hearing. Such strategies have always200

been a goal of hearing device designers, but the inability of traditional engineering approaches to account for201

the highly nonlinear nature of auditory processing has limited progress. Deep learning provides a powerful202

new set of tools that can overcome this limitation and identify the sound-to-current mapping which comes203

closest to the ideal. Given a large dataset of neural activity from normal hearing listeners to serve as a target,204

a neural network could be trained to find the sound-to-current mapping that minimizes the difference205

between CI-evoked neural activity and the target.206

Using AI to steer the neural activity in the impaired system back toward normal can be viewed as an attempt207

to enhance homeostatic plasticity. The auditory system has its own mechanisms that appear to act with similar208

purpose; for example, the brain responds to hearing loss by increasing the gain that it applies to weakened209

inputs from the ear, presumably to restore overall activity levels to normal45 (see further discussion of210

plasticity below). Brain plasticity is not sufficient on its own to correct all of the distortions in neural activity211

that are caused by hearing loss, but AI-derived sound transformations may be able to correct some of the212

distortions that the brain cannot. Approaches aimed at correcting distortions in neural activity could be used213

to develop novel processing strategies for any device -- traditional acoustic HAs, bone-anchored mechanical214

devices, or transcranial stimulators -- and optimized for any type of sound -- music46, non-tonal or tonal215

language47, or environmental sounds.216

Another promising approach is to move beyond hearing devices per se toward a more comprehensive217

augmented reality (AR) system that can enhance the brain’s own multi-modal capacities48. Systems of218



integrated wearable and associated devices with a variety of multi-modal sensors will eventually become219

common and have the potential to provide powerful platforms to support deaf people (see Box 1). For220

example, to enable better speech understanding, AR glasses could implement eye tracking to aid inference of221

the current sound source of interest along with real-time speech-to-text captioning for instances when222

auditory perception fails.223

Integrating the various technologies for sound or multi-modal processing to provide a seamless user224

experience will be a challenge49. For sound processing during an in-person conversation, the maximum225

tolerable latency is around 10 ms50; any transformation of the sound, e.g. denoising, must be performed on226

this timescale. This latency requirement presents a dilemma: the capacity for running complex DNNs in an on-227

ear device, even for inference only, is limited, but offloading to a coprocessor on a paired device introduces228

an additional delay. One possible solution is a hybrid system in which a sound transformation runs229

continuously with low latency in an on-ear device while a paired device adjusts the parameters of the sound230

transformation on slightly slower timescale35. Other operations, such as personalization or adjustments based231

on changes in the listener’s environment, can be performed on a much slower timescale, either on a paired232

device or in the cloud.233

Developing new technologies for machine hearing to empower hearing research234

There is little doubt that the application of current AI technologies to hearing could improve care for many235

common conditions by making basic services more accessible and enabling devices to restore or enhance236

auditory function. But there are also many complex disorders for which current technologies may prove237

insufficient to overcome our lack of understanding. One important example is tinnitus, which affects 15% of238

people worldwide and is often debilitating51. While the phenomenology of tinnitus is simple, developing239

effective treatments for it is difficult because the underlying mechanisms remain poorly understood52. For240

other conditions such as auditory processing disorders (e.g. difficulty understanding speech-in-noise despite241

audiometrically “normal” hearing), providing effective care is even more difficult, as there is little agreement242

on diagnosis, let alone on treatment53,54.243

The difficulties associated with complex hearing disorders stem from the fact that they are emergent244

properties of aberrant network states (as opposed to consequences of identifiable molecular or cellular245

pathologies). Current technologies for regression and classification may be able to improve care for these246

disorders by identifying reliable biomarkers or other objective measures within complex data to allow for more247

accurate diagnosis and treatment55,56. But a more ambitious approach is for AI and hearing researchers to work248

together to create new artificial networks for hearing that share key mechanistic features with the auditory249

system.250

If an artificial system is to serve as a surrogate for testing manipulations that cannot be performed on the251

auditory system itself (either at all, or at the required scale), biological replication will help to ensure that any252

conclusions drawn from observations made in silico will also hold true in vivo. Artificial auditory systems could253

provide a powerful framework for the generation and testing of new hypotheses and serve as a platform for254

developing potential treatments for network-level disorders57. In the following sections, we highlight three255

critical aspects of hearing that artificial auditory systems will need to incorporate: temporal processing, multi-256

modal processing, and plasticity.257

Temporal processing258

Natural sounds evolve over many different timescales and some, such as speech and music, are defined by the259

complex patterns that they exhibit across timescales. The brain tracks and groups the amplitude fluctuations260

across the different frequencies emitted by individual sound sources in order to create distinct perceptual261

objects. Disruption of this temporal processing is thought to underlie auditory processing disorders58, as well262



as the hearing difficulties that are associated with other complex conditions such as dyslexia59 or263

schizophrenia60.264

Individual neurons in the auditory system exhibit various forms of selectivity for different time intervals. In265

some cases, such as the extraction of the microsecond interaural time differences that indicate the location of266

a sound, there is clear evidence suggesting the presence of a dedicated neural circuit61. But the processing of267

timescales from hundreds of milliseconds to seconds appears to rely on a complex interplay between268

distributed networks in different brain areas62. For example, the judgement of sound intervals of several269

seconds appears to rely not only on the auditory system but also on the network dynamics in the striatum63.270

Thus, understanding the aspects of hearing that rely on temporal processing requires understanding how271

sensitivity to intervals and patterns emerges in networks from the intrinsic properties of neurons and the272

synapses that connect them.273

There have recently been several new network architectures developed for multi-timescale processing of274

speech and language, such WaveNet64 and the Transformer65. These networks achieve impressive275

performance in many tasks, but bear little resemblance to the auditory system. To be useful as models of276

hearing per se, artificial networks must not only process temporal information as effectively as the brain, but277

also do so through comparable mechanisms, such as recurrency. One recent study in which recurrent neural278

networks were trained to perform a variety of tasks that relied on the analysis of temporal intervals found that279

they exhibited a number of phenomena that have been observed in the brain66. For example, the280

representations of temporal and non-temporal information occupied orthogonal subspaces of neural activity,281

as has been observed in prefrontal cortex67 and the network followed stereotypical dynamical trajectories that282

were scaled to match the timescale of a task, as has been observed in medial frontal cortex68. Further work283

along these lines is needed to go beyond the analysis of time intervals to tasks involving the processing of284

complex temporal patterns that are typical of natural sounds.285

Multi-modal processing286

To accurately model the auditory system, artificial networks must ultimately integrate other sensorimotor287

modalities with the flexibility to perform a wide range of different tasks just as the brain does69. The auditory288

system did not develop in isolation and it does not function in isolation; thus, it cannot be accurately modeled289

in isolation. The ears are just one of many sources that provide information to the brain and the integration290

of information from different sources is evident even at early stages of processing70. Explicit attempts to model291

multi-modal properties in isolation are unlikely to be useful (beyond providing a compact description of the292

phenomena). But if networks with appropriate features are trained on a wide variety of tasks, multi-modal293

flexibility will emerge just as it has in the brain.294

In one recent study, recurrent neural networks trained to perform 20 different cognitive tasks exhibited295

clustering and compositionality, i.e. they developed distinct groups of units specialized for simple296

computations that appeared to serve as building blocks for more complex tasks71. These properties persisted297

across changes in some network hyperparameters but not others: the formation of clusters depended strongly298

on the choice of activation function and occurred only when all tasks were trained in parallel. When tasks were299

trained sequentially using continual learning techniques (mimicking human learning in adulthood), specialized300

clusters were replaced by mixed selectivity. These results highlight the need to accurately model both the301

internal properties of a system and its developmental environment. For the auditory system, it may be302

appropriate to use parallel training for early stages of processing to model brainstem circuits that evolved to303

carry out general encoding or elementary computations (or, alternatively, unsupervised learning with304

generative frameworks, as has proven effective for pre-training ASR and NLP systems72,73). For the late stages305

of processing, sequential training may be more appropriate to model cortical networks with the flexibility to306

perform a range of multi-modal tasks.307



Plasticity308

The auditory system never stops changing. This plasticity is what allows the brain to learn new tasks and to309

match the allocation of its limited resources to the task at hand. But it is also the root of several complex310

hearing problems. For example, tinnitus, often described as a ringing in the ear, is actually a ringing in the311

brain. A prevailing theory is that following a prolonged loss of input from the ear, the brain responds with312

increased central gain that amplifies spontaneous neural activity to a level that is perceptible. But this simple313

idea is difficult to reconcile with experimental data. While increased spontaneous activity with tinnitus has314

been widely observed at the earliest stages of the auditory system, it does not necessarily propagate to later315

stages52. Furthermore, tinnitus does not actually impair auditory perception74. Other network-level theories316

have been proposed, such as increased central variance75, disrupted multi-modal plasticity76, or dysrhythmia317

of thalamocortical oscillations55, but definitive evidence is lacking. Accurate network models of the auditory318

system that include realistic forms of plasticity might be a way to differentiate among the various hypotheses.319

Such models could also help to improve prognosis, rehabilitation and training following the restoration of320

hearing. With CIs, for example, there is currently a large variation in benefit across patients that is difficult to321

explain77. One hypothesis is that the benefit provided by a CI ultimately depends on the degree to which322

plasticity allows the brain to adapt to the new information that it is receiving from the ear. Many different323

forms of training to encourage this plasticity have been explored but none has proven widely effective78.324

Artificial networks that accurately model auditory plasticity after hearing restoration would allow for a325

systematic exploration of different training strategies to determine the conditions under which each is326

optimal. Given the limited number and heterogeneity of people receiving CIs, it is unlikely that such327

optimization could ever be achieved through studies of human users. Of course, there is no guarantee that328

training strategies that are optimal for the artificial system will prove useful for human users. But the likelihood329

of successful translation will be increased if the key features of the artificial and biological systems are closely330

matched.331

Toward artificial auditory systems332

Faithful replication of the auditory system will require the design of new networks that are well matched to333

the structure of the system and the perceptions that it creates. Attempts to model hearing using CNNs have334

had some success79,80. One recent study trained an encoder-decoder network to reproduce complex cochlear335

mechanics with high accuracy81. Such demonstrations that artificial networks can capture the required input-336

output transformations are a critical first step toward developing artificial auditory systems. But on a337

mechanistic level, the architecture of CNNs is a poor match for the auditory system82. The tiling of space by338

neurons with similar receptive fields in the visual system that inspired CNNs has no analog in the ear or central339

auditory system, nor does the translational invariance achieved in CNNs through weight sharing and340

subsequent pooling. Auditory objects are not translationally invariant with respect to their primary341

representational dimension, frequency; in fact, a translation in frequency can be a key distinction between,342

for example, different speech phonemes.343

It may be possible to make CNNs more like the auditory system by introducing new features. One example is344

the introduction of heterogeneous pooling (i.e. pooling across different subsets of convolutional units) to345

provide some invariance to small changes in frequency (such as those related to voice pitch) while maintaining346

sensitivity to the large frequency shifts that distinguish phonemes83. But, ultimately, new architectures will be347

required. The inclusion of recurrent features is likely to be critical, since feedback connections are present at348

all levels of the auditory system and contribute to temporal and multi-modal processing and plasticity84.349

Including such features in networks may also improve their efficiency as well as their fidelity as models of the350

brain; while many recurrent networks have feedforward equivalents, the recurrent version typically has fewer351

parameters5.352



An example of the power of new designs is the inclusion of recurrent features in capsule networks for vision353
85, which were inspired by the columnar nature of cortical microcircuitry. These features allow the network to354

capture local invariances (to, for example, skew or rotation) that are not easily captured by traditional CNNs,355

which improves the robustness of object recognition performance. Capsule networks also accurately356

reproduce aspects of visual perception that CNNs cannot, such as those related to crowding (the masking of357

an object by its neighbors)86. Networks with similar features may also be useful for hearing; visual crowding is358

analogous to auditory informational masking87, and the transformations between “place coding” and “rate359

coding” in capsule networks are a hallmark of auditory processing85. New versions of these networks with the360

flexibility to share computations across different representations could provide a starting point for developing361

models with the multi-timescale and multi-modal capabilities of the auditory system88.362

Outlook363

The current model of hearing healthcare improves the lives of millions of people every year. But it is far from364

optimal: children with middle ear conditions are triaged to “watchful waiting” while their development is365

disrupted; people with tinnitus are subject to treatment by trial-and-error, often with little or no benefit; and366

the deaf are provided with devices that don’t allow them to understand speech in noise or enjoy music. And367

those are the lucky ones: most people with hearing conditions live in LMICs with little or no access to treatment368

or support of any kind.369

Despite the potential for AI to produce dramatic improvements, it has yet to make a significant impact. We370

have described opportunities for AI to reshape hearing healthcare with the potential for immediate benefit on371

the diagnosis and treatment of many common conditions. For this potential to be realized, coordinated effort372

is required with AI developers working to turn current technologies into robust applications and hearing373

scientists and clinicians ensuring both the availability of appropriate data for training and responsive clinical374

infrastructure to support rapid adoption.375

Transforming hearing healthcare will not be easy. Firstly, there are important ethical considerations regarding376

appropriate use of technologies, data privacy, and liability that have not yet been resolved7. Secondly, the377

inertia associated with the current service model is strong. The market for devices is highly concentrated, and378

excessive regulation and restricted distribution have protected incumbents and stifled innovation89,90. These379

problems have recently been recognized and action is being taken to reduce barriers and promote market380

disruption91. But additional efforts will be required to incentivize device manufacturers and service providers381

to enter underdeveloped markets in LMICs where the need is most urgent.382

We have also outlined ways in which AI could be applied beyond healthcare to play a critical part in future383

hearing research. Artificial networks that provide accurate models of auditory processing, with parallel384

computations across multiple timescales, integration of inputs from multiple modalities, and plasticity to385

adapt to internal and external changes have the potential to revolutionize the study of hearing. But to realize386

this potential, AI and hearing researchers must work together to coordinate experiments on artificial networks387

and the auditory system with the goal of identifying the aspects of structure and function that are most388

important.389

Ongoing collaboration between AI and hearing researchers would create a win-win situation for both390

communities and also help to ensure that new technologies are well matched to the needs of users92,93. The391

computational strategies implemented by the ear and brain evolved over many millennia under strong392

pressure to be highly effective and efficient. Thus, new AI tools modeled after the auditory system have the393

potential to be transformative not only for hearing, but also for other domains in which efficient and adaptive394

multi-scale, multi-modality, and multi-task capabilities are critical. This is not the first call for the AI and hearing395

communities to come together94, but, given the immense opportunities created by recent developments, we396

are hopeful that it will be the last.397
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Box 1 | Artificial intelligence to supporting multiple normals

Hearing healthcare is focused on treating deafness, but this outcome is not always feasible or even desirable. Not all people with

hearing loss view it as a problem to be fixed95. While AI can certainly transform restorative treatments for deafness, it’s impact

could be even larger for those who remain deaf. Much of the disability associated with deafness arises from the fact that hearing

is currently required for engagement in society. AI has the potential to bring about a new societal model with support for “multiple

normals,” in which alternative modes of engagement are readily available24.

Supporting informed decision making

The benefit that an individual receives from a CI can vary widely. Given that a CI also has

downsides -- significant upfront and ongoing costs, risks and complications associated with

surgery, continued dependence on associated support and services, etc. -- decisions about

whether to undergo implantation can be difficult. Accurate predictions of benefit would be

a great help; unfortunately, such predictions are not currently available. Attempts to

explain variation in CI outcomes through traditional approaches have been largely

unsuccessful77. But efforts to apply AI to the problem have produced promising initial

results.

In one recent study, a support vector machine classifier was used to predict improvements

in speech perception in children after implantation96. The inputs to the classifier were

morphological measures of neural preservation from MRI images in higher-level auditory

and cognitive regions. Based on these image data alone, the correlation between the

classifier prediction and the actual benefit observed 6 months after implantation

approached 0.5. With further development to build predictive models that fuse image data

with other measures of auditory structure and function (see Fig. 1) and other patient data,

much more accurate predictions may be possible.

Supporting hearing-optional communication

It is becoming increasingly easy to imagine a world in which deafness is not a disability, as

AI is already making many settings more inclusive. In higher education, for example, much

of the content is delivered as structured communication from teacher to students through

technology platforms on which accessibility features are now readily available; standard

software, such as Powerpoint, has the capacity to provide captions in multiple languages

in real-time during ongoing presentations. The recent switch to remote learning because

of COVID-19, which requires all communication between teachers and students to be

routed through technology platforms, provides an opportunity to make accessibility

features part of standard leaning models by default.

Supporting alternative modes of unstructured social communication is more challenging,

as many deaf people communicate through signed rather than spoken language. But

technologies for real-time automated translation can potentially bridge this gap. One

recent study demonstrated the potential for a glove-like device that tracks finger

movements to enable translation from American Sign Language to English 97. This

technology required the coordinated development of hardware that is comfortable,

durable, and flexible and associated software to classify signals from the device using support vector machines. Though the overall

accuracy of the system in this initial study was 98%, the vocabulary was limited to only 11 gestures, so much more work is needed

to enable use of the full complement of gestures as well as integration with facial and other movements. Applications based on

such technology have the potential to support natural communication not only between deaf and hearing people but also between

deaf people from different countries, each of which has its own unique signed language.

A brain image indicating areas (red
and green) where pre-implantation
morphology was predictive of CI
benefit, such as occipital and pre-
frontal cortices, and areas (blue)
that were impacted by deafness
but were not predictive of benefit,
such as primary auditory cortex.
Image from (Feng et al., 2018)
(permission requested).

A translation device with
stretchable sensor arrays on each
finger attached to a wireless circuit
board on the wrist. Image from
(Zhou et al., 2020) (permission
requested).



Figure legends607

Figure 1 | The auditory system and its disorders608

(a) The major processing stages of the auditory system. Sound that enters the ear canal causes vibrations of609

the ear drum. These vibrations are transmitted by the ossicle bones in the middle ear to the fluid-filled cochlea610

in the inner ear. Hair cells in the inner ear amplify and transduce motion of the cochlear fluid into electrical611

signals that are sent to the brain. These signals are processed by several specialized pathways in the brainstem612

and the resulting information is integrated in the cortex to produce a coherent auditory experience. Some of613

the key functions performed at each processing stage are indicated in the boxes. Image modified from98614

(permission requested). (b) Examples of objective measures used in hearing assessment. Each panel describes615

one measure and provides a schematic illustration of the associated results from a patient with (dark blue)616

and without (light blue) a hearing condition. Key differences are indicated by the arrows. (c) Examples of617

subjective measures used in hearing assessment. (d) Example of imaging used in hearing assessment.618

619

Figure 2 | Artificial intelligence for the hearing devices of the future620

(a) The key elements of future hearing devices. Current hearing devices use a microphone to pick up sound,621

which is amplified and filtered before being digitized for signal processing; the processing parameters are fixed622

after fitting by an audiologist; the processed digital signals are converted to either an analog signal delivered623

to a speaker in hearing aids (HAs) or an electrical signal delivered to electrodes in cochlear implants (CIs)624

(bottom-left insert). (b) Examples of how AI could transform the experience of a deaf person throughout their625

entire life. The boxes indicate the current state-of-the-art (Now) and the potential for improvement (With AI)626

in screening and diagnosis (left), devices and implantation (middle), and fitting and therapy (right).627



Table 1 | Top challenges for artificial intelligence in hearing

Each row provides summary information about a particular challenge, including its scale (the number of people

in need, in millions), whether or not the technology must replicate aspects of the auditory system, the current

Technology Readiness Level of potential AI-based solutions, and the key next steps to be taken.

(* Assuming only high-end devices; # Commercial AI-based technologies are available but efficacy is unknown)

Challenge Summary Scale (M) Auditory TRL Next steps See

1
Treatment of
middle ear
conditions

Identification of condition from
ear drum images; prediction of
disease/treatment course from
disparate data

>100 No 3-413,#

Build products;
collect big data

Fig 1

2
Automated
audiogram
measurement

Inference of hearing thresholds
from subjective measures

> 100 No
319,20 (AI-led)
921 (self-led)

Build products;
increase
robustness

Fig 1

3
Automated
fitting of hearing
devices

Inference of optimal device
settings from objective and
subjective measures

10-100 No 3-423,99,#

Build products;
gain users Fig 2

4
Speech
denoising for
hearing devices

Amplification of sound of
interest and suppression of
background noise

10-100
Function
only

3-437,38,#

Build products;
increase
flexibility

Fig 2

5
Cognitive
control for
hearing devices

Inference of sound of interest
from measurements of brain
activity

1-10*
Function
only

3-441

Build practical
systems Fig 2

6
Multi-modal
integration (AR)
for devices

Fusion of information from
different modalities to enhance
perception

1-10*
Function
only

2-348

Build practical
systems Fig 2

7
Treatment of
profound
deafness

Identification of condition from
disparate data; prediction of
disease/treatment course from
disparate data

1-10 No 2-396

More research;
collect big data

Box 1

8
Automated
translation of
signed language

Inference of intended meaning
from motion and image data

1-10
Function
only

2-397,#

Build practical
systems Box 1

9
Treatment of
tinnitus

Identification of reliable
biomarkers or other objective
measures / understanding of
fundamental problem

10-100
No;
Structure
& function

1-255,56

More research;
collect big data

10
Artificial
auditory
systems

Development of models that
match both the structure and
function of the auditory system

?
Structure
& function

8-9100 (ear)
1-2 (brain)

More research


