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Abstract

This paper studies a formalisation of intuitionistic logic by Negri and von Plato which
has general introduction and elimination rules. The philosophical importance of the
system is expounded. Definitions of ‘maximal formula’, ‘segment’ and ‘maximal seg-
ment’ suitable to the system are formulated and corresponding reduction procedures
for maximal formulas and permutative reduction procedures for maximal segments
given. Alternatives to the main method used are also considered. It is shown that
deductions in the system convert into normal form and that deductions in normal form
have the subformula property.

Keywords Intuitionistic logic - Proof theory - Normalisation - General elimination
rules - General introduction rules - Harmony - Stability

1 Introduction

According to inferentialist semantics for the logical constants, the rules governing such
an expression define its meaning, if those rules satisfy certain criteria. The view stems
ultimately from Gentzen (1934, §5.13, p. 189) and has received profound scrutiny
and development in the hands of Dummett (1978, 1993), Prawitz (1965, 1971, 2006,
2007) and Schroeder-Heister (2018). There are intricate questions regarding the precise
nature of these criteria and which logics may or may not fulfil them, for which I am
here merely going to refer the reader to the quoted literature and references therein.!
The purpose of the present paper is not to contribute to their development or critique.
In the light of its heritage and the vast literature ensuing its conception, an author
is justified in taking for granted that inferentialist semantics for the logical constants

1 For a brief overview with a focus on Dummett and Prawitz, see Kiirbis (2015a).
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is a topic worth exploring without needing to establish its foundations from scratch.
I will here only rely on two aspects of the criteria that rules ought to satisfy that
are generally agreed upon: (a) that there must be a certain balance, called, following
Dummett, harmony, between the grounds for deriving a complex formula by one of the
introduction rules for its main operator and the consequences of using such a formula
as the major premise of an elimination rule; (b) that deductions in a formalisation
of logic in natural deduction ought to be subject to a normalisation theorem which
establishes that any formula that is the conclusion of an introduction rule and major
premise of an elimination rule (for its main connective); may be removed from a
deduction. (b) is generally regarded as a necessary condition for (a). A little more
precisely, a deduction is in normal form if (i) it contains no maximal formula, that
is a formula that is the conclusion of an introduction rule and the major premise of
an elimination rule (for its main connective); and (ii) no maximal segment, that is a
sequence of formulas of the same shape arising from the applications of certain rules
the last of which is major premise of an elimination rule.” The normalisation theorem
for a system establishes that any deduction in it can be transformed into a deduction
in normal form. A deduction has the subformula property iff any formula that occurs
on it is a subformula of either an undischarged assumption or of the conclusion. If
deductions in normal form have the subformula property, then for every deduction in
the system, there is one with the subformula property. Details and precise definitions
to follow in due course. The present paper proves a normalisation theorem for a system
of intuitionistic logic by Negri and von Plato (2001, p. 216f) that captures aspect (a)
of inferentialist semantics for the logical constants particularly neatly. It also satisfies
aspect (b). Negri and von Plato do not prove normalisation for their system directly,
but observe that it follows by translation into sequent calculus, a special case of a cut
elimination theorem proved for a system of multiple conclusion sequent calculus by
restriction to single conclusions, and translation back into natural deduction (Negri and
von Plato 2001, p. 215). The subformula property follows therefrom. The contribution
of the present paper is to provide a direct proof of normalisation for their system,
which raises interesting issues and requires new techniques. Major consequences of
normalisation, such as the subformula property and consistency, are also drawn.
Negri and von Plato’s system has some quite original features. The introduction
rules for a connective * are formulated in terms of the discharge of assumptions of the
form A x B, and every rule of the system is one that allows the derivation of an arbitrary
formula from side-deductions of that formula and some further premises, as is the case
with disjunction elimination in Gentzen’s system. The difference between introduction

21 will, as best as readability allows, distinguish occurrences of formulas in deductions from a more abstract
notion of formula that applies to formulas of the same shape or form, as it is customary to say. The latter
could also be referred to as formula types, the former as their tokens. For brevity, by ‘formula’ I often mean
an occurrence of a formula, but I will be explicit about the distinction where this aids understanding. There
are also schematic formulas and their instances, which may or may not be formulas of the same shape, by
which the general statement of a rule of inference is distinguished from its application in a deduction: the
former uses schematic formulas and specifies the common form of all its instances, the latter have formula
occurrences as their premises and conclusions and are used in the construction of deductions. I will thus
speak of rules as well as of their applications, but for the sake of brevity by ‘rule’ I will often mean an
application of a rule. This clarification and the ensuing greater precision in the use of terminology was
added at the request of previous readers of this paper.
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and elimination rules lies in whether a formula with the connective governed by the
rules as main operator is discharged above a side-deduction required for an application
of the rule or whether such a formula is a premise of the rule.

Deductions in Gentzen’s formalisation of intuitionistic logic in natural deduction
can be brought into normal form and these deductions have the subformula property.
This was shown by Prawitz (1965, Ch. IV).3 Normalisation is a subtle process, and
changing any rules in a system immediately raises the question whether both properties
still hold for deductions after the modification.

The present paper answers this question in the positive for Negri’s and von Plato’s
formalisation of intuitionistic logic. To do so it is necessary to adjust the defini-
tion of ‘maximal formula’, ‘segment’ and ‘maximal segment’ given by Prawitz, and
accordingly to reformulate the reduction procedures to remove maximal formulas and
maximal segments from deductions. This is new to the literature. The discussion in
the main part of the paper is restricted to propositional logic. The conclusion consid-
ers suitable rules for the universal and existential quantifiers and equality, some of
which are also new, and gives reduction procedures for maximal formulas with these
expressions as main operators.

2 General elimination and introduction rules: philosophical
considerations

Gentzen initially considers introduction and elimination rules for a primitive negation
operator (Gentzen 1934, p. 186), but then observes that, as —A can be defined as
A D 1, they may be omitted (Gentzen 1934, p. 189). The result is the system studied
by Prawitz (1965, Ch. IV):

N7 A B N AANB AAB
) AAB ) A B
[A]
IT
. B . ~ ADB A
DI 7ADB i DE: — 5
[AY [B]
IT =
v A B VE: AV B C C ;
" AVB AV B ’ C
S
1E: C

3 Von Plato has edited previously unpublished material of Gentzen’s that shows that he had also proved
these results for intuitionistic logic. See von Plato (2008, 2017). A referee points out that Raggio published
normalisation theorems for Gentzen’s systems around the same time as Prawitz and remarked that ‘Gentzen
has certainly had proofs’ (Raggio 1965, p. 91) of these results. Raggio’s proof uses an interesting technique
different from the one by now well known through the work of Prawitz. His normal form theorem is also
a little different from Prawitz’s. Raggio’s method removes all segments that end in the major premise of
an elimination rule at once, if a/l their first formulas are concluded by an introduction rule or LE (not
restricted to atomic formulas).
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The elimination rules exhibit a certain discrepancy. The conclusions of applications
of VE and LE can be any formula, whereas the conclusions of AE and D E are
subformulas of A A B and A D B.

The elimination rules for v and L do indeed belong in the same class: applying VE
requires two side-deductions, which also provide the conclusion of the rule, in which
assumptions are discharged that are proper subformulas of the major premise A V B.
L has no proper subformulas, and correspondingly its elimination rule requires no
side-deductions.*

The discrepancy is eradicated in systems of natural deduction with general elimi-
nation rules (von Plato 2001), which have alternative elimination rules for A and D
that are in the same class as those for Vv and L:

[AT, [BY [BY
IT IT
NE- AAB . C . SE- ADB CA c .

From now on, the labels ‘AE’ and ‘DE’ refer to these two rules.

Harmony between the introduction and elimination rules governing a logical con-
stant % consists in a certain balance between the grounds for deriving a formula with
as main operator as specified by its introduction rules and the consequences that may
be derived from such a formula as specified by its elimination rules. Harmony has two
aspects. One is that the grounds for deriving A * B as specified by x/ are balanced
by its consequences as specified by % E; the other that the consequences of A x B as
specified by % E are balanced by its grounds as specified by /.

Negri and von Plato explain that general elimination rules capture the thought that
everything that follows from the grounds for deriving a formula A % B follows from
A x B. They name the following principle after a comparable one put forward by
Prawitz (1965, p. 33f):

Inversion Principle Whatever follows from the direct grounds for deriving a propo-
sition must follow from that proposition (Negri and von Plato 2001, p. 6ff).

In other words, all the consequences of the grounds of A x B are consequences of
A x B. Here the consequences of a proposition are consequences of that proposition
together with any minor premises, as in the case of DF and VE.

General elimination rules thus capture one aspect of harmony. What about the other
aspect? We should expect it to be captured by a converse of this inversion principle:
everything that follows from A x B follows from the direct grounds for deriving A x B;
all the consequences of A x B are consequences of the grounds of A x B. By analogy,
this should be captured by the introduction rules for . But it is not immediate how
Gentzen’s rules might do so.

It is, however, immediate for Negri’s and von Plato’s general introduction rules
(Negri and von Plato 2001, p. 217), which have the rather original feature that, instead
of introducing formulas with a connective * as main operator as the conclusion of the
rule, they permit discharge of assumptions of that form:

4 See Kiirbis (2019b, Ch. 2.8) for further discussion of the classification of these rules.
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[A A BY [A] [A D B}
I b I1
VB A BC ¢ i BIE % i
[AV BT [AV BY
I I
vi: 4 C i B C i
: Cc C

From now on, the labels A7, DI and VI refer to these rules. They conform exactly to
a converse of the inversion principle just quoted:

Converse Inversion Principle Whatever follows from a proposition must follow from
the direct grounds for deriving that proposition.

Milne, another major figure in inferentialist semantics, concurs, albeit that he prefers
classical over intuitionistic logic (Milne 2015): he, too, proposes general introduction
rules to capture harmony after having found the usual introduction rules stemming from
Gentzen wanting in the light of considerations regarding the inversion principles.’

General introduction and elimination rules, Negri and von Plato point out, exhibit
a ‘perfect symmetry’, captured in the following principle:

General introduction rules state that if a formula C follows from a formula A, then
it already follows from the immediate grounds for A; general elimination rules state
that if C follows from the immediate grounds for A, then it already follows from A
(Negri and von Plato 2001, p. 217).

A system in which general elimination rules are paired with general introduction rules
thus has a good claim on capturing harmony and its converse, a requirement Dum-
mett calls stability (Dummett 1993, Ch. 13). According to Dummett, stability between
introduction and elimination rules is a necessary condition for those rules to define
the meaning of the logical constant they govern. Negri and von Plato’s system is thus
of some philosophical importance: it arguably captures stability between introduction
and elimination rules more accurately than Gentzen’s and Prawitz’s systems of intu-
itionistic logic and consequently the systems around which inferentialist semantics
has centred. Critics of harmony, therefore, had better look at the present system.
Negri and von Plato’s system will be defined precisely in the next section.
Gentzen’s introduction and elimination rules for intuitionistic logic are easily derived

6

5 Milne formalised a system of classical logic with general introduction and elimination rules in which for
every valid deduction, there is one with the subformula property (Milne 2010). This is rather unusual and a
result of great importance. However, as my current purpose is not to adjudicate between classical and intu-
itionistic logic, I set Milne’s system aside and focus on the logic favoured by Dummett and Prawitz. Milne’s
proof is model theoretic and not constructive. I establish his result proof-theoretically and constructively
by means of normalisation in Kiirbis (2021), which can be read as a companion piece to the present paper.
For the history of inversion principles, see Moriconi and Tesconi (2008).

6 Itis an intuitionistic version of Pari got’s classical system of free deduction when written in natural deduc-
tion style (Parigot 1992). The latter is a system of multiple conclusion sequent calculus. The present system
results if Parigot’s pair of right conjunction rules are replaced by a single rule variant, the primitive negation
rules are replaced by a suitable rule for L, the multiple conclusions are restricted to single conclusions in
the most obvious way, and the result is transposed to the framework of natural deduction used here. This
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from the general introduction and elimination rules (see below, p.12). Conversely, the
general introduction and elimination rules are easily derived from Gentzen’s rules.
Thus it is a formalisation of intuitionistic propositional logic.

Remark 1. Primitive Negation. The following is a pair of general introduction and
elimination rules for a primitive negation operator:

(AT (AT [-AT

I1 > B
. B - B C . —A A
= C i —-E: —c

A familiar introduction rule for negation is derivable from —1I by letting C be —A and
E empty, that is discharging —A straight after assuming it.

Notice that —F does indeed have the form of a general elimination rule. This can be
seen by returning to treating —A as A D L and replacing L for B in DE. As everything
follows from L, a side-deduction showing that the conclusion of the application of
the rule follows from _L is redundant. Analogously, treating — as primitive again, —E
could be supplemented by a side-deduction of C from two formulas B and —B, which
is redundant for the same reason (make use of the option of discharging only one
assumption of the side-deduction and chose it to be identical to the conclusion: this
derives the rule —E above). These rules, however, are less satisfactory than those for
the other connectives, as negation occurs in a premise of the introduction rule. This is
often considered to be a shortcoming if rules are intended to define the meaning of a
connective they govern, and for this reason it is preferable to define negation in terms
of implication and falsum.”

Remark 2. Verum. Dual to the falsum constant L is the verum constant T. Its general
introduction rule allows its discharge at any moment in the deduction:

i

=T

aQ

T has no elimination rule.

Remark 3. Classical Logic. Prawitz’s formalisation of classical logic consists of
Gentzen’s rules for A and D augmented by classical reductio ad absurdum:
[~PT
I

i

where P is an atomic formula.

method is slightly simpler than the method by which Parigot constructs a more familiar version of natural
deduction in sequent calculus style for classical logic from free deduction (Parigot 1992, p. 368).

7 For reflections on whether the meaning of negation is adequately defined by its usual rules, see Kiirbis
(2015b). For an approach that justifies the negation of minimal logic, see Kiirbis (2019a).
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The presence of this rule necessitates a restriction of the subformula property of
deductions in normal form: allowance must be made for assumptions of the form
— P that are discharged by classical reductio ad absurdum and formulas L concluded
from them (Prawitz 1965, p. 42). Siders and von Plato prove a similar result for the full
system of classical logic with general elimination rules (von Plato and Siders 2012).8

3 Intuitionistic propositional logic

This section contains a more precise characterisation of the system I of intuitionis-
tic logic with general introduction and elimination rules.® The following section is
the main section of this paper with the proof of the normalisation theorem and its
corollaries.

The definition of the language of I is standard.

Definition 1 (Connective, Atomic Formula, Degree of a Formula) 1., D, A and V are
the connectives. An atomic formula is one that contains no connective. The degree of
a formula is the number of connectives occurring in it.

L, being a connective, is not an atomic formula, but a formula of degree 1.

Deductions in I have the familiar tree shape, with the (discharged or undischarged)
assumptions at the top-most nodes or leaves and the conclusion at the bottom-most
node or root. The conclusion of a deduction is said to depend on the undischarged
assumptions of the deduction. Similar terminology is applied to subdeductions of
deductions.

Assumptions are assigned assumption classes, (at most) one for each assumption,
marked by a natural number, different numbers for different assumption classes. For-
mula occurrences of different types!? must belong to different assumption classes.
Formula occurrences of the same type may, but do not have to, belong to the same
assumption class. Discharge of assumptions is marked by a square bracket around the
formula: [A]’, i being the assumption class to which A belongs, with the same label
also occurring at the application of the rule at which the assumption is discharged.
Assumptions classes are chosen in such a way that if one assumption of an assumption
class is discharged by an application of a rule, then it discharges all assumptions in that
assumption class. Empty assumption classes are permitted: they are used in vacuous
discharge, when a rule that allows for the discharge of assumptions is applied with no
assumptions being discharged.

Upper case Greek letters X, I, E, possibly with subscripts or superscripts, denote
deductions. Often some of the assumptions and the conclusion of the deduction are
mentioned explicitly at the top and bottom of X, I, E. Using the same designation

8 In Milne’s a system of classical logic, for every valid deduction, there is one with the unrestricted
subformula property. In the light of the necessity to restrict the subformula property in other formulations
of classical logic, this is a remarkable result, but, for reasons given in footnote 5, I will not investigate it
any further here.

9 The definition of deductions in I follows the format used by Troelstra and Schwichtenberg (2000, Sec.
2.1.1).

10 See footnote 2.
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more than once to denote subdeductions of a deduction means that these subdeductions
are exact duplicates of each other apart from, possibly, the labels of the assumption
classes: the deductions have the same structure and at every node formulas of the same
type are premises and conclusions of applications of the same rules.

Definition 2 (Deduction in I)

(1) The formula occurrence A is a deduction in I of A from the undischarged assump-
tion A.

(i) If X, I, E are deductions in I, then following are deductions of C in I from the
undischarged assumptions in X, I1, E apart from those in the assumption classes
i and j, which are discharged:

[A A BY [A) [BY

> I = > I

A BC C NT ANB - C NE i
[A] [A D B} [B]

> I1 I1 > =

B - C S1il ADB CA C SE

[AV BY [AV BY [AY [B)
> I1 > I1 b I1 =
714 C ¢ vIi 73 C ¢ \ ) AvB CC c VE i,j
I
% LE

(iii) Nothing else is a deduction in L.

We can suppress the label indicating the rule applied, but the labels indicating discharge
must always be present.

We may think of assumption classes as being assigned to formulas during the course
of the construction of a deduction to mark the discharge of assumptions. Then the con-
struction of deductions according to the definition leaves some assumptions without
assumption classes in the completed deduction. We can assign them assumption classes
afterwards. ' To record from which assumptions a conclusion has been derived, it then

1 Troestra and Schwichtenberg write that assumptions ‘are supposed to be labeled by markers’ (Troestra
and Schwichtenberg 2000, p. 36) for assumption classes. We cannot decide at the outset which assumptions
are discharged at which point during the construction of the deduction. But we can decide which ones are
discharged by which application of a rule. I am grateful to a referee for pointing out errors in a previous
attempt at defining deductions and consequence and suggestions for how to rectify them. Notice that if
assumption classes are assigned to undischarged assumptions of completed deductions, then combining such
deductions to form a new one requires deleting those labels for assumption classes. Similarly, applying the
reduction procedures of the next section requires deleting square brackets enclosing discharged assumptions
and their labels.
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suffices to list the assumption classes to which the undischarged assumptions of the
deduction belong. This will be a multiset. We can write I -1 A if there is a deduction
in I of (the formula occurrence) A from (occurrences of) some of the formulas in I".12

The premise A of DFE and C in all three elimination rules are normally called the
minor premises, but in the current system it is useful to have terminology that allows
to distinguish them.

Definition 3 (Terminology for Premises and Discharged Assumptions)

(i) In applications of the elimination rules, formula occurrences taking the places of
AANB,A D B, AV Band 1l to the very left above the line are the major premises;
formula occurrences taking the places of C to their right are the arbitrary premises,
and a formula occurrence taking the place of A inbetween in an application of DF
is the minor premise.

(i1) In applications of the introduction rules, formula occurrences taking the places
of A and B to the very left above the line are the specific premises, and those
taking the place of C to their right are the arbitrary premises; formula occurrences
taking the places of the discharged assumptions A D B, AV B and A A B are the
major assumptions discharged by applications of the respective rules, and those
taking the place of the discharged assumptions A in DI are the minor assumptions
discharged by applications of that rule.

Vacuous discharge happens when no assumption is discharged above an arbitrary
premise or above the specific premise of D/. The latter is sometimes necessary, but
the former is always superfluous: Instead of applying the rule, we might as well go
on with the deduction straight from the arbitrary premise. In AE, it is of course often
necessary to make use of the option of discharging only one assumption.

Applications of rules with vacuous discharge above arbitrary premises can be
removed from deductions by what is often called simplification conversions.'> As
these procedures are obvious, I will give no details here. In the following, I will
assume that any deduction is cleaned up so as to contain no vacuous discharge above
arbitrary premises: vacuous discharge above arbitrary premises is banned. In particu-
lar, I will assume that this is done should vacuous discharge above an arbitrary premise
arise as a result of the conversions of deductions that remove maximal formulas, to be
given in the next section. '

L E can be restricted to atomic conclusions. The proof is by an induction over the
degree of formulas and the following transformations, replacing the steps to the left
of ~~ by those to its right:

12 Structural rules for F follow: thinning by adding empty assumption classes of formulas, or splitting
one assumption class into two, if it concerns formulas of the same type, contraction by relabelling two
assumption classes with one of their labels.

13 See, e.g., Troelstra and Schwichtenberg (2000, p. 181).

14 7t is worth remarking that this cannot happen in Milne’s formalisation of classical logic, where vacuous
discharged may be banned altogether.
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- A B [AA B!
AANB B
1
1 A 1
- ~ A [A Vv B]
AV B VB vI 1
1
1 o 1
_ ~ B [A D B]
ADB 158 oI 1

Obviously a step that concludes L from L by _LE is superfluous. From now on it is
assumed that any application of L E has an atomic conclusion.

4 Normalisation for |

We begin by defining the notion of a maximal formula in a way that is suitable for the
rules of the system I:

Definition 4 (Maximal Formula) A maximal formula with main operator * in a deduc-
tion in I is an occurrence of a formula A % B that is the major premise of an application
of xE and the major assumption discharged by an application of /.

Reduction procedures for maximal formulas

Maximal formulas are removed from deductions by applying the following reduction
procedures for maximal formulas, where T1, ¥ above [A], [B] indicate that these
deductions are used to conclude each formula occurrence in the assumption class to
which A, B belong (assumption class markers and square brackets are deleted). I will
call the deduction to which a reduction procedure is applied the initial deduction and
the result of the conversion the reduced deduction.

1. The maximal formula has the form A A B. Convert the deduction on the left into
the deduction on the right:

[A) [B)Y 2 X
IT; [A][B]
[A A BJ c Iy
C Sl c
2 p)3 Iy 2 p3)) Iy
A B D ‘ A B D r
D D

If assumption class k contains only one formula (that is, the maximal formula removed
by the procedure), then the final step by A/ in the deduction to the right is omitted:
in this case, the reduction procedure consists in replacing the deduction on the left
only by the deduction that concludes D by I1, from X1, ¥, through IT; (that is, by
the subdeduction concluding the arbitrary premise of Al on the right). The purpose
of the final application of A in the reduced deduction is to ensure that any other
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formulas in assumption class k remain discharged after the application of the reduction
procedure. If only the displayed maximal formula is in k, this purpose is not fulfilled
and the application of A7 introduces vacuous discharge; hence we omit it. Notice that
applying the reduction procedure cannot introduce any new maximal formulas into the
deduction. It can only introduce new maximal segments. More on this below, before
the proof of the normalisation theorem. '

2. The maximal formula has the form A O B. Convert the deduction on the left into
the deduction on the right:

—— Jk

As in the previous case, if assumption class k contains only one formula (that is,
the maximal formula removed by the procedure), then the final step by D7 in the
deduction to the right is omitted. Furthermore, in case DI was applied with vacuous
discharge above its specific premise, the conversion may introduce applications of
rules with vacuous discharge above arbitrary premises. This happens if an assumption
in Iy is discharged above an arbitrary premise of a rule in IT3. It is assumed that these
are removed as part of the reduction procedure. Notice that applying this reduction
procedure, too, cannot introduce any new maximal formulas into the deduction, and
can only introduce new maximal segments.

3. The maximal formula has the form A v B. Convert the deduction on the left into
the deduction on the right:

[AY [B) Z

I I, [A]

[Av BIf C c I

C R c

P I3 P I3

A D A D
D k D k

As in the two previous case, if assumption class k contains only one formula (that is, the
maximal formula removed by the procedure), then the final step by VI in the deduction
to the right is omitted, and applying this reduction procedure, too, cannot introduce
any new maximal formulas into the deduction and can only introduce new maximal

5 A suggestion by a referee lead to an improvement in the description of the reduction procedure.
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segments. Similarly for the case where the specific premise of VI is B concluded by
.

This completes the reduction procedures for maximal formulas.

Alternative procedures

It is worth mentioning some other ways of dealing with the fact that the application
of %I that gives rise to maximal formulas A % B may discharge more formulas than
the maximal formulas above the arbitrary premise D in the deductions marked by
1y, IT,, I13. The following gives three alternatives, each of which avoids the final
step by */ to discharge those open assumptions in the reduced deduction.

1. One alternative would be to add deductions of A * B wherever there is such an
assumption, using X1, X to conclude the specific premises of /. These deductions
also demonstrate how to derive the usual introduction rules for A, Vv, D from the
general introduction rules:

i
21 ) [g] 2
A B [AAB] ! ; A [Av Bl
ANB l B (45 B] i,j AV B '

ADB

Doing so only generates new maximal formulas in case A * B was a maximal formula
in the initial deduction and thus does not increase the number of maximal formulas in
the reduced deduction.

II. A second solution employs the fact that applications of introduction rules may be
restricted to discharge only one occurrence of a formula. Suppose, for instance, one
wanted to discharge n formula occurrences of the type A Vv B by an application of VI:

[AV B],[AVB]...[AV B}

)y I1
A C
C

Then instead of making this one application of v/, one can apply it n times:

i

[AV B]',[AV BJ>...[AV B]"

by A C

1
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The cases for the other connectives are similar. There are two options for implementing
this strategy: the restriction may be made either as part of the construction of deduc-
tions, or any deduction to be normalised is first transformed into one that satisfies
the restriction before the reduction procedures are applied. Either option works, as the
system with the unrestricted introduction rules and the system with their restricted ver-
sions are evidently equivalent. Obviously any application of a restricted introduction
rule is also a correct application of the unrestricted version, and the converse holds in
virtue of the following:

Proposition Any deduction can be transformed into one in which every application
of a general introduction rule discharges exactly one major assumption.

Proof By the ban on vacuous discharge above arbitrary premises, the transforma-
tions indicated above and an induction over a suitable measure of the complexity of
deductions, e.g. the number of applications of introduction rules discharging multi-
ple formula occurrences of highest degree in a deduction. Take such an application
such that no other such application stands above it in the deduction. Applying the
transformation reduces the measure. O

In the light of this proposition one could implement what may be called the unique
discharge convention on introduction rules: every application of an introduction rule
for x discharges exactly one formula occurrence of the form A * B. This has some
advantages. The conclusion of an application of an introduction rule in Gentzen’s
system obviously occurs exactly once in a deduction, so if the unique discharge con-
vention is upheld, there is a straightforward correspondence between deductions in
Gentzen’s system with the general elimination rule for D and in the present system
with general introduction rules.'® However, it also has disadvantages, as it is fair to
say that upholding the unique discharge assumption destroys the most striking fea-
tures of general introduction rules. Be that as it may, any sequence of applications of
introduction rules as in the example above can be collapsed into one application, so
one could, after maximal formulas have been removed from a deduction satisfying the
unique discharge convention, also simplify it again in that respect, thereby restoring
the characteristic and original features of general introduction rules.

III. The third, and most interesting, alternative strategy is based on the observation
that if an application of %/ gives rise to more than one maximal formula, then they
may all be removed at once by a reduction procedure which simultaneously concludes
formulas of the form A * B discharged by =/ that are not maximal by the deductions
given in the first alternative strategy.

16 1t is for this reason that the unique discharge convention is appealed to in Kiirbis (2021): it permits an
easy transposition of Milne’s system into a more standard system of classical logic with the subformula
property. The alternative reduction procedures for removing maximal formulas from deductions in I used
here could also be adapted to Milne’s system.
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1. The maximal formula has the form A A B. Convert the deduction on the left into
the deduction on the right:

[A] [BY SIFED N

. I [A] [B]
[A A B] C i I
c ~ c
2 p3y) I, m
A B D, 2
D D

where if there is only one formula in assumption class &, then IT; = I1; and IT} = I»,
and if there is more than one formula, then IT}, IT} are obtained from ITy, I in the
following way:

(a) for formulas A A B in assumption class k that are maximal: delete the application
of AE that has the formula as major premise as in the pattern displayed above, by
moving directly from the rule that concludes its arbitrary premise to the rule applied to
its conclusion and concluding all assumptions A, B discharged by this rule by X1, 3».
(b) for formulas A A B in assumption class k that are not maximal: conclude them by
the derivation of the first strategy displayed on p.12 using X, 3.

Notice that, as in our ‘official’ reduction procedure for maximal formulas of the form
A A B, applying the alternative procedure cannot introduce any new maximal formulas
into the deduction. It may introduce new maximal segments, but the comments to be
made in due course on this possibility in relation to the official procedure apply here,
too.

2. The maximal formula has the form A O B. Convert the deduction on the left into
the deduction on the right:

: Iy
[B] [A]
Ty I >
[A D B A c (B]
13
C
Jk I
D

where IT7}, IT3, TT5 are analogous to the previous case: if k contains only one formula,
they are identical to I1y, I, [13, otherwise they are obtained by deleting applica-
tions of DI discharging maximal formulas in k, concluding assumptions B becoming
undischarged by I1;, ¥; as in the pattern displayed, and concluding all others by the
relevant deduction of the first strategy. Further comments on vacuous discharge and
new maximal formulas and segments apply as usual.

3. The maximal formula has the form A v B. Convert the deduction on the left into
the deduction on the right:
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[AY [BY bF
I [Ty [A]
[AV BIf C c I
L,
C o .
El H3 H;
A D
k D

with IT}, I3 constructed analogously to the previous cases. Further comments apply
here, too. Similarly for the case where the premise of VI is B concluded by X.
This completes the discussion of alternatives.

Applications of general introduction and elimination rules require deductions of arbi-
trary premises C which also provide the conclusion of the application of the rule. They
form part of sequences of formula occurrences of the same shape:!’

Definition 5 (Segment) A segment is a sequence of formula occurrences Cj ... C, of
the same shape in a deduction such thatn > 1, foralli < n, C; is an arbitrary premise
of an application of a rule and C; 4 is its conclusion, and C,, is not an arbitrary premise
of an application of a rule.

The length of a segment is the number of formula occurrences of which it consists, its
degree the degree of any such formula. As C; ... C, are all of the same shape, I will
speak of the formula (as a type) constituting the segment.

Observation A consequence of the ban on vacuous discharge above arbitrary premises
is that the first formula of a segment is an arbitrary premise discharged by an introduc-
tion rule, the conclusion of which is the second formula of the segment. The major,
minor and specific premises of rules are either assumptions or the last formulas of
segments.

Definition 6 (Maximal Segment) A maximal segment is a segment the last formula of
which is the major premise of an elimination rule.

Maximal segments are removed from deductions by permutative reduction procedures.
Of these there are 24 in total, as the major premises of DE, VE, AE and LE can be
derived by six rules (i.e. as the conclusions of the introduction and elimination rules
for D, v and A). I will only give some of the cases for DE and L E as examples, the
others being similar.

1. The major premise of DE is derived by V1. Convert the deduction on the left into
the deduction on the right:

[AV B . [AV B] (D)
I, I, [DV I, ] P
A C>D X pI}) ~ I C>D C E |
co-bD ' ¢ E A E !
E ! E :

17 See footnote 1.
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2. The major premise of DE is derived by DI. Convert the deduction on the left into
the deduction on the right:

[A] [ADBY [A D BYY [DI*
Iy I, [D]k [A]i I, pI} p3)
B CDDI.’]_ Py Py} ~ Iy C>D C E
CD>D C E ‘ B E i
E E ’

3. The major premise of DE is derived by AE. Convert the deduction on the left into
the deduction on the right:

[AY [B) [AY [B)Y [D}
n, 1, [D]¥ M ¥
A/\BCDDI_’].Zlﬁz ~ Iih ¢cobD C Ek
C>OD C E . AANB E i
E E

4. The major premise of L E has been derived by AI. Convert the deduction on the
left into the deduction on the right:

[A A B} [A A BY
ITy Il )y by
A B 1 ~ I I, 1L
1 ' A B E
E E

5. The major premise of L E has been derived by Vv E. Convert the deduction on the
left into the deduction on the right:

[AY (B} [AY (B)
I1 Py p3y) pof P
AV B il L., mn L 1
1 ’ AV B E E ..
E E '

The other 19 permutative reduction procedures pose no further complications.

Definition 7 (Normal Form) A deduction is in normal form if it contains neither max-
imal formulas nor maximal segments.

Repeated application of a permutative reduction procedure reduces the length of a max-
imal segment by permuting applications of elimination rules upwards in the deduction.
As observed earlier, the first formula of a segment can only be one discharged by an
introduction rule, and so repeated application of a permutative reduction procedure
turns a maximal segment into a maximal formula. At the top of every maximal segment,
there stands a maximal formula, so to speak.

Definition 8 (Rank of Deductions) The rank of a deduction IT is the pair (d, [), where
d is the highest degree of a maximal formula or maximal segment in IT or O if there
is none, and / is the sum of the sum of the lengths of maximal segments of highest
degree and the number of maximal formulas in I1. (d, I) < (d’,l’) iff either (i) d < d’
or(ii)d =d and] < '.
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Applying reduction procedures for maximal formulas cannot introduce new maximal
formulas into the reduced deduction, but it may increase the lengths of maximal
segments that were in the initial deduction.!® In the case of maximal formulas of form
A A B, this can happen if ¥ concludes A or ¥, concludes B with an elimination
rule and some formula occurrence in the assumption class to which the formulas
discharged by AE belong is the major premise of an elimination rule in IT;. In the
case of maximal formulas of the form A D B, this can happen if £ concludes B with
an elimination rule and some formula occurrence in the assumption class to which
the formulas discharged by D E belong is the major premise of an elimination rule
in Iy, or if IT; concludes A with an elimination rule and some formula occurrence
in the assumption class to which the minor assumptions discharged by D/ belong is
the major premise of an elimination rule in . Similarly for maximal formulas of the
form A v B.

Any maximal segment that suffers an increase in length as a result of a reduction
procedure is, however, of lower degree than the maximal formula removed, as the
formulas that constitute the segment are subformulas of the latter. Hence applying a
reduction procedure for maximal formulas cannot increase the rank of a deduction.

Applying a permutative reduction procedures cannot introduce new maximal seg-
ments into the reduced deduction, but it may increase the lengths of maximal segments
that were in the initial deduction. In examples 1-3 above, this would happen if E is
part of a maximal segment.'® To ensure all maximal segments are removed from a
deduction, the permutative reduction procedures must be applied with a strategy.

Say that a deduction that already is in normal form can be converted into itself.
Then we have the following:

Theorem 1 Any deduction in I can be converted into a deduction in normal form.

Proof The theorem follows by the considerations of the paragraphs immediately pre-
ceding the theorem and an induction over the rank of deductions. Applying reduction
procedures for maximal formulas cannot increase the rank of a deduction, and as a
maximal formula is removed, applying a reduction procedure to a maximal formula
of highest degree decreases the rank of the deduction. Permutative reduction proce-
dures must be applied so as to avoid an increase of the lengths of segments of highest
degree. This can be achieved by applying one to a maximal segment of highest degree
such that no maximal segment of highest degree stands above it in the deduction. This
reduces the rank of the deduction. O

Corollary 1 IfT" by A, then there is a deduction in normal form with an occurrence of
A as the conclusion and occurrences of some of the formulas in I as the undischarged
assumptions.

Proof Immediate from Theorem 1. |

If there is a deduction of C from assumptions Aj ... A, then the deduction in normal
form into which it converts may retain only some of these assumptions: applying the

18 The alternative reduction procedures may, incidentally, shorten maximal segments, namely if C or D
form part of one.

19 1t cannot happen in examples 4 and 5, as L E is restricted to atomic conclusions.
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reduction procedures for maximal formulas of the form A O B removes the deduction
of the minor premises of DE, if DI discharges vacuously above the specific premise.2’

Theorem 2 If 11 is a deduction in normal form, then all major premises of elimination
rules are (discharged or undischarged) assumptions of T1.

Proof By the form of deductions in normal form, as a result of the permutative reduc-
tion procedures. O

Definition 9 (Branch) A branch in a deduction is a sequence of formula occurrences
o1 ...0, such that o1 is an assumption of the deduction that is neither discharged by
an elimination rule nor the major assumption discharged by an introduction rule, oy, is
either the conclusion of the deduction or the minor premise of DFE, and foreachn > i:
if o; is the major premise of an elimination rule other than L E, 0;4 is an assumption
discharged by it, and if it is the major premise of LE, o;4 is the conclusion of the
rule; if o; is the specific premise of an introduction rule, o;4 is a major assumption
discharged by it; and if o; is an arbitrary premise (of an introduction or an elimination
rule rule), o;+1 is the conclusion of the rule.

Branches begin with a formula occurrence that is either an undischarged assumption
of the deduction or a minor assumption discharged by D/. Taking the formulas on a
branch that form segments as units, we can also say that a branch consists of a sequence
of formulas or segments.

Corollary 2 If any major premises of elimination rules are on a branch in a deduction
in normal form, then they precede any major assumptions discharged by introduction
rules that are on the branch.

Proof By Theorem 2, the major premises of elimination rules that occur on a branch
in a deduction in normal form are assumptions. Hence they are not the last formulas
of any segments, and in particular they are not the last formulas of any segments
beginning with discharged major assumptions of introduction rules. O

Itis a consequence of Theorem 2 that in a deduction in normal form the major premises
of elimination rules do not form parts of segments. A branch in a deduction in normal
form typically begins with a sequence of major premises of elimination rules, such
that the conclusion of the last of them is either the first formula on a segment ending
in the specific premise of an introduction rule (if it is L E) or the second formula of
such a segment (in all other cases), and continues with a sequence of segments the
first formulas of which are major assumptions discharged by introduction rules. The
first half of the branch is called the E-part, its second half the I-part. Separating them
is the minimal formula or minimal segment. It is the first formula or the first segment
the last formula of which is the specific premise of an introduction rule. If the last
application of an elimination rule is L E, there is a minimal formula and it is _L. If the
last application is any other elimination rule, there is a minimal segment. Either part
may be empty: some branches in normal deductions consist of only an E-part, some of

20 In Milne’s classical system, the deduction in normal form proceeds from the same assumptions.
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only an I-part, and in the case of a deduction that consists of a single formula A, both
parts are empty and there is only a minimal formula. Inspection of the rules shows
that all formulas on the E-part are subformulas of the previous one, and all formulas
of the I-part are subformulas of the subsequent one.

Definition 10 (Order of Branches) A branch has order O if its last formula is the
conclusion of the deduction; it has order n + 1 if its last formula is the minor premise
of an application of DE the major premise of which is on a branch of order n.

A branch of order O is also called a main branch in the deduction.

Definition 11 (Subformula Property) A deduction IT of a conclusion C from the undis-
charged assumptions Aj ... A, has the subformula property if every formula on the
deduction is a subformula either of C orof A ... A,.

For brevity we may speak of a segment being the premise, conclusion or discharged
assumption of a rule if its last or first formula is the premise, conclusion or discharged
assumption of that rule.

Theorem 3 Deductions in normal form have the subformula property.

Proof By inspection of the rules and an induction over the order of branches. Consider
a branch of order 0. The branch begins with a (possibly empty) sequence of major
premises of elimination rules, going from major premise to assumption discharged
by the elimination rule, until it reaches a specific premise of an introduction rule,
and then continues with segments discharged by introduction rules, until it reaches
the conclusion of the deduction. All formulas on the latter part of the branch are
subformulas of the conclusion of the deduction. All formulas on the former part of
the branch are subformulas either of an assumption that remains undischarged in the
deduction, in which case they are subformulas of a formula that is an undischarged
assumption of the deduction, or they are subformulas of a formula discharged by DI,
in which case they are subformulas of a subformula of the conclusion. A branch that
ends in the minor premise of DFE ends in a formula that is a subformula of a branch
of lower order, and hence the theorem holds by induction. O

Corollary 3 For any deduction in I, there is a deduction of the same conclusion from
some of its undischarged assumptions with the subformula property.

Proof By Theorems 1 and 3. O

Finally, let a proof be a deduction of I that has no undischarged assumptions. Elim-
ination rules do not discharge assumptions above their major premises. Hence if in a
deduction in normal form there is a main branch that does not have an I-part, it is not
a proof. Contraposing and applying Theorem 1 establishes:

Corollary 4 Ifthere is a proof of A in I, then there is one that ends with an application
of an introduction rule.

The usual further corollaries follow. For instance, I has the disjunction property: if
1 A Vv B, then either -y A or 1 B.
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Corollary 5 I is consistent.

Proof Suppose there is a proof of L in I. Then by Corollary 4, there is a proof of L
that ends with an application of an introduction rule. But _L has no introduction rule.
Hence there is no proof of L. O

5 Conclusion

Negri and von Plato only formulate general elimination rules for the quantifiers (Negri
and von Plato 2001, p. 64), but not general introduction rules. They also do not give
rules for equality. To close this paper, I will briefly consider the formalisation of a full
system of intuitionistic predicate logic with equality with general introduction and
elimination rules.?!

The language has two disjoint sets of variables, the parameters a, b, c ... playing
the role of free variables, and the variables to be bound by the quantifiers x, y, z. ..,
which do not occur free in formulas. The terms of the language are built up from the
parameters, constant symbols and function symbols in the usual way. An expressions
that is like a formula or a term, but containing free variables instead of parameters, is
often called a pseudo-formula or a pseudo-term.

A7 is the result of substituting all occurrences of the variable x in A by the term 122
B¢ is the result of substituting the term ¢ for the parameter a throughout deduction E.

The elimination rule for the existential quantifier already has the form of general
elimination rules. The general elimination rule for the universal quantifier has the same
form but with a different use of terms:

[Ayl [A7T
by m by n
Ix A . C ., VxA . C i

where in 3E, the parameter a does not occur in x A, nor in C, nor in any formulas
undischarged in IT except those of the assumption class [A] ].
The following are general introduction rules for the quantifiers:

[ExA] [VxAJl
b I1 ) I
714? ¢ i 7142 ¢ vIi
C C

where in V1, the parameter a does not occur in undischarged assumptions of IT.
Deductions in the system of intuitionistic predicate logic are defined by adding
clauses for these four rules to the inductive step of definition 2.

21 The rules for 3 and = of this section are also found in Milne (2015). In Kiirbis (2021) it is shown that
deductions in normal form in Milne’s system of classical predicate logic with 3, but not with V, satisfy the
subformula property.

2 qfrisa pseudo-term, it is assumed that none of its free variables gets bound by the substitution, i.e.
that 7 is free for x in A. But notice that, if the result of the substitution is to be a formula rather than a
pseudo-formula, as is the case in the use made of this notation in rules of inference, we need not consider this
possibility: we only need to consider terms, not pseudo-terms. Analogously for the next kind of substitution.
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It is worth remarking that the rules for both quantifiers have the same form and
differ only with respect to the occurrences of terms and parameters and consequently
where restrictions on parameters are imposed.

The major premise of an application of IE, VE is, as before, its leftmost premise,
the other being its arbitrary premise. Similarly for the specific and arbitrary premises
of 31, VI. The major assumptions discharged by their applications are the formulas
taking the places of 3x A and Vx A, respectively. The definition of ‘maximal formula’
is as before, as is that of ‘maximal segment’, except that segments now of course also
arise by applications of the rules for the quantifiers in the evident way.

As we have an unlimited amount of parameters at our disposal, we may adopt the
convention that every application of 3F and VI has its own parameter, so that the
parameter of an application of V/ only occurs in its specific premise and the formulas
from which it is derived, and the parameter of an application of 3E occurs only in
the formulas in the assumption class discharged by it and formulas derived from
them. Consequently, the parameter occurs only above the application of the rule in a
deduction, and any application of 3E or VI below it has a different parameter. Call
this the parameter convention.

Inspection of the reduction procedures for the propositional connectives shows that,
if the parameter convention is upheld, then any correct application of 3E or VI in the
initial deduction remains correct in the reduced deduction.

The following are the reduction procedures for maximal formulas of the form 3x A
and Vx A, continuing the numbering of those for propositional logic:

4. The maximal formula has the form Jx A. Convert the deduction on the left into the
deduction on the right:

[A;c]j >
= [A7]
[Ax ATk C ; g¢
C ~ C
b nl x yl
A¥ D AY D
D k D g

where the procedure is again as in the cases of the propositional connectives: if assump-
tion class k contains only one formula, the final step by 37 is omitted. By the parameter
convention, in the initial deduction a occurs only in E, and hence after its replacement
by ¢ it disappears altogether from the reduced deduction, which therefore is a correct
deduction.

5. The maximal formula has the form Vx A. Convert the deduction on the left into the
deduction on the right:
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[AX) a¢

> [AF

[Vx ATk C )

C ~ C

o n © 3|
AX _ D . AX _ D .

where the procedure is again as in the cases of the propositional connectives: if assump-
tion class k contains only one formula, the final step by YV E is omitted. By the parameter
convention, in the initial deduction a occurs only in &, and, as it is no longer present
in E¢ upon replacement by ¢, this is the only place where it remains in the reduced
deduction, which therefore is a correct deduction.

The additional permutative reduction procedures for maximal segments pose no further
problems, and I will not give them.

The results of the previous section go through as before, if substitution instances of
formulas of the form Vx A and 3x A are counted amongst their subformulas. Corollary
4 for intuitionistic predicate logic is used to prove the existence property: if there is a
proof of dx A, then, for some term ¢, there is a proof of A7.

Finally, what would general introduction and elimination rules for equality be?
Equality raises a number of philosophical questions, not the least, in the present con-
text, whether it is a logical constant the meaning of which may be defined by the rules
of inference governing it. I will not try to answer this question here, but the second
set of rules to be given, which effectively capture Leibniz’ definition of equality, do, it
seems to me, have a fair claim on satisfying the criteria of inferentialist semantics.>3

The following is a general elimination rule for =:

(P2]
I1 by )
HhH=n Pt)f C

C =Ei

where P is atomic. The general case follows by induction. To exclude trivial applica-
tions of =F, we may require #; and #, to be different.

One option of a general introduction rule for equality follows the pattern of the rule
for T considered in Remark 2 of Sect. 2. An assumption of the form ¢ = ¢ may be
discharged at any moment in a deduction:

[t =]
I1
C
C
The ban on vacuous discharge prevents futile applications of this rule with no further
effect than to deduce formulas from themselves.

=Ii

23 For an in depth discussion of equality in inferentialist semantics, a survey of existing proposals and a
novel approach, see Indrzejczak (2021).
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The major premise of =FE is | = t, its minor premise is P}, the major assumption
discharged by =/ is t = ¢, and in both rules C is the arbitrary premise.

Deductions intuitionistic predicate logic with equality are defined by extending the
inductive step of the definition of deductions in intuitionistic predicate logic by clauses
for these two rules.

The additional permutative reduction procedures for these rules follow the usual
pattern. If the requirement of the difference of #; and 7, in = E is imposed, there
are no maximal formulas of the form #; = #,. Otherwise the reduction procedure is
straightforward and also follows a by now familiar pattern. Replace the deduction on
the left by the deduction on the right, where the final application of =/ is omitted, if
k contains only one formula:

[P} X

)y ) P

[t =t Py c P g
< <

As P is atomic, the reduction procedure cannot introduce new maximal formulas into
the reduced deduction.

A slightly more original option for a general introduction rule for equality results by
modifying a rule proposed by Read to fit the present framework. Read observes that,
if we add predicate parameters to the language, then ¢ = #» may be inferred if there
is a deduction of F;] from Fj| in which F is a predicate parameter not occurring in
any undischarged assumptions except F;;, and conversely, a deduction of F} from F]
in which F is a predicate parameter not occurring in any undischarged assumptions
except Fg (Read 2004, p. 116). This captures one half of Leibniz’ definition of t; = #,
as VF(F} = F})) in inferentialist terms. Cast into the form of general introduction
rules, the rule becomes:

FE Yy =
Il ) =
F Fr C
dl 2 =I'ijk
C

where the predicate parameter F' does not occur in any formulas undischarged in I1
and ¥ except in those of the assumption classes [Ft’z‘ ] and [F,)f ].

The major assumption discharged by this rule is #{ = #,. Suitable terminology for
formulas in assumption classes [ F}[] and [F7]] would be the parametric assumptions
discharged by =I". Its specific premises are the conclusions F; and F] of ITand X.
C is the arbitrary premise.

Considerations of harmony should then lead u§ R;faﬂding a second elimination rule
for equality symmetrical to thtﬁﬁrst: > o

H=n P,’Zf C
C
where P is atomic. Together =F and =E* capture the other half of Leibniz’ definition
of equality in inferential terms.

=ESi
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It would be possible to dispense with one of the deductions IT and X in =I": given,
say, X, replacing Fx by x = #1, which is possible if F is a parameter satisfying the
conditions of an application of =I’, gives a deduction of 1, = t| from #; = 1;; the latter
is provable by a single application of =I" using F as both premises and discharged
assumptions; applying =E to the thus concluded ¢; = 7, with F;} as minor premise and
F;| as arbitrary premise, discharged assumption and conclusion yields the deduction
of F;; from F;) required for an application of =/ ', If this is done, harmony demands
that the introduction rule for equality should be paired with only one elimination rule;
dispensing with IT, this should be = E, = ES being derivable from the symmetry
of equality, which in turn is derivable from = E and the reflexivity of equality. For
philosophical reasons, however, it may be preferable to leave =1 as it is: the single
deduction is sufficient only in the presence of =F, and so =1’ could not be said to
define the meaning of =, while its elimination rule merely exploits this meaning as so
defined according to the inversion principle.?*

If deductions in intuitionistic predicate logic with equality are defined by = I’
instead of =/ in the inductive step, then the reduction procedure for maximal formulas
of the form #; = 1, is less trivial. We may assume that a corresponding version of the
parameter convention is upheld for predicate parameters with respect to applications
of =I'. Transform the deduction on the left into the deduction on the right, where
)y II; is the result of substituting the predicate parameter F by P throughout X, and
as always, the final step by =1’ is omitted if assumption class k contains only one
formula:

E1
[P Py
E1 &8y =f
[ =nlPr C l P

[F) [FYV
IT b))
Fi K

&2
[FAVIFEY ¢
ik n 3z &3
D F) F) D
D
By the parameter convention for predicate letters, F occurs only in IT and ¥, from
which it disappears after replacement by P, so the reduced deduction is a correct
deduction. P being atomic, the reduction procedure does not introduce new maximal
formulas into the deduction. In case the maximal formula arises from an application
of =ES, P}l and P; are interchanged, and the reduction procedure replaces F by P
in IT instead of in X.
Permutative reduction procedures pose once more no further problems.

o WA

i.j.k

24 Read’s rule, in fact, has only one of the deductions. Read shows the redundancy of a second deduction
by replacing F by —F in the first and contraposing. This move is not available in intuitionistic logic. A
similar comment to the above applies: it would then not appear to be its introduction rule alone that defines
the meaning of =, as an appeal to (classical) negation is required. For a discussion of the effect of various
forms of or restrictions imposed on Leibniz’ definition of equality, see Indrzejczak (2021, Sec. 3).
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