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Abstract

This thesis aims to further our understanding of the statistical properties of foreign
exchange rate time series. We propose a model of nominal exchange rates as following
an Ornstein–Uhlenbeck process with a time-dependent reversion level and test this model
against real-world data with a particular focus on the scaling properties of the series. In
doing so, we aim to contribute towards the development of a stochastic model of FX rates
which combines the mean-reverting behaviours predicted by economic models and trading
strategies with the multifractal properties of foreign exchange time series well-known in
econophysics. Our findings may be used to improve models of foreign exchange time series
as well as trading strategies.

The research analyses real-world foreign exchange time series and synthetic data sets
and comprises the following three parts:
Part 1 explores the scaling of the volatility of exchange rates under the premise of the
series having a mean-reverting component. Using simulated data, we show that our model
is as good at reproducing the volatility scaling of the real data as a random walk.
Part 2 examines two aspects of Ornstein–Uhlenbeck parameter estimation. First, the ac-
curacy of the estimators in the case of incomplete or irregular finite samples is numerically
investigated. Second, a novel parameter estimation method for Ornstein–Uhlenbeck pro-
cesses with unknown time-dependent reversion level is proposed, and this and an existing
method are tested. Neither of these topics are well-represented in the literature, yet they
have numerous applications, within and beyond the field of finance.
Part 3 calibrates our model to real-world FX data using the method proposed in Part 2.
We give an empirical relationship between the calibrated parameters of the model and the
way the underlying trend is defined. We show that this dependence can be described by
the Hurst exponent of the series. This finding may help inform the construction of mod-
els of FX rates as well as parameter estimation and calibration methods where unknown
time-dependent reversion levels are involved.

This thesis contributes to science in a number of ways:

• we have extended the range of intervals for which the scaling of FX volatility has
been shown to hold;

• we have shown that this scaling law may be compatible with a mean reversion based
model of FX rates;

• we have gathered some insight into the reliability of parameter estimation of the
Ornstein–Uhlenbeck process under imperfect conditions;

• a novel calibration method for an Ornstein–Uhlenbeck process with time-dependent
mean has been proposed and an existing method has been tested;

• a relationship between the calibrated parameters of a mean-reverting model of FX
rates and the self-similarity of the series was found.



Impact statement

With this thesis we contribute towards the development and refinement of stochastic
models of nominal exchange rates. The foreign exchange market is the largest financial
market in the world, and therefore directly and indirectly affects a great number of people
worldwide. There are of course many financial applications of a model of exchange rates,
including in trading strategies, risk management, option pricing, and informing govern-
ment regulations. Additionally, there are well-known similarities between the behaviours
of foreign exchange rates and quantities in other fields within and outside of finance. Thus,
findings in the foreign exchange market may contribute towards advances in these related
fields too.

We also present some insight into the parameter estimation and calibration of the
Ornstein–Uhlenbeck process with constant and time-dependent reversion level. While our
primary interest in these findings is with regard to foreign exchange data, the Ornstein–
Uhlenbeck process finds applications in a wide range of fields including physics and neu-
roscience. Anywhere where this process is used, a deeper understanding of the parameter
estimators will help improve methods.
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Chapter 1

Introduction

In this chapter we present the motivation for this thesis, the research objectives, the

methodologies employed in the research for all three parts, as well as a preview of the

contributions to science made. Finally, we explain how the thesis is structured.

1.1 Research motivation

This thesis is concerned with statistical properties of the Foreign Exchange market. The

FX market is the largest financial market in the world. There has been a large increase

in high-frequency trading in recent years, and thus a large amount of high-frequency data

has become available to research. This data is different both in the processes that generate

it and in its properties. In particular, there is a much larger involvement of algorithmic

trading, and traders are able to create a higher turnover than they have in the past. This

consistent growth and evolution of the FX market means that there is a wealth of open

research questions, and the financial importance of these questions ensures a demand for

answers.

Due to the complexity of the factors that affect the FX market, short of a complete un-

derstanding of the causalities in the FX market the market may be best described through

models. While there are of course many different disciplines seeking to model the market

in different ways, for example from economic, political, or behavioural perspectives, this

thesis aims to model FX rates as stochastic processes, with a basis in some of the stylized

facts of FX rates found in the literature. In particular, we are concerned with a model

of nominal FX rates following a mean-reverting process with time-dependent reversion

level, with a particular focus on the self-similarity of the series under such a model. The

model is consistent with economic models of foreign exchange rates, as well as with the

models underlying many popular trading strategies. Meanwhile, the fractality, and indeed

multifractality, of FX rates is a well-established fact in the literature of econophysics. The

motivation of this thesis was to unite these two seemingly disparate aspects.

We chose an Ornstein–Uhlenbeck process (OUP) as the foundation for the mean-

reverting model. However it is a well-known fact that the estimators of the OUP are
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biased. But how unreliable are they? While there is much literature giving the analytically

derived variances and biases of the estimators of the OUP, these are mostly concerned with

regularly observed data, and often infinite sample sizes. In real-world applications samples

are of course finite, and financial data presents additional problems, such as only being

recorded during market opening hours, and high-frequency data being irregularly spaced

in time. We wanted to test the performance of the parameter estimators of the standard

Ornstein–Uhlenbeck process in practical application to imperfect data sets. We therefore,

using synthetic data, tested the effect of the process and observation parameters and

irregularity in observation on the bias and accuracy of the parameter estimators.

The literature on the calibration or parameter estimation of an OUP with unknown

time-dependent reversion level is very scarce, and thus, we tested one method we found

in the literature against an alternative proposed by us. As we calibrate this model in a

purely data-driven way, we are faced with the problem of separating the processes into

the “underlying” and the “overlayered” components. But how does the calibration of

the model depend on how we define this separation? In order to answer this question,

we tested different ways of defining the underlying trend and found a dependence of the

calibrated model parameters on the way the trend was defined.

We next hypothesized that this dependence was related to the fractality of the data.

We tested this hypothesis by describing the dependence of the calibrated parameters on

the underlying value as a scaling law, which we then compared to the scaling relationship

found by conducting a detrending moving average analysis, which is a type of scaling

analysis that measures the roughness of a series. In doing so, we not only shed light

on our model of FX rates, but also gathered further evidence of the fractality of FX

time series. While the self-similarity of FX rates is well-documented, re-confirming it is

nonetheless of interest due to the fact that new time scales become available, with larger

time scales becoming available as the FX market as we know it ages, and smaller time

scales becoming available due to technological advances.

A greater statistical understanding of FX rates is of course always of use, and may

help inform many kinds of real-world decisions. The model we propose and any insight

associated with our research, like many findings in econophysics, may also be applicable

to other fields, but it is also directly relevant to mean-reversion based trading strategies,

which assume a mean reversion to a time-dependent fundamental value, which in many

cases is obtained in a purely data-driven way, for example through a moving average. Many

trading strategies use “moving average crossovers” to determine buying/selling signals.

However, in some cases, particularly in what is referred to as “technical analysis”, there

tends to be a lack of theoretical foundation for these strategies. How can crossovers of

and mean reversion to moving averages in FX be described and predicted statistically?

With this research we hope to contribute to a stochastic model of FX rates to provide a

statistical foundation to some of these methods.

Thus, our motivation for this thesis was to
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• reconcile models of FX rates being mean-reverting to an underlying reversion level

with the known fractality of the market;

• update the literature on the scaling of mean absolute log returns in FX using a novel

data set;

• improve our understanding of parameter estimation of the Ornstein–Uhlenbeck pro-

cess under imperfect conditions;

• propose and test a way of estimating the parameters of an OUP with unknown

time-dependent reversion level;

• find out how the calibration of such a model to foreign exchange data depends on

the Hurst exponent of the time series;

• use DMA to find the Hurst exponent of FX time series.

1.2 Research objectives

Our first research objective was to confirm the validity of the well-known scaling law

describing a linear relationship between the logarithm of mean absolute log returns and

the logarithm of the time intervals over which they are measured using our novel data sets,

to see if the scaling law would extend to a greater range of time intervals and to newer

data than previously tested, as well as to estimate the scaling exponent of the series.

The next goal was to generate two synthetic data sets as models of logarithmic FX

rates, one following Brownian motion, and the other following an Ornstein–Uhlenbeck

process with time-dependent reversion level, and to see whether these two models would

obey the same scaling law as we observed in the real-world FX data.

Since our model was of log FX rates following a mean-reverting process with time-

dependent reversion level, which might be interpreted as a trend, we next wanted to test

how “detrending” the data would affect the mean absolute log returns. The hypothesis

based on the model was that the mean absolute returns of the detrended log data would

depend on the time intervals in the same way as the mean absolute returns of an OUP.

This was to be tested by detrending the data before again computing the mean absolute

returns as a function of the time intervals over which they were observed, and comparing

the results to those obtained by conducting the same analysis on the two synthetic data

sets.

We next aimed to shed some light on the reliability of standard parameter estimation

methods of the OUP in the case of finite samples, and in particular in the case of small

reversion strengths. Secondly, we wanted to determine how the reliability of the estimators

would be affected by irregularity of observations. We were particularly interested in the

effect that estimating irregularly observed data as regular would have on the estimation

accuracy, as well as in the effect of observational gaps such as weekends on parameter
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estimation in the case of interpolation or estimating the parameters using a business

time scale. This was done by simulating sets of time series following standard Ornstein–

Uhlenbeck processes with a variety of parameters, and then sampling the process regularly,

irregularly, or with major gaps in the observation sequence, before testing the performance

of the parameter estimators in the different scenarios.

The next goal was to test a parameter estimation method we found in the literature,

which estimates the parameters of an Ornstein–Uhlenbeck process with unknown time-

dependent reversion level, against an alternative method proposed by us. We did this by

simulating such a process and then comparing the performance of the two methods to the

results of applying the standard parameter estimation method to the simulated data.

Since both of these methods include an arbitrary parameter, which affects the accu-

racy of the estimator of the underlying reversion level, and since the accuracy of all other

estimators relies on the estimation of the reversion level, we hypothesized that the cali-

bration of the model of an OUP with time-dependent reversion level to a time series using

either of the methods would heavily rely on the choice of this parameter. Furthermore,

our hypothesis was that this dependence could be described by the Hurst exponent, which

is a measure of the memory of the process. Thus our final objective was to determine a

scaling relationship between the calibrated parameters and the parameter of the reversion

level estimation, and then compare this scaling exponent to the Hurst exponent found via

a detrending moving average analysis.

1.3 Research methodology

In the following subsections we will give an overview of the data sets our research is based

on and the methodology employed in producing the three parts of the research.

1.3.1 Data sets

In addition to the simulated synthetic data sets, two different real-world data sets were

used in this research. Both contained historical foreign exchange data.

The first data set was obtained from the Thomson Reuters Eikon platform. It con-

tained the 17 currency pairs USD/CAD, USD/GBP, USD/JPY, EUR/AUD, EUR/CAD,

EUR/CHF, EUR/GBP, EUR/JPY, EUR/USD, EUR/NOK, EUR/SEK, GBP/AUD,

GBP/CAD, GBP/CHF, GBP/EUR, GBP/JPY and CHF/JPN. Historical close prices

captured at six different frequencies were downloaded, with the time intervals between

consecutive observations being 24 hours, 60 minutes, 30 minutes, 10 minutes, 5 minutes

and 1 minute. This data reached back between 40 years for daily data and about 40 days

for minutely data. The data was mostly regularly spaced, but contained some gaps.

The second data set was obtained from Commerzbank. It contained irregularly spaced

high-frequency bid and ask quotes for 63 currency pairs for the time period between 1

January 2015 and 15 December 2016. Each quote had as its source either London or
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New York, and for the most liquid currency pairs the frequency of the data reached about

150,000 values per source per day. After cleaning this data set we were left with one

series per source for the currency pairs AUD/JPY, AUD/USD, EUR/USD, EUR/BRL,

USD/CAD, USD/CHF, USD/CNH.

1.3.2 Part 1: Scaling of log returns

The first goal of this part of the research was to test if a well-known scaling law of FX mean

absolute log returns would hold in more recent data and over a wider range of intervals

than previously reported in the literature. This was done by sampling each log FX series

at different sampling frequencies, producing a set of series with different observation steps.

For each of these sampled series we then computed the mean absolute return and then

conducted a line fit to the log mean absolute log returns as a function of the log observation

steps to find the slope and correlation coefficient. Then, in order to see if this behaviour

would be predicted by our model of log FX rates following an OUP with a smoothed

Brownian motion as reversion level, we simulated such a process, as well as a time series

following a Brownian motion, and conducted the same analysis on these two series. Next,

motivated by our model, we detrended the log FX series as well as both simulated series

by subtracting a range of moving averages, before again computing the mean absolute

returns of these detrended series and comparing them to the mean absolute returns of a

standard Ornstein–Uhlenbeck process.

1.3.3 Part 2: OUP parameter estimation under various conditions

The goal of Part 2 of the research was to gain some insight into the reliability of the

standard parameter estimators of the standard OUP based on imperfect observations,

and to test methods for estimating the parameters of an OUP with time-dependent mean.

This was done by first simulating multiple paths of standard OUPs with a variety of

parameters and then computing the mean errors and mean squared errors of the standard

estimators over the paths for each parameter set. We then simulated irregularly sampled

OUPs by simulating standard OUPs at higher frequencies and then sampling a subset of

the simulated points of each path. We tested a number of different sampling scenarios.

Firstly, we simulated an OUP with a constant sampling step, but with regular major gaps

in the data to represent weekends. We then estimated the parameters of these series first

by interpolating the missing values, and then by treating the data as a complete data set,

and compared the MEs and MSEs of these estimators to those obtained from the complete

observation. Secondly, we sampled the process at a random point within a certain window

centred around each regular sampling point, and then at a set of entirely randomly selected

sampling points. We again compared the MEs and MSEs of the estimators in all these

cases.

We then used a technique we found in the literature to estimate the parameters of

an OUP with a time-dependent reversion level. We simulated such a process with a sine
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function as reversion level, and then applied this technique to find the estimators along

with their MEs and MSEs. We then implemented an alternative method proposed by

us, which subtracts a moving average from the sampled series and then applies standard

OUP parameter estimation techniques to the detrended series. We generated parameter

estimates along with MEs and MSEs with this method on the same process and compared

the performance of these estimators to the performance of standard estimators based on

the original, non-detrended series.

1.3.4 Part 3: Time-dependent OUP reversion levels and the Hurst ex-

ponent

In Part 3, our method tested in Part 2 was used to calibrate a model of an OUP with time-

dependent reversion level to real-world FX data. Our goal was to see how the calibrated

parameters would depend on the time constant used to compute the moving average. We

used simple and exponentially weighted moving averages, with a range of time constants,

and for each detrending method we applied our estimation technique to calibrate the

reversion strength and diffusion coefficient of the model. We fitted a curve of the shape

f(x) = a/x to the relationship between the reversion strength parameter and the time

constant, and a curve of the shape g(τ) = bτ c to the relationship between the long-

term variance of the calibrated model and the time constant. Finally, we conducted a

detrending moving average analysis to find the Hurst exponent of the series and compared

the Hurst exponent to the scaling exponent of the long-term variance to see if there was

a dependence.

1.4 Contributions to science

There are a number of ways in which this thesis hopes to contribute to science.

In Part 1, the scaling law relating the volatility of exchange prices to the time interval

over which it is measured is verified using a novel data set and a greater range of intervals

than we have found reported in the literature. We thus have extended our knowledge of

the ranges of intervals over which the scaling law holds. We also show that the scaling

law may be consistent with a model of FX rates reverting to a time-dependent underlying

value, and that the mean absolute returns of detrended FX data resemble those of an

Ornstein–Uhlenbeck process. This helps bridge the gap between this scaling behaviour,

which has so far been reported as a stylized fact in the literature, and models and trading

strategies based on FX rates being mean-reverting.

In Part 2, we present numerical findings regarding the accuracy of standard parameter

estimators of the Ornstein–Uhlenbeck process in the case of irregular observations. As far

as we know, the effect of the true parameters of the OUP on estimator accuracy in the case

of irregular observations and interpolation has not been reported before. These findings

are extremely relevant wherever OUP parameters are estimated on imperfect data, as we
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have shown significant effects of the irregularity, and a qualitative difference between the

effect of parameters on estimator accuracy between the regular, irregular, interpolated and

business time cases. Secondly, we have proposed a method of estimating the parameters

of OUPs with time-dependent reversion level which we have not found reported elsewhere,

and have tested this method against another method reported in the literature, showing

that the two methods perform similarly. There is currently very little literature on the

subject of estimating the parameters of an OUP with unknown time-dependent reversion

level, and our research may help in developing and refining such methods, which have a

great number of potential applications not only in finance but also in other areas such as

physics.

In Part 3, we show that the calibration of a model of an OUP reverting to a time-

dependent reversion level, which relies on detrending the process, is heavily dependent

on the detrending method used, and show empirically the relationships between the cali-

brated parameters and the detrending parameter. These findings are relevant not only to

the calibration of OUPs with time-dependent reversion level, but also to the parameter

estimation of such processes. We also conduct a detrending moving average analysis on

FX series and determine the Hurst exponent of the series and show that the dependence

of the calibrated parameters on the detrending parameter is directly related to the Hurst

exponent. To the best of our knowledge, this has never been done before, and we suggest

that it may be of great use for improving trend-following trading strategies and models of

FX time series.

1.5 Structure of the thesis

The presentation of our research is preceded by the background and literature review,

which gives an extensive overview of the background and existing literature regarding

the themes covered in this thesis, with a deeper look at the most relevant literature.

The background and literature review is followed by the research, which is divided into

three parts. We refer to these as Parts 1–3. Each research chapter contains several

related analyses. The research chapters start with a description of the overarching research

question before presenting the methodology, followed by the results of each of the analyses

contained in the chapter and then concluding with a discussion, where we evaluate and

interpret results, point out weaknesses of the research, and discuss ideas for further study.

In the final chapter of the thesis we summarize our conclusions and areas for further

research. The appendix contains additional graphs and tables of the same type but greater

scope than those included in the main research chapters.
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Chapter 2

Background and literature

overview

This chapter presents the theoretical and contextual background for this research and

reviews relevant existing literature.

The foreign exchange market is the world’s largest [1, 2] and most liquid [3] capital

market. As such, it provides a wealth of data, and equally the demand for information

that can be used for trading is very high. Compared with many fields, finance is still

young, and with the continued advancements in computing and technology, its nature

is constantly evolving, and the volume and frequency of trading are ever-increasing [2].

There is therefore a steady opportunity for research, both in gaining new knowledge about

the market, and in seeing whether previously established properties still hold.

In particular, algorithmic trading has seen a rapid rise. Instead of trading decisions

being made based on knowledge of external factors, more and more trades are executed

based purely on a statistical analysis of the time series the market provides. One well-

known trading strategy which can be algorithmized is the trend following strategy, which

assumes that there are periods when prices have a tendency to continue moving in their

current direction. An alternative strategy, which is in some ways complementary to the

trend following strategy, is the mean reversion strategy, which assumes a tendency of prices

to return to a long-term equilibrium. These strategies are sometimes summed up as “buy

winners, sell losers” and “buy low, sell high” respectively. For trading strategies such as

these to be studied and improved, a thorough knowledge of the statistical properties of

the financial market in which one is trading is imperative.

Numerous theories have been proposed to describe financial markets in general and

the foreign exchange market in particular. One of the oldest of these is the random walk

hypothesis, first proposed in 1863 by Jules Regnault and in 1900 by Louis Bachelier, which

assumes that no information about future price movement can be gained from past data.

Related to this is the efficient market hypothesis (EMH), developed in the 1960s concur-

rently by Paul Samuelson and Eugene Fama, which assumes that all available information

about a commodity will be reflected in its current price [4]. An example of a model con-
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forming to the EMH is the theory that prices follow Brownian or geometric Brownian

motion. The EMH itself has by now widely been rejected [5] and efficiency is viewed as a

relative concept, with the foreign exchange market being arguably the most efficient of the

financial markets. However, stylized facts regarding foreign exchange market data consis-

tently show a number of scaling behaviours not compatible with a geometric Brownian

motion of exchange rates. Exchange rates are also sometimes modelled by mean reverting

stochastic processes, with one example of such a process being the Ornstein–Uhlenbeck

(OU) process [6].

Some of the topics that this thesis builds on are presented in some more detail in this

chapter: We start with some background information on the foreign exchange market, as

this is the setting and area of application of our research. We then give some information

about the Ornstein–Uhlenbeck process and its parameter estimation, before looking at

some extensions of the process. Finally we review the topic of scaling and self-similarity,

both in general and with regard to foreign exchange data.

2.1 The foreign exchange market

To provide some context to the research conducted in this thesis, we start out by providing

some general information about the FX market, before briefly describing some of the FX

rate and trading models relevant to our work.

2.1.1 Background

The FX market of today originated in the 1970s with the end of the Bretton Woods

system, and today is the largest capital market of all, continuing to evolve at a rapid pace

[7]. According to the Bank for International Settlements (BIS), the average daily trading

volume as of April 2019 was US$6.6 trillion, having grown by US$1.5 trillion since April

2016 [8].

The FX market is decentralized and for the most part unregulated. It is open con-

tinuously, from about 10pm GMT on Sunday until about 10pm GMT on Friday, with

varying levels of activity depending on the times of day in its various locations in Aus-

tralia, Asia, Europe and New York [9]. The two main locations are London and New

York, where roughly one third and one fifth of trades take place respectively [10]. The

four most heavily traded currencies, which are sometimes referred to as “the majors” or

“G4”, in descending order are the US dollar (USD), the euro (EUR), the Japanese yen

(JPY) and the British pound (GBP) [10]. Currency prices are usually quoted against the

US dollar. Pairs that do not involve the US dollar are referred to as “cross rates” [11].

While we study only spot rates in this thesis, which are the immediate currency exchange

rates and accounted for 30% of global FX turnover in April 2019 [8], there are of course

also markets within the FX market for other instruments, such as swaps, options [12, 13],

forwards and futures.
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While the original purpose of the FX market was to facilitate international trading of

goods and services, it is now also used to make money through speculation as well as to

hedge investments, and participants in the FX market include central banks, commercial

banks, FX brokers, private companies, investors, as well as individuals [14]. Nowadays,

just like in other markets, a large proportion of trades is algorithmic, and the frequency

of trading has skyrocketed with the evolution of technology, with a 2011 BIS report esti-

mating about a quarter to a third of trades being high-frequency [15].

Trades are executed based on quotes given by the major dealers. Quotes in the FX

market are given as separate “ask” and “bid” prices. A bid quote is the price for which

the dealer is prepared to buy the pair, and an ask quote is the price for which they are

prepared to sell [14]. In other words, there is an implied transaction cost, which is the

bid-ask spread, from which the dealer profits. When the spot rate is modelled as a single

time series it is therefore necessary to find a mid price.

The granularity with which currencies are traded is measured in “pips”, short for price

increment points [10] or price interest points. Usually pairs are quoted with an accuracy

of four decimal points. For pairs involving the Japanese yen a pip is 0.01 of the pair. By

pair, we mean the price of one currency expressed in terms of another.

We speak of “nominal” and “real” exchange rates. The nominal exchange rate (NER)

is equivalent to the spot rate, i.e. the rate at which a currency pair can be exchanged on

the FX market, while the real exchange rate (RER) is a theoretical quantity determined

from the domestic prices of goods in the respective countries and the NER. Note that some

currency rates are fixed by governments, but throughout this thesis we are concerned with

floating rates. We discuss FX rate determination in the following section.

2.1.2 Models of foreign exchange rate determination

There are many different ways in which the determination of FX rates has been modelled,

with separate models for nominal and real exchange rates. In this thesis we study the NER,

and we focus on macro models, which do not incorporate the detailed effects of trading

[16]. While until the 1970s models of FX rate determination were more commonly based on

flow based approaches, such as the Mundell–Fleming model, this has been superseded by

asset based models [17], which is what we will focus on in this section. One concept central

to this branch of models is that of purchasing power parity (PPP), which has a number

of definitions [17], but roughly stipulates that there should be no arbitrage opportunity

through the costs of goods or assets in different countries [18]. The PPP rate therefore

may be determined by assuming that some “identical” bundle of goods in two different

countries in their respective domestic currencies should cost the same amount of “money”

[19]. With regard to individual items, this assumption is referred to as the law of one price

[18]. This is directly related to the RER R, which in its simplest form is defined as the
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ratio between the NER N and the PPP rate P :

R =
N

P
. (2.1)

Note that this means for the logarithmic NER, which is the quantity we analyse in this

thesis, that

logN = logR+ logP . (2.2)

The RER is constant if PPP holds [19]. Note that due to economic factors as well as

varying ways of computing the PPP rate it is not necessarily 1.

The most popular model of the NER is the monetary model, which assumes that an

equilibrium of exchange rates is based on free flow of capital, but not free flow of bonds.

This is in contrast with the portfolio balance model, which assumes both capital and

bonds to be free-flowing [17]. Within the monetary model there are the flexible price

model and the sticky price model. According to the latter, which is also sometimes called

the overshooting model or Dornbusch model, PPP holds in the long run, i.e. real FX rates,

and thus log real FX rates, revert to a constant, meaning that log nominal FX rates revert

to a constant plus the log PPP rate, in the long run but not in the short run, making

them mean-reverting to a time-dependent value. In reality, the RER has indeed been

found to be not constant but mean reverting [18], supporting this model, and in the short

and medium run spot exchange rates are commonly modelled as random walks [20]. The

idea that FX prices display different behaviour at different frequencies, which relates to

the topic of scaling, discussed in Section 2.5, is also treated by Gençay et al. [1] amongst

others, and is reflected in the use of separate models for long-run and short-run exchange

rates. We look at evidence of mean reversion in FX rates in the next section.

More generally, one aspect that many FX rate determination models have in common

is that they assume an underlying fundamental rate, such as the PPP rate, which may

change over time as influenced by a variety of economic factors such as trade, production,

inflation and interest rates, and upon which the NER depends. This thesis conducts only a

statistical analysis of FX rates, but like many of these models assumes a mean reversion of

the logarithmic NER to an underlying, slowly changing reversion level, which, depending

on the macroeconomic model, may be interpreted as being a function of the PPP rate.

For the following chapters of this thesis we investigate FX rates as stochastic processes,

rather than from an economic perspective.

2.1.3 Mean reversion in foreign exchange

While mean reversion can be found in a great variety of fields, such as physics, neuro-

science, and various areas of finance, such as stock prices [21], interest rates, and stochastic

volatility models, the reason why it is central to this thesis is its applicability to FX rates.

There is no universal definition of mean reversion, especially as it is a concept inter-

preted differently in different contexts, but even within finance different definitions have

21



been proposed [22]. For the purpose of this section, when we refer to a mean reverting

process we very generally mean any stochastic process which has a tendency to, if dis-

turbed, revert towards some constant or varying long-run “mean” or equilibrium. Note

that this equilibrium may or may not be constant, and may or not be the mean of the

process. The phenomenon of mean reversion is also sometimes referred to as the “value

effect” when referring to a price’s tendency to return to its “long-run value” [23].

A popular example of a mean reverting process is the Ornstein–Uhlenbeck process,

which is the process we focus on in this thesis, and which we will introduce in more detail

in Section 2.2. Other examples of mean reverting processes are the Feller-square-root

process and the autoregressive process of order 1, commonly referred to as the AR(1)

process, which is the discrete analogue of the Ornstein–Uhlenbeck process as described

in Section 2.2.3. Given a time series and a statistical model, it is possible to test for

mean reversion through unit root tests such as the Dickey–Fuller test. The Dickey–Fuller

test tests the null hypothesis of the series having a unit root, which means it is neither

stationary nor trend-stationary.

As discussed in Section 2.1.2, there has been much research and discussion of different

models for the FX market, and in the following we shall have a look at some of the evidence

in the literature for the theory of log NERs being mean-reverting to the sum of a constant

and the log PPP rate, which implies a reversion of the RER to a constant equilibrium

level [24].

One paper that studies such a model is that by Lothian and Taylor [25], analysing

about 200 years’ worth of annual RERs for FRF/GBP and USD/GBP. They predict a

long-run reversion of the RERs to an equilibrium level, and test this hypothesis by applying

a unit root test and fitting the series to an AR(1) process. They determine that an AR(1)

model is suitable from evaluating autocorrelations of the time series, and fit it to the data

with a small but positive reversion strength. They find that this model is a good fit for

the data and performs much better than non-stationary models for RERs.

Da Fonseca et al. [26] analyse daily nominal FX rates against the US dollar for 23

different countries and find that while the standard Ornstein–Uhlenbeck process is not

suitable to describe the data, a time-homogeneous Ornstein–Uhlenbeck process, which is

a potentially non-Gaussian generalization of the Ornstein–Uhlenbeck process, appears in

fact to be an appropriate model.

In a review of literature on the subject of PPP and the RER, Sarno and Taylor [19]

found in 2002 that the model of real FX rates reverting to a long-run equilibrium was

currently generally supported for the major currencies. There is some evidence that this

adjustment may be non-linear, as the reversion to the long-run mean may be stronger for

greater deviations from the equilibrium.
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2.1.4 Trading strategies

One of the reasons why we strive to understand financial markets better is to find more

profitable ways of trading, and much of the trading in financial markets, including the FX

market, is based on trading strategies. These may be in the form of a set of rules based on

some indicators upon which a trader acts, or it may be in the form of algorithmic trading.

Two classic types of trading strategies, which form the basis for many more complex ones,

are trend following and mean reversion strategies.

Trend following (sometimes called momentum-based) trading strategies are strategies

which attempt to identify the current trend of a security, and make a buying or selling

decision based on the assumption that this trend will continue [27]. There are a number

of methods that can be used to determine the current trend of a security, such as using

trend lines or the relative strength index (RSI) [28]. However the most common method

is to look for moving average crossovers. These are points where a moving average (MA),

calculated in some way over the preceding data points, crosses over or under either the

current price, or an MA computed over a shorter period. In fact, the difference between

two MAs in this context may be referred to as the “momentum” or “differential” [1].

The theory behind this strategy is that if a price, or a short-term (“fast”) MA, crosses a

longer-term (“slow”) MA from below, referred to as a “golden cross”, the momentum of

the security is now upward, and it should therefore be bought. Inversely, if the price or

short-term MA crosses the longer-term MA from above, referred to as a “death cross”, the

security is trending downward, and should therefore be sold [28]. There are many different

ways in which the MA may be calculated. Firstly, there is the question of how large the

time interval should be over which the longer-term MA is calculated, as well as whether

a short-term MA or the current price should be used as an indicator of the current trend.

A common and very simple version of the strategy would to use the current price and the

50-period simple moving average (SMA), i.e. the arithmetic mean of the 50 previous data

points, or the 50-period and the 200-period simple MAs. An example of alternative types

of MA is the exponential moving average (EMA), where the values used to calculate the

MA are weighted exponentially, with more recent values being weighted more heavily. It

has been found that some, but not all, currency pairs are suited to trend following trading

[29].

Another very popular, but in its assumptions opposite, trading strategy is mean-

reversion-based, or contrarian, trading. The underlying assumption of this strategy is

that prices will eventually return to a long-run “mean”, which may be a fundamental

value and does not have to be constant, and therefore when a price has diverged from this

reversion level to a certain degree, it is likely to reach some extremum and a reversion of

the price towards the mean is likely to take place. The reversion level is usually approx-

imated by an MA, which may be calculated over any length of time, and as a simple or

weighted MA. Trading signals tend to be divergences from an MA, rather than crossover

points with it. Ways in which a sufficient divergence may be determined are, amongst

23



others, Bollinger bands, the duration of a trend, RSIs and many more. As an example,

Bollinger bands can be created by determining the MA and standard deviation of the

time series over a certain period, and calculating the lines which lie some multiple of the

standard deviation above and below the MA for each point in time, and the area between

these lines is then thought of as the “band” within which prices will tend to move.

While the choice between mean reversion and trend following strategies may be based

on many complex factors, such as the asset traded, the market conditions, and technical

indicators, generally mean reversion strategies are favoured for short-term trades, while

trend following strategies are used by longer-term traders. Mean reversion strategies and

trend following strategies may of course also be combined, and this has been shown to

work in FX [30]. In the case of FX trading this may be interpreted as in accordance

with the idea of short-term volatility and a long-run mean as in the Dornbusch model.

The existence of the phenomena of momentum and long-run value in a variety of assets

including FX data spanning a total of 32 years is also confirmed by Asness, Moskowitz and

Pedersen [23]. Another trading strategy which combines trend following and contrarian

strategies is described by Gençay et al. [1]. The model follows the trend most of the time,

but goes against the trend “in the case of extreme foreign exchange movements”, which

is roughly two to three times out of the 60 to 70 deals executed in a year. They test this

strategy on 5-minute frequency data for three major currency pairs and one cross rate for

the years 1990–1996, with the model taking into account human reaction times, opening

hours of the geographical FX markets, transaction costs, and risk, and find that the model

generates positive returns.

2.2 Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck (OU) process is a mean reverting diffusion process which may

be thought of as a standard Brownian motion tending towards a long-term reversion level.

It was first introduced in 1930 by Leonard Ornstein and George Eugene Uhlenbeck [31].

2.2.1 Diffusion processes

Diffusion processes are continuous stochastic processes with no memory, or, in other words,

they are Markov processes with no jumps [32]. A classic example of a real-world diffusion

is the movement of particles in fluids [33], which is described by Brownian motion. Other

examples of diffusion processes are geometric Brownian motion, Feller-square-root (FSR)

processes, Bessel processes, and the OU process. For comparison, examples of stochastic

processes which are not diffusions are Poisson and Bernoulli processes.

Brownian motion was first described mathematically around 1900 is possibly the most

well-known stochastic process of all, and as such we shall familiarize ourselves a little more

with it. Standard Brownian motion, also referred to as the Wiener process {W (t)}t∈R+
0

, is

defined as a continuous stochastic process with starting value W (0) = 0, and independent,

24



Gaussian increments [34]. Its probability density function (PDF) at time t is

P (W (t) = x) =
1√
2πt

e−
x2

2t , (2.3)

i.e. W (t)
d
= N(0, t) for t ≥ 0, where

d
= denotes equality of distribution. Throughout this

thesis we will treat time as being dimensionless. The expected value and variance of the

Wiener process at time t are therefore described by E[W (t)] = 0 and Var[W (t)] = t.

The process can also be obtained as the continuous limit of a random walk. The Wiener

process is self-similar, since if {W (t)}t∈R+
0

is the Wiener process then for any c ∈ R+,

{W ′(t)}t∈R+
0

defined by W ′(t) = 1√
c
W (ct) is also the Wiener process [32]. We will discuss

this property in Section 2.5.1. Note that, in the context of a one-dimensional diffusion,

the variance of the Wiener process means that the mean square displacement (MSD) of

particles following standard Brownian motion starting at point x (0) increases with time

proportionally to t:

(x(0)− x(t))2 ∝ t. (2.4)

The Wiener process forms the basis for many other stochastic processes, such as arith-

metic Brownian motion, geometric Brownian motion, and fractional Brownian motion,

all of which we will present in some more detail in the following, as well as some mean

reverting processes, including the OU process.

Arithmetic Brownian motion (ABM) is a Wiener process with added drift µA ∈ R. We

will define this process {A(t)}t∈R+
0

in terms of its stochastic differential equation (SDE)

as

dA(t) = µAdt+ σdW (t), (2.5)

where σ ∈ R+ is the volatility, with some starting value A(0) ∈ R. This means the Wiener

process is a special case of ABM with µA = 0 and σ = 1.

A quantity is said to follow geometric Brownian motion (GBM), or exponential Brow-

nian motion, if its logarithm follows a Wiener process with drift, i.e. an ABM. One of the

properties of GBM is therefore that, unlike the Wiener process, it cannot take negative

values, which is one of the reasons it is generally favoured for many quantities in finance,

maybe most famously in the Black–Scholes model. The SDE of a GBM {G(t)}t∈R+
0

with

starting value G(0) ∈ R+, drift µG ∈ R and volatility σ ∈ R+ is

dG(t) = µGG(t)dt+ σG(t)dW (t), (2.6)

where {W (t)}t∈R+
0

is the Wiener process. The parameters of ABM and GBM are related

by µA = µG− σ2

2 if A(t) = log G(t)
G(0) . Throughout this thesis, by log x we mean the natural

logarithm of x.

Fractional (or fractal) Brownian motion is a generalization of Brownian motion where

the process is allowed to have a scaling exponent H, which describes the self-similarity

of the process, anywhere between 0 and 1. If H 6= 0.5 the increments of the process are
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non-independent, and therefore inconsistent with the Wiener process, and also meaning

the process is no longer a diffusion. We discuss the scaling exponent in more detail in

Section 2.5.1.

2.2.2 Ornstein–Uhlenbeck process properties

The SDE of a standard OU process {X(t)}t∈R+
0

with reversion level µ ∈ R, reversion

strength (or reversion speed) α ∈ R+, and volatility coefficient σ ∈ R+ is

dX(t) = α (µ−X(t)) dt+ σdW (t), (2.7)

where {W (t)}t∈R+
0

is the Wiener process. The solution to this SDE, which may be obtained

by variation of parameters, with starting value X(0), is

X(t) = X(0)e−αt + µ
(
1− e−αt

)
+ σ

∫ t

0
e−α(t−s)dW (s) (2.8)

[34]. Given X(0), at time t, X(t) will therefore have a Gaussian distribution with expec-

tation

E[X(t)|X(0)] = X(0)e−αt + µ
(
1− e−αt

)
(2.9)

and variance

Var[X(t)|X(0)] =
(
1− e−2αt

) σ2

2α
, (2.10)

and the long-term limits of these values are

lim
t→∞

E[X(t)] = lim
t→∞

E[X(t)|X(0)] = µ (2.11)

and

lim
t→∞

Var[X(t)] = lim
t→∞

Var[X(t)|X(0)] =
σ2

2α
. (2.12)

Note that any point t′ ≥ 0 may be defined as the starting point of the process, so that the

above equations may be generalized to

E[X(t′ + τ)|X(t′)] = X(t′)e−ατ + µ
(
1− e−ατ

)
(2.13)

and

Var[X(t′ + τ)|X(t′)] =
(
1− e−2ατ

) σ2

2α
. (2.14)

Therefore the process is wide-sense stationary or quasi-stationary. In fact, the OU process

is the only Gaussian, wide-sense stationary Markov process.

By some definitions, the above process, either as defined or with µ > 0 [35], is a

Vasicek process, and the Ornstein–Uhlenbeck process is the special case of the Vasicek

process where µ = 0 [36]. In this thesis, however, we allow the reversion level µ of the

OU process to be any real number. Similarly, while some definitions allow the reversion
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strength α to take any real value, we restrict it to strictly positive values, in order to

ensure the mean reverting property of the process.

2.2.3 Discretization

Since in practice we can only observe and simulate the OU process discretely, it is necessary

to discretize the process. The Euler–Maruyama discretization {Xi}i∈N0 of the OU process

{X(t)}t∈R+
0

with discretization step ∆t is

X0 = X(0)

Xi+1 = Xi + α (µ−Xi) ∆t+ σεi,
(2.15)

where εi
d
= N(0,∆t) for i ∈ N0 [37]. In this case, Xi is an approximation of X(i∆t), since

the deterministic part of the process is split into linear increments. The approximation

therefore may be used only for sufficiently small discretization steps ∆t. An exact dis-

cretization is obtained instead by using the analytic moments from Eqs. 2.13 and 2.14.

We get

X0 = X(0)

Xi+1 = Xie
−α∆t + µ

(
1− e−α∆t

)
+ σ

√
1− e−2α∆t

2α
εi,

(2.16)

with εi
d
= N(0, 1) for i ∈ N0 [37]. This discretization may be used for any size of dis-

cretization step ∆t.

The OU process is sometimes called the CAR(1) process [38], where the ‘C’ signifies a

continuous process, since the AR(1) process is its discrete-time analogue. Each value Xt

of the AR(1) process {Xt}t∈N0 at time t ≥ 1 only depends on the previous value Xt−1, the

noise term εt, the reversion level c ∈ R and the reversion parameter a ∈ R, as, given some

starting value X0,

Xt = c+ aXt−1 + εt, (2.17)

with {εt}t∈N0 being a white noise process and |a| < 1, for the stationary, i.e. mean reverting,

version of the process.

2.2.4 Other applications

In addition to its original use as a model of the velocity of particles under friction, the

OU process has long been popular as a model for interest rates, as first introduced by

Vasicek [39]. Several extensions to the Vasicek model have also been made. The extended

Vasicek model, also called the Hull–White model [40], first proposed in 1990, allows for a

time-dependent reversion level µ(t) : R+
0 7→ R, reversion strength α(t) : R+

0 7→ R+, and
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volatility σ(t) : R+
0 7→ R+, and has the SDE

dX(t) = α(t) (µ(t)−X(t)) dt+ σ(t)dW (t). (2.18)

While interest rates are probably the most common financial application of the OU

process, it is also commonly used in pairs trading, stochastic volatility models, and to

model FX rates.

Another common application of the OU process is in neuroscience, where it is com-

monly employed to model neuron membrane potential [41, 42]. These are just some exam-

ples, and other quantities the OU process has been used to model range from temperatures

[43] to oil and gas prices [44].

2.3 Parameter estimation for the Ornstein–Uhlenbeck pro-

cess

There is much literature on the subject of parameter estimation of different variants of OU

processes observed in different ways. The models in this thesis are based on a standard OU

model observed discretely and regularly, and so we may choose between maximum likeli-

hood estimation (MLE) and least squares estimation (LSE), as these are mostly equivalent

in the case of Gaussian noise [45]. We nonetheless introduce both methods, as both may

be built on for different variants of the model.

2.3.1 Maximum likelihood estimation

In order to find the maximum likelihood (ML) estimators of the parameters of the OU

process {X(t)}t∈R+
0

observed at regular intervals of size ∆t over the observation window

[0, T ] with T = (n− 1)∆t, giving the n samples {xi}i∈N,0≤i<n where xi is the observation

made at time t = i∆t, we first find the conditional PDF of making an observation xi = x

given the previous observation xi−1. From Section 2.2.3 we know that Xi has a normal

distribution with expected value

E[Xi|Xi−1 = xi−1] = xi−1e
−α∆t + µ

(
1− e−α∆t

)
(2.19)

and variance

Var[Xi|Xi−1 = xi−1] = σ2 1− e−2α∆t

2α
(2.20)

[34], and therefore

P (Xi = x|Xi−1 = xi−1) =
1√

2πs2
e−

(x−xi−1e
−α∆t−µ(1−e−α∆t))

2

2s2 , (2.21)

where

s2 = σ2 1− e−2α∆t

2α
. (2.22)
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From this, we can find the joint PDF of all observations {Xi}i∈N,0≤i<n. In order to

maximize this function with respect to the three parameters of the process we find the log

likelihood function

`(µ, α, s) = logL (µ, α, s|x0, x1, ..., xn−1) = logP (x1, x2, ..., xn−1|x0, µ, α, s)

= −n
2

log (2π)− n log s− 1

2s2

n∑
i=1

[
xi − xi−1e

−α∆t − µ
(
1− e−α∆t

)]2
.

(2.23)

By setting the partial derivatives with respect to the three parameters to zero we may

now find the ML estimators.

2.3.2 Least squares estimation

Since the discretization with analytic moments means that each observation is a linear

function of the previous observation with added Gaussian noise, it is also possible to use

linear regression in order to derive the parameter estimators of the standard OU process:

If, again, we have n discrete observations {xi}0≤i<n made at times {i∆t}0≤i<n with

T = (n−1)∆t, then y = {x1, x2, ..., xn−1} is the vector of evenly spaced observed values of

the dependent variable, and z = {x0, x1, ..., xn−2} is the vector of values of the independent

variable, and according to Eq. 2.16 they have the relationship

yi = a+ bzi + εi, (2.24)

where a = µ(1 − e−α∆t), b = e−α∆t, and εi
d
= N(0, s2) for 1 ≤ i ≤ n− 1 with s =

σ
√

1−e−2α∆t

2α . We want to find estimates â for a and b̂ for b, such that the sum of the

squares of the residuals for all observed values is minimized, i.e. we want to minimize the

sum of squared residuals R =
∑n−1

i=1

(
xi −

(
â+ b̂xi−1

))2
.

It is easily determined from this formula that the estimators which minimize R are

given by

â =

∑n−1
i=1 xi − b̂

∑n−2
i=0 xi

n− 1
(2.25)

and

b̂ =
(n− 1)

∑n−2
i=0 [xixi+1]−

∑n−2
i=0 xi

∑n−1
i=1 xi

(n− 1)
∑n−2

i=0 [xi2]−
[∑n−2

i=0 xi

]2 . (2.26)

From these values we then obtain the estimators for the parameters of the OU process

by

α̂ = − log b̂

∆t
, (2.27)

µ̂ =
â

1− b̂
. (2.28)
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2.3.3 Estimators

Both of these methods lead to the following parameter estimators for the reversion level

µ and reversion strength α:

µ̂ =

∑n−1
i=1 xi

∑n−2
i=0

[
xi

2
]
−
∑n−2

i=0 xi
∑n−2

i=0 [xixi+1]

n
(∑n−2

i=0 [xi2]−
∑n−2

i=0 [xixi+1]
)
−
([∑n−2

i=0 xi

]2
−
∑n−2

i=0 [xixi+1]

) , (2.29)

α̂ = − 1

∆t
log

∑n−2
i=0 [xixi+1]− µ̂

∑n−2
i=0 xi − µ̂

∑n−1
i=1 xi + nµ̂2∑n−2

i=0 [xi2]− 2µ̂
∑n−2

i=0 xi + nµ̂2
. (2.30)

Via the MLE method we also obtain the following estimator for the volatility coefficient

σ:

σ̂ = ŝ

√
2α̂

1− e−2α̂∆t
(2.31)

where

ŝ2 =
1

n− 1

[
n−1∑
i=1

[
xi

2
]
− 2e−α̂∆t

n−2∑
i=0

[xixi+1] + e−2α̂∆t
n−2∑
i=0

[
xi

2
]

−2µ̂
(

1− e−α̂∆t
)(n−1∑

i=1

xi − e−α̂∆t
n−2∑
i=0

xi

)
+nµ̂2

(
1− e−α̂∆t

)2
]
.

(2.32)

These are the estimators we will use throughout this thesis.

2.3.4 Literature on Ornstein–Uhlenbeck process parameter estimation

In practice, estimating the parameters of the OU process is by no means trivial. One

issue is that of sampling, as in reality an OU process cannot be observed continuously and

infinitely. It is therefore not surprising that there is a large amount of literature on the

topic, some of which we will discuss below.

It is known that the estimation of the reversion strength parameter in particular is

difficult, as the estimators based on discrete observations are heavily biased, in particular

if the reversion strength is small (the near-unit-root case). Tang and Chen [46] find the

bias and the variance of the ML parameter estimators of the OU process, as well as some

related processes, based on discrete, regular observations over some observation window

[0, T ]. They find that with n samples and sampling interval ∆t so that (n−1)∆t = T , with

n → ∞ and either ∆t fixed or ∆t → 0, and T → ∞ in both cases, the bias and variance

of the ML estimators of the reversion strength α are at the order of 1
T . In addition, they

also find the other estimators to be biased, but the estimation of the reversion strength

parameter remains the most problematic.

A method advocated by Phillips and Yu [47], which reduces the bias of the ML estima-

tor of the reversion strength parameter based on finite samples, is the jackknife technique.
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Here, an estimate α̂whole of the reversion strength over the whole series is first found, then

the series is partitioned (the number n of partitions proposed is 2, although 3 and 4 are

also Monte Carlo tested) and then a reversion strength parameter estimator α̂partition,i is

found for each of the n partitions. The new estimator α̂jackknife is then found by calculating

α̂jackknife =
n

n− 1
α̂whole −

∑n
i=1 α̂partition,i

n2 − n
. (2.33)

When testing this technique on simulated data, Smith [48] concludes that while it leads

to a significantly smaller bias than the standard estimation techniques, it also leads to a

larger standard deviation of the reversion strength estimator, making it an appropriate

choice only when several sample paths are available. Phillips and Yu [47] also acknowledge

this trade-off, noting that a larger n leads to a smaller variance of the estimator, but also

a smaller reduction of the bias.

More recently, Tang and Chen [46] proposed using a bootstrap method for estimating

the parameters of the OU and other diffusion processes, which in a simulation study they

find to be more effective than Phillips and Yu’s [47] jackknife technique, with the bootstrap

causing a smaller increase in the variance than the jackknife technique, including in the

the near-unit-root case. Their technique consists of finding an estimate θ̂ of the parameter

vector θ = (µ, α, σ2) from the original process observed at a sampling interval ∆t and

then generating a bootstrap sample path of the process with parameter vector θ̂ and

discretization step ∆t. From this sample path, the bootstrap estimator θ̂′ is determined.

This procedure is then repeated an additional (n−1) times, yielding n bootstrap estimators

{θ̂′i}1≤i≤n in total. From this, the bias-corrected estimator θ̂B is found by

θ̂B = 2θ̂ − 1

n

n∑
i=1

θ̂′i. (2.34)

Some papers that also explore the parameter estimation of the OU process in more

detail and under different aspects are the following: Arató, Kuki and Szabó [49] give an

ML estimator of the reversion strength and Arató and Fegyverneki [50] ML estimators for

the reversion level and the reversion strength for an OU process observed continuously

over a closed interval with a focus on the near-unit-root case. Florens-Landais and Pham

[51] analyse the ML estimator for the reversion strength of a continuously observed OU

process with known reversion level and reversion strength, with a focus on the tails of the

distributions of the estimators. Yu [52] approximates the bias of the ML estimator (which

is equivalent to the LS estimator) of the reversion strength of an OU process with known

reversion level based on discrete observations, and in particular they treat the near-unit-

root case. Rieder [53] explores how to make the OU process parameter estimation more

robust against outliers, using the so-called M-estimation. Zapranis and Alexandridis [43]

apply neural networks to the parameter estimation for the OU process.
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2.4 Extensions of the Ornstein–Uhlenbeck process

There are many generalizations, extensions and variants of the OU process and its pa-

rameter estimation. These may arise from relaxing restrictions on the parameters of the

process, from allowing the noise to take different forms, or from observing the process indi-

rectly, such as through an integration, a function of the process, or any observable created

by the process. Some examples of such variants are explosive OU processes, fractional OU

processes, arithmetic OU processes, Lévy-driven OU processes, and OU processes with

time-dependent parameters.

We give an overview of the literature regarding some of these variants below. We then

focus on variants with time-dependent reversion level, as these are what we shall use to

model FX rates in this thesis.

2.4.1 Variants of the Ornstein–Uhlenbeck process

As a very common application of the OU process is in modelling interest rates, it is not

surprising that many other interest rate models use processes related to the OU process.

In this context the OU process is more commonly referred to as the Vasicek process, and

the FSR process as the Cox–Ingersoll–Ross (CIR) process [54], both of which are special

cases of the CKLS model [55], which nests a number of interest rate models in the process

{X(t)}t∈R+
0

with SDE

dX(t) = α(µ−X(t))dt+ σX(t)γdZ(t), (2.35)

with {Z(t)}t∈R+
0

being the noise process and α, µ, σ and γ being the parameters of the

model, which may be restricted in various ways to generate different special cases. Note

that, if {Z(t)}t∈R+
0

is the Wiener process, {X(t)}t∈R+
0

is the generalized Bessel process

[56]. Nowman [57] deals with parameter estimation of the CKLS interest rate models,

including Vasicek and CIR, based on discrete observations. Yu and Phillips [58] improve

on Nowman’s parameter estimation by proposing an alternative way of discretizing these

processes to allow Gaussian estimation in the case of non-Gaussian noise, making their

method more exact than Nowman’s. Sanchez and Palacio [44] provide another alternative

to Nowman’s method.

Outside of interest rate modelling, maybe the most widely studied generalization is the

Lévy-driven OU process, which is often referred to as a process of Ornstein–Uhlenbeck type

[59], or even simply as the generalized Ornstein–Uhlenbeck process [38], although other

types of noise may be substituted to create different generalizations of the OU process.

Barndorff-Nielsen and Shephard [60] explore Lévy-driven OU processes, which allow

the noise component of the OU process to be non-Gaussian Lévy noise, which they use to

model the volatility of financial assets. The parameter estimation of discretely observed

Lévy-driven OU processes is discussed by Sun and Zhang [59] and parameter estimation

of their reversion strength in particular is discussed by Mai [61], Zhang and Zhang [62]
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and Hu and Long [63, 64]. Other types of noise that drive variants of the OU process

include fractional Brownian motion. Quasi OU processes, which are OU processes where

the noise process has stationary, dependent increments, such as the fractional OU process,

are discussed by Barndorff-Nielsen and Basse-O’Connor [65]. Kubilius et al. [66] use MLE

to estimate the reversion strength of an OU process driven by fractional Brownian motion

based on discrete observations.

Allowing the reversion strength to be non-positive yields the non-stable, or unstable,

OU process, where the reversion strength is 0, and the explosive OU process, where the

reversion strength is negative [67]. Bercu, and Coutin and Savy [67] give the ML estimator

for the reversion strength based on a continuous observation over some closed interval of

the process in all three cases, where reversion level and volatility coefficient are known.

(Note that while in this terminology, a stable OU process is a standard OU process as

defined in Section 2.2.2, i.e. with a strictly positive reversion strength [67], a different

definition of a stable OU process is an OU type process where the noise distribution is

stable [68].)

Many variants of the OU process prevent the process from taking on negative values,

which is a property often required to model real-world data, including in finance, such

as if the process is used to model raw prices rather than log prices. An example is the

reflected OU process, which is treated by Hu et al. [69], who also give an estimator for the

reversion strength parameter based on discrete observations. Another variant of the OU

process which is suitable where negative values are not desired is the FSR process. The

SDE for this process {X(t)}t∈R+
0

is

dX(t) = α (µ−X(t)) dt+
√
X(t)σdW (t), (2.36)

with reversion level µ ∈ R, reversion strength α ∈ R+, volatility coefficient σ ∈ R+, and

{W (t)}t∈R+
0

the Wiener process. It is therefore an OU process with a volatility scaled in

relation to the size of the current value.

There are also papers that treat parameter estimation of an OU process that is not di-

rectly observed. For example, Gloter [70] estimates the volatility coefficient and reversion

strength of an integrated OU process with known reversion level observed at discrete regu-

lar intervals using the Whittle estimator, which is an approximation of the ML estimator.

They compare this with the maximum likelihood split data estimator, which splits the

series into multiple consecutive series of an equal, short length, and then applies MLE to

each of these sub-series before finding the likelihood for the whole series. In another paper

Gloter estimates parameters of integrated diffusion processes including the OU process,

the FSR process, and others [71]. They do this based on discrete regular observations

where the sampling rate tends to infinity. Matulewicz [72] explores the parameter esti-

mation of a multi-dimensional OU process based on a continuous observation of a graph

produced by the OU process according to an algorithm.

Dehay [73] explores the parameter estimation of an OU process where the reversion
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strength is a parameter α multiplied by a known periodic function. They give the ML

estimator of the reversion strength based on a continuous observation of the process.

Brandes [38] explores CARMA processes with random Lévy coefficients. A special case of

this is the CARMA(1,0) process, which is an OU process with random Lévy coefficients.

2.4.2 Time-dependent reversion level

We have a particular interest in OU processes with time-dependent reversion levels, and

shall therefore present some of the literature on this topic below.

It should first of all be noted that there is a minor difference between an OU process

where the drift is determined by the current value’s distance from the time-dependent

reversion level and a process defined as the sum of a time-dependent value and an OU

process with constant reversion level. However, there does not appear to be a formal

distinction in the literature, and both processes are referred to as OU processes with

time-dependent reversion level. One application of this is in the Hull–White model [40]

described in Eq. 2.18, which is an extension of the Vasicek model. This model assumes that

interest rates follow an OU process with time-dependent reversion level, and sometimes

other time-dependent parameters. However, when calibrating this model, it is generally

assumed that the reversion level is known prior to estimating the other parameters of the

model.

Thierfelder [74] explores the trending OU process {X(t)}t∈R+
0

, which is an OU process

where the reversion level is a linear function of time. The process is defined as

X(t) = X(0) + µt+ σ

∫ t

0
eα(s−t)dW (s), (2.37)

for t ≥ 0, with reversion strength α ∈ R+, volatility coefficient σ ∈ R+ and drift µ ∈ R
with {W (t)}t∈R+

0
being the Wiener process. The process has the SDE

dX(t) = (µ− α [X(t)− (X(0) + µt)]) dt+ σdW (t), (2.38)

meaning that (X(t)−µt−X(0)) follows a standard OU process with no initial displacement

reverting to 0. They also treat the dependence of the average return measured over a

certain interval on the interval. They show that if log prices follow a trending OU process

then the log return r∆t(t) at time t measured over the preceding time interval of size ∆t

has expected value

E [r∆t (t)] = µ∆t (2.39)

and the variance of the log return as t tends to infinity is given by

lim
t→∞

Var[r∆t(t)] =
σ2

α

(
1− e−α∆t

)
. (2.40)

Sanchez and Gallego [75] propose a parameter estimation method for a discretely
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observed mean reverting process where the reversion level is an unknown, deterministic

function of time. They analyse the continuous processes {X(t)}t∈R+
0

given by

dX(t) = α (µ (t)−X(t)) dt+ σX(t)γdW (t) (2.41)

with constant parameters α ∈ R+, σ ∈ R+, γ ∈ [0, 3/2] for some initial condition X(0) =

x(0), where {W (t)}t∈R+
0

is the Wiener process, and µ(t) : R+
0 7→ R is the deterministic,

time-dependent reversion level. This is a generalization of CKLS, and for γ = 0 it is the

OU process with a time-dependent reversion level with SDE

dX(t) = α (µ (t)−X(t)) dt+ σdW (t), (2.42)

which is what we are working with in this thesis. They show that the expected value m(t)

of the process at time t is

m(t) = E[X(t)] = E[X(0)]e−αt + e−αt
∫ t

0
eαsµ(s)ds. (2.43)

The relationship between µ(t) and m(t) is given by

µ (t) = m(t) +
ṁ(t)

α
, (2.44)

where ṁ(t) is the first derivative of m(t). In order to find parameter estimators α̂ for α and

σ̂ for σ given n+1 discrete observations {xi}0≤i≤n made at some constant sampling interval

∆t with xi being the observation of the sample path {x(t)}t∈R+
0

made at time t = i∆t,

they substitute µ (t) in Eq. 2.41 using Eq. 2.44 and discretize the process using Euler–

Maruyama. They then derive the probability distributions of the observed discrete samples

of the process as a function of the constant parameters α, σ, as well as the parameter γ,

which is presumed known a priori, the sampling interval ∆t, and the unknown function

m(t). For γ = 0 the parameter estimators α̂ and σ̂ are derived from this as

α̂ =

∑n
i=1 [(xi − xi−1 − ṁi−1∆t) (mi−1 − xi−1)]

∆t
∑n

i=1 [mi−1 − xi−1]2
(2.45)

and

σ̂ =

√√√√ 1

n∆t

n∑
i=1

(xi − xi−1 − [α̂ (mi−1 − xi−1) + ṁi−1] ∆t)2. (2.46)

Note that as m(t) is not known, its values and the values of its derivative instead need to be

approximated by {mi}0≤i<n and {ṁi}0≤i<n respectively, so that mi is an approximation

of m(i∆t) and ṁi is an approximation of ṁ(i∆t). mi is found using a convolution of the

sample path, such as an MA, and the derivative ṁ(i∆t) at these points is then approxi-

mated by ṁi, using numerical differentiation. Using Eq. 2.44 and the approximated values

{mi}0≤i<n of m(t) and {ṁi}0≤i<n of ṁ(t), the estimators {µ̂i}0≤i<n are then computed
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so that µ̂i is the estimator of µ(i∆t), and then α̂ and σ̂ are computed using Eqs. 2.45 and

2.46.

They test this parameter estimation method on a simulated data set for γ = 1 with

some parameters α and σ, for the cases of µ(t) being a sinusoidal and a parabolic func-

tion. They find the estimation method to be “working well”, although they find that the

estimator for α is biased, with the bias depending on the convolution used to approximate

m(t). They also find the estimators µ̂i to be “not very accurate”. They propose, in cases

where there is only one sample path available, a second phase to the estimation, where af-

ter the initial estimation, the functional structure of µ(t) is given from a priori knowledge,

and new estimates of µ(t) at the sampling points are then generated from this and the

estimators {µ̂i}0≤i<n (obtained in the first estimation phase), after which α and σ may

then be re-estimated. They find that adding this second phase significantly reduces the

bias in the estimate of α, but does not have a significant effect on the estimate of σ.

2.5 Scaling and self-similarity

Considering the importance of the FX market, it is not surprising that much research has

been conducted on its behaviour, producing a wealth of stylized facts, which may help us

build better models of the market. When it comes to statistical properties of FX rate time

series, there is generally a wide consensus that FX rates have fat-tailed, non-stable, mostly

symmetric distributions, with first, second and third, but not fourth, moments existing for

free-floating pairs [9]. Another thing that has been widely shown is the seasonality of FX

rates, which is very closely linked with the opening times of the FX markets in different

parts of the world. These intra-day and intra-week patterns are found in a variety of

statistics related to FX prices, such as volatility, tick frequency, and many others [9]. A

third characteristic feature of the FX market is its scaling properties. Scaling laws can be

useful when devising trading strategies, for example as they help in refining models of the

FX market, as described by Dupuis and Olsen [76] and as implementing trading strategies

on a range of time scales at once can lead to a smoothing of the returns.

The scaling relation, or scaling law, that is at the center of Part 1 (Chapter 4) of this

thesis has been reported in many papers, but numerous other scaling laws in FX have also

been discovered since. Below, we will describe what self-similarity means for stochastic

processes, before reviewing the existing literature on the scaling of mean absolute log

returns. We then give an overview of other scaling laws that have been observed in FX,

and finally briefly look at scaling outside of FX.

2.5.1 Self-similar stochastic processes

A stochastic process {X(t)}t∈R+
0

is said to be self-similar or self-affine if for any a > 0

there exists a b > 0 such that

X(at)
d
= bX(t) (2.47)
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for all t ≥ 0, where
d
= denotes equality of distribution [77]. In this case, it can be shown

that there exists a unique constant H ≥ 0 so that

b = aH . (2.48)

In the above equation, H is referred to as the scaling exponent. As mentioned previously,

an example of a self-similar stochastic process is fractional Brownian motion, of which the

Wiener process is a special case with H = 0.5.

While the scaling exponent of a stochastic process indicates its memory, with H ∈
(0, 0.5) indicating a negative autocorrelation, and H ∈ (0.5, 1) indicating a positive one

(in which case H may be referred to as the Hurst exponent [78]), the fractal dimension,

or Hausdorff dimension, D measures the roughness of a process, with a higher fractal

dimension indicating a rougher process. In the case of self-affine processes the relationship

between D and H is

D = n+ 1−H, (2.49)

where n is the dimension of the space in which the process takes its values. A one-

dimensional Wiener process therefore has fractal dimension D = 1.5.

As described by Di Matteo [78], the scaling behaviour of a process {X(t)}t∈R+
0

may be

measured by determining whether the quantity

Kq(τ) =
|x(t+ τ)− x(t)|q

|x(t)|q
, (2.50)

scales according to

Kq(τ) = cτ qH(q), (2.51)

where c is a constant, q ≥ 0 is the order of the moments and τ is the size of the time

interval with regard to which the quantity scales, in which case H(q) is the generalized

Hurst exponent. If the generalized Hurst exponent is constant, so that H(q) = H, the

process {X(t)}t∈R+
0

is considered to be uniscaling, and otherwise it is multiscaling.

The oldest method for estimating the Hurst exponent is the rescaled range (R/S)

analysis [79]. This method divides series into subseries of equal lengths and then for

each subseries computes the range of the series of cumulative sums of deviations from

the subseries’ mean value, divided by the standard deviation of values in the subseries.

The resulting value is the rescaled range, and the mean rescaled range of all subseries is

computed for different lengths of subseries to determine its dependence on the length of

the subseries.

Related to this method is the detrended fluctuation analysis (DFA), which splits the

series of cumulative sums of the series to be analysed into a number of subseries of equal

lengths before subtracting the linear trend from each subseries and then computing the

standard deviation of each detrended subseries. The mean of the standard deviations

computed for all subseries is then found, and the dependence of this value on the size of
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subseries is determined [80].

Another method is the detrended moving average analysis (DMA). This method was

first proposed by Alessio et al. in 2002 [81] and estimates the Hurst exponent in the fol-

lowing way: for a range of τs, a simple moving average over τ is computed and subtracted

from the series. The variance of each thus detrended series is then recorded. The depen-

dence of the variance of the detrended series on τ is expressed as a power law, and the

exponent of the power law is the estimate of the Hurst exponent.

2.5.2 Scaling of mean absolute log returns

The law first described in 1990 by Müller et al. [82], and inspired by the work of Mandelbrot

[83], relating mean absolute changes of the logarithmic mid price to the length of time over

which they occur, is probably the most widely reported scaling law in the FX market, and

provides the basis for the first part of this thesis. Müller et al.’s paper is also significant

as it was one of the first studies to analyse a large set of intra-day FX data, providing

a foundation for determining the statistical properties of high-frequency FX time series.

The paper analyses millions of intra-day spot rate quotes for USD/DEM, USD/JPY,

USD/CHF and GBP/USD spanning 3 years, as well as daily prices spanning 15 years.

For each currency pair their analysis is based on a time series of n pairs of bid and

ask quotes {(pbid(ti), pask(ti))}1≤i≤n for an irregularly spaced series {ti}1≤i≤n of points in

time, sampled over the observation window [t1, tn]. For any particular currency pair at

time ti they compute the logarithmic mid price x(ti) as

x(ti) =
log pask(ti) + log pbid(ti)

2
. (2.52)

Note that throughout this thesis for the purpose of calculations we will assume prices to

be dimensionless. From the irregularly spaced time series {x(ti)}1≤i≤n, which is treated as

an irregular sampling of a continuous stochastic process {X(t)}t∈R+
0

, they create a number

of regularly spaced time series {x∆t,j} using linear interpolation for different sizes of time

steps ∆t, where x∆t,j is the interpolated value of the unknown continuous series {x(t)}t∈R+
0

at time t = j∆t. For each ∆t, they compute the mean absolute change of the logarithmic

mid price of the series {x∆t,j}0≤j≤m corresponding to that ∆t as

|∆x|∆t =
1

m

m∑
j=1

|x∆t,j − x∆t,j−1|. (2.53)

We will also refer to the change of the logarithmic mid price as the log return. The

relationship they find is the power law

|∆x|∆t = c∆tE , (2.54)

38



translating into a linear relationship on a log-log scale as

log
(
|∆x|∆t

)
= log c+ E log ∆t, (2.55)

where c and E are constants depending on the currency pair analysed and E is called the

drift exponent. Note that this law is equivalent to Eq. 2.51 with q = 1.

They compute the quantity in Eq. 2.53 for intervals ∆t ranging from ten minutes to

two years, and they find that allowing the intervals over which the changes of logarith-

mic mid prices were computed to overlap does not significantly affect the results, with a

bigger overlap only leading to smoother distributions. With intervals overlapping by 2/3

they observe correlation coefficients between log ∆t and log |∆x|∆t higher than 0.999 and

standard errors of the exponents E smaller than 1.0%.

This law has been widely reported in the literature, for example by Guillaume et al.

[9], who observe it in all the spot rate time series they examine and over intervals ranging

from ten minutes to two months, using the same definition of the mid price as described

in Eq. 2.52. Both papers refer to the quantity defined in Eq. 2.53 as the “volatility” of

the series, justified by the fact that “the existence of standard deviations is not proven”

for the distribution of price changes [82]. Guillaume et al. find lower drift exponents in

the scaling law in Eq. 2.54 for currencies within the European Monetary System (EMS)

when EMS bands were narrow compared to free-floating currencies, relating to a smaller

average volatility. Glattfelder, Dupuis and Olsen [84], observe the scaling law in five years’

worth of tick data for 13 currency pairs.

While Aloud et al. [3] also observe Müller et al.’s [82] scaling law from Eq. 2.54 in 2.25

years’ worth of high-frequency bid and ask prices for EUR/USD and EUR/CHF, they use

a different definition for the “log returns”: If {pi} is a regularly spaced sequence of mid

prices, so that pi is the price at time t = i∆t then the “log return” at time t = i∆t is

defined as

∆xi =
pi − pi−1

pi−1
. (2.56)

This is an approximation of the actual log return [74], as

log pi − log pi−1 = log
pi
pi−1

= log

(
pi + pi−1 − pi−1

pi−1

)
= log

(
pi − pi−1

pi − 1
+ 1

)
=
pi − pi−1

pi−1
− 1

2

(
pi − pi−1

pi−1

)2

+
1

3

(
pi − pi−1

pi−1

)3

− ...

≈ pi − pi−1

pi−1
.

(2.57)

A variation of Müller’s law has been reported by Galluccio et al. [85], who analysed

both bid and ask prices for exchange rates between USD, JPY and DEM from the period

of 1 October 1992 to 30 September 1993. Using linear interpolation, they obtain regularly

spaced price values with time step 30 seconds, including non-trading times in their time

series as periods over which prices did not change. Periods with less activity are assigned
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less weight in the analysis. Related to the scaling law in Eq. 2.54 from Müller et al.’s

paper [82], they observe the scaling of the square root of the mean of the squared price

changes, or the square root of the mean squared displacement, over a time interval as

being proportional to a power of this interval, with the slope on a log-log scale being 0.45

for the currency pair DEM/USD over intervals ranging from 30s to 10,000s. Note that

this exponent is very different from the one found for Eq. 2.54, indicating a multi-scaling

behaviour [85]. Müller et al. also observe scaling of this quantity, with a scaling exponent

of about 0.52.

2.5.3 Other scaling laws in foreign exchange

While the scaling of absolute log returns is of the most interest to us, it is only one of

many scaling behaviours identified in the FX market. The FX market is very complex,

and not only has agents acting in different time zones, but also agents acting on different

time scales, which is by many thought to be the cause of the fractal structure the market

exhibits. To illustrate this, we will present some of the other scaling behaviours found in

FX data.

Guillaume et al.’s [9] 1997 paper is one of the earliest to provide an overview of a large

number of statistical properties of FX data of a frequency which was higher than daily.

They present a scaling relation for directional changes, which is a change in direction

(upward or downward) of the trend of the series. Specifically, they find a scaling law

relating the number of directional changes to the threshold above which the changes were

registered. They define a directional change dr as a change in direction of the trend of

the time series. The threshold r indicates the “tolerance” to a change in direction, i.e. the

threshold above which the size of a movement has to be for the movement to be registered

as a change in direction rather than “noise”. They then calculate the number N(dr) of

directional changes over the sampling period given a particular time series spaced regularly

at intervals ∆t, with directional changes registered above a threshold size of r. The law

they find is

N(dr) = c′rE
′

(2.58)

with c′ being a constant depending on the FX rate, r being the size of the threshold for

the directional changes, and E′ being the drift exponent.

Guillaume et al. offer what they call a “highly tentative economic interpretation” of

this scaling behaviour, which is that it is due to “a mix of risk profiles of agents trading

at different time horizons”.

They estimate the drift exponents for this scaling law and the one in Eq. 2.54, which

they also observed in their data, by least squares. A relation between these two scaling

laws is shown, as they find

E′ ≈ −E−1. (2.59)

Twelve new scaling laws as well as the one discovered in Müller et al.’s paper [82] are
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observed by Glattfelder, Dupuis and Olsen [84] in FX data. Like Guillaume et al. they

analyse high-frequency data using a directional change event-based approach, which they

use to define an intrinsic time. This intrinsic time scale based on directional change events

and its implications are further explored by Aloud et al. [86], who also measure the FX

coastline, i.e. the length of the price curve, using this approach. Galluccio et al. [85] also

look at scaling laws and intrinsic time as found in FX markets.

More recently, Aloud et al. [3] have published a paper which focuses on observing old

and new stylized facts in a large set of FX data, with some of the stylized facts confirmed

or established in this paper relating to seasonality but some being scaling laws. In addition

to observing Müller et al.’s [82] scaling law from Eq. 2.54, as well as a number of other

previously known stylized facts, four new scaling laws and six relationships between them

are also found. Aloud et al.’s analysis is based on two sets of 2.25 years’ worth of historical

high-frequency data. Transaction data for 48 currency pairs is analysed for seasonality, but

only bid and ask prices for two currency pairs (EUR/USD and EUR/CHF) are analysed

for scaling laws.

Aloud et al. confirm the scaling law from Eq. 2.58 first found by Guillaume et al. [9],

with thresholds of sizes between 0.10% and 0.80%. Aloud et al. also observe two of the

scaling laws described in Glattfelder, Dupuis and Olsen [84]. All parameters are found by

fitting a least squares regression line on a log-log scale, and goodness of fit was assessed

with the adjusted R2 value. In addition to these four, Aloud et al. also observe four

new scaling laws in transactions data rather than price data. These show relationships

between the threshold size for registering an event and the average number of trades during

an event, the average transaction volume during an event, the average number of opened

positions, and the average number of closed positions during an event, respectively.

2.5.4 Scaling elsewhere

While we focus on scaling in the FX market, scaling is a universal phenomenon, and similar

scaling laws have been observed in a wide range of other fields, in particular in physics.

However scaling is also observed in other types of financial markets, and looking at some

of these may be helpful in gaining a deeper understanding of the scaling behaviour of the

FX market.

For example, Mantegna and Stanley [87] find scaling behaviour in the Standard and

Poor’s 500, which is a price index of the New York Stock Exchange. For a range of time

intervals ∆t from 1 min to 1,000 min, they observe the probability P (∆x∆t = 0) of a

price change over the interval ∆t being 0. On a log-log scale they conduct a line fit to

find the relationship between the size of ∆t and P (∆x∆t = 0), and find that a straight

line was a good fit, albeit with the slope being significantly steeper than −0.5, indicating

a non-normal scaling behaviour.

Ballocchi et al. [88] provide an analysis of implied forward rate time series constructed

from Eurofutures contracts. They find scaling behaviour but also intra-day patterns which
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are very similar to those found in FX ones.

Di Matteo, Aste and Dacorogna [89] fit a multiscaling model to a variety of financial

markets, including 29 FX rates and show that H(2) is a good indicator of the stage of

development of a market.
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Chapter 3

Data sets

In this chapter, the data analysed in Parts 1–3 (Chapters 4–6) will be described in detail.

For each data set we will describe the source, the type of data, as well as the size and

nature of the set. We then describe some of the methodology used for treating the data

as well as for generating the simulated time series used throughout the thesis.

3.1 Data set 1: Thomson Reuters

The first data set was obtained from the Thomson Reuters Eikon terminals located

at University College London. Historical bid close prices captured at six different fre-

quencies were downloaded, with the time intervals between observations being 24 hours,

60 minutes, 30 minutes, 10 minutes, 5 minutes and 1 minute. This data stemmed

from nine different days in August 2014 and reached back about 40 years for daily

data and about 40 days for minutely data. The 17 currency pairs downloaded were

USD/CAD, USD/GBP, USD/JPY, EUR/AUD, EUR/CAD, EUR/CHF, EUR/GBP,

EUR/JPY, EUR/USD, EUR/NOK, EUR/SEK, GBP/AUD, GBP/CAD, GBP/CHF,

GBP/EUR, GBP/JPY and CHF/JPY.

The data stemming from the different days was combined and duplicates removed. It

was found that in some cases values for the same currency pair with the same time stamp

and interval size differed by a small degree depending on the download day. In these cases,

we chose the most recently downloaded value. A portion of these cases appeared to be

instances of the value being updated in the day or days following the time stamp, and no

conflicting values of this type varied by a large degree.

3.1.1 Preparing the data

The raw data as downloaded from Thomson Reuters Eikon contained separate series per

pair per download day per observation interval. While a small number of series were

missing, there was always at least one series per interval per currency pair. We reduced

the set to 102 time series by combining the data downloaded on different days for the same
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interval and currency pair into one series with each value consisting of price, time stamp,

and date of download.

From here on, all series were treated in the following way: First, each series was sorted

by time stamp and duplicate rows (ignoring download day) were removed. The remaining

time series were checked for conflicting values. The following types of conflicting values

were found:

1. Some values with the same time stamp but downloaded on different days differed

within the range of price changes seen between values belonging to consecutive time

stamps. These were conflicts between values

(a) downloaded previous to the day of the time stamp and values downloaded on

the day of the time stamp;

(b) downloaded on the day of the time stamp and values downloaded in the days

after the time stamp;

(c) downloaded on different days but relating to data long before the download

dates.

2. For some series it was apparent from the number of conflicting values and/or from the

magnitudes of the differences between conflicting values that the time series included

values belonging to a different currency pair. If the range of values downloaded on

one day was distinct from the range of values downloaded on all other days the values

downloaded on that day were presumed to be invalid.

Conflicts of the first type were resolved by always choosing the most recently down-

loaded value for each time stamp. Conflicts of the second type were identified and resolved

by comparing the series from all download days and determining whether, and which, one

differed significantly from all the others. Once the data had been treated in this way,

we removed the download date from each value, took the logarithm of each rate and

interpolated to fill any gaps in the data.

3.1.2 Properties of the data set

The Thomson Reuters time series and their properties after combining the series and re-

solving conflicting values, but before taking the logarithm and interpolating, are described

in more detail in the following tables.

Table 3.1 shows the length of the time range covered by each series in days.
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1d 60min 30min 10min 5min 1min

CAD 15,932 378 378 105 105 41
GBP 14,473 378 378 105 105 40
JPY 15,932 378 378 105 105 40
EURAUD 10,330 352 352 105 105 43
EURCAD 14,473 352 352 105 105 40
EURCHF 14,473 352 352 105 105 40
EURGBP 10,330 352 352 105 105 40
EURJPY 14,473 352 352 105 105 40
EUR 14,473 378 378 105 105 40
EURNOK 14,473 352 352 105 105 40
EURSEK 14,473 352 352 105 105 41
GBPAUD 14,473 352 352 105 105 41
GBPCAD 14,473 351 351 105 105 43
GBPCHF 14,473 352 352 105 105 40
GBPEUR 10,330 352 352 105 105 40
GBPJPY 14,473 352 352 105 105 40
CHFJPY 11,914 352 352 105 105 41

Table 3.1: Time range in days covered by data set

Tables 3.2 and 3.3 contain the mean, standard deviation, number of values, and maxi-

mum time step in days for each series. Note the difference in properties between the daily

and intra-daily data sets, which is due to the fact that the daily series cover a much larger

range of time than the intra-daily series.
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1d 60min 30min 10min 5min 1min

CAD X 1.2137 1.0742 1.0742 1.0823 1.0824 1.0826
σ 0.1711 0.0271 0.0271 0.0095 0.0096 0.0098
n 11,212 6,735 13,348 10,996 21,932 41,939
∆tmax/d 5.00 1.92 1.90 1.90 1.89 1.84

GBP X 1.6993 1.6461 1.6462 1.6922 1.6922 1.6933
σ 0.2345 0.0438 0.0438 0.0140 0.0140 0.0146
n 10,227 6,744 13,342 10,971 21,877 40,526
∆tmax/d 5.00 1.96 1.94 1.92 1.92 1.92

JPY X 163.94 101.30 101.31 101.92 101.92 101.98
σ 74.45 2.06 2.06 0.41 0.41 0.50
n 11,224 6,729 13,343 10,995 21,943 40,527
∆tmax/d 18 1.96 1.94 1.92 1.92 1.91

EURAUD X 1.6082 1.4774 1.4773 1.4517 1.4517 1.4395
σ 0.1605 0.0412 0.0412 0.0153 0.0153 0.0075
n 7,357 6,059 12,051 10,654 21,192 39,122
∆tmax/d 6.00 2.13 2.10 2.01 2.09 2.09

EURCAD X 1.4479 1.4666 1.4667 1.4691 1.4691 1.4568
σ 0.1852 0.0465 0.0465 0.0170 0.0170 0.0065
n 10,146 6,185 12,334 10,600 21,702 40,394
∆tmax/d 5.00 1.96 1.96 1.93 1.93 1.92

EURCHF X 1.7903 1.2234 1.2234 1.2170 1.2170 1.2145
σ 0.4707 0.0072 0.0072 0.0030 0.0030 0.0016
n 10,199 6,192 12,332 10,872 21,726 40,444
∆tmax/d 6.00 1.96 1.94 1.92 1.91 1.91

EURGBP X 0.7322 0.8243 0.8244 0.8020 0.8020 0.7941
σ 0.0815 0.0171 0.0171 0.0091 0.0091 0.0035
n 7,364 6,269 12,434 10,910 21,772 40,444
∆tmax/d 4.00 1.92 1.92 1.90 1.90 1.90

EURJPY X 176.51 138.39 138.39 138.33 138.33 137.17
σ 74.44 3.44 3.44 1.15 1.15 0.52
n 10,157 6,233 12,418 10,890 21,749 40,437
∆tmax/d 5.00 1.96 1.96 1.95 1.95 1.95

EUR X 1.1870 1.3602 1.3602 1.3572 1.3572 1.3450
σ 0.1835 0.0172 0.0172 0.0125 0.0125 0.0082
n 10,234 6,712 13,338 11,002 21,962 40,517
∆tmax/d 5.00 1.92 1.92 1.92 1.91 1.83

Table 3.2: Mean, standard deviation, number of values and maximum time step for Thom-
son Reuters time series (1/2)
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1d 60min 30min 10min 5min 1min

EURNOK X 7.6522 8.2554 8.2552 8.2661 8.2660 8.3533
σ 0.6946 0.1413 0.1414 0.1206 0.1206 0.0620
n 10,190 6,225 12,371 10,868 21,643 40,160
∆tmax/d 6.00 1.96 1.96 1.92 1.91 1.91

EURSEK X 7.9475 8.9433 8.9426 9.1350 9.1349 9.2144
σ 1.4373 0.1703 0.1703 0.0959 0.0959 0.0303
n 10,190 6,169 12,217 10,738 21,400 40,181
∆tmax/d 5.00 2.00 2.00 1.92 1.92 1.92

GBPAUD X 2.0858 1.7928 1.7928 1.8098 1.8098 1.8116
σ 0.3863 0.0566 0.0566 0.0114 0.0114 0.0106
n 10,144 6,137 12,235 10,732 21,416 39,955
∆tmax/d 5.00 2.08 2.06 2.05 2.05 2.05

GBPCAD X 2.0806 1.7800 1.7801 1.8317 1.8317 1.8337
σ 0.2847 0.0751 0.0751 0.0085 0.0085 0.0077
n 10,193 5,915 11,751 10,442 20,705 38,579
∆tmax/d 5.00 2.25 2.25 2.26 2.26 2.26

GBPCHF X 2.6350 1.4841 1.4841 1.5172 1.5172 1.5289
σ 0.9053 0.0255 0.0255 0.0146 0.0145 0.0081
n 10,172 6,158 12,255 10,810 21,564 40,228
∆tmax/d 5.00 2.00 1.98 1.97 1.96 1.96

GBPEUR X 1.3811 1.2131 1.2131 1.2467 1.2467 1.2588
σ 0.1486 0.0255 0.0255 0.0141 0.0141 0.0056
n 7,363 6,214 12,367 10,880 21,720 40,388
∆tmax/d 4.00 1.96 1.96 1.95 1.95 1.95

GBPJPY X 260.30 167.90 167.90 172.46 172.46 172.72
σ 130.56 5.95 5.96 1.21 1.21 0.96
n 10,184 6,146 12,242 10,759 21,472 40,133
∆tmax/d 5.00 2.00 2.00 1.98 1.98 1.94

CHFJPY X 90.03 113.07 113.06 113.63 113.63 112.94
σ 12.67 3.13 3.13 0.80 0.80 0.43
n 8,452 6,080 12,128 10,659 21,194 39,724
∆tmax/d 5.00 2.08 2.06 2.06 2.06 2.02

Table 3.3: Mean, standard deviation, number of values and maximum time step for Thom-
son Reuters time series (2/2)

Table 3.4 provides more information on the sizes of gaps in the daily series. The

number of times that a gap of size n days occurred for each currency pair is given. The

frequency of gaps in the data is relevant as we later interpolate and assume a homogeneous

time series for our further analysis.
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1d 2d 3d 4d 5d 6d 18d

CAD 8,865 70 2,179 95 2
GBP 8,132 24 2,002 53 15
JPY 8,888 61 2,190 81 2 1
EURAUD 5,872 7 1,466 10 1
EURCAD 8,024 48 1,961 90 22
EURCHF 8,103 23 1,987 63 21 1
EURGBP 5,880 5 1,472 6
EURJPY 8,068 15 1,956 78 39
EUR 8,149 11 2,010 43 20
EURNOK 8,092 25 1,980 70 21 1
EURSEK 8,090 26 1,982 70 21
GBPAUD 8,055 14 1,948 84 42
GBPCAD 8,104 15 1,982 62 29
GBPCHF 8,084 14 1,966 72 35
GBPEUR 5,878 6 1,472 6
GBPJPY 8,096 14 1,975 66 32
CHFJPY 6,727 22 1,667 33 2

Table 3.4: Gaps in daily Thomson Reuters series

Tables 3.5–3.9 give the number of times that observation steps of different sizes occur

in the series.

Table 3.5 shows how many steps in the 60-minute time series are 60 minutes, how

many are between 60 minutes and 1 day, and how many are 1 day or larger.

60min (60min,1d) [1d,∆tmax]

CAD 6,651 29 54
GBP 6,646 44 53
JPY 6,626 48 54
EURAUD 5,988 20 50
EURCAD 6,129 5 50
EURCHF 6,135 6 50
EURGBP 6,203 15 50
EURJPY 6,174 8 50
EUR 6,624 33 54
EURNOK 6,156 18 50
EURSEK 6,081 37 50
GBPAUD 6,080 6 50
GBPCAD 5,841 23 50
GBPCHF 6,090 17 50
GBPEUR 6,155 8 50
GBPJPY 6,088 7 50
CHFJPY 6,023 5 51

Table 3.5: Occurrences of time steps in 60-minute data
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Table 3.6 shows how many steps in the 30-minute time series are 30 minutes, how

many are between 30 minutes and 1 day, and how many are 1 day or larger.

30min (30min,1d) [1d,∆tmax]

CAD 13,249 44 54
GBP 13,220 68 53
JPY 13,233 55 54
EURAUD 11,959 41 50
EURCAD 12,265 18 50
EURCHF 12,267 14 50
EURGBP 12,358 25 50
EURJPY 12,358 9 50
EUR 13,242 41 54
EURNOK 12,289 31 50
EURSEK 12,089 77 50
GBPAUD 12,161 23 50
GBPCAD 11,645 55 50
GBPCHF 12,178 26 50
GBPEUR 12,300 16 50
GBPJPY 12,168 23 50
CHFJPY 12,059 17 51

Table 3.6: Occurrences of time steps in 30-minute data

Table 3.7 shows how many steps in the 10-minute time series are 10 minutes, how

many are between 10 minutes and 1 day, and how many are 1 day or larger.

10min (10min,1d) [1d,∆tmax]

CAD 10,957 23 15
GBP 10,937 18 15
JPY 10,964 15 15
EURAUD 10,620 18 15
EURCAD 10,322 262 15
EURCHF 10,851 5 15
EURGBP 10,880 14 15
EURJPY 10,863 11 15
EUR 10,973 13 15
EURNOK 10,820 32 15
EURSEK 10,678 44 15
GBPAUD 10,704 12 15
GBPCAD 10,399 27 15
GBPCHF 10,771 23 15
GBPEUR 10,855 9 15
GBPJPY 10,721 22 15
CHFJPY 10,628 15 15

Table 3.7: Occurrences of time steps in 10-minute data
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Table 3.8 shows how many steps in the 5-minute time series are 5 minutes, how many

are between 5 minutes and 1 day, and how many are 1 day or larger.

5min (5min,1d) [1d,∆tmax]

CAD 21,870 46 15
GBP 21,816 45 15
JPY 21,896 31 15
EURAUD 21,073 103 15
EURCAD 21,680 6 15
EURCHF 21,701 9 15
EURGBP 21,730 26 15
EURJPY 21,711 22 15
EUR 21,915 31 15
EURNOK 21,553 74 15
EURSEK 21,320 64 15
GBPAUD 21,355 45 15
GBPCAD 20,506 183 15
GBPCHF 21,496 52 15
GBPEUR 21,682 22 15
GBPJPY 21,414 42 15
CHFJPY 21,077 101 15

Table 3.8: Occurrences of time steps in 5-minute data

Table 3.9 shows how many steps in the 1-minute time series are 1 minute, how many

are between 1 minute and 1 day, and how many are 1 day or larger.

1min (1min,1d) [1d,∆tmax]

CAD 41,821 111 6
GBP 40,425 94 6
JPY 40,402 118 6
EURAUD 36,972 2,143 6
EURCAD 40,353 34 6
EURCHF 40,424 13 6
EURGBP 40,412 25 6
EURJPY 40,405 25 6
EUR 40,383 127 6
EURNOK 39,997 156 6
EURSEK 40,104 70 6
GBPAUD 39,716 232 6
GBPCAD 36,374 2,198 6
GBPCHF 40,078 143 6
GBPEUR 40,365 16 6
GBPJPY 39,998 128 6
CHFJPY 39,518 199 6

Table 3.9: Occurrences of time steps in 1-minute data
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It is apparent from these tables that most gaps in the data are weekends and there are

few other holes of missing data.

3.2 Data set 2: Commerzbank

The second data set was a proprietary data set obtained from Commerzbank. It contained

high-frequency data for the time period between 1 January 2015 and 15 December 2016.

Quotes for 63 currency pairs were included in the data. Each quote came from either

London or New York, and for each source the median tick size of the data could be as

small as 0.01 seconds for the most liquid currency pairs.

Quotes consisted of a bid and ask price, along with a time stamp as well as the name

of the source and the currency pair. The values in this data set were the core prices

upon which the bank based its quotes given to clients. Before clients were quoted these

prices they would be adjusted based on the individual client’s credit parameters. Not all

of these prices were dealt on. The prices were algorithmically generated in response to

new real-time information becoming available. This information could be in the form of

things such as trades or changing market making prices. The exact algorithm used for

generating the prices is not known to us.

3.2.1 Preparing the data

The data was provided with all rates from a particular day for all pairs, prices and sources

combined into one file. We read these files in, computed the mid price as the mean between

ask and bid price, and sorted each time stamp/mid price pair into one of 126 time series,

one for each currency pair and source. We then chose from these series those that were

suitable for our analysis, based on number and frequency of data points. For these series

we removed outliers, took the natural logarithm, and then interpolated the series to make

them homogeneous in time.

3.2.2 Properties of the data set

See Tables 3.10–3.13 for the properties of the raw data before taking the logarithm and

interpolating. Tables 3.10 and 3.11 refer to data with the source London and Tables 3.11

and 3.12 refer to data with the source New York. The tables list all currency pairs along

with the size ndays of the date range covered by each series in days, the number ndwv of

days in this range for which values were provided, the number nvals of values contained in

the series, as well as the median tick size ∆tmed in seconds and the mean and standard

deviation σ of prices for each series.
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ndays ndwv nvals ∆tmed/s mean σ

AUDJPY 286 233 32,292,397 0.0810 92.07 3.6554
AUDUSD 714 583 82,150,097 0.0580 0.7487 0.0302
CNYJPY 1 1 2 15.0250 19.56 0.0001
EURBRL 31 6 9,175 4.7785 3.0781 0.1379
EURCHF 710 141 4,336,996 0.0570 1.0827 0.0868
EURCNY 1 1 3 11.0190 7.4141 0.0001
EURCZK 710 109 62,973 0.2690 27.1774 0.2047
EURDKK 710 108 134,412 0.0370 7.4451 0.0097
EURGBP 710 108 2,309,001 0.0540 0.7767 0.0598
EURHRK 710 105 22,228 6.8460 7.5625 0.0789
EURHUF 710 104 476,199 0.0250 309.6101 4.2601
EURINR 1 1 2 25.0450 76.5014 0.0006
EURJPY 710 105 3,095,779 0.0410 128.04 8.3851
EURKRW 1 1 3 14.2570 1,322.99 0.0114
EURMYR 31 5 166 15.0300 4.1233 0.0794
EURNOK 710 102 861,675 0.0230 9.1457 0.3249
EURPEN 52 9 5,248 15.0300 3.4824 0.0713
EURPLN 710 103 405,171 0.2400 4.3296 0.1094
EURRON 710 101 1,170 21.7500 4.4615 0.0453
EURSEK 710 102 836,696 0.0170 9.4998 0.2411
EURUSD 712 217 9,787,663 0.0930 1.1145 0.0167
GBPJPY 283 41 926,984 0.0540 184.64 5.4213
GBPPEN 52 9 4,613 15.0300 4.6090 0.0812
GBPUSD 710 103 1,308,044 0.0580 1.4556 0.1006
INRJPY 1 1 3 10.5180 1.8952 0.0000
KRWJPY 1 1 1 0.1096
NOKSEK 710 100 1,061,868 0.0290 1.0382 0.0452
NZDUSD 710 99 763,977 0.0820 0.6949 0.0390
USDCAD 714 427 28,248,571 0.1020 1.3136 0.0415
USDCHF 714 336 18,642,597 0.0750 0.9817 0.0463
USDCNH 712 255 6,429,952 0.0310 6.6897 0.1375
USDCZK 52 8 13,936 2.9740 23.9546 0.6597

Table 3.10: Statistical properties of LN Commerzbank data (1/2)
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ndays ndwv nvals ∆tmed/s mean σ

USDDKK 52 8 94,697 0.0530 6.4350 0.1967
USDDZD 712 220 1,085,446 6.0480 109.5853 1.5188
USDETB 712 217 2,295 2,107.1000 21.9471 0.3796
USDHKD 710 102 45,933 0.5030 7.7696 0.0141
USDHUF 52 8 30,100 0.3390 269.7378 5.9378
USDILS 710 103 2,470 22.7500 3.8577 0.0548
USDISK 52 9 7,565 15.0300 172.3583 9.3267
USDJPY 710 103 1,532,168 0.0550 114.99 7.2626
USDKWD 710 102 6,978 56.2790 0.3008 0.0035
USDLKR 710 101 153 6.048E+05 139.5344 6.3216
USDMAD 710 101 14,172 30.0600 9.7193 0.2598
USDMXN 710 101 488,741 0.0100 18.8468 1.8129
USDMYR 710 61 121 2.715E+05 4.0857 0.1997
USDNOK 52 8 27,396 0.2500 7.6284 0.1052
USDOMR 710 98 290 23,491.0000 0.3850 0.0000
USDPLN 52 8 22,863 0.5500 3.6653 0.0776
USDRON 52 7 5,209 10,541.0000 3.8637 0.1068
USDSAR 365 6 9 1.193E+06 3.7547 0.0017
USDSGD 710 98 285,757 0.0500 1.3664 0.0274
USDTHB 710 98 26,186 40.3130 34.5219 1.2306
USDTND 710 98 64,122 3.6930 2.0702 0.1390
USDTRY 710 96 246,265 0.0480 2.9038 0.2585
USDZAR 710 96 476,990 0.0230 14.3528 0.9266
XAGUSD 710 95 30,770 4.7910 17.1134 1.7742
XAUUSD 710 95 81,334 2.1020 1,238.32 80.5793
XPDUSD 710 95 13,760 7.7170 652.12 95.9262
XPTUSD 710 95 25,921 4.9450 1,037.45 107.4882
ZARJPY 269 37 43,231 12.5240 9.8920 0.4511
USDBRL 713 379 10,610,770 0.3700 3.5222 0.2776
USDBHD 709 199 30,268 40.4800 0.3771 0.0001
USDARS 713 481 580,497 5.0680 11.0182 2.1223

Table 3.11: Statistical properties of LN Commerzbank data (2/2)
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ndays ndwv nvals ∆tmed/s mean σ

AUDJPY 286 233 35,597,659 0.0720 92.06 3.6523
AUDUSD 714 582 78,892,426 0.0610 0.7484 0.0303
CNYJPY 1 1 5 4.2745 19.56 0.0001
EURBRL 31 6 9,352 4.1260 3.0821 0.1378
EURCHF 710 140 4,104,510 0.0610 1.0827 0.0891
EURCNY 1 1 1 7.4141
EURCZK 710 108 61,548 0.2610 27.1794 0.2057
EURDKK 710 107 133,810 0.0360 7.4450 0.0096
EURGBP 710 107 2,155,131 0.0590 0.7785 0.0599
EURHRK 710 104 21,906 6.4560 7.5628 0.0795
EURHUF 710 103 455,123 0.0250 309.60 4.3073
EURINR 1 1 1 76.5017
EURJPY 710 104 2,846,614 0.0470 127.81 8.3990
EURKRW 1 1 2 16.0620 1,322.98 0.0301
EURMYR 31 5 162 15.0300 4.1230 0.0790
EURNOK 710 101 823,062 0.0230 9.1509 0.3316
EURPEN 52 9 5,242 15.0300 3.4836 0.0717
EURPLN 710 102 378,304 0.0230 4.3245 0.1107
EURRON 710 100 1,174 21.2500 4.4617 0.0452
EURSEK 710 101 792,253 0.0190 9.4804 0.2339
EURUSD 712 216 9,015,303 0.1040 1.1143 0.0167
GBPJPY 283 41 805,220 0.0570 184.73 5.4101
GBPPEN 52 9 4,546 15.0300 4.6090 0.0815
GBPUSD 710 102 1,110,752 0.0630 1.4496 0.1016
INRJPY 1 1 3 11.5380 1.8952 0.0000
KRWJPY 1 1 3 11.7880 0.1096 0.0000
NOKSEK 710 99 1,026,313 0.0300 1.0365 0.0453
NZDUSD 710 97 766,963 0.0820 0.6943 0.0387
USDCAD 714 426 28,445,045 0.1090 1.3131 0.0416
USDCHF 714 335 18,152,352 0.0800 0.9817 0.0957
USDCNH 712 255 6,126,171 0.0370 6.6837 0.1417
USDCZK 52 8 14,490 2.4620 23.9380 0.6679

Table 3.12: Statistical properties of NY Commerzbank data (1/2)
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ndays ndwv nvals ∆tmed/s mean σ

USDDKK 52 8 86,130 0.0580 6.4330 0.1996
USDDZD 712 219 1,089,556 6.0100 109.5841 1.5170
USDETB 712 216 2,295 2,107.1000 21.9461 0.3812
USDHKD 710 101 44,277 0.5030 7.7698 0.0141
USDHUF 52 8 31,516 0.2840 269.69 5.9449
USDILS 710 102 2,281 30.0010 3.8586 0.0570
USDISK 52 9 7,623 15.0300 172.3985 9.3342
USDJPY 710 102 1,395,648 0.0600 114.78 7.2474
USDKWD 710 101 6,975 56.0440 0.3008 0.0035
USDLKR 710 100 154 6.048E+05 139.46 6.3418
USDMAD 710 100 13,766 30.0600 9.7208 0.2634
USDMXN 710 100 448,904 0.0120 18.7913 1.8436
USDMYR 710 61 120 5.791E+05 4.0847 0.2002
USDNOK 52 8 28,142 0.2250 7.6258 0.1067
USDOMR 710 97 289 20,544.0000 0.3850 0.0000
USDPLN 52 8 24,150 0.4180 3.6637 0.0780
USDRON 52 7 5,301 9.4975 3.8647 0.1066
USDSAR 365 6 9 1.193E+06 3.7547 0.0017
USDSGD 710 97 276,884 0.0450 1.3656 0.0271
USDTHB 710 97 26,009 40.3130 34.5106 1.2279
USDTND 710 97 63,295 3.6240 2.0717 0.1392
USDTRY 710 95 228,063 0.0470 2.8699 0.2315
USDZAR 710 95 462,985 0.0230 14.3653 0.9309
XAGUSD 710 94 30,636 4.7720 17.1244 1.7699
XAUUSD 710 94 80,966 2.0950 1,238.95 80.2558
XPDUSD 710 94 13,641 7.6980 652.69 96.2154
XPTUSD 710 94 25,731 4.9280 1,037.98 107.7299
ZARJPY 269 36 42,528 10.7100 9.92 0.4203
USDBRL 713 377 10,707,368 0.3650 3.5244 0.2777
USDBHD 709 204 30,254 40.4260 0.3771 0.0001
USDARS 713 478 579,544 5.0690 11.0240 2.1245

Table 3.13: Statistical properties of NY Commerzbank data (2/2)

The statistics in Tables 3.10–3.13 formed the basis for our decision on which of the 126

series were suitable for further analysis. We excluded series with recurring gaps of more

than 3 days, series with a median tick size larger than 1 second, as well as any series with

fewer than 10,000 values. For some series the local mean tick size varied so significantly

that we decided to only use the values from the series within the date range of higher

frequency. We were left with 14 series belonging to seven currency pairs in our final data

set. The pairs, the time range covered by each series in days, the number of values, and

the median tick sizes after cropping where necessary and after removing outliers, that we

used in our further analysis are listed in Table 3.14. The table describes the data before

interpolation.

55



src ndays nvals ∆tmed/s

AUDJPY LN 287 32,291,141 0.08100
NY 287 35,596,420 0.07201

AUDUSD LN 715 82,150,097 0.05800
NY 715 78,892,426 0.06100

EURUSD LN 96 4,672,259 0.10900
NY 110 4,669,929 0.11799

USDBRL LN 395 10,609,771 0.36999
NY 395 10,706,374 0.36500

USDCAD LN 235 14,007,041 0.13299
NY 239 14,394,267 0.14100

USDCHF LN 165 9,242,949 0.09401
NY 165 8,889,466 0.10301

USDCNH LN 147 3,542,507 0.03699
NY 142 3,457,391 0.04100

Table 3.14: Size of date range, number of values, median tick size of Commerzbank data
used in further analysis

We next took the logarithm, and used linear interpolation to obtain series with ob-

servation steps 0.2 seconds. These series are what we will from here on refer to as the

Commerzbank data set.

3.3 Treating the data

In this section we will present some of the methodology we employed in treating the data

used for the experiments.

3.3.1 Cleaning the data

Before analysing the data, it was cleaned by removing outliers and errors. While the

errors in the Thomson Reuters series were eliminated by consolidating the values from

different download dates as the data was pre-cleaned, the Commerzbank data contained

some outliers that required manual removal. We took a conservative approach to removing

outliers, only removing those values whose deviation from the mean differed from that of

surrounding values by an order of magnitude.

3.3.2 Mid prices and log returns

While the Thomson Reuters series only contained one price per time stamp, the Com-

merzbank data set included both ask and bid prices, from which we computed the mid

price that was used in our further analysis. There are a number of ways in which the

mid price between ask and bid prices may be determined. For the purpose of this thesis

we define the mid price as the arithmetic mean of the ask and bid price. Therefore, with

regard to the Commerzbank series, by “log price” we mean the logarithm of the arithmetic
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mean of the ask and bid prices. An alternative quantity would be the the arithmetic mean

of the logarithms of the ask and bid price.

Our “log returns” are the differences between two log prices with different time stamps.

An alternative quantity that may be used to approximate this value in the case of small

time steps is the difference between the two prices divided by one of the prices.

3.3.3 Interpolation

As the data downloaded from Thomson Reuters Eikon contained gaps as described above,

and as the tick data from Commerzbank analysed in this thesis is unevenly spaced in

time, but the analysis we conducted was with regard to evenly distributed data, we had to

interpolate data points to make them evenly spaced in time. We used linear interpolation,

but Müller et al. [82] found that there was no significant difference in their results between

linearly interpolated and last point interpolated data. We used linear interpolation on the

logarithms of the mid prices rather than on the raw mid prices or on the raw bid and ask

prices.

Like Müller et al. [82] we worked on a physical time scale rather than in business time.

We therefore interpolated values to span weekends as well as any gaps in the data.

Of course interpolation introduces a bias into the data and it was therefore necessary

to find an appropriate level of interpolation. For the Thomson Reuters data the purpose of

the interpolation was to fill in the gaps, and we therefore chose as the interpolation interval

the interval of the series. However for the Commerzbank data the purpose of interpolation

was to make the data evenly spaced in time. We therefore chose interpolation intervals of

0.2 seconds for the Commerzbank series, but elected to consider the frequency of the raw

series when deciding which intervals should in fact be used in our research.

3.4 Simulation

The simulated Ornstein–Uhlenbeck processes that we analysed were generated using Mat-

lab. The processes were discretized as described in Section 2.2.3 and the Gaussian noise

was generated by Matlab’s randn function.

Given a mean value µ, a mean reversion strength α, and a noise coefficient σ, as well

as a starting value X0, a size of time steps ∆t, and a number of steps nsteps, a standard

Ornstein–Uhlenbeck process was generated in the following way: The standard deviation

was calculated as s = σ
√

1−e−2α∆t

2α . With X0 being the first value in the process, the

remaining values of the process were then computed iteratively as Xi = µ + (Xi−1 −
µ)e−α∆t + s × Ni for i = 1, 2, ..., nsteps, where Ni for i = 1, 2, ..., nsteps were independent

random numbers drawn from N(0, 1) by Matlab’s randn function. {Xi}0≤i≤nsteps was then

a discretized Ornstein–Uhlenbeck process with the input parameters.

In order to simulate Ornstein–Uhlenbeck processes with time-dependent reversion lev-

els, instead of a constant µ as an input parameter, a series {µi}0≤i≤nsteps was given as input.
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Starting from X0, the remaining values of the process were then generated according to

Xi = µi + (Xi−1 − µi)e−
α
∆t + s×Ni for i = 1, 2, ..., nsteps.

3.5 Summary

The two data sets we used had different strengths and weaknesses, with the Thomson

Reuters data set covering a much larger range of time and more currency pairs, and the

Commerzbank data set providing much higher frequency.

Throughout this thesis we are working with the following data sets:

1. The Thomson Reuters data set:

These are the series relating to one currency pair and one time interval, after combin-

ing all data downloaded on different days, cleaning the data, taking the logarithm,

and then interpolating.

2. The Commerzbank data set:

These are the series relating to one currency pair and after taking the logarithm and

interpolating to the smallest appropriate time interval.

3. The synthetic data:

These are simulated Ornstein–Uhlenbeck processes which we have generated as de-

scribed above, according to the specified parameters.
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Chapter 4

Scaling of log returns

In this chapter we present Part 1 of our research, where we examine the dependence of

mean absolute log returns of FX rates on the time intervals over which they are measured,

as well as the effect that detrending of the data has on this relationship. We also compare

our findings to two different models, which we simulate before analysing them in the same

way.

4.1 Research question

The scaling law first reported by Müller et al. [82] with respect to FX data has been

observed in numerous data sets and widely reported in the literature [3, 9, 84]. As described

in Section 2.5.2, it gives the relationship between the mean of the absolute values of the

log price returns ∆x∆t measured over a certain time interval ∆t and the size of the time

interval as

|∆x|∆t = c∆tE (4.1)

for some constants c and E, where E is the scaling exponent. This is the law from Eq.

2.54.

However, this has so far been reported purely as an empirical scaling law, and it is

not known whether it holds for time intervals outside of the ranges that have been tested.

Additionally, while it has been proposed that the law is a result of the spectrum of time

horizons at which agents in the market operate [9], the law appears to be inconsistent

with models of exchange rates being mean reverting around an underlying rate. Our

motivation for this first part of our research was twofold. Firstly, we wanted to test for

the scaling property in a novel data set and over intervals for which it had not been

previously observed. Secondly, we wanted to examine the scaling law in light of two

different stochastic models of the time series.

The research of this chapter is therefore divided into two parts. In the first part we

will analyse our real-world data sets with regard to the scaling law. In the second part we

will compare our findings for the scaling law in our data before and after detrending to a

simulated Brownian motion and a simulated OU process with a time-dependent reversion
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level.

4.2 Scaling in FX data

In order to test for the scaling law in our FX data we computed the mean absolute returns

|∆x|∆t of the logarithmic FX rates for different time intervals ∆t. We then conducted a

line fit to the relationship between the logarithms of these two quantities. This was done

by creating a series sampled at observation steps ∆t from the original log data for each

∆t, and then computing the mean absolute increments for each of these series.

4.2.1 Methodology

Due to the differences between the two data sets, we sampled the series from the two sets

in different ways, leading to the same analysis done on different ranges of time scales.

Thomson Reuters

We computed the mean absolute log returns for each currency pair in the Thomson Reuters

data set over the intervals 1, 2, 5, 10 and 30 minutes, 1, 2, 6 and 12 hours, 1, 2, 7, 14,

30, 60 and 180 days, and 1, 2 and 4 years. We then conducted a line fit to the log mean

absolute log returns as a function of the log time intervals.

As described in Section 3.1, the Thomson Reuters data set already consisted of six

differently sampled series of logarithmic nominal exchange rates for each currency pair,

with observation steps ∆t of sizes 1 minute, 5 minutes, 10 minutes, 30 minutes, 1 hour

and 1 day. Let {Xi;∆t} be the series of log prices sampled with the observation step

∆t. In addition to these series, we created a series with observation step 2 minutes by

sampling every other value from {Xi;1min}, series with observation steps 2, 6 and 12 hours

by sampling every 2nd, 6th and 12th value respectively from {Xi;1hour}, and series for

the observation steps 2, 7, 14, 30, 60 and 180 days by sampling {Xi;1day} accordingly.

(For all of these we started sampling with the first data point available in the sampled

series.) For each of these series, we computed the mean absolute value of all increments,

and this is what we shall denote as |∆x|∆t. See below for some example graphs: Figures

4.1 and 4.2 show the increments of our Thomson Reuters CAD/USD time series observed

at frequencies 1/minute and 1/hour, respectively. See Appendix A for plots of the log

prices of these series. Note that the increments for both frequencies appear to fluctuate

around 0, however the increments of the series with minutely frequency in Figure 4.1 have

a significantly narrower distribution than the hourly ones in Figure 4.2.
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Figure 4.1: Minutely CAD/USD increments from Thomson Reuters for July–August 2014

Figure 4.2: Hourly CAD/USD increments from Thomson Reuters for 2013–2014

Finally we computed |∆x|∆t for ∆t of sizes one, two and four years (365 days, 2×365

days, and 4×365+1 days) by sampling the daily series with an overlap of 2/3, as done

by Müller et al. [82], to increase the number of data points in each sample. We chose

(4×365+1) days as the largest interval to account for leap years and as this number would

allow for an overlap of 2/3. The overlap sampling was done in the following way: For

each ∆t = nd, we sampled {Xi;1d} three times, giving us {Xi;ndays,1}, {Xi;ndays,2} and

{Xi;ndays,3}, where {Xi;ndays,j} is the series of every n-th value sampled from {Xi;1day},
starting at value Xk;1day where k = 1 + n

(
j−1

3

)
. |∆x|nd was then found by finding the
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mean of the absolute increments of {Xi;nd,1}, {Xi;nd,2} and {Xi;nd,3}. We then found

the correlation coefficient R between log ∆t and log |∆x|∆t, and fitted a line using simple

linear regression to

log |∆x|∆t = a+ E log ∆t, (4.2)

so that E is the estimator of the scaling exponent. The correlation coefficients and scaling

exponents for all currency pairs in the Thomson Reuters data set are presented in Section

4.2.2. An example of the different log mean absolute log returns measured over the different

log intervals, along with a line fit, for the currency pair GBP/CHF can be found in Figure

4.3. See Appendix A for another example graph.

Figure 4.3: Scaling for Thomson Reuters data GBP/CHF

Commerzbank data

For the series in the Commerzbank data set, we computed the mean absolute log returns

over intervals ranging from 0.2 seconds to seven days. We then again conducted a line

fit to find the relationship between the log mean absolute log returns and the log time

intervals.

For the Commerzbank data we only had one series per currency pair per source, and

we did not use any overlap in our sampling as there were sufficient data points available for

smaller time intervals, and larger intervals were analysed as part of the Thomson Reuters

series. As described in Section 3.2, as part of our pre-processing of the data, all series of

logarithmic NERs were interpolated to a time grid with observation step 0.2 seconds. We

chose as observation steps ∆t the intervals 0.2 seconds, 0.4 seconds, 1, 2, 5, 10 and 30

seconds, 1, 2, 5, 10 and 30 minutes, 1, 2, 6 and 12 hours, and 1, 2 and 7 days. However, to

reduce the bias introduced by interpolation, for the currency pairs EUR/USD, USD/CAD

and USD/CHF we only used observation steps of 0.4 seconds and larger, and for USD/BRL
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we only used observation steps of 1 second and larger, due to the lower frequency in the

raw data for these pairs, as shown in Table 3.14. Like with the Thomson Reuters data,

for each pair and source, we sampled the series at each observation step ∆t to obtain

the series {Xi;∆t}, then computed the mean absolute increments |∆x|∆t thereof, and then

found the correlation coefficient as well as the slope of the linear relationship between the

logarithms of ∆t and |∆x|∆t. See Figure 4.4 for the graph of this relationship as found

for the currency pair USD/CHF for the London source data. See Appendix A for another

example graph.

Figure 4.4: Scaling for LN source Commerzbank data USD/CHF

4.2.2 Results

We have observed Müller et al.’s [82] scaling law for slightly different range of intervals

than previously reported in the literature. The scaling relationship appears to hold for

this widened range, although the data points for either end of the spectrum of observation

intervals are less reliable for a variety of reasons, such as interpolation bias, fewer data

points being available or overlapping intervals being used, and different time ranges being

covered by the original data.

For the Thomson Reuters data we found a good linear fit over intervals ranging from

one minute to four years, with a median scaling exponent of 0.567, a mean scaling exponent

of 0.559, and correlation coefficients of 0.99478 and larger, although the data points for

the smallest and largest intervals tended to deviate slightly from the linear fit. However,

this may be due to the fact that for smaller time intervals the interpolation has a larger

effect, and for the larger time intervals we used overlapping sampling. Additionally, data

for different observation intervals spanned different date ranges, as described in Section

3.1, which may be the cause of the slight curvatures of the line. We found the scaling

exponents of all but one pair (EUR/NOK) to lie above 0.5.
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The correlation coefficients and scaling exponents for the Thomson Reuters data are

presented in Table 4.1.

Pair R E

CAD 0.99832 0.518
GBP 0.99810 0.603
JPY 0.99846 0.585
EURAUD 0.99587 0.531
EURCAD 0.99729 0.555
EURCHF 0.99478 0.589
EURGBP 0.99685 0.532
EURJPY 0.99855 0.578
EUR 0.99774 0.609
EURNOK 0.99796 0.476
EURSEK 0.99871 0.509
GBPAUD 0.99930 0.564
GBPCAD 0.99830 0.567
GBPCHF 0.99756 0.568
GBPEUR 0.99792 0.549
GBPJPY 0.99910 0.590
CHFJPY 0.99851 0.584

Table 4.1: Correlation coefficients R and scaling exponents E for Thomson Reuters data

For the Commerzbank data we analysed intervals ranging from 0.2 seconds to seven

days and found a median scaling exponent of 0.574 and a mean scaling exponent of 0.585,

with correlation coefficients larger than 0.99536. We found larger scaling exponents in

the Commerzbank data set than we did in the Thomson Reuters data, with the lowest

Commerzbank exponent still exceeding 0.53. Like the results for the Thomson Reuters

data set, our results are in line with those reported in the literature. The correlation

coefficients and scaling exponents for each pair and source of the Commerzbank data set

are presented in Table 4.2.

Pair Source R E

AUDJPY LN 0.99844 0.557
NY 0.99872 0.556

AUDUSD LN 0.99797 0.572
NY 0.99823 0.570

EURUSD LN 0.99940 0.599
NY 0.99948 0.605

USDBRL LN 0.99539 0.546
NY 0.99536 0.546

USDCAD LN 0.99888 0.576
NY 0.99896 0.571

USDCHF LN 0.99880 0.582
NY 0.99871 0.579

USDCNH LN 0.99699 0.665
NY 0.99702 0.666

Table 4.2: Correlation coefficients R and scaling exponents E for Commerzbank data
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4.3 Scaling of detrended data

While there is overwhelming evidence of nominal exchange rates scaling as described in

Section 2.5.2, there is no conclusive evidence of the underlying processes producing this

behaviour. As noted by others [82, 84], while nominal exchange rates following a geometric

Brownian motion as in Eq. 2.6 would lead to a linear relationship between log ∆t and

log |∆x|∆t, the fact that the slope found is systematically larger than 0.5, and, for example,

the multiscaling property described in Section 2.5, all suggest that a simple geometric

Brownian motion is not sufficient as a model to explain the scaling behaviour of FX rates.

Since a common assumption of FX rate determination models is that exchange rates are

mean-reverting around an underlying rate, and similarly many trading strategies assume

a mean reversion to some underlying trend, we will in the following compare the scaling

behaviour of two different models to that of the real data. Our first model (Model 1)

proposes that logarithmic nominal exchange rates follow an OU process around a time-

dependent underlying value, which in turn is modelled as a smoothed Brownian motion.

The second model (Model 2) is of nominal exchange rates following geometric Brownian

motion.

A distinctive feature of mean reverting processes with constant reversion level is that

we would not expect to see increments growing indefinitely with increasing time intervals

over which they are measured, and therefore we would under Model 1 interpret the scaling

behaviour for larger time intervals to be a result of the movements of the underlying

value itself, rather than the fluctuations of the NER around the underlying value. In

order to distinguish between these two merged stochastic processes we therefore attempt

to approximate the movements of the underlying value by a moving average, and thus

to detrend the NER, after which we would expect to see a dependence of log |∆x|∆t on

log ∆t which is similar to that seen in an OU processes. For a process following an OUP

according to Eq. 2.7 with reversion strength α, reversion level µ, and diffusion coefficient

σ, the expected value of the absolute return over ∆t is

E (|Xt+∆t −Xt|) = E (|∆X|∆t) = σ

√
2− 2e−α∆t

πα
, (4.3)

and its limits as ∆t→ 0 and ∆t→∞ are

lim
∆t→0

E (|Xt+∆t −Xt|) = σ

√
2∆t

π
(4.4)

and

lim
∆t→∞

E (|Xt+∆t −Xt|) = σ

√
2

πα
. (4.5)

To test our two models, we thus simulated first an OU process with a smoothed

Wiener process as reversion level and then a simple Wiener process, to model minutely

log nominal exchange rate data spanning one year. We then analysed both of these models

for their scaling behaviour of |∆x|∆t as a function of ∆t and compared this to the scaling

65



behaviour found in Section 4.2. We then detrended both simulated series as well as some

of the FX series by subtracting a range of moving averages, and compared the dependence

of log |∆x|∆t on log ∆t in the detrended simulated series with that found in the detrended

FX data as well as in a standard OUP.

4.3.1 Methodology

We shall now go into more detail regarding the exact methodology employed to conduct

the comparison between the two models and the real data.

FX data

We chose to compare our models with the daily Thomson Reuters series spanning 40

years, as the half-life of shocks to RERs reported in the literature is around 3-7 years [19]

and these longer series allowed for a larger range of time intervals to be analysed without

interpolation introducing too much bias into the analysis.

Model 1

For Model 1 we simulated a series of values following an OU process mean reverting to

a smoothed Wiener process, to represent one year’s worth of minutely data fluctuating

around a random walk underlying value.

This was done by generating (n+ s− 1) normal random values {Ni}1≤i≤n+s−1 so that

Ni ∼ N(0, 1) for 1 ≤ i ≤ n+ s− 1, where n = 365× 24× 60 + 1 is the number of values

we want the OUP to have and s = 2× 24× 60 is the smoothing interval for the reversion

level, and then computing Wi =
∑i

j=1Nj for 1 ≤ i ≤ n + s − 1 so that {Wi}1≤i≤n+s−1

was a discretized Wiener process with (n+ s− 1) values. We then smoothed this process

using its SMA over s = 2× 24× 60 values by computing

µ′i =
1

s

s−1∑
j=0

Wi+j (4.6)

for 1 ≤ i ≤ n. We then computed {µi}1≤i≤n with µi = 0.001× (µ′i − µ′0) to represent the

minutely underlying value of the log exchange rate over one year.

We next simulated minutely samples of an OUP {Xi}1≤i≤n over one year with start-

ing value X0 = µ0 = 0, reversion strength α = 1
12×60 , diffusion coefficient σ = 0.001,

and {µi}1≤i≤n as reversion level, as described in Section 3.4, by generating (n − 1) i.i.d.

standard normal random values N ′i ∼ N(0, 1) for 1 ≤ i ≤ (n− 1) and then computing

Xi+1 = µi + e−α(Xi − µi) + σ

√
1− e−2α

2α
N ′i (4.7)

for 1 ≤ i ≤ (n−1) as per the discretization equation 2.16 in Section 2.2.3. Note in this case

our time unit is one minute, and therefore ∆t=1 and α corresponds to a mean reversion

66



strength with time constant 12 hours.

See Figure 4.5 for a sample path simulated according to Model 1 along with the un-

derlying reversion level.

Figure 4.5: Simulated path according to Model 1 with underlying reversion level

Model 2

For Model 2 we simulated a Wiener process intended to represent one year’s worth of log

NERs, where NERs follow a geometric Brownian motion.

This was done by generating (n−1) = 60×24×365 i.i.d. random values Ni with Ni ∼
N(0, 1) for 1 ≤ i ≤ (n− 1) and then computing Xi = 0.005×

∑i
j=1Nj for 1 ≤ i ≤ (n− 1)

so that {Xi}0≤i≤n−1 with X0 = 0 was the simulated series representing one year’s worth

of hourly logarithmic nominal exchange rates starting at 0. See Figure 4.6 for a sample

path of the simulated Model 2.
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Figure 4.6: Simulated path of Model 2

Standard OUP

Additionally, for comparison, we simulated a standard OU process with ∆t = 60×60×24,

T = 60 × 60 × 24 × 365 × 20,000 with parameters α = 1
60×60×24×365 , σ = 10−5 and

X0 = µ = 1. With time unit 1 second this corresponds to daily observations of an OUP

with reversion constant 1 year, observed over 20,000 years, on which to conduct the same

analysis as on the detrended models and FX data. We chose such a large observation

window so as to have a greater number of data points even for large observation steps, in

order to reduce the effect of X0 on the mean absolute return, and thus better approximate

the expected absolute return. Alternatively this could be achieved by producing multiple

paths and allowing X0 to be a random variable.

Detrending

The next step was to detrend the series from Models 1 and 2 as well as the FX data by

subtracting a moving average.

For each of these series we generated a range of detrended series {Xi,SMA(τ)} and

{Xi,EMA(τ)} by subtracting the τ -period SMA {Xi,SMA(τ)} and the τ -period EMA {Xi,EMA(τ)}
respectively, where τ is the detrending time constant divided by ∆t. For the series

{Xi}1≤i≤n, we computed {Xi,SMA(τ)} as

Xi,SMA(τ) =
1

τ

τ∑
j=1

Xi−τ+j (4.8)

for τ ≤ i ≤ n. Note that {Xi,SMA(τ)} is not defined for i < τ , meaning that the detrended

series {Xi,SMA(τ)} was also only defined for i ≥ τ . Furthermore, note that this is the
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lagging SMA, computed only from the data points leading up to the current point in

time. We have chosen this over the symmetrical SMA as it is computable in real time

and therefore any methods built on the lagging SMA can be applied to analysis or trading

strategies done in real time.

We computed the EMA {Xi,EMA(τ)} of {Xi}1≤i≤n as

X0,EMA(τ) = X0

Xi,EMA(τ) = Xi−1,EMA(τ) + aτ (Xi −Xi−1,EMA(τ))
(4.9)

for 1 ≤ i ≤ n, where

aτ =
2

τ + 1
. (4.10)

We chose to define aτ in this way as it leads to SMA(τ) and EMA(τ) having the same

centre of mass when using the same τ . EMA(τ) of course is only an approximation of the

“real” exponentially weighted moving average, as in order to calculate an EMA exactly,

{Xi} would have to be available infinitely far into the past. However, for larger is, the

approximation becomes more accurate. This is why we only use {Xi,EMA(τ)} for i ≥ τ in

our later analysis of the data.

From the computed MAs we generated the detrended series {Xi,SMA(τ)} as

Xi,SMA(τ) = Xi −Xi,SMA(τ) (4.11)

for τ ≤ i ≤ n and {Xi,EMA(τ)} as

Xi,EMA(τ) = Xi −Xi,EMA(τ) (4.12)

for 0 ≤ i ≤ n.

See Figure 4.7 for the Thomson Reuters daily log FX series CAD/USD with its 100-

day and 1000-day EMA, and Figures 4.8 and 4.9 for simulated paths from Model 1 and

Model 2, with their 5-day and 50-day EMAs.
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Figure 4.7: Daily Thomson Reuters CAD/USD data with 100-day and 1000-day EMA

Figure 4.8: Daily simulated Model 1 data
with 5-day and 50-day EMA

Figure 4.9: Daily simulated Model 2 data
with 5-day and 50-day EMA

Log mean absolute returns

For all of the modelled series, as well as the daily Thomson Reuters FX series, all first

in their non-detrended and then in several detrended forms, we computed the log mean

absolute returns over a range of time intervals.

This was done in the following way: We set t0 = τmax to be the starting point for

sampling in all series, where τmax is the largest of the time intervals we choose to include

in our analysis, as {Xi,SMA(τ)} was only defined for τ ≤ i, {Xi,EMA(τ)} had a larger ap-

proximation error for smaller is, and we wanted the series for all detrending time constants

to cover the same date range. For each sampling interval ∆t, we then sampled each series

at point t0 and then every ∆t-th value to produce {Xi;∆t}, as well as {Xi,SMA(τ);∆t} and

{Xi,EMA(τ);∆t} for a range of τs and for each of these series we then found the logarithm
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log |∆x|∆t of the mean of all absolute increments. Finally, we fitted a curve of the shape

of Eq. 4.3, i.e. the dependence of the expected absolute return of an OUP on the time

interval over which it is measured, to the dependence of log |∆x|∆t on log ∆t and found

the coefficient of determination R2.

See Figure 4.10 for a graph of the log MARs as a function of the log time intervals

for the daily Thomson Reuters CAD/USD series after subtracting a 100-day SMA. See

Figures 4.11 and 4.12 for the same graph for Models 1 and 2, after subtracting a 5-day

SMA.

Figure 4.10: Scaling for daily Thomson Reuters CAD/USD data after subtracting 100-day
SMA

The coefficient of determination for the fit of the values in Figure 4.10 to the shape of

the MAR of an OUP was R2 = 0.9856.

Figure 4.11: Scaling for daily simulated
OUP around Wiener process after sub-
tracting 5-day SMA (Model 1)

Figure 4.12: Scaling for daily simulated
Wiener process after subtracting 5-day
SMA (Model 2)
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The coefficients of determination for the fit of the log mean absolute returns of Models

1 and 2 after detrending using a 2-day SMA as a function of the time interval over which

they are measured to the shape of the MAR of an OUP were R2 = 0.9964 and R2 = 0.9879

respectively.

Additionally, for the non-detrended simulated series, we conducted a line fit using

simple linear regression to the relationship between log ∆t and log |∆x|∆t like we did for

the real-world FX data in Section 4.2. See Figures 4.13 and 4.14 for the dependence of the

log mean absolute returns in the non-detrended series of both models on the logarithm of

the time interval over which they are measured.

Figure 4.13: Standard scaling in simulated
Model 1

Figure 4.14: Standard scaling in simulated
Model 2

The correlation coefficients for Figures 4.13 and 4.14 were R = 0.9988 and R = 0.9994

and the scaling exponents were E = 0.5102 and E = 0.4869 respectively.

Finally, we produced a plot of the log mean absolute return of the simulated standard

OUP to compare against the behaviour of the same quantity in the detrended series. See

Figure 4.15 for the log mean absolute returns measured in a simulated standard OUP

with parameters X0 = µ = 1, α = 1
60×60×24×365 , ∆t = 60 × 60 × 24, σ = 10−5, and

n = 365 × 20,000 simulated values over different time intervals, along with the expected

absolute return as ∆t→∞ in red.
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Figure 4.15: MAR for simulated standard OUP

The time intervals we analysed were the equivalent of 1, 5 and 30 minutes, 3 and 12

hours and 3, 14 and 45 days for Models 1 and 2. They were 1, 2, 7, 14, 30, 60, 180 and

365 days for the FX data, and the equivalent of 1, 2, 5, 7, 14, 30, 60, 120, 180 days and 1,

2, 5, 10, 20 and 50 years for the simulated standard OUP.

4.3.2 Results

We found that both models in their non-detrended form produced a linear relationship

between log ∆t and log |∆x|∆t, mimicking the relationship found in the real-world data

sets.

However, for both simulated data sets, as expected, the expected scaling exponent

appeared to be around 0.5. This is unlike the scaling exponent found in FX data, which

is found to be systematically larger. For the detrended series we found a good fit of the

shape of log MARs to the dependence of expected absolute returns of the OUP on the

time intervals over which they are measured, with what looked like a limiting of log |∆x|∆t
to a constant value for larger log ∆t, with this constant depending on the τ used in the

detrending method of the data.

See Figures 4.16–4.18 for graphs of the dependence of the log MARs on log ∆t in daily

log CAD/USD data as well as in the sample paths from Models 1 and 2 before detrending,

and after subtracting different MAs.
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Figure 4.17: MARs for simulated path of
Model 1 before and after subtracting dif-
ferent MAs

Figure 4.18: MARs for simulated path of
Model 2 before and after subtracting dif-
ferent MAs

Figure 4.16: MARs for CAD/USD before and after subtracting different MAs

The shape of log |∆x|∆t as a function of log ∆t for the detrended series from Model 1,

like that for detrended FX data, appears to mimic that found in a series following an OU

process, however without any additional knowledge it appears impossible to determine

purely from the series itself the detrending method that, when applied to Model 1, causes

the shape of log |∆x|∆t as a function of log ∆t to most closely match the true underlying

OUP. Additionally, as seen in Model 2, Brownian motion, too, displays this behaviour,

rendering our results inconclusive.

4.4 Discussion

We shall now discuss the results of Part 1 of our research in more detail.
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The scaling law

We have observed Müller et al.’s [82] scaling law in our data, and with a widened range of

intervals. With scaling exponents of about 0.56 for the Thomson Reuters data and 0.58

for the Commerzbank data, and correlation coefficients of 0.995 and larger, our results are

in line with those previously reported in the literature, and equally convincing. This adds

to the existing evidence in the literature of this scaling law holding, but more importantly,

expands our knowledge of the range in which we know the law to be true. Therefore, while

we still cannot say, and may never be able to say, whether the law holds for indefinitely

large time intervals, we can confirm that, based on the empirical evidence, this is still

currently the indication. While we will never have access to FX data spanning an infinite

range of time, this range will of course increase, and may one day show evidence of a

flattening of the log mean absolute log returns as a function of log time intervals. So

far, however, there is no way of saying whether there is a very slow mean reversion at

work in the logarithmic nominal exchange rates, since, as we have shown, the scaling law

approximates the behaviour of log mean absolute log returns as a function of log time

intervals as found in an OUP for smaller intervals.

For now, while it would be possible to analyse larger intervals than the ones we did,

this leads to fewer data points being available, or a larger overlap in the intervals becoming

necessary, and there is therefore a trade-off between the novelty and the reliability of the

results which can be achieved.

An alternative approach may be to conduct an inter-pair analysis, where in lieu of more

consecutive increments from one currency pair, we instead look for a pattern of an overall

reduction in volatility as measured over larger time intervals, although this would have

various disadvantages, including the fact that currency rates of course are not independent

of each other, and therefore any effect seen across currency pairs may be due to the same

random cause rather than a statistical property of exchange rates. Alternatively, it may be

possible to use a different fitting method to see if the dependence of the log mean absolute

log returns on the log time intervals is better described by a very slightly concave slope

than by a straight line, however in this case we run the risk of overfitting.

Other things to be considered are that, as noted by Müller et al. [82], the linear

regression conducted on our data points is an approximation due to the dependence of

larger increments on smaller ones, as well as some optional adjustments that could be made

to our method. For example, the same analysis could be conducted with an alternative

definition of the mid price. Additionally for the Thomson Reuters data an alternative

would be to fit separate line segments to those intervals covering different date ranges.

Also, for homogeneity purposes it may be preferable to use the same overlap on all intervals.

However, we observed high correlation coefficients nonetheless, and therefore adjusting

these methods may not achieve significantly stronger results.

There is a question of whether it may be possible to avoid interpolation altogether,

and instead use a method such as binning all intervals in a certain range and applying a
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linear regression to this instead, or even sampling the increment from each raw log data

point to all other ones along with the time increment individually, and then conducting

a statistical analysis of dependence on this whole set, although the computational cost of

this would be large.

Mean absolute returns in detrended data

We have shown that an Ornstein–Uhlenbeck process with a Brownian motion reversion

level displays the same scaling behaviour as that found in the real-world data. However,

like the geometric Brownian motion model, which also follows this scaling law, this model

leads to a scaling exponent of 0.5, while the scaling exponents found in foreign exchange

rates, as mentioned above, are systematically larger than this. Therefore both of our

models are simplifications, and a better fit might be achieved with a fractal Brownian

motion, and an even more complex model would be needed to incorporate the multi-scaling

behaviour of FX rates. Both the detrended log FX data and the detrended simulated

data following an OUP with Brownian motion reversion level displayed a dependence of

log mean absolute returns on log time intervals that mimicked that found in standard

Ornstein–Uhlenbeck processes. However, it is not clear how to determine the optimal

moving average to use for detrending in order to retrieve the OUP from the simulated

path of Model 1.

Furthermore, the data simulated according to Model 2, too, displays this behaviour

after detrending, ultimately rendering our results inconclusive, since this model does not

contain a mean “reversion” as such, and instead the distribution of the fluctuation of the

detrended value around the MA is purely an artifact of the detrending method. A mean

reversion test, such as the Dickey–Fuller test, applied to the detrended series of Model

1 and Model 2 may shed light on whether it is possible to distinguish between a mean

reverting series and a “detrended” random walk.

The effect that different choices of MA have on the shape of the curve may also be

explored further, and differently weighted MAs, such as a symmetrical SMA might be

tried to more accurately approximate the reversion level.

We may conclude that a different way of interpreting these results is that the underlying

trend, if existent, is as much a vital part of the self-similarity of FX rate time series as the

rates’ fluctuations around this trend.
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Chapter 5

OUP parameter estimation under

various conditions

In this chapter we focus on OUP parameter estimation in order to better understand the

reliability of our estimators, as well as to gain some insight into parameter estimation

of OUPs with time-dependent reversion level. We test parameter estimation methods

on simulated processes with a variety of parameters and constant and time-dependent

reversion levels under a variety of conditions and propose a new method for estimating

the parameters of an OUP with unknown time-dependent reversion level.

5.1 Research question

As we presented in Section 2.3.4, there is much literature on the various parameter esti-

mation methods that may be applied to various forms of the OUP. Many of these are used

to allow for the parameter estimation of generalizations and variations of the OUP, but

even for the standard OUP following Eq. 2.7 parameter estimation is not straightforward.

This is due to the bias of the estimators for finite samples of the process, and many of

the techniques that may reduce some of this bias lead to a larger variance of the estima-

tor, as seen in the jackknife technique [47], require observation of multiple paths, a priori

knowledge of some of the properties of the process, or come at a computational cost.

Additionally, in this thesis, as is the case with most real-world applications, we are

dealing with imperfect data, meaning in our case that our data is not only observed

discretely, but also at irregular intervals, and contains some substantial gaps in the ob-

servations for market closing times and sometimes due to technical issues. This means

that we cannot directly infer the reliability of our calibration methods from papers such as

that by Tang and Chen [46], which gives expansions for the expected values and variances

of the estimators, but is based on discrete but regular observations over an observation

window tending to infinity.

Secondly, in this thesis we model OUPs with time-dependent reversion level, as in Eq.

2.42. While it is a common problem to estimate the parameters of such processes based
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on an external knowledge of the reversion level, such as in the Hull–White model, there

are very few papers dedicated to the parameter estimation where the reversion level is

unknown. One method that has been proposed is that by Sanchez et al. [75]. However

while their method is intended for a class of processes including the OUP with time-

dependent reversion level, they do not test it on an OUP and to the best of our knowledge

no study of the performance of this method on an OUP has been published.

In this chapter we therefore aim to do two things: Firstly, we will conduct a detailed nu-

merical exploration of the parameter estimation accuracy of the standard OUP with finite

samples and imperfect observations. By simulating an OUP and then applying standard

parameter estimation techniques to the generated data, we test the parameter estimation

accuracy for a range of process parameters, observation frequencies and observation win-

dows, before exploring the effect of gaps and irregularity in the observations in the same

way. We then explore the parameter estimation of the OU process with time-dependent

reversion level by simulating such a process and testing Sanchez et al.’s [75] calibration

method against an alternative proposed by us.

5.2 Standard OUP estimation

In Section 2.3 we presented the standard estimation methods of the standard OUP ob-

served at regular discrete intervals. Throughout this section we will be using the maximum

likelihood method as described in Section 2.3.1 to explore the effect that different process

parameters and observation frequencies and windows have on the parameter estimation

of a discretely but regularly observed simulated OUP. It has already been shown that

the bias of the reversion strength estimator in particular increases for smaller reversion

strengths, while a larger observation window reduces the bias [46]. In this section, we test

these and other properties of the estimators numerically, as a basis for our further analysis

in the following sections.

5.2.1 Methodology

We simulated several paths for each process for a range of parameters, simulation frequen-

cies, observation frequencies and observation windows, giving us discrete regular observa-

tions of a standard OUP following Eq. 2.7. To each of these we then applied the standard

maximum likelihood estimation method as described in Section 2.3.1. We chose param-

eters α and σ in the ranges observed in the financial world (when assuming seconds as

our unit of time) and simulated in the literature [46, 47, 75]. In particular, this meant we

worked with a near-unit-root situation. From our default parameters we then varied one

value at a time to find the effect of this on the accuracy of the estimators of the reversion

level µ, reversion strength α, and diffusion coefficient σ. The reversion level µ and the

starting value X0 remained the same throughout the simulations. For the parameters we

tested, this meant that we were mostly examining the non-stationary part of the process.
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We determined the mean square error (MSE) as well as the mean error (ME), which

is an estimator of the bias, of the estimators α̂, σ̂ and µ̂ for each parameter configuration

over the simulated paths.

Effect of reversion strength

We first explored the effect of the reversion strength parameter on the ME and MSE of

the estimators. We explored this by simulating a standard OUP as described in Section

3.4 for the process parameters σ = 10−5, X0 = 0.5 and µ = 1, with an observation step of

∆t = 60× 60 over an observation period of T = 60× 60× 24× 365× 5. With time unit 1

second, this would correspond to hourly observations of a process over 5 years. Of course

the individual values of reversion level and starting value are irrelevant to the outcomes of

the study and purely a cosmetic choice, since any results are only affected by the magnitude

of the initial displacement. We varied α in the range 10−9 ≤ α ≤ 6.5×10−8, corresponding

to a reversion time constant ranging roughly from 180 days to 30 years, which contains the

reversion time constants found in real exchange rates, and found the MEs and MSEs of

the three parameters over 1000 paths for each value of α. While a larger number of paths

would lead to a smoothing of our results, this number enabled us to vary the observation

period and observation step in most later simulations while keeping the number of paths

constant for comparison purposes. We simulated the process at the observation rate since

we used the exact discretization method, as described in Section 2.2.3. See Figure 5.1 for

a graph of the arithmetic mean taken over all paths of the errors α̂−α of α̂ as a function

of α.

Figure 5.1: Mean error of α̂ as a function of α in a standard OUP

The MSEs and mean errors for all parameter estimators for a selection of the values

of α tested are presented in Table 5.1. As described in the literature [46], we found the
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estimator of the reversion strength parameter to be positively biased, with the bias being

larger in the near-unit-root case and tending to zero for larger αs. We found that, as is to

be expected, a small α leads to a large variability in µ̂, as α̂ is more heavily biased and as

the unconditional variance of the process increases. We found that α had no significant

effect on σ̂ in the ranges we observed.

α MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-09 2.04497 1.63E-15 1.19E-15 -0.37933 3.01E-08 1.16E-09
6.00E-09 39.65148 2.19E-16 1.07E-15 0.07869 7.71E-09 -2.51E-10
1.10E-08 12.11843 6.82E-17 1.19E-15 -0.08140 3.33E-09 4.81E-10
1.60E-08 0.00956 4.95E-17 1.18E-15 -0.00192 2.68E-09 -6.53E-10
2.10E-08 0.00410 5.26E-17 1.13E-15 -0.00092 2.52E-09 -7.91E-10
2.60E-08 0.00180 4.61E-17 1.13E-15 -0.00019 1.93E-09 -1.17E-09
3.10E-08 0.00105 4.73E-17 1.19E-15 -0.00125 2.04E-09 1.80E-10
3.60E-08 0.00070 4.71E-17 1.20E-15 -0.00123 1.83E-09 -5.58E-10
4.10E-08 0.00054 5.16E-17 1.23E-15 -0.00073 1.87E-09 -1.15E-09
4.60E-08 0.00044 5.29E-17 1.07E-15 -0.00100 1.93E-09 -1.63E-09
5.10E-08 0.00031 6.05E-17 1.15E-15 -0.00040 1.84E-09 -3.71E-10
5.60E-08 0.00024 6.27E-17 1.18E-15 -0.00050 1.66E-09 -8.96E-10
6.10E-08 0.00021 6.36E-17 1.16E-15 -0.00046 1.83E-09 1.72E-09

Table 5.1: Mean errors and MSEs of estimators for varying αs in a standard OUP with µ
= 1, σ = 1.00E-05, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 3,600, nobs = 43,801, 1,000 paths

Effect of observation period

We next explored the effect of the size of the observation period on the ME and MSE of

the estimators. For this purpose we simulated a standard OUP with process parameters

σ = 10−5, X0 = 0.5, µ = 1, and α = 1
60×60×24×365×5 , corresponding to a reversion time

constant of 5 years for a time unit of 1 second, with an observation step of ∆t = 60×60. We

varied the observation window in the range 60×60×24×365 ≤ T ≤ 60×60×24×365×30,

corresponding to a period between 1 and 30 years, which is a similar range to that of the

time periods spanned by our data sets. Note that by varying T we also varied the number

of observed points of the process, keeping the size of the observation step constant. For

each value of T we generated 1000 paths, over which we computed the ME and MSE of

the three estimators.

See Figure 5.2 for the bias of α̂ as a function of T .
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Figure 5.2: Mean error of α̂ as a function of T in a standard OUP

See Table 5.2 for the MSEs and mean errors of all parameter estimators for some of

the values of T tested. Our results were consistent with the literature, finding the mean

error of α̂ to tend to zero for large Ts, while we observe a positive mean error of α̂ of

nearly 1400% for our smallest observation period. While we observe no significant bias of

σ̂ in the parameter ranges examined, we observe that T has a similar effect on the MSE of

σ̂ as on the mean error of α̂, with the MSE decreasing for larger observation periods and

growing steeply as T → 0, albeit with the errors observed in σ̂ being of a much smaller

order. We observe a great variability in µ̂ for smaller observation periods, which is related

to the large bias of α̂ and may also be due to the fact that some of the observation periods

tested are smaller than the reversion time constant.

T MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

31,536,000 9.63409 2.06E-14 5.79E-15 -0.24287 8.86E-08 -2.95E-09
189,216,000 47.03482 1.04E-16 9.04E-16 0.17295 4.80E-09 2.98E-10
346,896,000 1.19102 3.01E-17 5.26E-16 0.04080 2.69E-09 4.93E-10
504,576,000 6.61115 2.19E-17 3.58E-16 -0.08339 2.29E-09 -1.18E-10
662,256,000 0.01088 1.48E-17 2.55E-16 0.00236 1.89E-09 -5.52E-10
819,936,000 0.00484 1.22E-17 2.24E-16 -0.00616 1.78E-09 1.80E-10

Table 5.2: Mean errors and MSEs of estimators for varying T s in a standard OUP with µ
= 1, σ = 1.00E-05, α = 6.34E-09, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 3,600, 1,000 paths

Effect of observation step

We next tested the effect that the sampling rate would have on the parameter estimation

by varying ∆t. In doing so, we also varied the number of observed points of the process.

This was done by simulating the process hourly, with the fixed parameters being σ = 10−5,

X0 = 0.5, µ = 1, T = 60 × 60 × 24 × 365 × 5 and α = 1
60×60×24×365×5 . We varied our
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observation step in the range 60 × 60 ≤ ∆t ≤ 60 × 60 × 48, simulating a new set of

1000 sample paths for each size of observation step. By keeping the observation period

constant, we reduced the number of observed points by increasing the observation step.

In the ranges we tested there seemed to be no discernible bias of µ̂, with a large variability

in the estimator.

See Figure 5.3 for a graph of the MSE of σ̂ as a function of ∆t.

Figure 5.3: MSE of σ̂ as a function of ∆t in a standard OUP

In Table 5.3 we present the effect that the observation step had on the estimators by

giving the MSE and mean errors for a selection of ∆ts. We found no significant effect of

∆t on the ME or MSE of α̂ in the ranges we tested, but we found what looks like a very

strong positive linear relationship between the size of ∆t and the MSE of σ̂. Again, this

is to be expected as the number of observed points decreases.

nobs ∆tobs MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

43,801 3,600 29.74 1.64E-16 1.19E-15 -0.05777 6.12E-09 8.91E-10
8,760 18,000 7969.22 1.56E-16 5.62E-15 -3.03377 6.74E-09 1.22E-10
4,867 32,400 112.24 1.79E-16 1.04E-14 -0.11581 7.06E-09 -6.13E-09
3,369 46,800 10.97 1.60E-16 1.52E-14 -0.17916 6.32E-09 -2.53E-11
2,577 61,200 12.24 1.84E-16 1.98E-14 -0.26120 6.82E-09 -1.20E-08
2,086 75,600 11.56 1.87E-16 2.23E-14 -0.24003 7.18E-09 -6.77E-10
1,752 90,000 25.34 1.89E-16 2.88E-14 0.08619 6.85E-09 -1.69E-08
1,510 104,400 1017.76 1.88E-16 3.49E-14 1.07145 6.71E-09 -1.14E-08
1,327 118,800 104.06 1.60E-16 3.92E-14 -0.14963 6.37E-09 -6.28E-09
1,184 133,200 864.54 1.75E-16 4.00E-14 -0.83052 6.63E-09 -6.66E-09
1,068 147,600 1410.49 1.64E-16 4.43E-14 1.14115 6.51E-09 -1.00E-08

973 162,000 14.97 1.66E-16 5.28E-14 -0.17288 6.56E-09 -2.92E-09

Table 5.3: Mean errors and MSEs of estimators for varying ∆ts in a standard OUP. µ =
1, σ = 1.00E-05, α = 6.34E-09, X0 = 0.5, ∆tsim = 3,600, 1,000 paths.
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Effect of diffusion coefficient

Finally, we tested the effect of σ on the parameter estimation accuracy of the standard

OUP. We tested this on an OUP with parametersX0 = 0.5, µ = 1, T = 60×60×24×365×5,

∆t = 60× 60 and α = 1
60×60×24×365 , varying σ in the range 10−7 ≤ σ ≤ 0.99× 10−5. We

produced 1000 paths for each set of parameters. Note that we employed a larger α in our

simulation than we did for testing the other three parameters, so as to allow us to observe

the effect of σ more clearly. See Figure 5.4 for a graph of the MSE of µ̂ as a function of σ.

Figure 5.4: MSE of µ̂ as a function of σ in a standard OUP

The MEs and MSEs of all estimators for a selection of values of σ is presented in Table

5.4. As is to be expected, we found a very clear increase in the MSEs of all estimators for

larger σs. Additionally, we found a significant increase in the positive mean error of α̂ as

σ increased.

σ MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-07 1.05E-07 4.58E-21 1.19E-19 0.00002 -4.15E-12 9.01E-12
1.10E-06 1.32E-05 5.18E-19 1.29E-17 -0.00015 4.23E-11 -3.74E-11
2.10E-06 4.93E-05 1.85E-18 5.24E-17 0.00011 6.38E-11 9.22E-11
3.10E-06 9.49E-05 3.93E-18 1.14E-16 -0.00069 2.22E-10 -2.12E-10
4.10E-06 1.90E-04 8.09E-18 1.89E-16 -0.00037 4.07E-10 -3.36E-10
5.10E-06 2.74E-04 1.13E-17 2.93E-16 0.00021 4.32E-10 -6.09E-10
6.10E-06 3.72E-04 1.64E-17 4.44E-16 -0.00040 7.91E-10 9.81E-11
7.10E-06 4.93E-04 2.18E-17 6.04E-16 -0.00070 9.64E-10 -4.06E-10
8.10E-06 6.75E-04 3.01E-17 8.08E-16 -0.00066 1.33E-09 -9.40E-10
9.10E-06 9.31E-04 3.78E-17 8.85E-16 -0.00149 1.77E-09 -1.49E-09

Table 5.4: Mean errors and MSEs of estimators for varying σs in a standard OUP with µ
= 1, α = 3.17E-08, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 3,600, nobs = 43,801, 1,000 paths
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5.2.2 Results

We have observed a positive bias of α̂, which is reduced by an increase in α and by an

increase in T . Similarly, the MSE of µ̂ is much larger for smaller α and T . The MSE of σ̂ is

much smaller than that of α̂ and µ̂, but increases for smaller T and for larger ∆t. Finally,

and not surprisingly, an increase in σ leads to an increase in the MSEs of all estimators.

These results are in line with what has been reported in the literature.

5.3 Effect of gaps in the data

The next step was to explore the effect of gaps in the data on estimation accuracy. For

simplicity, we simulated 5 years’ worth of hourly data with gaps for weekends but not

nights.

5.3.1 Methodology

In order to test for the effect of gaps in the data on estimation accuracy, we again simulated

multiple paths each for a number of parameter sets. Each path was then analysed in

three ways: As a benchmark, our standard estimation method was applied to the full

path. Then, we inserted gaps into the simulated paths to represent weekends, producing

incomplete paths. Each incomplete path was then analysed in two ways: First, we used

linear interpolation to “fix” the gaps in the data, and conducted parameter estimation on

these interpolated series. Second, we applied our estimation method to the incomplete

paths as if they were spanning a shorter period of time, where the last value before the

“weekend” was directly followed by the first value after the “weekend”, with no “time”

passing during periods without observations, thus mimicking a “business time scale”.

Based on our real-world data sets, we chose to simulate 1000 paths of a standard OUP

with parameters σ = 10−5, X0 = 0.5, µ = 1, ∆t = 60 × 60, T = 60 × 60 × 24 × 365 × 5

and α = 1
60×60×24×365×5 , which with time unit 1 second would correspond to hourly data

spanning 5 years. Into these we then inserted gaps of weekends by removing {xi}i∈W ,

where W is the set of indices of the “weekend values”, defined as

W =

{
wj|4.5× 24 ≤ w ≤ 7× 24 ∩ 1 ≤ j ≤

⌊
365× 5

7

⌋}
. (5.1)

We then estimated the parameters of these incomplete observations in two different ways:

First, we treated any periods of time for which we did not have observations as non-

existent, thereby analysing the data on what may be interpreted as a “business time

scale”. (Note that of course this interpretation of incomplete series only applies where

data is missing due to the market being closed, rather than for other reasons such as

technical errors.) We then generated a second series by replacing the “weekend values”

with values found by linear interpolation. We applied our standard parameter estimation

to both the interpolated series and the “business time” series. Additionally, we conducted
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the parameter estimation on the complete data set, without gaps, as a benchmark.

Each path for each set of parameters was therefore estimated three times, and we

computed the mean error and MSE for each of the three methods over all paths, to

compare their accuracy. To gain further insight, we varied some of the parameters like we

did in Section 5.2, to see how this would affect the three methods.

The parameter sets and sample sizes used to test the three sampling methods were the

same as presented in Section 5.2, with the exception of the set-up for testing the methods

under varying observation steps. This is because we had to use different observation steps

in order to allow for the weekends to be removed. In this case, we therefore simulated

the process with simulation step ∆tsim 1 minute, and varied the observation steps in the

range 60 ≤ ∆tobs ≤ 12× 60× 60. For computational reasons, for the minutely simulations

we only produced 100 paths for each parameter set. All other parameters tested were the

same as in Section 5.2.

5.3.2 Results

See Figure 5.5 for a graph of the mean error of α̂ as a function of α in the three different

cases. We found that for the parameters examined by us, the reversion strength estimator

based on the interpolated series, while following a similar shape, lies consistently below

that from the completely observed series. However, the ME and MSE of the reversion

strength appears to be less affected by interpolation than it is by the true value of α.

The estimator based on the business time, however, appears to have a significantly larger

positive bias, with this difference further increasing as α does. In fact, it appears that

on the business time, while for small αs the MSE of α̂ follows a similar shape to that

in the standard case, above a certain value of α, the mean error of α̂ appears to grow

proportionally with α, while the mean error in the standard observation scenario tends to

zero. This difference between the three observation types may be due to the fact that in

the non-stationary part of the process, business time leads to regular jumps towards the

reversion level, while linear interpolation slows what should be an exponential approach

towards the reversion level to a linear one. In particular, a larger reversion strength

would lead to business time introducing larger jumps, leading to greater inaccuracy in the

estimation in this case.
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Figure 5.5: Mean error of α̂ as a function of α for complete observation, interpolated
weekends and business time

The mean errors and MSEs of all estimators for the complete estimation, the interpo-

lated series and the business time series for some of the values of α are presented in Table

5.5. See Appendix B for a more comprehensive table.

α method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-09 stnd 2.04497 1.63E-15 1.19E-15 -0.37933 3.01E-08 1.16E-09
intp 4,013.27653 7.24E-16 4.05E-12 2.15519 1.90E-08 -2.01E-06
b-time 4.52535 4.05E-15 6.46E-12 -0.51016 4.77E-08 2.53E-06

1.10E-08 stnd 12.11843 6.82E-17 1.19E-15 -0.08140 3.33E-09 4.81E-10
intp 30.98837 5.53E-17 4.05E-12 -0.10019 1.93E-09 -2.01E-06
b-time 416.08171 2.68E-16 6.56E-12 -0.61133 1.14E-08 2.55E-06

2.10E-08 stnd 0.00410 5.26E-17 1.13E-15 -0.00092 2.52E-09 -7.91E-10
intp 0.00461 4.53E-17 4.05E-12 0.00667 1.43E-09 -2.01E-06
b-time 0.00411 3.59E-16 6.80E-12 -0.00054 1.57E-08 2.60E-06

3.10E-08 stnd 0.00105 4.73E-17 1.19E-15 -0.00125 2.04E-09 1.80E-10
intp 0.00109 4.15E-17 4.05E-12 0.00243 8.89E-10 -2.01E-06
b-time 0.00105 5.24E-16 6.97E-12 -0.00093 2.05E-08 2.63E-06

4.10E-08 stnd 0.00054 5.16E-17 1.23E-15 -0.00073 1.87E-09 -1.15E-09
intp 0.00055 4.59E-17 4.06E-12 0.00167 5.68E-10 -2.01E-06
b-time 0.00054 7.77E-16 7.13E-12 -0.00044 2.57E-08 2.66E-06

5.10E-08 stnd 0.00031 6.05E-17 1.15E-15 -0.00040 1.84E-09 -3.71E-10
intp 0.00032 5.43E-17 4.06E-12 0.00138 3.53E-10 -2.01E-06
b-time 0.00031 1.10E-15 7.33E-12 -0.00013 3.11E-08 2.70E-06

6.10E-08 stnd 0.00021 6.36E-17 1.16E-15 -0.00046 1.83E-09 1.72E-09
intp 0.00021 5.72E-17 4.05E-12 0.00095 1.54E-10 -2.01E-06
b-time 0.00021 1.47E-15 7.54E-12 -0.00021 3.65E-08 2.74E-06

Table 5.5: Mean errors and MSEs of estimators for varying αs in case of observation gaps
in a standard OUP with µ = 1, σ = 1.00E-05, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 3,600,
nobs = 43,801, 1,000 paths
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See Figure 5.6 for a graph of the MSE of σ̂ for different observation steps for complete

observation, linear interpolation, and business time. We see that like the estimator for the

complete series, the MSEs of σ̂ for the interpolated series and business time, too, increase

for larger ∆ts. The MSEs of the estimators for the interpolated series and the business

time series are several orders of magnitude larger than the MSE of the estimator based on

the full series, with the error of the business time estimator being about 1.5 times that of

the interpolated series in our simulations.

Figure 5.6: MSE of σ̂ as a function of ∆t for complete observation, interpolated weekends
and business time

The mean errors and MSEs of all estimators for some of the observation steps in the

case of complete observation, interpolation and business time are presented in Table 5.6.

See Appendix B for a more comprehensive list.
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nobs ∆tobs method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

2,628,001 60 stnd 37.0273 1.72E-16 2.15E-17 -0.12549 6.98E-09 4.09E-10
intp 38.1845 1.18E-16 3.91E-12 -0.87597 4.49E-09 -1.98E-06
b-time 10.0698 4.95E-16 6.10E-12 -0.07397 1.43E-08 2.46E-06

525,600 300 stnd 2.2204 2.30E-16 8.20E-17 0.09888 8.35E-09 3.48E-10
intp 2.2045 1.40E-16 3.92E-12 -0.28491 5.12E-09 -1.98E-06
b-time 3.3647 6.62E-16 6.31E-12 0.13648 1.65E-08 2.50E-06

131,400 1,200 stnd 1.7782 2.01E-16 4.12E-16 -0.08256 6.18E-09 -2.55E-09
intp 2.5683 1.39E-16 3.97E-12 -0.05571 3.47E-09 -1.99E-06
b-time 2.7938 5.70E-16 6.31E-12 -0.05366 1.32E-08 2.51E-06

43,800 3,600 stnd 1.7117 1.53E-16 1.11E-15 0.06823 5.72E-09 3.36E-09
intp 14.1926 1.12E-16 4.03E-12 -0.28331 3.39E-09 -2.01E-06
b-time 2.9223 4.46E-16 6.63E-12 0.13343 1.25E-08 2.57E-06

7,300 21,600 stnd 1.4454 1.82E-16 7.63E-15 -0.25518 7.56E-09 -7.77E-09
intp 216.3876 1.19E-16 4.88E-12 -1.50011 4.70E-09 -2.21E-06
b-time 5.4700 6.05E-16 8.03E-12 -0.21633 1.64E-08 2.82E-06

Table 5.6: Mean errors and MSEs of estimators for varying ∆ts in case of observation gaps
in a standard OUP with µ = 1, σ = 1.00E-05, α =6.34E-09, X0 = 0.5, ∆tsim = 60, 100
paths

See Figure 5.7 for the mean error of σ̂ as a function of the observation period for the

three different observation types. We see a large positive bias for the business time series,

and a large negative bias for the interpolated series, both of which appear to be unaffected

by the observation period. This may be explained by the fact that the business time series

contain regular jumps, while the interpolated series contain regular periods without noise.

Figure 5.7: Mean error of σ̂ as a function of T for complete observation, interpolated
weekends and business time

The mean errors and MSEs of all estimators for different observation periods in the

case of complete observation, interpolation and business time are presented in Table 5.7.

88



nobs method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

8,761 stnd 9.63409 2.06E-14 5.79E-15 -0.24287 8.86E-08 -2.95E-09
intp 4.16409 1.01E-14 4.07E-12 -0.46528 5.58E-08 -2.02E-06
b-time 3.96658 4.88E-14 6.72E-12 -0.40354 1.39E-07 2.55E-06

52,561 stnd 47.03482 1.04E-16 9.04E-16 0.17295 4.80E-09 2.98E-10
intp 19.01773 7.63E-17 4.06E-12 0.05097 2.87E-09 -2.01E-06
b-time 10.03111 3.19E-16 6.4E-12 0.03549 1.11E-08 2.52E-06

96,361 stnd 1.19102 3.01E-17 5.26E-16 0.04080 2.69E-09 4.93E-10
intp 1.31234 2.17E-17 4.07E-12 0.04572 1.49E-09 -2.02E-06
b-time 0.52864 1.17E-16 6.46E-12 0.02491 7.80E-09 2.54E-06

140,161 stnd 6.61115 2.19E-17 3.58E-16 -0.08339 2.29E-09 -1.18E-10
intp 0.11362 1.51E-17 4.08E-12 0.01173 1.22E-09 -2.02E-06
b-time 4.40744 9.25E-17 6.44E-12 -0.06839 7.18E-09 2.53E-06

183,961 stnd 0.01088 1.48E-17 2.55E-16 0.00236 1.89E-09 -5.52E-10
intp 0.04703 9.87E-18 4.08E-12 0.02944 8.70E-10 -2.02E-06
b-time 0.01086 7.06E-17 6.43E-12 0.00239 6.56E-09 2.53E-06

227,761 stnd 0.00484 1.22E-17 2.24E-16 -0.00616 1.78E-09 1.80E-10
intp 0.00685 7.51E-18 4.07E-12 0.00868 7.18E-10 -2.02E-06
b-time 0.00484 6.29E-17 6.41E-12 -0.00611 6.39E-09 2.53E-06

Table 5.7: Mean errors and MSEs of estimators for varying T s in case of observation gaps
in a standard OUP with µ = 1, σ = 1.00E-05, α = 6.34E-09, X0 = 0.5, ∆tsim = 3,600,
1,000 paths

See Figure 5.8 for the MSE of µ̂ as a function of σ for the three different observation

types. We see that interpolation leads to an increase in the MSE of µ̂. However, this

effect is negligible compared to the effect that σ has on the MSE of the estimator in the

parameter ranges tested by us, meaning that process parameters should be taken into

account before considering the effects of observation inaccuracies. This is not surprising

as we have seen previously that business time leads to an increase and interpolation to a

decrease in the mean error of α̂, and furthermore we know that inaccuracies of α̂ affect

the estimation of µ, and that a larger σ leads to an increase in the mean error of α̂.
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Figure 5.8: MSE of µ̂ as a function of σ for complete observation, interpolated weekends
and business time

In Table 5.8 we show the mean errors and MSEs of all estimators for three different

observation types for a number of σ values. See Appendix B for a more comprehensive

table.

σ method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-07 stnd 1.05E-07 4.58E-21 1.19E-19 0.00002 -4.15E-12 9.01E-12
intp 1.05E-07 4.58E-21 4.05E-16 0.00002 -4.41E-12 -2.01E-08
b-time 2.43E-07 3.14E-16 2.75E-12 0.00037 1.77E-08 1.66E-06

1.10E-06 stnd 1.32E-05 5.18E-19 1.29E-17 -0.00015 4.23E-11 -3.74E-11
intp 1.32E-05 5.17E-19 4.90E-14 -0.00010 2.77E-11 -2.21E-07
b-time 1.32E-05 3.18E-16 1.28E-12 0.00020 1.78E-08 1.13E-06

3.10E-06 stnd 9.49E-05 3.93E-18 1.14E-16 -0.00069 2.22E-10 -2.12E-10
intp 9.49E-05 3.87E-18 3.90E-13 -0.00034 1.07E-10 -6.24E-07
b-time 9.48E-05 3.36E-16 1.35E-12 -0.00035 1.81E-08 1.16E-06

5.10E-06 stnd 2.74E-04 1.13E-17 2.93E-16 0.00021 4.32E-10 -6.09E-10
intp 2.77E-04 1.09E-17 1.06E-12 0.00117 1.25E-10 -1.03E-06
b-time 2.75E-04 3.65E-16 2.31E-12 0.00055 1.84E-08 1.51E-06

7.10E-06 stnd 4.93E-04 2.18E-17 6.04E-16 -0.00070 9.64E-10 -4.06E-10
intp 5.01E-04 2.04E-17 2.05E-12 0.00115 3.71E-10 -1.43E-06
b-time 4.94E-04 4.20E-16 3.80E-12 -0.00035 1.92E-08 1.94E-06

9.10E-06 stnd 9.31E-04 3.78E-17 8.85E-16 -0.00149 1.77E-09 -1.49E-09
intp 9.57E-04 3.36E-17 3.36E-12 0.00146 7.96E-10 -1.83E-06
b-time 9.34E-04 5.03E-16 5.87E-12 -0.00116 2.05E-08 2.42E-06

Table 5.8: Mean errors and MSEs of estimators for varying σs in case of observation gaps
in a standard OUP with µ = 1, α = 3.17E-08, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 3,600,
nobs = 43,801, 1,000 paths

We generally find that business time leads to a large positive, and interpolation to a

large negative, bias in σ̂. This effect may be explained by the fact that in the business
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time series we have multiple large jumps in the values, whereas in the interpolated series

we have significant stretches where the data follows a linear course without noise. We also

generally observe that the business time leads to a significant increase in the positive bias

of α̂, while the estimator based on interpolation experiences a smaller bias. This might

be due to the fact that without noise, the process approaches µ exponentially, while with

linear interpolation it approaches µ linearly during this time, thus effectively slowing the

mean reversion. With business time, on the other hand, the process appears to jump

towards the reversion level. On the whole it is apparent that gaps in the observations tend

to have a significant effect on the estimators, which could possibly outweigh any biases or

MSEs that the estimators have naturally for regular observations.

5.4 Effect of irregular sampling

We next explored the effect on the accuracy of parameter estimation caused by irregularly

spaced observations, as often observations made at regular intervals are not available.

For example, this is the form in which tick data is provided. When applying a standard

estimation technique to irregularly sampled data we have a choice between interpolating,

which introduces a bias as shown in Section 5.3, and treating the data as if it were sampled

at regular intervals, the effect of which we will study in this section. We explored two

different types of irregularity, first sampling the process at a random point within a defined

closed interval around the “regular” sampling point, and then picking all observation points

at random, with only the number of observations being defined. In all cases, we treated

the data as if it were regularly sampled.

5.4.1 Methodology

We tested these methods by first simulating 1000 paths of a standard OUP with a dis-

cretization step of 1 hour, with parameters α = 10−5, σ = 10−5, X0 = 0.5 and µ = 1

over an observation window of size T = 60 × 60 × 24 × 365 × 5, which, with time unit 1

second, would correspond to l = 24× 365× 5 hourly simulated points over 5 years. As a

benchmark, we first sampled each path regularly with an observation step of size 10 hours

by sampling the first and every 10th simulated value. (While irregularly observed data

is maybe most common in high-frequency data, as we wanted to keep our parameters in

the ranges tested so far, we chose a ∆tobs of 10 hours. Of course any time scale is purely

hypothetical and these results are easily translated to high-frequency data.) We then sam-

pled each path three more times, but this time irregularly, first with two different degrees

of “tolerance” around the “regular” sampling point, and then completely randomly. Like

in Section 5.3, we computed the mean error and the MSE over all sample paths for each

observation type, and in order to gain further insight did so for a number of parameter

sets.
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Variation of parameters

We tested the effect of irregular sampling under a variety of reversion strengths in the

range 10−9 ≤ α ≤ 6.5 × 10−8, and under a variety of diffusion coefficients in the range

10−7 ≤ σ ≤ 10−5. Additionally, to explore the effects of the two observation types on

other scales, we picked another set of parameters, varying the reversion strength in the

range 10−8 ≤ α ≤ 0.7× 10−4 and the diffusion coefficient in the range 10−6 ≤ σ ≤ 10−1.

Irregular sampling

We tested two different intervals for the irregular sampling. These were [−1, 1] and [−4, 4].

For each maximum offset size n, we sampled each path {Xt}1≤t≤l of the process m =

24 × 365 × 5/10 times, with the samples being {Xt′i
}1≤i≤m, where t′i for each 1 ≤ i ≤ m

was an integer chosen at random from {ti−n, ti−n+ 1, ..., ti +n}, where ti is the regular

sampling point. Therefore, with a time unit of one second, this would correspond to

sampling the process within an interval of 2 and 8 hours respectively, centred around

each regular sampling point. We set Xt′0
= Xt0 and Xt′m = Xtm . We then estimated the

parameters of this process using our standard estimation method, as if each Xt′i
had been

sampled at time ti.

Random sampling

In order to increase the range of irregularity further, we next sampled the process at

random time points. We did this for each path of the process by picking m points from

{t|1 ≤ t ≤ l} at random. These were sorted so the time stamps would be ascending, giving

us the points {t′i}1≤i≤m at which we then sampled the path. The sampled values of the

process were then treated as if they had been sampled regularly, i.e. each Xt′i
was treated

as if it had been sampled at ti for the purpose of our parameter estimation.

5.4.2 Results

See Figure 5.9 for a graph of the mean error of σ̂ as a function of α for the different

sampling types. We can see that irregular sampling introduces a significant bias in σ̂.

Figure 5.10 shows the same relationship for larger αs. We see that in the case of irregular

sampling, while σ̂ is positively biased for small αs, it is in fact negatively biased for larger

αs, with the bias apparently tending to zero for very small αs, and the bias being larger

for greater irregularity in the sampling.
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Figure 5.9: Mean error of σ̂ as a func-
tion of α for small αs for regular, irregular
and random observation with µ = 1, σ =
0.00001, ∆tsim = 3600

Figure 5.10: Mean error of σ̂ as a function
of α for greater range of αs for regular,
irregular and random observation

Figure 5.11 shows the mean error of α̂ for different αs for regular and irregular ob-

servations. When compared to the effect of α, regularity of sampling appears to have no

significant effect on the bias of α̂ in the parameter ranges examined for the near-unit-root

case. However, in Figure 5.12 we see the same relationship for larger αs. We find that α̂

incurs a significant negative bias from irregularity in the observations, with this bias being

larger for larger αs and greater irregularity.

Figure 5.11: Mean error of α̂ as a function
of α for small αs for regular, irregular and
random observation

Figure 5.12: Mean error of α̂ as a function
of α for greater range of αs for regular,
irregular and random observation

Figure 5.13 shows the mean error of α̂ as a function of σ. We see that in the ranges

observed in this graph, irregularity appears to introduce a significant positive bias of α̂.

However, Figure 5.14 shows the same relationship for larger σs for regular and irregular

sampling. We see that for larger σs, greater irregularity in the sampling leads to a greater

negative bias of α̂. Note that for the parameter ranges examined, the positive bias of α̂ for

regular sampling is insignificant compared to the bias introduced by irregular sampling at
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the levels of irregularity we have tested.

Figure 5.13: Mean error of α̂ as a function
of σ for smaller σs for regular, irregular
and random observation

Figure 5.14: Mean error of α̂ as a function
of σ for greater range of σs for regular,
irregular and random observation

See Figure 5.15 for the mean error of σ̂ as a function of σ in the different sampling

scenarios, and Figure 5.16 for the same relationship for larger σs. We see that irregular

sampling leads to a positive bias for smaller σs but to a negative bias for larger σs, which

appears to be proportional to σ.

Figure 5.15: Mean error of σ̂ as a function
of σ for smaller σs for regular, irregular
and random observation

Figure 5.16: Mean error of σ̂ as a function
of σ for greater range of σs for regular,
irregular and random observation

Finally, in Figure 5.17 we show the MSE of µ̂ as a function of σ for the different

sampling scenarios, and in Figure 5.18 the same relationship for larger σs. We find that

the MSE is larger in the case of irregular sampling, with this effect being more significant

for larger σs.
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Figure 5.17: MSE of µ̂ as a function of
σ for smaller σs for regular, irregular and
random observation

Figure 5.18: MSE of µ̂ as a function of σ
for greater range of σs for regular, irregu-
lar and random observation

See Table 5.9 for the mean errors and MSEs of all estimators for some of the αs in the

three sampling scenarios. Table 5.10 gives the same data for some larger αs. See Appendix

B for more comprehensive tables.

Tables 5.11 and 5.12 give the MSEs and mean errors of all parameters for some of

the smaller and larger values of σ respectively under the different sampling scenarios. See

Appendix B for more comprehensive tables.

α method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-09 regular 0.81363 1.64E-15 1.25E-14 -0.40359 3.03E-08 5.36E-09
off 1 1.01554 1.63E-15 1.26E-14 -0.44035 3.03E-08 4.37E-09
off 4 231.35356 1.63E-15 1.38E-14 0.07411 3.03E-08 5.52E-09
random 2.69461 1.64E-15 2.43E-14 -0.36794 3.02E-08 5.16E-09

1.60E-08 regular 0.27435 5.54E-17 1.13E-14 0.02786 2.60E-09 -2.93E-09
off 1 0.29228 5.54E-17 1.13E-14 0.02842 2.60E-09 -1.41E-09
off 4 0.30288 5.54E-17 1.26E-14 0.02869 2.61E-09 3.91E-09
random 0.76016 5.63E-17 2.17E-14 0.03870 2.62E-09 2.02E-08

3.10E-08 regular 0.00110 4.81E-17 1.14E-14 -0.00085 2.07E-09 -1.09E-09
off 1 0.00110 4.81E-17 1.16E-14 -0.00086 2.07E-09 -1.21E-10
off 4 0.00110 4.81E-17 1.27E-14 -0.00086 2.07E-09 1.39E-09
random 0.00109 4.92E-17 2.36E-14 -0.00089 2.11E-09 3.46E-08

4.60E-08 regular 0.00044 5.51E-17 1.12E-14 -0.00199 2.03E-09 1.61E-09
off 1 0.00044 5.52E-17 1.15E-14 -0.00200 2.03E-09 2.08E-09
off 4 0.00044 5.52E-17 1.26E-14 -0.00201 2.04E-09 9.69E-09
random 0.00044 5.99E-17 2.70E-14 -0.00201 2.14E-09 6.08E-08

6.10E-08 regular 0.00021 6.38E-17 1.22E-14 -0.00047 1.38E-09 -8.06E-10
off 1 0.00021 6.38E-17 1.24E-14 -0.00046 1.38E-09 -1.97E-09
off 4 0.00021 6.39E-17 1.37E-14 -0.00048 1.39E-09 1.19E-08
random 0.00022 7.24E-17 2.66E-14 -0.00047 1.38E-09 7.13E-08

Table 5.9: Mean errors and MSEs of estimators for varying αs in case of irregular obser-
vations in a standard OUP with µ = 1, σ = 1.00E-05, X0 = 0.5, ∆tsim = 3,600, ∆tobs =
36,000, nobs = 4,380, 1,000 paths
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α method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-08 regular 3.11E+00 7.38E-17 1.16E-14 6.72E-02 4.08E-09 -5.54E-09
off 1 1.90E+00 7.38E-17 1.23E-14 5.41E-02 4.09E-09 -3.84E-09
off 4 9.59E-01 7.38E-17 1.33E-14 2.83E-02 4.09E-09 1.97E-09
random 1.69E+00 7.43E-17 2.28E-14 3.69E-03 4.11E-09 9.67E-09

1.80E-05 regular 2.07E-09 4.59E-14 1.24E-14 -7.81E-07 7.57E-09 -9.70E-09
off 1 2.08E-09 5.50E-13 2.27E-14 -6.39E-07 2.38E-08 2.90E-08
off 4 2.21E-09 5.16E-12 3.76E-13 -1.62E-06 1.69E-07 3.67E-07
random 3.25E-09 1.32E-10 1.58E-11 6.56E-06 -2.58E-08 2.35E-06

3.60E-05 regular 5.7E-10 4.38E-13 1.69E-14 -5.08E-07 -6.97E-09 -1.25E-09
off 1 5.59E-10 4.55E-12 6.75E-14 -2.19E-07 -9.88E-08 -6.56E-09
off 4 5.78E-10 4.02E-11 4.62E-13 6.57E-07 -4.34E-07 -4.27E-08
random 9.1E-10 4.02E-10 1.05E-11 3.41E-06 -4.77E-06 7.55E-07

5.40E-05 regular 2.87E-10 2.92E-12 3.17E-14 4.65E-07 3.52E-08 3.33E-09
off 1 2.89E-10 1.00E-11 8.32E-14 4.28E-07 -4.03E-07 -3.77E-08
off 4 2.8E-10 7.43E-11 5.97E-13 2.87E-07 -3.09E-06 -3.22E-07
random 4.47E-10 7.97E-10 8.46E-12 1.87E-06 -1.20E-05 -3.16E-07

Table 5.10: Mean errors and MSEs of estimators for bigger αs in case of irregular obser-
vations in a standard OUP with µ = 1, σ = 1.00E-05, X0 = 0.5, ∆tsim = 3,600, ∆tobs =
36,000, nobs = 4,380, 1,000 paths

σ method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-07 regular 6.33E-13 1.61E-18 1.25E-18 2.56E-08 -4.65E-11 1.43E-11
off 1 1.25E-11 6.29E-14 1.17E-12 -2.14E-07 1.47E-08 1.02E-06
off 4 1.23E-10 6.43E-13 1.31E-11 -2.10E-06 1.16E-07 3.42E-06
random 2.37E-09 5.16E-11 7.84E-11 1.11E-05 5.88E-07 8.02E-06

1.10E-06 regular 7.60E-11 1.87E-16 1.38E-16 4.71E-08 -3.00E-10 2.09E-10
off 1 8.84E-11 6.15E-14 2.71E-13 -2.45E-07 1.74E-08 4.61E-07
off 4 2.05E-10 6.15E-13 8.20E-12 -1.49E-06 7.36E-08 2.61E-06
random 2.15E-09 4.58E-11 6.49E-11 7.48E-06 7.20E-07 7.11E-06

3.10E-06 regular 6.88E-10 1.59E-15 1.09E-15 1.09E-06 -1.48E-09 -8.87E-10
off 1 7.04E-10 6.29E-14 5.14E-14 1.09E-06 5.43E-09 1.92E-07
off 4 8.01E-10 6.51E-13 3.25E-12 -1.27E-06 1.54E-07 1.57E-06
random 3.20E-09 4.62E-11 4.24E-11 8.54E-06 9.17E-07 5.51E-06

6.10E-06 regular 2.31E-09 5.30E-15 4.30E-15 1.75E-06 1.59E-09 -8.05E-10
off 1 2.34E-09 6.08E-14 2.06E-14 1.54E-06 1.18E-08 1.05E-07
off 4 2.41E-09 5.91E-13 1.34E-12 -2.73E-07 1.02E-07 9.66E-07
random 4.54E-09 3.72E-11 2.61E-11 9.65E-06 4.61E-07 4.17E-06

9.10E-06 regular 5.61E-09 1.23E-14 9.51E-15 -3.03E-06 4.08E-10 9.79E-10
off 1 5.64E-09 6.34E-14 1.77E-14 -3.30E-06 1.35E-08 6.74E-08
off 4 5.76E-09 5.37E-13 6.16E-13 -4.93E-06 7.71E-08 6.29E-07
random 8.14E-09 4.15E-11 1.92E-11 4.04E-06 8.97E-07 3.24E-06

Table 5.11: Mean errors and MSEs of estimators for varying σs in case of irregular obser-
vations in a standard OUP. µ = 1, α = 1.00E-5, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 36,000,
nobs = 4,380, 1,000 paths.

96



σ method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

0.000001 regular 6.33E-11 1.61E-16 1.25E-16 2.56E-07 -4.43E-10 1.37E-10
off 1 7.38E-11 6.27E-14 3.39E-13 1.76E-08 1.44E-08 5.19E-07
off 4 1.85E-10 6.42E-13 8.40E-12 -1.88E-06 1.16E-07 2.67E-06
random 2.38E-09 5.12E-11 6.56E-11 1.14E-05 5.79E-07 7.20E-06

0.030001 regular 0.06436 1.97E-13 1.47E-07 0.01015 2.23E-08 2.83E-06
off 1 0.06425 1.96E-13 1.47E-07 0.01147 1.11E-09 -2.89E-05
off 4 0.06406 2.34E-13 2.73E-07 0.01048 -2.07E-07 -3.44E-04
random 0.07462 1.87E-12 4.37E-06 0.00803 -1.30E-06 -2.05E-03

0.060001 regular 0.22293 1.83E-13 5.58E-07 0.01748 1.95E-08 8.74E-06
off 1 0.22280 1.80E-13 5.66E-07 0.01741 -2.33E-09 -5.54E-05
off 4 0.22318 2.27E-13 1.14E-06 0.01467 -2.24E-07 -7.30E-04
random 0.25915 1.86E-12 1.76E-05 0.01411 -1.31E-06 -4.10E-03

0.090001 regular 0.54887 1.89E-13 1.25E-06 -0.03016 -9.39E-09 -4.51E-06
off 1 0.54937 1.90E-13 1.29E-06 -0.03040 -3.12E-08 -1.15E-04
off 4 0.55731 2.39E-13 2.51E-06 -0.03456 -2.51E-07 -1.09E-03
random 0.63207 1.90E-12 3.95E-05 -0.01673 -1.32E-06 -6.14E-03

Table 5.12: Mean errors and MSEs of estimators for bigger σs in case of irregular obser-
vations in a standard OUP with µ = 1, α = 1.00E-5, X0 = 0.5, ∆tsim = 3,600, ∆tobs =
36,000, nobs = 4,380, 1,000 paths

It is clear that irregularity of observations has a non-negligible effect on the parameter

estimation of the OUP. We find there to be a large difference in the effect of irregularity

of sampling on different scales of parameters. Generally, we find that when dealing with

irregular samples, changes in the true values of the parameters appear to have an even

greater effect on the mean error and MSE of the estimators than in the regular case.

5.5 Estimation with time-dependent reversion level

We next set out to examine the parameter estimation of the OUP with time-dependent

reversion level. We implement Sanchez et al.’s [75] method, as described in Section 2.4.2,

since Sanchez et al. only present an analysis of their performance for a process where the

diffusion coefficient is scaled by the value of the process. We also propose an alternative

method of conducting the parameter estimation of the OUP with time-dependent reversion

level.

5.5.1 Methodology

We compared the two methods by simulating 100 paths of an OUP with time-dependent

reversion level for a number of parameter sets and then producing two sets of estimators

for each sample path, one based on Sanchez et al.’s method and one based on our method.

Additionally, we applied the standard estimation method for OUPs with constant reversion

level to the paths as a benchmark. We compare the MEs and MSEs over 100 paths of

the three estimation methods for each parameter set. We shall now describe both of the

methods in detail.
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Sanchez et al. method

We will now remind ourselves of the first phase of the method proposed by Sanchez et al.,

as described in Section 2.4.2, and describe it in some more detail. The method is based

on the relationship

µ (t) = m(t) +
ṁ(t)

α
, (5.2)

between the expected value m(t) of the process and the underlying reversion level µ(t). A

moving average is used to approximate the expected value of the process at the sampling

points, and a numerical derivation method is used to find its derivative at these points

in order to estimate the reversion level. As proposed by Sanchez et al., we employ a

three-point derivation where the derivative of the expected path is defined as

ṁ0 =
m1 −m0

∆t

ṁN =
mN −mN−1

∆t

ṁi =
2mi+1 − 3mi +mi−1

∆t
for 0 < i < N.

(5.3)

Note that in this case [0, T ], where T = N∆t, is the interval over which we are able to

compute the moving average, rather than the full interval over which the process was

observed. Furthermore note that while this approximation of the derivative involves a

time shift, we chose to follow it in order to test the method exactly. However, we found

no significant effect of the approximation method used. Based on Sanchez et al.’s method

we then computed the estimators as

α̂ =

∑N
i=1 (Ximi−1 −XiXi−1 −Xi−1mi−1 +X2

i−1 − ṁi−1mi−1∆t+Xi−1ṁi−1∆t)∑N
i=1 (m2

i−1 − 2mi−1Xi−1 +X2
i−1)∆t

(5.4)

and

σ̂ =

√√√√ 1

N∆t

N∑
i=1

si , (5.5)

where

si = X2
i − 2XiXi−1 +X2

i−1 −∆t2Xiα̂mi−1 + 2Xi∆tα̂Xi−1 − 2Xiṁi−1∆t

+ 2Xi−1∆tα̂mi−1 − 2X2
i−1∆tα̂+ 2Xi−1∆ṁi−1

+ α̂2m2
i−1(∆t)2 − α̂2mi−1Xi−1(∆t)2 + α̂mi−1ṁi−1(∆t)2

− α̂2mi−1Xi−1(∆t)2 + α̂2X2
i−1(∆t)2 − α̂Xi−1ṁi−1(∆t)2 .

(5.6)

See Sanchez et al.’s paper [75] for more details on this method.
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Our method

We propose an alternative method, where we use the moving average to approximate the

reversion level itself rather than the expected path. While we expect that the moving

average is a worse approximation of the reversion level than it is of the expected path, this

method allows us to find parameter estimators from the exact discretization as described

in Section 2.2.3, rather than the Euler–Maruyama discretization. From the series {Xi}
we compute the moving average {MAi}0≤i≤N , where [0, T ] with T = N∆t is the interval

over which we can compute the moving average, and then from this generate a detrended

series {X ′i}0≤i≤N by

X ′i = Xi −MAi (5.7)

for 0 ≤ i ≤ N . We now treat X ′t as an OUP with reversion level 0, applying standard

estimation techniques for OUPs with known reversion level to the detrended series.

Our estimators are therefore

α̂ = − 1

∆t
log

∑N
i=1 (Xi−1Xi)∑N
i=1 (X2

i−1)
(5.8)

and

σ̂ =

√∑N
i=1 (X2

i )− 2e−α̂∆t
∑N

i=1 (Xi−1Xi) + e−2α̂∆t
∑N

i=1 (X2
i−1)2α̂

N(1− e−2α̂∆t)
. (5.9)

These are the ML estimators for a standard OUP with known reversion level, based on

those described in Section 2.3.1.

Moving averages

Like Sanchez et al., we employed a symmetrical moving average, rather than a lagging

MA, so as to better approximate the underlying value of the process. This of course is

not possible to do in real time, and the same method could instead be followed using a

lagging MA.

We tested a simple moving average of the sampled series {Xi,∆t}0≤i≤n by

MAi,∆t =
1

2m+ 1

i+m∑
j=i−m

Xi,∆t (5.10)

for m ≤ i ≤ n−m, where m = τ
∆t with time period τ = 60× 60× 24× 7× 5, which means

with time unit 1 second the total period over which the moving average was computed

corresponds to roughly 10 weeks, centred around the current point in time. Therefore, for

m sampled values per path, after computing the MA we only had n− 2m values per path

to base the parameter estimation with Sanchez et al.’s and our method on.
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Simulation

We tested both methods on a simulated data set. We tested the methods on an OUP

with a sine function as reversion level, with µ(t) = sin 2×π×t
T + 1.5, based on Sanchez et

al.’s simulations in order to facilitate the comparison of results. Like the standard OUP,

we simulated the OUP with time-dependent reversion level iteratively, by setting X0 and

then computing

Xi+1 = µi + (Xi − µi)e−α∆t + σ

√
1− e−2α∆t

2α
, (5.11)

where

µi = µ(i∆t), (5.12)

in other words we discretized the reversion level, turning it into a step function. In order

to reduce the error introduced by this discretization, we simulated the process with a

discretization step of one minute and sampled it with observation steps 30 minutes and

larger. Due to this smaller simulation step, we simulated 100 paths for each parameter

set. We simulated a discretization of the process {Xt}t≥0 with

dX(t) = α(µ(t)−X(t))dt+ σdW (t) (5.13)

with X(0) = 1.5 and parameters σ = 10−4 and α = 1
60×60×24×4 over a period of T =

60 × 60 × 24 × 7 × 50 × 5, i.e. with a time unit of 1 second the reversion time constant

corresponded to roughly 4 days and the observation period to roughly 5 years. These

parameters as well as the SMA windows we used are in the ranges of those tested by

Sanchez et al. on a different CKLS generalization. We tested ∆ts of 30 minutes, 1 hour,

6 hours, 12 hours and 1 day. For each size of observation step we generated a new set of

100 minutely sample paths, over which we computed the MEs and MSEs for each method.

Note that by increasing ∆t, we reduced the number of sampled points.

5.5.2 Results

See Figures 5.19 and 5.20 for example graphs of the mean error of α̂ as a function of ∆t

and the MSE of σ̂ as a function of ∆t for our method, the Sanchez et al. method, and a

standard estimation method respectively.
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Figure 5.19: Mean error of α̂ as a function of ∆t for the standard and two alternative
methods

Figure 5.20: MSE of σ̂ as a function of ∆t for the standard and two alternative methods

In our simulations, both methods show a significant positive bias of α̂, which is much

larger than what would be expected for the values of σ, α and T simulated in the case

of constant reversion level and standard estimators. However, for the ranges tested, both

methods perform similarly in the estimation of α̂ when compared to the estimation with

no MA subtracted. We found that Sanchez et al.’s method was better at estimating α

while ours was better at estimating σ. Despite Sanchez et al.’s method being based on

the Euler–Maruyama discretization, Sanchez et al.’s estimators are in acceptable ranges

even for large ∆ts. Note that in Figure 5.19 we see a negative mean error of α̂ for the
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standard method, however this is due to the bias induced by the unknown time-dependent

reversion level. In the estimation of σ both methods, as well as the standard estimation,

perform similarly, and sufficiently accurately.

See Table 5.13 for the MSEs and mean errors for the two methods for the different

observation steps.

nobs ∆tobs Calibration method MSE(α̂) MSE(σ̂) ME(α̂) ME(σ̂)

84,000 1,800 our method 2.46E-13 5.82E-14 4.36E-07 -2.10E-09
Sanchez 2.37E-13 1.54E-13 4.26E-07 -3.09E-07

42,000 3,600 our method 2.39E-13 1.16E-13 4.22E-07 1.66E-08
Sanchez 2.22E-13 4.59E-13 4.02E-07 -5.94E-07

7,000 21,600 our method 2.27E-13 1.05E-12 4.13E-07 2.94E-07
Sanchez 1.38E-13 1.17E-11 2.99E-07 -3.29E-06

3,500 43,200 our method 2.30E-13 1.88E-12 4.02E-07 4.45E-07
Sanchez 8.34E-14 4.37E-11 1.79E-07 -6.51E-06

1,750 86,400 our method 3.37E-13 5.99E-12 5.03E-07 1.32E-06
Sanchez 4.90E-14 1.54E-10 5.26E-08 -1.23E-05

Table 5.13: Mean errors and MSEs of estimators for different estimation methods of OUP
with time-dependent reversion level with α = 2.89E-06, σ = 1.00E-04

5.6 Discussion

It is apparent that the parameter estimation of the OUP in practice is a very complex

matter. It is clearly not sufficient to find theoretical properties of the estimators based on

finite but perfectly regular samples. Instead, we propose there is much scope for a detailed

analysis of how different types of errors or irregularities in the observation process affect

estimator accuracy. While the bias in OUP parameter estimation caused by finite samples

is to be taken seriously, in some cases this can in fact become negligible when dealing

with the potentially much larger errors introduced by imperfect observations. This means

that further research is required in order to better understand the reliability of estimators.

Furthermore, we have seen that in the case of imperfect observations the behaviours of

the estimators vary qualitatively depending on the orders of magnitude of the parameters

of the process and observation. While we have tested the behaviour of the estimators for

a range of parameters, there is of course a great number of interactions at play between

the process parameters and the observation parameters such as the observation period,

the observation steps and the number of observations. For example, in this study we have

examined the interaction between parameters mostly in the non-stationary part of the

process and in the near-unit root case. Similarly, we have varied the observation step

while keeping the observation time constant, and thus varying the observation step along

with the number of observations. An alternative would be to vary the observation step

along with the observation period, and thus keeping the number of observations constant.

Furthermore, our study could also be extended to a scenario where the reversion level is

known a priori. Alternatively, these interactions could be determined by finding analytical
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descriptions of the MEs and MSEs of the three estimators as a function of the process

parameters and observation parameters.

We have shown that the performance of a new method proposed by us for the pa-

rameter estimation of an OUP with time-dependent reversion level is similar to the only

other existing method. However, much more research is required on this topic, and an

improvement to both methods would be desirable. In particular, both methods’ accuracy

is very dependent on the choice of MA.

Gaps in the data

The first issue to consider when confronted with major gaps in the data is whether these

gaps are due to errors in the observation or due to market opening hours. If the gaps are

due to market hours, an assumption has to be made regarding whether processes continue

during market closing times, or whether they are halted outside of business hours. As

pointed out by Müller et al. in FX this decision is further complicated by the fact that the

FX market has different opening hours around the world, and therefore there is no absolute

business time. Where it is assumed that processes continue during market closing times,

or where gaps are due to errors in observation, we have found that when estimating the

parameters of an OUP generally linear interpolation appears to be preferable to business

time, especially when it comes to the estimation of the mean reversion strength. However,

as we have shown, interpolation has different effects on the different estimators, and all of

these need to be taken into account when deciding how to proceed.

Due to the FX market having different opening hours around the world we only sim-

ulated weekend gaps and not night gaps, but the results should not differ qualitatively.

Still, the effect of different sizes and numbers of gaps in the data may be worth exploring.

Irregular observations

It should be noted that in the case where the time stamps of irregular observations are

known, it is possible to use the exact transition density function to find the ML estima-

tors of the parameters. However, when we are dealing with inaccuracies in the recording

of the time stamps, the irregularities in recording times may be unknown, and therefore

we cannot correct for them by adjusting the estimators. In other cases, such as in our

Thomson Reuters data set, we are presented with data which is already interpolated.

In both scenarios it is important to know how the reliability of estimators may be af-

fected. Additionally, using exact estimators in the case of irregular observations would be

more complex than applying the standard estimation method to irregular or interpolated

data. For this reason, it is worth exploring whether these computations yield a significant

improvement in the results.

In the case of irregular but known observation times, of course an alternative to treating

values as if they had been regularly sampled or using exact estimators would be to use

interpolation to approximate the values at the desired sampling points. However, as we

103



have seen in Section 5.3, linear interpolation, too, introduces a significant bias into the

data.

Both for irregular observations and for gaps in the observations, an interesting study

would be to find the MSEs and MEs of the estimators as functions of some measure of

the irregularity, either analytically or numerically. A further area of exploration would be

the parameter estimation using methods such as the jackknife technique or the bootstrap

technique under the circumstances we have explored.

We conclude from our study that caution should be applied when estimating the pa-

rameters of the OUP in practice, and properties of the estimators in the case of perfectly

regular observations are not to be transferred to the case of irregular data.

Time-dependent mean

We have tested Sanchez et al.’s method of estimating the parameters of an OUP with time-

dependent mean, and have proposed an alternative method. To the best of our knowledge,

both of these are novel contributions to the literature. In the parameter ranges and with

the reversion level we tested, which were based on Sanchez et al.’s paper, both methods

perform similarly, however further study is required to determine the exact difference in

performance between the two methods under different circumstances. For example, clearly

both methods are significantly affected by the MA used, including which time constant

is used in the MA, although the nature of this dependence is not clear. For example, in

the case of a sine function as underlying reversion level, the relation between the period

of the sine function and the time constant of the MA is relevant. The effect of the time

constant used for the MA on the parameter estimation is what we shall explore further in

the following chapter.
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Chapter 6

Time-dependent OUP reversion

levels and the Hurst exponent

This chapter presents Part 3 of the research, which is concerned with the application of the

calibration methods from Part 2 (Chapter 5) of the research for a mean-reverting model

with time-dependent reversion level to foreign exchange data in order to find out how

the calibrated parameters depend on how the mean reversion level is determined. This

also relates to trading strategies where an underlying trend is determined through moving

averages, and a reversion to this trend is assumed. We show that the dependence of the

OUP parameters on the definition of the reversion level is directly related to the Hurst

exponent of the process, using a detrended moving average analysis.

6.1 Research question

In this experiment, we assumed that log nominal exchange rates followed an Ornstein–

Uhlenbeck process fluctuating around a time-dependent “intrinsic” value. The goal of this

part of the research was to calibrate the parameters of this Ornstein–Uhlenbeck process

in order to determine their dependence on the way the underlying value was defined.

In order to do this, we assumed that the “intrinsic” value could be approximated as a

moving average of the data. We therefore applied the calibration methods introduced in

Part 2 to high-frequency FX data by calculating a number of different types of moving

averages, subtracting these from the data, and then fitting the resulting time series to an

Ornstein–Uhlenbeck process with reversion level 0.

We first of all found the dependence of the calibrated reversion strength α on the

time constant τ . Then, we hypothesized that the dependence of the estimated parameters

was related to the Hurst exponent of the data. This hypothesis arose from the fact that

methods for estimating the Hurst exponent of a series, such as the DFA or R/S analysis,

introduce a time scale into a series and then measure the variability of the series as a

function of this time scale. This is effectively what we are doing when fitting an OU

process to FX time series after subtracting a moving average. Due to the self-similarity
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of FX time series they are scale-free, and by subtracting a moving average a time scale is

introduced via the time constant of the moving average. An OU process has a scale, and

its long-term variance is a function of its parameters.

We therefore conducted a detrending moving average analysis, finding the Hurst ex-

ponent of the data, and then computed the scaling exponent of the estimated long-term

variance of the OUP as a function of the time constant used to define the underlying

reversion level in order to compare the two.

6.2 Calibrating the OUP with time-dependent reversion level

In this part of our research, our aim was to find how the calibrated parameters of an OUP

with time-dependent reversion level as described in Part 2 (Chapter 5) depend on the time

constant used to detrend the process.

Two types of moving average were tested as approximation of the underlying value of

the FX rate: a simple and an exponential lagging moving average. We did not consider

symmetrical moving averages, as these are not suitable for real-time application. For each

of these types of moving average we then varied the time constant of the moving average

to find the effect this would have on the calibrated mean reversion strength and diffusion

coefficient. We did this by subtracting the computed moving average from the time series

and then estimating the reversion strength and volatility coefficient with the reversion

level fixed to zero.

We then attempted to find functions to express the calibrated reversion strength as

well as the long-term variance of the OUP as a function of the time constant.

6.2.1 Methodology

We chose as the time constants τ for the moving averages for the daily Thomson Reuters

data 10, 20, 30, 60, 120 and 200 days and one and two years. We increased the observation

step of the Commerzbank data to 1 minute and the time constants we chose for the moving

averages for Commerzbank were 2, 5 and 10 hours and 1, 5, 10, 14 and 30 days. For

each series we computed the moving averages, subtracted them, and then estimated the

parameters of the process, as described below. Thus, for each series, eight SMAs and eight

EMAs were computed, and we generated one α̂ and one σ̂ per pair per MA.

Simple moving average

The simple moving average (SMA) with a time window of size τ for a point at time t was

calculated as the arithmetic mean of the values of the process with timestamps within the

interval [t− τ, t]. The formula for the SMA of the process {Xi}0≤i≤n was

SMAi =
Xi−τ+1 +Xi−τ+2 + ...+Xi

τ
(6.1)
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for τ ≤ i. This lagging SMA cannot be calculated for the entire length of the original

process but only from the τ -th value onwards, losing τ−1 values from the beginning of the

process. The detrended processes therefore can also only be computed for these periods.

In order to make all detrended processes cover the same period of time, we cropped all of

them to the length of the shortest detrended process, n− τmax + 1.

An example of the daily log prices and the SMA over 365 days for daily Thomson

Reuters CHF/JPY is presented in Figure 6.1. Both the daily log price and the SMA series

were cropped to be the length of the shortest SMA series, i.e. n− τmax + 1.

Figure 6.1: Daily CHF/JPY prices and moving average calculated over previous 365 days

Figure 6.1 shows the cropped series of interpolated daily log prices for CHF/JPY from

Thomson Reuters in black, and the simple moving average calculated over the previous

365 days in red.

See Appendix C for further examples.

Exponentially weighted moving average

For this moving average, we averaged over the past values of the process, while giving more

recent values exponentially larger weights than those further in the past. As in previous

chapters, for time constant τ we computed the smoothing factor as a = 2
τ+1 , from which

the value of the moving average EMA(t) of the process X(t) was calculated iteratively as

EMA(1) = X(1) and EMA(t) = (1−a)×EMA(t−1) +a×X(t) for 2 ≤ t. A smaller time

constant therefore led to less smoothing and a more “reactive” EMA. While our definition

of the exponential moving average allows us to calculate a moving average for the entire

time period of the original process, the moving average will be less accurate for earlier

values, as we start the moving average with an approximation at the same value as the

original process. We therefore chose to crop all detrended series to the same length as for
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the SMA, i.e. n− τmax + 1.

See Appendix C for example graphs of some of the price series we analysed and their

EMAs.

Parameter estimation

We estimated the parameters of the detrended processes {XEMAτ ,i} and {XSMAτ ,i} with

XEMAτ ,i = Xi − EMAτ , i and XSMAτ ,i = Xi − SMAτ , i using the estimators

α̂ = − 1

∆t
log

∑N
i=1 (Xi−1Xi)∑N
i=1 (X2

i−1)
(6.2)

and

σ̂ =

√∑N
i=1 (X2

i )− 2e−α̂∆t
∑N

i=1 (Xi−1Xi) + e−2α̂∆t
∑N

i=1 (X2
i−1)2α̂

N(1− e−2α̂∆t)
, (6.3)

which corresponds to our method as described in 5.5.

See Figure 6.2 for the cropped daily Thomson Reuters CHF/JPY series detrended

using an SMA over 60 days.

Figure 6.2: Daily CHF/JPY prices minus moving average calculated over previous 60 days

Figure 6.2 shows the cropped detrended interpolated daily log prices for CHF/JPY

from Thomson Reuters in black, calculated by subtracting the 60-day simple moving

average from the interpolated daily log prices.

See Appendix C for further example graphs of the series we analysed detrended with

different τs.
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6.2.2 Results

We found a consistent dependence of α̂ and σ̂2

2α̂ on τ . We conducted a linear regression on

both dependencies on a log-log scale and found high correlation coefficients.

As an example, the logarithm of the ML-estimated mean reversion strengths in 1/days

for Thomson Reuters CHF/JPY as a function of the logarithm of the SMA windows in

days along with the regression line is presented in Figure 6.3.

Figure 6.3: Log of estimated mean reversion strengths for detrended daily log CHF/JPY
prices for different SMA windows

The fitted slope and therefore the scaling exponent in Figure 6.3 is Eα = −1.0382 with

Rα = −0.9999.

The logarithm of the SMA ML-estimated long-term variance σ̂2

2α̂ for the same series as

a function of the logarithm of τ along with a line fit is shown in Figure 6.4.
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Figure 6.4: Log of estimated long-term variance for detrended daily log CHF/JPY prices
for different SMA windows

The line fitted in Figure 6.4 has the slope Evar = 1.0436 with correlation coefficient

Rvar = 0.9998. Both line fits show a slight curvature, which is similar to that reported

for Hurst exponent estimation methods in the literature. We did not find a significant

dependence of log σ̂ on log τ beyond a curvature like that found for α̂ and σ̂2

2α̂ . The

estimated mean reversion strengths, diffusion coefficients and long-term variances of the

daily Thomson Reuters CHF/JPY data using ML for each of the eight τSMAs are presented

in Table 6.1.

τ/days α̂× day σ̂ ×
√

day σ̂2/(2α̂)

10 0.1527 0.0056 1.0247E-04
20 0.0723 0.0056 2.1807E-04
30 0.0475 0.0056 3.3415E-04
60 0.0231 0.0056 6.9051E-04

120 0.0112 0.0056 1.4295E-03
200 0.0064 0.0057 2.5017E-03
365 0.0035 0.0057 4.5833E-03
730 0.0018 0.0057 8.8110E-03

Table 6.1: Estimated α̂s, σ̂s and σ̂s

2α̂ for detrended daily Thomson Reuters CHF/JPY series
with SMA window τ in days

We present a table of the best fit values for Eα and Evar using SMAs and EMAs for

detrending for each Thomson Reuters currency pair, along with the correlation coefficients

Rα and Rvar, in Table 6.2 below.
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SMA EMA
Eα Rα Evar Rvar Eα Rα Evar Rvar

CAD -1.0295 -0.9999 1.0355 0.9999 -1.0093 -0.9999 1.0544 0.9999
GBP -1.0599 -0.9994 1.0676 0.9993 -1.0239 -0.9997 1.0730 0.9992
JPY -1.1171 -0.9999 1.1247 0.9999 -1.0808 -1.0000 1.1289 0.9998
EUR/AUD -0.9660 -0.9989 0.9709 0.9988 -0.9127 -0.9984 0.9578 0.9972
EUR/CAD -1.0808 -0.9999 1.0879 0.9999 -1.0418 -0.9999 1.0895 0.9998
EUR/CHF -1.0737 -0.9998 1.0745 0.9998 -1.0655 -0.9992 1.1026 0.9997
EUR/GBP -1.0256 -1.0000 1.0292 1.0000 -0.9956 -1.0000 1.0367 0.9999
EUR/JPY -1.1412 -1.0000 1.1491 1.0000 -1.1005 -0.9999 1.1489 0.9998
EUR -1.0964 -1.0000 1.1045 0.9999 -1.0652 -1.0000 1.1131 0.9999
EUR/NOK -1.0004 -0.9999 1.0001 0.9999 -0.9602 -0.9998 0.9936 0.9994
EUR/SEK -1.0345 -0.9998 1.0385 0.9997 -0.9886 -0.9996 1.0308 0.9991
GBP/AUD -1.0101 -0.9995 1.0176 0.9994 -0.9740 -0.9998 1.0218 0.9991
GBP/CAD -1.0268 -0.9996 1.0339 0.9995 -0.9925 -0.9998 1.0406 0.9993
GBP/CHF -1.0805 -0.9998 1.0872 0.9998 -1.0579 -0.9999 1.1060 0.9999
GBP/EUR -1.0246 -1.0000 1.0281 1.0000 -0.9947 -1.0000 1.0355 0.9999
GBP/JPY -1.1353 -0.9999 1.1430 0.9999 -1.1051 -0.9998 1.1555 1.0000
CHF/JPY -1.0382 -0.9999 1.0436 0.9998 -0.9955 -0.9998 1.0411 0.9993

Table 6.2: Fitted Eαs and Rαs, Evars and Rvars for SMA and EMA detrended Thomson
Reuters data

The table of all best fit values Eα and Evar along with the correlation coefficients Rα

and Rvar for the fits using SMAs and EMAs for each Commerzbank currency pair and

source found in this way can be seen below in Table 6.3.

SMA EMA
source Eα Rα Evar Rvar Eα Rα Evar Rvar

AUD/JPY LN -0.9571 -0.9998 0.9571 0.9998 -0.9574 -0.9999 0.9592 0.9999
NY -0.9494 -0.9998 0.9495 0.9998 -0.9503 -0.9999 0.9522 0.9999

AUD/USD LN -0.9315 -0.9998 0.9316 0.9998 -0.9293 -0.9999 0.9311 0.9999
NY -0.9291 -0.9998 0.9292 0.9998 -0.9271 -0.9999 0.9290 0.9999

EUR/USD LN -1.0857 -0.9991 1.0853 0.9991 -1.0604 -0.9995 1.0613 0.9995
NY -1.0309 -0.9977 1.0310 0.9977 -1.0166 -0.9983 1.0182 0.9983

USD/BRL LN -0.9505 -0.9992 0.9508 0.9992 -0.9528 -0.9995 0.9551 0.9995
NY -0.9527 -0.9992 0.9531 0.9992 -0.9548 -0.9995 0.9571 0.9995

USD/CAD LN -0.8721 -0.9963 0.8722 0.9963 -0.8654 -0.9971 0.8674 0.9971
NY -0.8804 -0.9970 0.8806 0.9970 -0.8735 -0.9975 0.8756 0.9974

USD/CHF LN -0.9794 -0.9989 0.9795 0.9989 -0.9667 -0.9995 0.9683 0.9995
NY -0.9691 -0.9990 0.9688 0.9990 -0.9564 -0.9995 0.9575 0.9994

USD/CNH LN -1.0407 -1.0000 1.0410 1.0000 -1.0324 -1.0000 1.0345 1.0000
NY -1.0308 -0.9999 1.0311 0.9999 -1.0253 -0.9999 1.0275 0.9999

Table 6.3: Fitted Eαs, Rαs, Evars and Rvars for SMA and EMA detrended Commerzbank
data

See Appendix C for further example graphs of the calibrated reversion strength and

example graphs of the long-term variance as a function of τ .
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6.3 Detrending moving average analysis

Finally, we conducted a DMA on the daily Thomson Reuters data, and compared the

estimated Hurst exponent to the scaling exponent of the estimated long-term variance as

a function of τ found in Section 6.2.

6.3.1 Methodology

We conducted the DMA according to the algorithm outlined originally in Alessio et al.’s

paper [81]. This was done in the following way: Starting with the daily Thomson Reuters

time series {Xi}1≤i≤n, we chose a τmax = 500� n to be the largest MA window we would

analyse in days. For each MA window τ we next computed the series’ simple lagging

moving averages {Xi,τ}τ≤i≤n where

Xi,τ =
1

τ

τ−1∑
k=0

Xi−k . (6.4)

We did this for 2 ≤ τ ≤ τmax. The scaling quantity σ2(τ) was then computed as

σ2(τ) =
1

n− τmax

n∑
i=τmax

[
Xi −Xi,τ

]2
. (6.5)

This makes σ2(τ) the variance of the SMAτ -detrended series, where each detrended series

is cropped to be the length n−τmax+1 of the shortest detrended series. We then conducted

a line fit to log σ2(τ) as a function of log τ in order to determine the slope 2H. In other

words, we calibrated the relationship

σ2(τ) = cτ2H , (6.6)

making H the Hurst exponent of the series. Due to the multiscaling property of FX data

it should be noted that H in this case refers to H(2), i.e. the second-order Hurst exponent,

which does not equal the H(1) we determined in Chapter 4.

See Figure 6.5 for a plot of log σ2(τ) as a function of log τ for CHF/JPY.

112



Figure 6.5: Log of σ2
DMA of CHF/JPY as a function of log of τ in days

Note that interpolation of weekends may affect the variance of the series detrended over

small numbers of days. Furthermore, we observe a curvature as reported in the literature

for methods of estimating the Hurst exponent. See Appendix C for more example graphs.

6.3.2 Results

We used the DMA method to find the Hurst exponents of all series in the Thomson Reuters

data set, and compared the computed 2HDMA to the scaling exponent Evar of the SMA

estimators found in Section 6.2. See Table 6.4 for these values side by side.

2HDMA Evar

CAD 1.0674 1.0355
GBP 1.1077 1.0676
JPY 1.1281 1.1247
EURAUD 0.9942 0.9709
EURCAD 1.1124 1.0879
EURCHF 1.0998 1.0745
EURGBP 1.0507 1.0292
EURJPY 1.1760 1.1491
EUR 1.1157 1.1045
EURNOK 1.0352 1.0001
EURSEK 1.0660 1.0385
GBPAUD 1.0100 1.0176
GBPCAD 1.0764 1.0339
GBPCHF 1.1460 1.0872
GBPEUR 1.0493 1.0281
GBPJPY 1.1746 1.1430
CHFJPY 1.0770 1.0436

Table 6.4: Estimated 2HDMA and Evar for Thomson Reuters data
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We found a very strong linear relationship between log σ2
DMA(τ) and log τ , as would

be expected due to the well-known fractal properties of FX series. More interestingly,

we found a strong correlation between 2HDMA and Evar, with a correlation coefficient of

0.9573.

6.4 Discussion

We have calibrated a model of an OUP with time-dependent reversion level to FX data.

We have observed a clear and systematic dependence of the calibrated model parameters

on the time constant used to detrend the process. Thus we conclude that when calibrating

this model to a time series using methods such as those described in Chapter 5, or when

using trading strategies where mean reversion to a moving average is predicted, we are

faced with a choice of what MA, or what reversion strength, we want to calibrate. In other

words, the MA or the reversion strength of the process becomes an input parameter of the

calibration, and we have in this chapter shown the effects of this parameter. Furthermore,

we have shown that the effects of this input parameter are determined by the Hurst

exponent of the time series.

It should be noted that this part of the research is a calibration rather than a parameter

estimation study, as we do not know whether the time series really follow such a process,

and the results should be interpreted accordingly. It would be beneficial to a more complete

understanding of these results to conduct the same analysis on a simulated OUP with

time-dependent reversion level.

The implications of this for trading strategies need to be further explored, but our

findings support the trading of FX rates on multiple time scales at once, and a clear

recommendation is to take the Hurst exponent into account when choosing the width of

bands around a moving average. Furthermore, the term “mean reversion-based trading

strategies”, when applied to FX rates, may be slightly misleading since it is not clear

whether the moving average does represents a true reversion level or an arbitrarily chosen

time scale.

Of course subtracting a moving average acts as a high-pass filter, and therefore our

method effectively separates the frequencies occurring in the time series into those con-

tributing to the underlying reversion level, and those that are the overlayered mean-

reverting process. This makes intuitive sense, as the lowest contributing frequencies will

be things such as political changes, and the highest will be noise generated by algorith-

mic high-frequency trading, with things such as economic factors, seasonality factors, and

news events all lying somewhere on this scale, and choosing which of these levels are seen

as “underlying” and which are overlayered in some ways is an arbitrary decision, with the

separation of the nominal exchange rate into the real exchange rate and the PPP rate

being just one quantifiable separation.
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Chapter 7

Conclusions and future work

This chapter presents the conclusions that may be drawn from the research conducted as

part of this thesis. We will also make some recommendations for potential future work to

build on the research, and summarize the thesis’s contributions to science.

7.1 Scaling of log returns

We observed the scaling of mean absolute log returns in our real-world FX data, and in

doing so have extended the ranges of intervals over which we know the law to hold. Using

simulated data, we have shown that not only Brownian motion, but also an Ornstein–

Uhlenbeck process with time-dependent reversion level obeys this scaling law, albeit not

with the same exponents as found in FX data. We have shown that after detrending by

subtracting a moving average, the dependence of the mean absolute returns of log FX

rates on the observation steps resembles that found in a standard Ornstein–Uhlenbeck

model, which on a log-log scale is a linear relationship for small intervals which flattens

for larger observation steps. The same is true both for a detrended Wiener process and a

detrended Ornstein–Uhlenbeck process with time-dependent reversion level. However, we

have shown that in the detrended series the level at which the process flattens depends on

the time constant used to compute the moving average.

We conclude from our findings that there is no evidence of raw logarithmic FX rates

being mean reverting with constant reversion level on the time scales we can currently

observe. However, depending on the shape of the underlying reversion level, a model of

FX rates being mean reverting to a time-dependent reversion level appears not incompat-

ible with the scaling laws observed in the real-world data, although modifications, such

as introducing fractional noise, would have to be made to the model to adjust the scal-

ing exponent. It should also be noted that while this model appears feasible, a simple

Brownian motion also displays these behaviours, meaning that the decision to choose a

model of FX rates with a mean reverting component over, say, a fractal Brownian motion

model, is only motivated by external factors such as models of FX rate determination or

the performance of known trading strategies.
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Future work

Due to the fast-changing nature of the foreign exchange market and technology, it is

interesting of itself to re-test for the standard scaling law as the market ages and evolves,

and smaller and larger time intervals become available. In order to reduce the bias of

interpolation, which becomes particularly troublesome for high-frequency data, other ways

of testing for the power law may be used. This could for example be done by treating each

price change in the series as an individual data point to which we then fit the scaling law,

although the computational cost of this has to be considered.

Different detrending methods, such as subtracting price levels known from external

data from the series, could be used to detrend the process.

The models we used for the logarithmic FX data, namely an Ornstein–Uhlenbeck

process with random walk reversion level and a Brownian motion, could be refined by

introducing fractal noise in order to adjust the scaling exponent to that found in FX data.

In this case, the models could be fitted to the real-world series and their goodness of fit

could be compared. Different types of reversion level and more complex mean reverting

processes could also be tested.

7.2 OUP parameter estimation under various conditions

We observed a variety of effects of the process and observation parameters on the reliability

of standard parameter estimators of the standard OUP based on finite samples, using

synthetic data. In particular, we found that non-regular observation of the process caused

in some cases a qualitative change in the mean errors and mean square errors of the process

estimators. The interdependence between the factors is clearly quite complex and means

that when dealing with finite and irregular, incomplete or interpolated observations, the

literature on the ME and MSE of the estimators in case of regular observations no longer

applies, and we may be dealing with unknown errors in our estimates.

We also tested two methods for estimating the parameters of an OUP with unknown

time-dependent reversion level, using a simulated OUP with an underlying sine function.

We found both methods to greatly outperform the standard estimators. However, both

methods rely on the computation of a moving average of the series, which requires the

input of a time constant, which we chose arbitrarily. Yet, the outcome of the estimation

greatly depends on this parameter. This means that currently these methods may be

best suited to cases where external knowledge informs the choice of this time constant.

Furthermore, both methods employ a symmetrical moving average. This means that they

cannot be applied in real-time, although the methods could be adapted to employ lagging

MAs.
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Future work

Since there is a great number of factors affecting the reliability of estimators, and since

effects additionally depend on the orders of magnitude of the parameters, there remains

great scope for further analysis. An exhaustive study of these effects should, for exam-

ple, include an analysis of the dependence of estimator MSEs and MEs on the observation

window when keeping the number of observations constant, the effect of the initial displace-

ment of the process, as well as an analysis of the non-near-unit-root case. Furthermore,

the level of irregularity of observations could be quantified, for example as the size of

the time window around the regular sampling point, so that the dependence of the MEs

and MSEs of the estimators on this irregularity parameter could be observed. Some of

the methods proposed in the literature for improving parameter estimates could also be

tested, and a case where the reversion level is known would be of interest. Additionally,

an analytical description of these effects would provide great insight.

A weakness of the two estimation methods for OUPs with time-dependent reversion

level is the arbitrary input parameter of the moving average. Finding a way of determining

an optimal time constant, or even a different convolution altogether, would be invaluable

in improving these methods. Additionally, this should be done for a variety of underlying

reversion levels, as well as process and observation parameters. For real-time application

both methods would have to be adapted by using a lagging moving average.

7.3 Time-dependent OUP reversion levels and the Hurst

exponent

Using our estimation method from Part 2, we calibrated a model of an OUP with time-

dependent reversion level to our real-world FX data sets. We found a clear dependence

of the calibrated process parameters on the input parameter of the calibration method,

i.e. the time constant of the moving average. We then conducted a detrending moving

average analysis on the real-world data and showed that the thus obtained Hurst exponent

describes the dependence of the calibrated long-term variance of the OUP on the input

parameter of the calibration method. One possible interpretation of this is that rather than

there being one true underlying reversion level, the self-similarity of the process means

that it is instead mean-reverting on a spectrum of time scales, i.e. the mean reversion is

scale-free. Alternatively, it may mean that the mean reversion is inferred into the data by

the calibration itself. In both cases our findings are particularly relevant to mean reversion

based trading strategies.

Future work

A deeper understanding of our findings could be gathered by conducting the same analysis

on a variety of simulated processes with known properties. Also, before calibrating the

OUP parameters to the detrended series, a mean reversion test such as a Dickey–Fuller test
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could be applied to the series. When describing the calibrated parameters as functions of

the time constant, the fitting of alternative functions to the relationship may be possible.

It may also be worth exploring whether there is a relationship between the calibrated

reversion strength and the Hurst exponent.

Further insight could be gained by exploring how our findings may improve mean rever-

sion based trading strategies using moving averages as approximations of the fundamental

value.

7.4 Contributions to science

We have contributed to science by taking a step towards bridging the gap between the

self-similarity of FX time series and models of FX rates being mean reverting. In addition

to extending the range of intervals over which we know the scaling law of FX log returns to

hold, we have demonstrated that a model of log nominal exchange rates following a mean

reverting process with time-dependent reversion level is compatible with the scaling law we

observe in real-world FX data. We have found a dependence of the calibrated parameters

of this model on the way the reversion level is defined, and have shown a relationship

between this dependence and the Hurst exponent of the series, which to the best of our

knowledge has never been shown before. These findings may help refine models of FX

rates and trading strategies. Furthermore, we have shed some light on the reliability of

standard parameter estimators of the OUP in the case of finite, irregular, incomplete, or

interpolated observations. Even though in practical application data sets are imperfect,

the literature on the properties of estimators has so far mostly been focused on perfectly

regular data sets. Finally, we have tested two methods for estimating the parameters

of Ornstein–Uhlenbeck processes with time-dependent reversion level. The literature on

estimating the parameters of such processes where the reversion level is unknown is very

scarce, and we hope to contribute towards developing methods to solve this problem.

In Part 1, the scaling law relating the volatility of exchange prices to the time interval

over which it is measured was verified using a novel data set and a greater range of intervals

than we have found reported in the literature. We thus have extended our knowledge of

the ranges of intervals over which the scaling law holds. We also showed that the scaling

law may be consistent with a model of FX rates reverting to a time-dependent underlying

value, and that the mean absolute returns of detrended data resemble those of an Ornstein–

Uhlenbeck process. This helps bridge the gap between this scaling behaviour, which has

so far been reported as a stylized fact in the literature, and the construction of a stochastic

model of FX rates.

In Part 2, we presented numerical findings regarding the accuracy of standard param-

eter estimators of the Ornstein–Uhlenbeck process in the case of irregular observations.

As far as we know, the effect of the true parameters of the OUP on estimator accuracy

in the case of irregular observations and interpolation has never been reported before.

These findings are very relevant wherever OUP parameters are estimated on imperfect
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data, as we have shown significant effects of the irregularity, and a qualitative difference

between the effect of parameters on estimator accuracy between the regular, irregular,

interpolated and business time cases. Secondly, we have proposed a method of estimating

the parameters of OUPs with time-dependent reversion level which we have not found

reported elsewhere, and have tested this method against another method reported in the

literature, which to the best of our knowledge has not been tested before, showing that the

two perform similarly. There is currently very little literature on the subject of estimating

the parameters of an OUP with unknown time-dependent reversion level, and our research

may help in developing and refining such methods, which have a great number of potential

applications not only in finance but also in a wide range of other areas.

In Part 3, we have shown that the calibration of a model of an OUP reverting to a

time-dependent reversion level, which relies on detrending the process, depends heavily

on the detrending method used, and shown empirically the relationships between the

calibrated parameters and the detrending parameter. These findings are relevant not only

to the calibration of OUPs with time-dependent reversion level, but also to the parameter

estimation of such processes. We also conducted a detrending moving average analysis on

FX series and determined the Hurst exponent of the series and showed that the dependence

of the calibrated parameters on the detrending parameter is directly related to the Hurst

exponent of the series. To the best of our knowledge, this has never been done before,

and we suggest that it may be of great use for improving mean reversion based trading

strategies and models of FX time series.
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Appendix A

Additional graphs relating to
Chapter 4

Figure A.1: Minutely logarithmic CAD/USD prices from Thomson Reuters
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Figure A.2: Hourly logarithmic CAD/USD prices from Thomson Reuters

Figure A.3: Scaling of mean absolute log returns in Thomson Reuters data GBP/CHF



Figure A.4: Scaling of mean absolute log returns in Thomson Reuters data EUR/AUD

Figure A.5: Scaling of mean absolute returns in LN source Commerzbank data USD/CHF



Figure A.6: Scaling of mean absolute log returns in NY source Commerzbank data
EUR/USD



Appendix B

Additional tables relating to
Chapter 5

α method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-09 stnd 2.04497 1.63E-15 1.19E-15 -0.37933 3.01E-08 1.16E-09
intp 4,013.27653 7.24E-16 4.05E-12 2.15519 1.90E-08 -2.01E-06
b-time 4.52535 4.05E-15 6.46E-12 -0.51016 4.77E-08 2.53E-06

6.00E-09 stnd 39.65148 2.19E-16 1.07E-15 0.07869 7.71E-09 -2.51E-10
intp 27.99999 1.43E-16 4.05E-12 -0.04432 4.84E-09 -2.01E-06
b-time 12.53743 6.29E-16 6.51E-12 -0.16918 1.55E-08 2.54E-06

1.10E-08 stnd 12.11843 6.82E-17 1.19E-15 -0.08140 3.33E-09 4.81E-10
intp 30.98837 5.53E-17 4.05E-12 -0.10019 1.93E-09 -2.01E-06
b-time 416.08171 2.68E-16 6.56E-12 -0.61133 1.14E-08 2.55E-06

1.60E-08 stnd 0.00956 4.95E-17 1.18E-15 -0.00192 2.68E-09 -6.53E-10
intp 0.01204 4.19E-17 4.06E-12 0.01237 1.53E-09 -2.01E-06
b-time 0.00956 2.77E-16 6.73E-12 -0.00156 1.32E-08 2.59E-06

2.10E-08 stnd 0.00410 5.26E-17 1.13E-15 -0.00092 2.52E-09 -7.91E-10
intp 0.00461 4.53E-17 4.05E-12 0.00667 1.43E-09 -2.01E-06
b-time 0.00411 3.59E-16 6.80E-12 -0.00054 1.57E-08 2.60E-06

2.60E-08 stnd 0.00180 4.61E-17 1.13E-15 -0.00019 1.93E-09 -1.17E-09
intp 0.00192 4.07E-17 4.06E-12 0.00483 8.34E-10 -2.01E-06
b-time 0.00181 4.11E-16 6.84E-12 0.00017 1.76E-08 2.61E-06

3.10E-08 stnd 0.00105 4.73E-17 1.19E-15 -0.00125 2.04E-09 1.80E-10
intp 0.00109 4.15E-17 4.05E-12 0.00243 8.89E-10 -2.01E-06
b-time 0.00105 5.24E-16 6.97E-12 -0.00093 2.05E-08 2.63E-06

3.60E-08 stnd 0.00070 4.71E-17 1.20E-15 -0.00123 1.83E-09 -5.58E-10
intp 0.00072 4.18E-17 4.06E-12 0.00170 6.05E-10 -2.01E-06
b-time 0.00071 6.30E-16 6.98E-12 -0.00091 2.29E-08 2.63E-06

4.10E-08 stnd 0.00054 5.16E-17 1.23E-15 -0.00073 1.87E-09 -1.15E-09
intp 0.00055 4.59E-17 4.06E-12 0.00167 5.68E-10 -2.01E-06
b-time 0.00054 7.77E-16 7.13E-12 -0.00044 2.57E-08 2.66E-06

4.60E-08 stnd 0.00044 5.29E-17 1.07E-15 -0.00100 1.93E-09 -1.63E-09
intp 0.00045 4.67E-17 4.06E-12 0.00104 5.38E-10 -2.01E-06
b-time 0.00044 9.32E-16 7.22E-12 -0.00072 2.86E-08 2.68E-06

5.10E-08 stnd 0.00031 6.05E-17 1.15E-15 -0.00040 1.84E-09 -3.71E-10
intp 0.00032 5.43E-17 4.06E-12 0.00138 3.53E-10 -2.01E-06
b-time 0.00031 1.10E-15 7.33E-12 -0.00013 3.11E-08 2.70E-06

5.60E-08 stnd 0.00024 6.27E-17 1.18E-15 -0.00050 1.66E-09 -8.96E-10
intp 0.00024 5.69E-17 4.06E-12 0.00108 7.93E-11 -2.01E-06
b-time 0.00024 1.27E-15 7.40E-12 -0.00024 3.35E-08 2.71E-06

6.10E-08 stnd 0.00021 6.36E-17 1.16E-15 -0.00046 1.83E-09 1.72E-09
intp 0.00021 5.72E-17 4.05E-12 0.00095 1.54E-10 -2.01E-06
b-time 0.00021 1.47E-15 7.54E-12 -0.00021 3.65E-08 2.74E-06

Table B.1: Mean errors and MSEs of estimators for varying αs in case of observation gaps
in a standard OUP with µ = 1, σ = 1.00E-05, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 3,600,
nobs = 43,801, 1,000 paths
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nobs ∆tobs method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

2,628,001 60 stnd 37.0273 1.72E-16 2.15E-17 -0.12549 6.98E-09 4.09E-10
intp 38.1845 1.18E-16 3.91E-12 -0.87597 4.49E-09 -1.98E-06
b-time 10.0698 4.95E-16 6.10E-12 -0.07397 1.43E-08 2.46E-06

1,314,001 120 stnd 1.8602 2.01E-16 3.52E-17 -0.04876 6.22E-09 6.57E-10
intp 100.2804 1.35E-16 3.91E-12 0.96300 3.63E-09 -1.98E-06
b-time 1.4624 5.65E-16 6.19E-12 -0.07384 1.32E-08 2.48E-06

525,600 300 stnd 2.2204 2.30E-16 8.20E-17 0.09888 8.35E-09 3.48E-10
intp 2.2045 1.40E-16 3.92E-12 -0.28491 5.12E-09 -1.98E-06
b-time 3.3647 6.62E-16 6.31E-12 0.13648 1.65E-08 2.50E-06

262,800 600 stnd 2.1890 2.34E-16 2.22E-16 -0.27345 7.10E-09 1.02E-09
intp 4.9157 1.55E-16 3.93E-12 -0.16300 4.37E-09 -1.98E-06
b-time 1.9477 6.48E-16 6.30E-12 -0.31989 1.45E-08 2.50E-06

131,400 1,200 stnd 1.7782 2.01E-16 4.12E-16 -0.08256 6.18E-09 -2.55E-09
intp 2.5683 1.39E-16 3.97E-12 -0.05571 3.47E-09 -1.99E-06
b-time 2.7938 5.70E-16 6.31E-12 -0.05366 1.32E-08 2.51E-06

87,600 1,800 stnd 1.4948 1.06E-16 6.62E-16 0.09321 5.48E-09 -5.26E-11
intp 13.1267 7.81E-17 3.97E-12 -0.47999 3.32E-09 -1.99E-06
b-time 1.0914 3.29E-16 6.40E-12 0.06096 1.21E-08 2.52E-06

43,800 3,600 stnd 1.7117 1.53E-16 1.11E-15 0.06823 5.72E-09 3.36E-09
intp 14.1926 1.12E-16 4.03E-12 -0.28331 3.39E-09 -2.01E-06
b-time 2.9223 4.46E-16 6.63E-12 0.13343 1.25E-08 2.57E-06

21,900 7,200 stnd 10.0447 1.49E-16 2.81E-15 -0.29807 5.91E-09 -3.53E-09
intp 0.6362 1.09E-16 4.22E-12 -0.18731 3.51E-09 -2.05E-06
b-time 9.8830 4.50E-16 6.69E-12 -0.44594 1.30E-08 2.58E-06

7,300 21,600 stnd 1.4454 1.82E-16 7.63E-15 -0.25518 7.56E-09 -7.77E-09
intp 216.3876 1.19E-16 4.88E-12 -1.50011 4.70E-09 -2.21E-06
b-time 5.4700 6.05E-16 8.03E-12 -0.21633 1.64E-08 2.82E-06

3,650 43,200 stnd 13.7395 1.79E-16 1.36E-14 -0.33195 7.68E-09 9.23E-10
intp 2.0404 1.05E-16 5.89E-12 -0.07059 4.46E-09 -2.42E-06
b-time 4.9732 7.00E-16 1.08E-11 -0.22568 1.82E-08 3.27E-06

Table B.2: Mean errors and MSEs of estimators for varying ∆ts in case of observation
gaps in a standard OUP with µ = 1, σ = 1.00E-05, α =6.34E-09, X0 = 0.5, ∆tsim = 60,
100 paths



σ method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-07 stnd 1.05E-07 4.58E-21 1.19E-19 0.00002 -4.15E-12 9.01E-12
intp 1.05E-07 4.58E-21 4.05E-16 0.00002 -4.41E-12 -2.01E-08
b-time 2.43E-07 3.14E-16 2.75E-12 0.00037 1.77E-08 1.66E-06

1.10E-06 stnd 1.32E-05 5.18E-19 1.29E-17 -0.00015 4.23E-11 -3.74E-11
intp 1.32E-05 5.17E-19 4.90E-14 -0.00010 2.77E-11 -2.21E-07
b-time 1.32E-05 3.18E-16 1.28E-12 0.00020 1.78E-08 1.13E-06

2.10E-06 stnd 4.93E-05 1.85E-18 5.24E-17 0.00011 6.38E-11 9.22E-11
intp 4.95E-05 1.84E-18 1.79E-13 0.00028 1.10E-11 -4.23E-07
b-time 4.97E-05 3.22E-16 1.13E-12 0.00046 1.78E-08 1.06E-06

3.10E-06 stnd 9.49E-05 3.93E-18 1.14E-16 -0.00069 2.22E-10 -2.12E-10
intp 9.49E-05 3.87E-18 3.90E-13 -0.00034 1.07E-10 -6.24E-07
b-time 9.48E-05 3.36E-16 1.35E-12 -0.00035 1.81E-08 1.16E-06

4.10E-06 stnd 1.90E-04 8.09E-18 1.89E-16 -0.00037 4.07E-10 -3.36E-10
intp 1.91E-04 7.88E-18 6.82E-13 0.00025 2.07E-10 -8.25E-07
b-time 1.91E-04 3.56E-16 1.75E-12 -0.00003 1.84E-08 1.32E-06

5.10E-06 stnd 2.74E-04 1.13E-17 2.93E-16 0.00021 4.32E-10 -6.09E-10
intp 2.77E-04 1.09E-17 1.06E-12 0.00117 1.25E-10 -1.03E-06
b-time 2.75E-04 3.65E-16 2.31E-12 0.00055 1.84E-08 1.51E-06

6.10E-06 stnd 3.72E-04 1.64E-17 4.44E-16 -0.00040 7.91E-10 9.81E-11
intp 3.77E-04 1.56E-17 1.51E-12 0.00097 3.52E-10 -1.23E-06
b-time 3.73E-04 3.97E-16 3.01E-12 -0.00006 1.90E-08 1.73E-06

7.10E-06 stnd 4.93E-04 2.18E-17 6.04E-16 -0.00070 9.64E-10 -4.06E-10
intp 5.01E-04 2.04E-17 2.05E-12 0.00115 3.71E-10 -1.43E-06
b-time 4.94E-04 4.20E-16 3.80E-12 -0.00035 1.92E-08 1.94E-06

8.10E-06 stnd 6.75E-04 3.01E-17 8.08E-16 -0.00066 1.33E-09 -9.40E-10
intp 6.92E-04 2.76E-17 2.66E-12 0.00172 5.62E-10 -1.63E-06
b-time 6.76E-04 4.60E-16 4.79E-12 -0.00032 1.98E-08 2.18E-06

9.10E-06 stnd 9.31E-04 3.78E-17 8.85E-16 -0.00149 1.77E-09 -1.49E-09
intp 9.57E-04 3.36E-17 3.36E-12 0.00146 7.96E-10 -1.83E-06
b-time 9.34E-04 5.03E-16 5.87E-12 -0.00116 2.05E-08 2.42E-06

Table B.3: Mean errors and MSEs of estimators for varying σs in case of observation gaps
in a standard OUP with µ = 1, α = 3.17E-08, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 3,600,
nobs = 43,801, 1,000 paths



α method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-09 regular 0.81363 1.64E-15 1.25E-14 -0.40359 3.03E-08 5.36E-09
off 1 1.01554 1.63E-15 1.26E-14 -0.44035 3.03E-08 4.37E-09
off 4 231.35356 1.63E-15 1.38E-14 0.07411 3.03E-08 5.52E-09
random 2.69461 1.64E-15 2.43E-14 -0.36794 3.02E-08 5.16E-09

6.00E-09 regular 99.52145 1.98E-16 1.16E-14 -0.22807 6.91E-09 2.14E-09
off 1 72.72640 1.98E-16 1.15E-14 0.12836 6.91E-09 2.99E-09
off 4 117.10324 1.98E-16 1.34E-14 -0.65987 6.90E-09 -2.63E-09
random 30.06861 1.97E-16 2.18E-14 -0.06244 6.89E-09 -2.39E-09

1.10E-08 regular 1.69080 7.69E-17 1.07E-14 0.06377 3.53E-09 -1.96E-09
off 1 1.70400 7.69E-17 1.16E-14 0.06430 3.53E-09 7.51E-10
off 4 2.05522 7.69E-17 1.20E-14 0.07043 3.53E-09 -9.08E-10
random 7.78971 7.69E-17 2.13E-14 0.03099 3.54E-09 1.01E-08

1.60E-08 regular 0.27435 5.54E-17 1.13E-14 0.02786 2.60E-09 -2.93E-09
off 1 0.29228 5.54E-17 1.13E-14 0.02842 2.60E-09 -1.41E-09
off 4 0.30288 5.54E-17 1.26E-14 0.02869 2.61E-09 3.91E-09
random 0.76016 5.63E-17 2.17E-14 0.03870 2.62E-09 2.02E-08

2.10E-08 regular 0.00346 4.61E-17 1.19E-14 -0.00080 2.38E-09 -4.85E-09
off 1 0.00346 4.61E-17 1.22E-14 -0.00080 2.38E-09 -4.52E-09
off 4 0.00347 4.61E-17 1.34E-14 -0.00082 2.38E-09 1.84E-09
random 0.00345 4.52E-17 2.14E-14 -0.00084 2.33E-09 1.96E-08

2.60E-08 regular 0.00178 4.63E-17 1.12E-14 -0.00346 2.27E-09 9.78E-10
off 1 0.00178 4.63E-17 1.11E-14 -0.00347 2.27E-09 2.15E-09
off 4 0.00178 4.64E-17 1.41E-14 -0.00346 2.27E-09 2.55E-09
random 0.00180 4.7E-17 2.45E-14 -0.00339 2.26E-09 3.46E-08

3.10E-08 regular 0.00110 4.81E-17 1.14E-14 -0.00085 2.07E-09 -1.09E-09
off 1 0.00110 4.81E-17 1.16E-14 -0.00086 2.07E-09 -1.21E-10
off 4 0.00110 4.81E-17 1.27E-14 -0.00086 2.07E-09 1.39E-09
random 0.00109 4.92E-17 2.36E-14 -0.00089 2.11E-09 3.46E-08

3.60E-08 regular 0.00078 5.17E-17 1.13E-14 -0.00252 2.22E-09 -6.45E-09
off 1 0.00078 5.17E-17 1.16E-14 -0.00252 2.22E-09 -4.79E-09
off 4 0.00078 5.18E-17 1.26E-14 -0.00253 2.23E-09 2.65E-09
random 0.00078 5.53E-17 2.47E-14 -0.00255 2.30E-09 4.03E-08

4.10E-08 regular 0.00053 5.07E-17 1.07E-14 -0.00109 2.29E-09 -6.99E-09
off 1 0.00053 5.07E-17 1.15E-14 -0.00110 2.29E-09 -5.93E-09
off 4 0.00053 5.08E-17 1.29E-14 -0.00111 2.30E-09 4.08E-09
random 0.00053 5.32E-17 2.42E-14 -0.00104 2.25E-09 3.58E-08

4.60E-08 regular 0.00044 5.51E-17 1.12E-14 -0.00199 2.03E-09 1.61E-09
off 1 0.00044 5.52E-17 1.15E-14 -0.00200 2.03E-09 2.08E-09
off 4 0.00044 5.52E-17 1.26E-14 -0.00201 2.04E-09 9.69E-09
random 0.00044 5.99E-17 2.70E-14 -0.00201 2.14E-09 6.08E-08

5.10E-08 regular 0.00031 5.72E-17 1.11E-14 0.00000 1.33E-09 -5.95E-09
off 1 0.00031 5.72E-17 1.16E-14 -0.00001 1.33E-09 -4.75E-09
off 4 0.00031 5.72E-17 1.25E-14 -0.00001 1.33E-09 1.16E-09
random 0.00031 6.3E-17 2.47E-14 0.00003 1.34E-09 5.38E-08

5.60E-08 regular 0.00025 5.53E-17 1.07E-14 -0.00044 1.36E-09 -3.83E-09
off 1 0.00025 5.53E-17 1.12E-14 -0.00044 1.36E-09 -4.23E-09
off 4 0.00025 5.53E-17 1.27E-14 -0.00045 1.37E-09 1.25E-08
random 0.00025 6.03E-17 2.62E-14 -0.00039 1.32E-09 6.35E-08

6.10E-08 regular 0.00021 6.38E-17 1.22E-14 -0.00047 1.38E-09 -8.06E-10
off 1 0.00021 6.38E-17 1.24E-14 -0.00046 1.38E-09 -1.97E-09
off 4 0.00021 6.39E-17 1.37E-14 -0.00048 1.39E-09 1.19E-08
random 0.00022 7.24E-17 2.66E-14 -0.00047 1.38E-09 7.13E-08

Table B.4: Mean errors and MSEs of estimators for varying αs in case of irregular obser-
vations in a standard OUP with µ = 1, σ = 1.00E-05, X0 = 0.5, ∆tsim = 3,600, ∆tobs =
36,000, nobs = 4,380, 1,000 paths



α method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-08 regular 3.11E+00 7.38E-17 1.16E-14 6.72E-02 4.08E-09 -5.54E-09
off 1 1.90E+00 7.38E-17 1.23E-14 5.41E-02 4.09E-09 -3.84E-09
off 4 9.59E-01 7.38E-17 1.33E-14 2.83E-02 4.09E-09 1.97E-09
random 1.69E+00 7.43E-17 2.28E-14 3.69E-03 4.11E-09 9.67E-09

6.01E-06 regular 1.73E-08 6.77E-15 1.10E-14 -5.30E-07 4.01E-09 -1.12E-09
off 1 1.72E-08 1.30E-14 1.63E-14 -8.56E-07 6.56E-09 5.66E-08
off 4 1.75E-08 6.17E-14 4.21E-13 -3.28E-06 3.61E-08 5.53E-07
random 2.33E-08 6.41E-12 1.18E-11 1.17E-05 6.65E-08 2.78E-06

1.20E-05 regular 4.37E-09 1.92E-14 1.17E-14 -2.57E-06 -5.74E-09 2.61E-10
off 1 4.42E-09 1.28E-13 1.95E-14 -2.45E-06 -1.59E-08 5.68E-08
off 4 4.49E-09 1.07E-12 5.07E-13 -3.92E-06 9.38E-08 5.37E-07
random 6.54E-09 4.41E-11 1.50E-11 6.18E-06 -3.12E-09 2.72E-06

1.80E-05 regular 2.07E-09 4.59E-14 1.24E-14 -7.81E-07 7.57E-09 -9.70E-09
off 1 2.08E-09 5.50E-13 2.27E-14 -6.39E-07 2.38E-08 2.90E-08
off 4 2.21E-09 5.16E-12 3.76E-13 -1.62E-06 1.69E-07 3.67E-07
random 3.25E-09 1.32E-10 1.58E-11 6.56E-06 -2.58E-08 2.35E-06

2.40E-05 regular 1.12E-09 9.64E-14 1.35E-14 -1.14E-06 -1.19E-08 3.14E-09
off 1 1.14E-09 1.46E-12 3.73E-14 -1.17E-06 -7.36E-09 1.92E-08
off 4 1.23E-09 1.39E-11 2.98E-13 -1.12E-07 -6.50E-08 2.01E-07
random 1.86E-09 1.90E-10 1.18E-11 2.92E-06 -1.81E-06 1.52E-06

3.00E-05 regular 8.18E-10 2.03E-13 1.47E-14 -2.76E-07 1.94E-08 -2.01E-09
off 1 8.38E-10 2.88E-12 5.29E-14 -5.16E-08 -2.34E-08 1.24E-09
off 4 8.51E-10 2.61E-11 3.54E-13 -6.14E-08 -6.97E-08 6.13E-08
random 1.31E-09 2.71E-10 1.12E-11 4.15E-06 -3.47E-06 1.17E-06

3.60E-05 regular 5.7E-10 4.38E-13 1.69E-14 -5.08E-07 -6.97E-09 -1.25E-09
off 1 5.59E-10 4.55E-12 6.75E-14 -2.19E-07 -9.88E-08 -6.56E-09
off 4 5.78E-10 4.02E-11 4.62E-13 6.57E-07 -4.34E-07 -4.27E-08
random 9.1E-10 4.02E-10 1.05E-11 3.41E-06 -4.77E-06 7.55E-07

4.20E-05 regular 4.02E-10 7.98E-13 2.10E-14 6.57E-07 -1.22E-09 -3.06E-09
off 1 4.14E-10 6.47E-12 8.06E-14 1.15E-06 -3.99E-08 -1.37E-08
off 4 4.46E-10 5.09E-11 5.09E-13 4.14E-07 -7.98E-07 -1.14E-07
random 6.98E-10 5.42E-10 1.05E-11 3.86E-06 -6.86E-06 4.24E-07

4.80E-05 regular 3.42E-10 1.60E-12 2.64E-14 -1.82E-07 9.84E-08 -6.86E-10
off 1 3.42E-10 8.38E-12 8.60E-14 -3.29E-08 -2.02E-07 -3.14E-08
off 4 3.56E-10 6.41E-11 5.80E-13 6.03E-07 -2.13E-06 -2.48E-07
random 5.79E-10 6.66E-10 9.61E-12 2.22E-06 -8.58E-06 6.89E-08

5.40E-05 regular 2.87E-10 2.92E-12 3.17E-14 4.65E-07 3.52E-08 3.33E-09
off 1 2.89E-10 1.00E-11 8.32E-14 4.28E-07 -4.03E-07 -3.77E-08
off 4 2.8E-10 7.43E-11 5.97E-13 2.87E-07 -3.09E-06 -3.22E-07
random 4.47E-10 7.97E-10 8.46E-12 1.87E-06 -1.20E-05 -3.16E-07

6.00E-05 regular 2.35E-10 5.14E-12 4.49E-14 -8.60E-07 7.08E-08 -1.14E-09
off 1 2.4E-10 1.30E-11 9.15E-14 -5.23E-07 -5.24E-07 -5.28E-08
off 4 2.65E-10 8.80E-11 6.12E-13 -1.29E-07 -4.88E-06 -4.39E-07
random 3.76E-10 9.16E-10 8.05E-12 3.87E-07 -1.56E-05 -6.26E-07

6.60E-05 regular 2.12E-10 9.72E-12 6.20E-14 -1.05E-07 6.74E-08 -5.22E-11
off 1 2.06E-10 1.73E-11 1.07E-13 -3.38E-07 -7.05E-07 -5.95E-08
off 4 2.22E-10 1.03E-10 6.22E-13 3.92E-07 -6.46E-06 -5.24E-07
random 3.41E-10 1.14E-09 8.79E-12 1.78E-06 -1.84E-05 -8.75E-07

Table B.5: Mean errors and MSEs of estimators for larger αs in case of irregular obser-
vations in a standard OUP with µ = 1, σ = 1.00E-05, X0 = 0.5, ∆tsim = 3,600, ∆tobs =
36,000, nobs = 4,380, 1,000 paths



σ method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

1.00E-07 regular 6.33E-13 1.61E-18 1.25E-18 2.56E-08 -4.65E-11 1.43E-11
off 1 1.25E-11 6.29E-14 1.17E-12 -2.14E-07 1.47E-08 1.02E-06
off 4 1.23E-10 6.43E-13 1.31E-11 -2.10E-06 1.16E-07 3.42E-06
random 2.37E-09 5.16E-11 7.84E-11 1.11E-05 5.88E-07 8.02E-06

1.10E-06 regular 7.60E-11 1.87E-16 1.38E-16 4.71E-08 -3.00E-10 2.09E-10
off 1 8.84E-11 6.15E-14 2.71E-13 -2.45E-07 1.74E-08 4.61E-07
off 4 2.05E-10 6.15E-13 8.20E-12 -1.49E-06 7.36E-08 2.61E-06
random 2.15E-09 4.58E-11 6.49E-11 7.48E-06 7.20E-07 7.11E-06

2.10E-06 regular 3.02E-10 6.94E-16 4.78E-16 -2.95E-07 -4.25E-10 -6.35E-10
off 1 3.08E-10 6.22E-14 1.10E-13 -4.57E-07 1.40E-08 2.86E-07
off 4 4.17E-10 6.16E-13 5.28E-12 -2.19E-06 1.19E-07 2.04E-06
random 2.47E-09 5.03E-11 5.09E-11 5.86E-06 1.07E-06 6.14E-06

3.10E-06 regular 6.88E-10 1.59E-15 1.09E-15 1.09E-06 -1.48E-09 -8.87E-10
off 1 7.04E-10 6.29E-14 5.14E-14 1.09E-06 5.43E-09 1.92E-07
off 4 8.01E-10 6.51E-13 3.25E-12 -1.27E-06 1.54E-07 1.57E-06
random 3.20E-09 4.62E-11 4.24E-11 8.54E-06 9.17E-07 5.51E-06

4.10E-06 regular 1.09E-09 2.63E-15 2.04E-15 9.57E-07 4.31E-10 -2.21E-09
off 1 1.11E-09 5.93E-14 3.67E-14 8.08E-07 1.97E-08 1.59E-07
off 4 1.22E-09 6.32E-13 2.48E-12 -1.19E-06 1.43E-07 1.34E-06
random 3.53E-09 4.33E-11 3.72E-11 8.87E-06 8.33E-07 5.07E-06

5.10E-06 regular 1.66E-09 3.82E-15 2.92E-15 -1.40E-06 3.62E-09 7.80E-10
off 1 1.65E-09 6.35E-14 2.52E-14 -1.73E-06 1.71E-08 1.28E-07
off 4 1.73E-09 6.28E-13 1.68E-12 -3.74E-06 1.43E-07 1.10E-06
random 4.04E-09 4.64E-11 2.97E-11 5.32E-06 9.36E-07 4.53E-06

6.10E-06 regular 2.31E-09 5.30E-15 4.30E-15 1.75E-06 1.59E-09 -8.05E-10
off 1 2.34E-09 6.08E-14 2.06E-14 1.54E-06 1.18E-08 1.05E-07
off 4 2.41E-09 5.91E-13 1.34E-12 -2.73E-07 1.02E-07 9.66E-07
random 4.54E-09 3.72E-11 2.61E-11 9.65E-06 4.61E-07 4.17E-06

7.10E-06 regular 3.30E-09 7.88E-15 5.71E-15 -1.27E-06 7.41E-09 -3.87E-09
off 1 3.32E-09 6.44E-14 1.79E-14 -1.90E-06 3.65E-08 8.79E-08
off 4 3.42E-09 5.62E-13 1.03E-12 -3.52E-06 1.24E-07 8.37E-07
random 6.04E-09 4.07E-11 2.17E-11 4.43E-06 7.95E-07 3.71E-06

8.10E-06 regular 4.14E-09 1.02E-14 7.25E-15 2.85E-06 1.21E-09 -5.59E-09
off 1 4.10E-09 5.99E-14 1.62E-14 2.59E-06 -1.13E-09 7.19E-08
off 4 4.26E-09 5.55E-13 7.94E-13 1.15E-06 1.10E-07 7.29E-07
random 6.71E-09 3.71E-11 2.00E-11 8.01E-06 5.96E-07 3.46E-06

9.10E-06 regular 5.61E-09 1.23E-14 9.51E-15 -3.03E-06 4.08E-10 9.79E-10
off 1 5.64E-09 6.34E-14 1.77E-14 -3.30E-06 1.35E-08 6.74E-08
off 4 5.76E-09 5.37E-13 6.16E-13 -4.93E-06 7.71E-08 6.29E-07
random 8.14E-09 4.15E-11 1.92E-11 4.04E-06 8.97E-07 3.24E-06

Table B.6: Mean errors and MSEs of estimators for varying σs in case of irregular obser-
vations in a standard OUP. µ = 1, α = 1.00E-5, X0 = 0.5, ∆tsim = 3,600, ∆tobs = 36,000,
nobs = 4,380, 1,000 paths.



σ method MSE(µ̂) MSE(α̂) MSE(σ̂) ME(µ̂) ME(α̂) ME(σ̂)

0.000001 regular 6.33E-11 1.61E-16 1.25E-16 2.56E-07 -4.43E-10 1.37E-10
off 1 7.38E-11 6.27E-14 3.39E-13 1.76E-08 1.44E-08 5.19E-07
off 4 1.85E-10 6.42E-13 8.40E-12 -1.88E-06 1.16E-07 2.67E-06
random 2.38E-09 5.12E-11 6.56E-11 1.14E-05 5.79E-07 7.20E-06

0.010001 regular 0.00627 1.91E-13 1.67E-08 0.00036 5.06E-08 9.98E-06
off 1 0.00627 1.85E-13 1.60E-08 0.00023 2.70E-08 -9.88E-07
off 4 0.00647 2.16E-13 3.22E-08 -0.00013 -1.98E-07 -1.19E-04
random 0.00694 1.83E-12 4.90E-07 0.00039 -1.29E-06 -6.84E-04

0.020001 regular 0.02735 1.94E-13 5.98E-08 -0.00292 1.71E-08 -5.96E-07
off 1 0.02712 1.94E-13 6.42E-08 -0.00240 -2.62E-09 -1.75E-05
off 4 0.02719 2.36E-13 1.22E-07 -0.00229 -2.22E-07 -2.41E-04
random 0.02949 1.91E-12 1.98E-06 0.00084 -1.31E-06 -1.38E-03

0.030001 regular 0.06436 1.97E-13 1.47E-07 0.01015 2.23E-08 2.83E-06
off 1 0.06425 1.96E-13 1.47E-07 0.01147 1.11E-09 -2.89E-05
off 4 0.06406 2.34E-13 2.73E-07 0.01048 -2.07E-07 -3.44E-04
random 0.07462 1.87E-12 4.37E-06 0.00803 -1.30E-06 -2.05E-03

0.040001 regular 0.10329 1.80E-13 2.65E-07 0.00937 3.82E-08 2.69E-06
off 1 0.10391 1.77E-13 2.65E-07 0.01074 1.42E-08 -4.42E-05
off 4 0.10578 2.07E-13 4.83E-07 0.01161 -1.91E-07 -4.60E-04
random 0.12110 1.84E-12 7.90E-06 0.00871 -1.29E-06 -2.75E-03

0.050001 regular 0.15913 2.05E-13 3.93E-07 -0.01300 4.14E-08 3.68E-05
off 1 0.15772 2.05E-13 3.84E-07 -0.01441 1.69E-08 -2.33E-05
off 4 0.15712 2.36E-13 7.90E-07 -0.01390 -2.06E-07 -5.86E-04
random 0.18317 1.82E-12 1.19E-05 -0.01245 -1.28E-06 -3.38E-03

0.060001 regular 0.22293 1.83E-13 5.58E-07 0.01748 1.95E-08 8.74E-06
off 1 0.22280 1.80E-13 5.66E-07 0.01741 -2.33E-09 -5.54E-05
off 4 0.22318 2.27E-13 1.14E-06 0.01467 -2.24E-07 -7.30E-04
random 0.25915 1.86E-12 1.76E-05 0.01411 -1.31E-06 -4.10E-03

0.070001 regular 0.32174 1.86E-13 7.82E-07 -0.01108 3.73E-08 -4.48E-06
off 1 0.32156 1.84E-13 8.08E-07 -0.01337 1.46E-08 -7.73E-05
off 4 0.32592 2.19E-13 1.54E-06 -0.01349 -1.96E-07 -8.22E-04
random 0.38718 1.79E-12 2.39E-05 -0.00739 -1.28E-06 -4.78E-03

0.080001 regular 0.40434 2.01E-13 1.02E-06 0.02820 4.61E-08 1.68E-06
off 1 0.40011 1.94E-13 1.06E-06 0.02558 2.13E-08 -9.04E-05
off 4 0.40488 2.23E-13 2.01E-06 0.02957 -1.92E-07 -9.47E-04
random 0.46755 1.80E-12 3.16E-05 0.01896 -1.28E-06 -5.50E-03

0.090001 regular 0.54887 1.89E-13 1.25E-06 -0.03016 -9.39E-09 -4.51E-06
off 1 0.54937 1.90E-13 1.29E-06 -0.03040 -3.12E-08 -1.15E-04
off 4 0.55731 2.39E-13 2.51E-06 -0.03456 -2.51E-07 -1.09E-03
random 0.63207 1.90E-12 3.95E-05 -0.01673 -1.32E-06 -6.14E-03

Table B.7: Mean errors and MSEs of estimators for larger σs in case of irregular obser-
vations in a standard OUP with µ = 1, α = 1.00E-5, X0 = 0.5, ∆tsim = 3,600, ∆tobs =
36,000, nobs = 4,380, 1,000 paths



Appendix C

Additional graphs relating to
Chapter 6

Figure C.1: Daily CHF/JPY log prices and simple moving average calculated over previous
60 days

137



Figure C.2: Daily CHF/JPY log prices and simple moving average calculated over previous
365 days

Figure C.3: Minutely AUD/USD LN log prices and simple moving average calculated over
previous two hours



Figure C.4: Minutely AUD/USD LN log prices and simple moving average calculated over
previous 30 days

Figure C.5: Daily CHF/JPY log prices and lagging exponential moving average with time
constant 60 days



Figure C.6: Daily CHF/JPY log prices and lagging exponential moving average with time
constant 365 days

Figure C.7: Minutely AUD/USD LN log prices and lagging exponential moving average
with time constant two hours



Figure C.8: Minutely AUD/USD LN log prices and lagging exponential moving average
with time constant 30 days

Figure C.9: Daily CHF/JPY log prices minus SMA calculated over previous 60 days



Figure C.10: Daily CHF/JPY log prices minus SMA calculated over previous 365 days

Figure C.11: Minutely AUD/USD LN log prices minus SMA calculated over two hours



Figure C.12: Minutely AUD/USD LN log prices minus SMA calculated over 30 days

Figure C.13: Daily CHF/JPY log prices minus lagging exponential moving average with
time constant 60 days



Figure C.14: Daily CHF/JPY log prices minus lagging exponential moving average with
time constant 365 days

Figure C.15: Minutely AUD/USD LN log prices minus lagging exponential moving average
with time constant two hours



Figure C.16: Minutely AUD/USD LN log prices minus lagging exponential moving average
with time constant 30 days

Figure C.17: Estimated mean log reversion strengths in 1/h for detrended daily log
CHF/JPY prices for different log SMA windows



Figure C.18: Estimated log mean reversion strengths in 1/h for detrended minutely log
AUD/USD LN prices for different log SMA windows

Figure C.19: Estimated log mean reversion strengths in 1/h for detrended daily log
CHF/JPY prices for different log EMA time constants



Figure C.20: Estimated log mean reversion strengths in 1/h for detrended minutely log
AUD/USD LN prices for different log EMA time constants

Figure C.21: Log of estimated long-term variances for detrended daily log CHF/JPY
prices for different log SMA windows



Figure C.22: Log of estimated long-term variances for detrended minutely log AUD/USD
LN prices for different log SMA windows

Figure C.23: Log of estimated long-term variances for detrended daily log CHF/JPY
prices for different log EMA time constants



Figure C.24: Log of estimated long-term variances for detrended minutely log AUD/USD
LN prices for different log EMA time constants

Figure C.25: Log of σDMA for USD/EUR as a function of log τ in days



Figure C.26: Log of σDMA for USD/GBP as a function of log τ in days
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