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Abstract. In this article we consider the Merton problem in a market with

a single risky asset and proportional transaction costs. We give a complete

solution of the problem up to the solution of a first-crossing problem for a

first-order differential equation. We find that the characteristics of the solution

(for example well-posedness) can be related to some simple properties of a

univariate quadratic whose coefficients are functions of the parameters of the

problem.

Our solution to the problem via the value function includes expressions

for the boundaries of the no-transaction wedge. Using these expressions we

prove a precise condition for when leverage occurs. One new and unexpected

result is that when the solution to the Merton problem (without transaction

costs) involves a leveraged position, and when transaction costs are large, the

location of the boundary at which sales of the risky asset occur is independent

of the transaction cost on purchases.

1. Introduction

In this article we consider the problem of maximizing expected utility of con-

sumption over the infinite horizon in a financial market consisting of a riskless bond

and a single risky asset. Merton (1969, 1971) considered this problem in a perfect,

frictionless market and showed that the optimal strategy is to keep a constant frac-

tion of wealth in the risky asset. Of the possible market frictions, arguably the

most significant is transaction costs, and this paper adds to the growing literature

on optimal consumption/investment problems with proportional transaction costs.

In the Merton setting the market is complete. Constantinides and Magill (1976)

generalized the problem to the incomplete case by introducing transaction costs.

They argued that in the case of a single risky asset following exponential Brownian

motion and power utility the scalings of the problem should mean that there is a

no-transaction wedge, and the optimal strategy should be to trade in a minimal
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fashion so as to keep the fraction of wealth in the risky asset within an interval

I. If the initial portfolio is such that the initial fraction of wealth in the risky

asset is outside this interval then the agent makes an instantaneous transaction

to bring the fraction of wealth in the risky asset to the closest boundary of I.

Thereafter, the agent only trades when this fraction is on the boundary of I. In

(Cash wealth,Wealth in risky asset) space, the interval I becomes a no-transaction

wedge.

The model and accompanying intuition was formulated precisely by Davis and

Norman (1990). They used the language of stochastic control and martingales to

give a rigorous description of the problem for power utility. For a certain subset

of parameter combinations they gave a full description of the solution, specifying

both the optimal consumption, and the optimal investment strategy. The optimal

investment strategy involves a process which receives a local-time push at both

boundaries of an interval, and these pushes are just sufficient to keep the process

within the interval. Davis and Norman (1990) reduce the problem to solving a

pair of first-order ordinary differential equations (ODEs) subject to value matching

conditions at unknown free-boundaries. Their analysis was extended by Shreve and

Soner (1994) to a larger set of parameter combinations using methodologies from

viscosity solutions.

Both Davis and Norman (1990) and Shreve and Soner (1994) consider the value

function and the primal problem. Recently, there have been a trio of papers consid-

ering the dual problem and shadow prices. Kallsen and Muhle-Karbe (2010) were

the first to use the shadow-price approach in this context, but only consider loga-

rithmic utility. Herczegh and Prokaj (2015) extend their results to power utility.

The most complete treatment of the problem via the shadow-price approach is the

paper of Choi et al. (2013). Choi et al. give a full analysis of the problem, covering

all parameter combinations (which involve an appreciating risky asset). They re-

duce the problem to the solution of a free-boundary problem for a single first-order

ODE. There are multiple solutions to this free-boundary problem, and the one that

is wanted is the one for which the solution to the free-boundary problem satisfies

an integral condition.

In this paper we revisit the consumption-investment problem with transaction

costs considered by Davis and Norman (1990), Shreve and Soner (1994), Choi et al.

(2013) and Herczegh and Prokaj (2015), again taking the primal approach. We

show that the problem can be transformed into finding the solution of a first-order

ODE which starts and ends on a given function, subject to an integral condition,

as in Choi et al. (2013). The dual approach via shadow prices is very attractive

conceptually, but the advance in this paper relative to Choi et al. (2013) is that it

is much easier to understand the character of the solutions to our differential equa-

tion. For our solution the possible behaviors correspond to the possible shapes of a

quadratic function of a single variable, whereas in Choi et al. (2013) it is necessary

to consider a phase-diagram in which the behaviors depend on a pair of ellipses

and/or hyperbolas. Although the two problems must be transformations of each

other, our approach leads to a simpler representation of the solution. Nonetheless,
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many features of our characterizing ODE are to be found in the characterizing

ODE of Choi et al. (2013); in particular in both cases the ODE has a singular

point, and for some parameter combinations, though not all, the solution we want

passes through this singular point. Our main contribution relates to the fact that

our characterization of the problem involves the solution of a first-order ODE cross-

ing the aforementioned quadratic and the fact that there is a direct interpretation

of these crossing points as the sale and purchase boundaries of the no-transaction

wedge. This allows us re-derive more simply many results from the literature, to

give new interpretations and explanations, and to give extensions.

The remainder of this paper is structured as follows. In the next section we

formulate the problem as a problem in stochastic optimal control. In Section 3 we

introduce an auxiliary problem which involves finding the solution of a first order

ODE which starts and ends on a quadratic, and which is subject to an integral

condition. Using simple properties of the ODE, and more especially of the quadratic

boundary, we describe when solutions to the auxiliary problem exist.

Section 4 contains the main financial results. The first result, Theorem 5 states

a one-to-one correspondence between existence or otherwise of a solution to the

auxiliary problem and well-posedness of the Merton problem with transaction costs.

This result mirrors the main result of Choi et al. (2013), but our formulation is

a small improvement in that we cover an extra case and we give an algebraic

expression for a quantity that Choi et al. can only express as an integral. The

second result, Theorem 6, connects the endpoints of the solution of the auxiliary

problem to the boundaries of the no-transaction wedge.

Theorem 6 forms the cornerstone of the analysis in Section 5 in which we con-

sider how the boundaries of the no-transaction wedge depend on the parameters.

Analysis of this type seems to be new, and would be difficult under previous ap-

proaches. We show that if the expected return on the risky asset is small, then the

no-transaction wedge includes the Merton line, and the no-transaction wedge gets

larger as transaction costs increase. However, if the expected return increases fur-

ther, then we may lose both the monotonicity property of the no-transaction wedge,

and the property that the Merton line (corresponding to zero transaction costs) lies

within the no-transaction region. Remarkably, although in general the locations of

both the sale and purchase boundaries depend on the transaction costs on both

sale and purchases, in some circumstances the sale boundary is independent of the

transaction cost on purchases.

Both Choi et al. (2013) and this paper make great strides towards a complete

solution of the Merton problem for general levels of the transaction cost parameters.

We can also connect to the literature on the Merton problem in the small trans-

action cost regime (Janeček and Shreve (2004); Choi (2014)). Janeček and Shreve

(2004) show that, typically, for small transaction costs, the no transaction wedge is

centered around the Merton line and has width of the order of the one-third power

of the size of the transaction cost. Choi (2014) applies results from Choi et al.

(2013) to calculate the next order term. Based on Theorem 6 we give a short and

simple argument which yields the results of Janeček and Shreve (2004) and Choi
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(2014), and extend to a boundary case in which the width of the no-transaction

wedge is exceptionally of square-root order.

Section 6 concludes. Some proofs are given in an Appendix rather than in the

main text.

2. Problem specification

Let Y = (Yt)t≥0 denote the price of a risky asset and suppose Y is an exponential

Brownian motion with drift µ and volatility σ; then Yt = Y0e
σBt+(µ−σ2/2)t where

B = (Bt)t≥0 is a Brownian motion. Let C = (Ct)t≥0 denote the consumption rate

of the individual and let Θt denote the number of units of the risky asset held by the

investor. We assume that C is non-negative and progressively measurable and that

Θ is progressively measurable with finite variation; in particular Θt = Θ0+Φt−Ψt

where Φ and Ψ are increasing, adapted, càdlàg processes with Φ0− = Ψ0− = 0

representing purchases and sales of the risky asset respectively.

Suppose cash wealth is right-continuous and evolves according to

(2.1) dXt = −Ctdt− Yt(1 + λ)dΦt + Yt(1− γ)dΨt.

Here λ ∈ [0,∞) represents the transaction cost paid on purchases and γ ∈ [0, 1)

represents the transaction cost paid on sales. We assume λ+ γ > 0, else we are in

the case of no transaction costs.

Define ξ = 1+λ
1−γ − 1 = λ+γ

1−γ so that 1 + ξ is the ask to bid ratio. We call ξ the

round trip transaction cost: an investor who starts with 1+λ
1−γYt and who buys one

unit of the risky asset, only to sell it again immediately, is left with Yt, and may

be considered to have paid a proportional transaction cost of size ξ. It will turn

out that it is ξ which governs the nature of the solution to the problem, and not

the individual transaction costs λ and γ. Indeed, if we define Ŷ via Ŷt = Yt(1− γ)

then (2.1) becomes

(2.2) dXt = −Ctdt− Ŷt(1 + ξ)dΦt + ŶtdΨt,

and the problem with proportional transaction costs on both purchases and sales

reduces to a problem with transaction cost ξ on purchases only. Conversely, if we

set Ỹt = Yt(1 + λ), then we have a problem in which the wealth process satisfies

dXt = −Ctdt− ỸtdΦt+
1

1+ξ ỸtdΨt corresponding to a problem with transaction cost
ξ

(1+ξ) on sales only. We prefer to specify the problem with distinct transaction costs

on buying and selling, because in some circumstances (see especially Section 5.2) it

is crucial to separate the two components.

We say that a wealth portfolio (Xt,Θt) is solvent at time t if

Xt + (1− γ)Θ+
t Yt − (1 + λ)Θ−

t Yt ≥ 0,

or equivalently if instantaneous liquidation of the risky position yields a cash wealth

which is non-negative. A consumption/investment strategy (C,Θ) is solvent from

time t0 if the resulting wealth portfolio process (Xt,Θt)t≥t0 is solvent for each

t ≥ t0. Write A = A(x, y, θ, t) for the set of strategies which are solvent from time

t when (Xt− = x, Yt = y,Θt− = θ).
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The objective of the agent is to maximize the discounted expected utility of

consumption over the infinite horizon, where the discount factor is β and the utility

function of the agent is assumed to have constant relative risk aversion with risk

aversion co-efficient R ∈ (0,∞) \ 1. The maximization takes place over the set of

consumption/investment strategies which are solvent from time zero. In particular,

the goal is to find

(2.3) sup
(C,Θ)∈A(x0,y0,θ0,0)

E

[∫ ∞

0

e−βtC
1−R
t

1− R
dt

]
.

Due to the Markovian structure of the set-up, we expect the value function,

optimal consumption and optimal portfolio strategy to be functions of the current

wealth portfolio of the agent and of the price of the risky asset. Let V = V (x, y, θ, t)

be the forward starting value function for the problem so that

V (x, y, θ, t) = sup
(C,Θ)∈A(x,y,θ,t)

E

[∫ ∞

t

e−βsC
1−R
s

1−R
ds

∣∣∣∣Xt− = x, Yt = y,Θt− = θ

]
.

The goal is to solve for the value function V = V (x, y, θ, t) and the key quantities of

economic interest. Note that it is the value yθ of the holdings of the risky asset which

is important rather than the price level and quantity individually. Further, from the

scalings of the problem we expect that we can write V (x, y, θ, t) = e−βt x1−R

1−R g
(

yθ
x

)
,

where the key variable is the ratio z = yθ/x of wealth held in the risky asset to

cash wealth. However, there are circumstances in which the agent seeks to leverage

her position by allowing cash wealth to go negative (always respecting the solvency

condition that after transaction costs her position in the risky asset covers any short

cash position). Then we write instead

(2.4) V (x, y, θ, t) = e−βt (x+ yθ)1−R

1−R
G

(
yθ

x+ yθ

)
,

where we call (x+ yθ) the paper wealth, and set p = yθ
x+yθ to be the ratio of wealth

in the risky asset to paper wealth. Then intuitive arguments of Constantinides

and Magill (1976) and the concrete results of Davis and Norman (1990) lead us to

expect that the no-transaction region will be a wedge, see Figure 2.1.

3. An auxiliary problem

Let m and � be the quadratic functions

m(q) = 1− ε (1−R) q +
δ2

2
R (1−R) q2(3.1)

�(q) = 1 +

(
δ2

2
− ε

)
(1 −R)q − δ2

2
(1 −R)2q2,(3.2)

and note that �(q) = m (q) + q (1− q) δ2

2 (1−R). Let qM = ε
δ2R be the location of

the turning point of m and let mM = m(qM ) = 1 − ε2(1−R)
2δ2R be the value at this

point. In the case where mM < 0 let q− be the root of m in (0, qM ), and let q+ be

the other root.



OPTIMAL CONSUMPTION AND INVESTMENT UNDER TRANSACTION COSTS 6

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�

��������������������

�
�
�
�
�
�
�
�
��

x+ yθ

yθ

x+ (1 + λ)yθ = 0

Purchase boundary

Sale boundary

x+ (1− γ)yθ = 0

�
��

���

Figure 2.1. The solvency and no-transaction regions. The sol-

vency region has boundaries given by the lines x + (1 + λ)yθ = 0

(for yθ < 0) and x+(1−γ)yθ = 0 (for yθ > 0). The no-transaction

wedge is bounded by the sale and purchase boundaries and lies

within the solvency region. On and outside these boundaries,

transactions are made to keep the process (Xt + YtΘt, YtΘt) in-

side the wedge. The arrows represent the impact of transactions

on the boundaries of the no-transaction wedge. As all transactions

incur costs, they decrease paper wealth.

In the subsequent analysis the dimensionless quantities ε and δ will be related

to the parameters of the financial problem via the identities ε = µ
β and δ2 = σ2

β .

Then qM = ε
δ2R = µ

σ2R is the Merton proportion and mM > 0 (equivalently

(1 − R)µ2 < 2σ2Rβ) is the condition for the Merton problem without transaction

costs to be well posed. q has an interpretation as the shadow portfolio weight on

the sale and purchase boundaries.

Suppose ε > 0. Let n = nr(·) be a non-negative solution of the ODE

(3.3) n′(q) = O(q, n(q))

where

(3.4) O(q, n) =
(1−R)

R

n

(1− q)

m(q)− n

�(q)− n
,

subject to the initial condition nr(r) = m(r). We are interested in n = nr(·) on the

interval [r, ζ(r)] where ζ(r) = inf{u : u > r, (1 − R)nr(u) < (1 − R)m(u)}. (When

ε < 0 we consider the solution nr(s) for s < r.)

Figure 3.1 shows m, � and some typical solutions n in the case where R < 1,

qM ∈ (0, 1) and mM > 0. It follows that � > m on (0, 1). For r ∈ (0, qM ), as

n′
r(r) = 0 we see that initially m(q) < nr(q) < �(q) and this property holds true on
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(r, ζ(r)). Hence nr is decreasing over this range and ζ(r) ≤ 1 (and a close look at

the solution near r = 1 yields ζ(r) < 1).

q
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

n1(q)
n2(q)
n3(q)
m(q) & l(q)

(a) Typical solutions nr together

with m and �.

ξ
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(b) q∗ = Σ−1(ξ) and q∗ = ζ(q∗)

Figure 3.1. Parameter values are ε = 1
2
and δ = 1 and R = 2/3.

(The equivalent financial parameters are µ = β/2, σ2 = β and R =

2/3.) Panel 3.1a shows some solutions nr(q). Panel 3.1b shows q∗(ξ)

and q∗(ξ) (equivalently the boundaries of the no-transaction region as

a function of the level of round-trip transaction cost). Note that the

boundary q∗ (corresponding to asset sales) is insensitive to the level of

transaction costs.

q
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.05

1.1

1.15

1.2

1.25

1.3

n1(q)
n2(q)
n3(q)
m(q) & l(q)

(a) Typical solutions nr together

with m and �.

ξ
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(b) q∗ = Σ−1(ξ) and q∗ = ζ(q∗)

Figure 3.2. Risk aversion R > 1. Parameter values are ε = δ = 1

(equivalently µ = β = σ2) and R = 2. As R > 1 we now find m > � over

(0, 1) and the solutions we want satisfy � < n < m and are increasing.

The analysis extends easily to the case R > 1 (when m becomes concave rather

than convex and � < m on (0, 1) so that solutions n to (3.3) are increasing, see
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Figure 3.2) and to ε < 0 when we need to work in the domain q < 0 and look for

solutions defined to the left of a point (r, nr(r) = m(r)), see Figure 3.3.

q
-3 -2.5 -2 -1.5 -1 -0.5 0

0.7

0.75

0.8

0.85

0.9

0.95

1

n1(q)
n2(q)
n3(q)
m(q) & l(q)

(a) Typical solutions nr together

with m and �.

ξ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2.5

-2

-1.5

-1

-0.5

0

(b) q∗ = Σ−1(ξ) and q∗ = ζ(q∗).

Figure 3.3. Negative drift. Parameter values are ε = −1, δ = 1

(equivalently −µ = β = σ2 > 0), and R = 2/3. Now µ < 0 and we are

interested in m, � and n on q < 0. For µ < 0 we define solutions nr(q)

for q ≤ r < 0.

New features of the solution arise whenmM < 0 or when qM > 1 (or equivalently

(1 − R)m′(1) < 0). When mM < 0 < m(1) we can only define solutions nr

for 0 < r < q− (recall q− is the root of m in (0, qM )) and then ζ(r) > q+, see

Figure 3.4.

When m(1) > 0 and qM > 1, all solutions nr for 0 < r < 1 pass through the

singular point (1,m(1)). The next lemma says that these solutions can be extended

in a unique way to the right of 1.

Lemma 1. Suppose qM > 1 and m(1) > 0.

(i) n1(·) is well defined. Further ζ(1) > qM > 1 and (1−R)n′
1(1) = (1−R)m′(1) <

0.

(ii) For 0 < r < 1, nr(1) = m(1) and n′
r(1) = m′(1).

(iii) For 0 < r < 1 < q < ζ(1), nr(q) = n1(q). In particular, for 0 < r < 1,

ζ(r) = ζ(1).

The intuition behind this lemma is as follows. (To simplify the exposition we

assume R < 1 and ε > 0, but the general case simply requires more care about,

for example, whether n lies above or below m and is increasing or decreasing.) As

qM > 1 and m is decreasing on (0, 1), for r ∈ (0, 1) we have that nr cannot cross

m before q = 1. As we also have nr(q) ≤ �(q) on (0, 1) we must have that n passes

through the singular point (1,m(1)). It turns out that at this point n′(1) = m′(1).
A solution for n can be constructed beyond q = 1, but because n solves a first order

equation, the solution does not depend in any way on the behavior of n to the left

of 1. Thus, if r < 1, ζ(r) does not depend on r.
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q
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

n1(q)
n2(q)
n3(q)
m(q) & l(q)

(a) Typical solutions nr together

with m and �.

ξ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) q∗ = Σ−1(ξ) and q∗ = ζ(q∗)

Figure 3.4. mM < 0. Parameter values are ε = 27
2
, δ = 6 (equiva-

lently µ = 27
2
β, σ2 = 6β) and R = 2/3. Note that if ξ is too small then

the problem is ill-posed. At the critical ξ, ξ = eΛ − 1 we have nq∗ = 0

on (q∗, q∗).

For r ∈ (0, qM ∧ q−) define

(3.5) Σ(r) = exp

{∫ ζ(r)

r

dq
1

q(1− q)

nr(q)−m(q)

�(q)− nr(q)

}
− 1

The auxiliary problem is to find a pair (nq∗ , q∗) such that nq∗ solves (3.3) subject

to nq∗(q∗) = m(q∗) and such that Σ(q∗) = ξ. Recall 1 + ξ = 1+λ
1−γ is the ask to bid

ratio. Then we set q∗ = ζ(q∗).

Proposition 2. (1) If mM ≥ 0 then for every ξ ∈ (0,∞) there is a unique

pair (nq∗ , q∗) solving the auxiliary problem.

(2) If m(1) < 0 then there is no pair (nq∗ , q∗) solving the auxiliary problem for

any ξ ∈ (0,∞).

(3) If mM < 0 and m(1) > 0 then there is a unique pair (nq∗ , q∗) solving the

auxiliary problem if and only if ξ > ξ where

ξ = Σ(q−) = exp

{
−
∫ q+

q−
dq

1

q(1 − q)

m(q)

�(q)

}
− 1.

Remark 3. The integral in the definition of ξ can be evaluated explicitly and written

in terms of the roots q± of m and p± of �. We have

ln(1 + ξ) = − ln
q+
q−

− ln
1− q−
1− q+

+
R

1−R

(p+ − q+)(p+ − q−)
p+(p+ − 1)(p+ − p−)

ln
p+ − q−
p+ − q+

− R

1−R

(q+ − p−)(q− − p−)
p−(1− p−)(p+ − p−)

ln
q+ − p−
q− − p−

.
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Here q± and p± can be expressed in terms of the parameters of the financial problem

as

q± =
µ±

√
µ2 − σ2 2Rβ

1−R

σ2R
; p± =

1
2σ

2 − µ±
√
2σ2β + (12σ

2 − µ)2

σ2(1 −R)
.

The intuition behind Proposition 2 is based on the fact that Σ is continuous and

strictly decreasing on (0, qM ∧ q−) and hence has a well-defined inverse. It can also

be shown that limr↓0 Σ(r) = ∞ and that if mM > 0 then limr↑qM Σ(r) = 0. In the

case where mM < 0, Σ is bounded below by Σ(q−), where Σ(q−) is calculated by

putting the solution nq−(q) = 0 on [q−, q+ = ζ(q−)] into the definition of Σ. It

follows that there is no solution to q∗ = Σ−1(ξ) for small ξ.

For ξ > 0 (or for ξ > Σ(q−) when mM < 0) we set q∗ = q∗(ξ) = Σ−1(ξ) and set

q∗ = ζ(q∗). Then (nq∗ , q∗) solves the auxiliary problem.

4. Main results

4.1. Well-posedness. The quantities qM = µ
σ2R and mM = 1− µ2(1−R)

2Rβσ2 have been

defined as the location of the turning point of m and the value of m at that point.

However, they have a direct interpretation in terms of the solution of the Merton

problem with zero transaction costs. In the Merton problem with zero transaction

costs the optimal strategy is to invest so that the ratio of wealth in the risky asset

to total wealth (ie ΘtYt

Xt+ΘtYt
) is kept equal to the constant qM . Provided mM > 0,

the value function for the Merton problem under zero transaction costs is given by

V = V (x, y, θ, 0) = (x+yθ)1−R

1−R (Rβ )
Rm−R

M . In particular, positivity ofmM is precisely

the condition for well-posed of the Merton problem without transaction costs.

Our first main result relates well-posedness of the problem with transaction costs

to the behavior of the quadratic m.

Proposition 4. (1) IfmM ≥ 0 then for every ξ ∈ (0,∞) the optimal consumption-

investment problem is well-posed.

(2) If m(1) < 0 then for every ξ ∈ (0,∞) the optimal consumption-investment

problem is ill-posed.

(3) If mM < 0 and m(1) > 0 then the optimal consumption-investment problem

is well-posed if and only if ξ > ξ.

This proposition can be rewritten in terms of the fundamental parameters of the

problem, rather than the quadratic m. When we do so we recover the main result

of Choi et al. (2013), Theorem 2.6, except that Choi et al. (2013) do not identify

the constant ξ (and, less significantly, Choi et al. (2013) do not include the case

µ < 0).

Theorem 5 (See also Choi et al. (2013)). (1) If R > 1 or if R < 1 and |µ| ≤
σ
√

2Rβ
1−R then for every ξ ∈ (0,∞) the problem is well-posed.

(2) If R < 1 and µ > β
1−R + Rσ2

2 then for every ξ ∈ [0,∞) the problem is

ill-posed.
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(3) If R < 1 and µ < −σ
√

2Rβ
1−R or σ

√
2Rβ
1−R < µ < β

1−R + Rσ2

2 then the problem

is well-posed if and only if ξ > ξ.

The idea behind our proof of Theorem 5 is to consider the value function which

solves a (second-order, non-linear) Hamilton-Jacobi-Bellman (HJB) equation and

to exploit various scalings and symmetries of the problem. Crucially, we use a

change of independent variable to reduce the order of the problem. Following this

order reduction second-order smooth fit at an unknown free boundary becomes

starting and ending on a fixed boundary. (For a similar use of this change of

independent variable, see Evans et al. (2008). Choi et al. (2013), see also Gerhold

et al. (2014), use a different transformation to reduce the order of their second-order

equation.) After several transformations and simplifications (details are provided

in Appendix A below) we are left to consider the auxiliary problem of Section 3.

Conversely, by inverting the same transformations, the solution to the auxiliary

problem can be used to define a candidate value function, which can be confirmed to

be the true value function by a classical verification argument. The formal analysis

is helped by the fact that the candidate value function is C2 on the solvency region.

4.2. The location of the no-transaction wedge. Part of the solution of the

auxiliary problem is the pair of free-boundaries q∗ and q∗ = ζ(q∗). One of the

advantages of our approach is that there is a direct interpretation of these quantities

in terms of the no-transaction wedge.

Theorem 6. Let (nq∗ , q∗) solve the auxiliary problem and let q∗ = ζ(q∗). Then the

no-transaction wedge is given by p∗ ≤ yθ
x+yθ ≤ p∗ where

(4.1) p∗(λ, γ) =
q∗(ξ)

1 + λ− λq∗(ξ)
; p∗(λ, γ) =

q∗(ξ)
1− γ + γq∗(ξ)

,

and ξ = λ+γ
1−γ .

Remark 7. The first equation in (4.1) can be rewritten as q∗ = p∗(1+λ)
1+p∗λ

. Recall

that p = yθ
x+yθ so that at the purchase boundary we find q∗ = yθ(1+λ)

x+yθ(1+λ) which is

the proportion of wealth in the risky asset when wealth in the risky asset is valued

using the bid price. Similar considerations apply on the sale boundary.

5. Discussion and implications of the main results

5.1. Comparative statics for the dependence of the no-transaction wedge

on the transaction cost parameters. For most of this paper we have argued

that the transaction costs λ on purchases and γ on sales only enter the problem

through the bid to ask ratio 1 + ξ = 1+λ
1−γ . Whilst that is true for the construction

of n (and the locations of the free-boundaries q∗ and q∗ from which the solution

is built), the boundaries of the no-transaction wedge do depend on the individual

transaction costs and we have p∗ = p∗(λ, γ) and p∗ = p∗(λ, γ) given by (4.1).

Lemma 8. Suppose all parameters are fixed, except for the transaction costs λ and

γ. Suppose also that the problem is well-posed. Then q∗ is non-decreasing in ξ, and

q∗ is decreasing in ξ.
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Theorem 9. Suppose parameters are such that the problem is well-posed.

(i) If 0 < µ < σ2R then the sale boundary p∗ is increasing in λ and increasing

in γ and the purchase boundary p∗ is decreasing in λ and decreasing in γ.

Further, the Merton line lies within the no-transaction wedge. We have

0 < p∗ < qM = µ
σ2R < p∗ < 1.

(ii) Suppose µ > σ2R or µ < 0. If µ > σ2R then p∗ > 1 and the agent will

(at least sometimes) take a leveraged position. If µ < 0 then p∗ < p∗ < 0

and the agent will take a short position. There are parameter combinations

for which p∗ and p∗ are not monotonic in the individual transaction costs.

Further, the Merton line need not lie within the no-transaction wedge.

Proof. We have

dp∗

dλ
=
∂ξ

∂λ

∂q∗

∂ξ

dp∗

dq∗
=

1

(1− γ)

∂q∗

∂ξ

1− γ

(1− γ + γq∗)2
> 0

and

dp∗

dγ
=

q∗(1− q∗)
(1 − γ(1− q∗))2

+
∂ξ

∂γ

∂q∗

∂ξ

dp∗

dq∗
=

q∗(1− q∗)
(1− γ(1− q∗))2

+
1 + λ

(1− γ)2
∂q∗

∂ξ

1− γ

(1− γ + γq∗)2

If 0 < µ < σ2R then 0 < q∗ = µ
σ2R < 1 and the sign of both terms is positive, but

if q∗ /∈ [0, 1] then either term may dominate.

Similarly,

dp∗
dγ

=
∂ξ

∂γ

∂q∗
∂ξ

dp∗
dq∗

=
1 + λ

(1 − γ)2
∂q∗
∂ξ

1 + λ

(1 + λ− λq∗)2
< 0

and

dp∗
dλ

=
−q∗(1− q∗)

(1 + λ(1− q∗))2
+
∂ξ

∂λ

∂q∗
∂ξ

dp∗
dq∗

=
−q∗(1 − q∗)

(1 + λ− λq∗))2
+

1

(1− γ)

∂q∗
∂ξ

1 + λ

(1 + λ− λq∗)2

If 0 < µ < σ2R then 0 < q∗ < 1 and the sign of both terms is negative, but if

q∗ /∈ [0, 1] then either term may dominate.

Note that solvency requires that p∗ < 1
γ . So, when µ > σ2R

γ we have 1 < p∗ <
1
γ < qM and the Merton line lies outside the no transaction wedge. �

Of interest is the location of the no-transaction wedge and the relationship be-

tween the Merton line and the no-transaction wedge. The key advantage we have

over the previous literature (Davis and Norman (1990); Shreve and Soner (1994))

is that we have decoupled the expressions for the locations of the boundaries of

the no-transaction wedge into two parts: we have p∗ and p∗ given by (4.1) where

q∗ < qM < q∗.

Davis and Norman (1990) argue that if 0 < µ < σ2R ∧ σ
√

2Rβ
1−R (and a further

technical condition, Condition B holds) then the no-transaction wedge lies in the

subspace x > 0 and contains the Merton line. They also conjecture (Davis and

Norman (1990), p704) that if the problem is well-posed and µ > σ2R then the

no-transaction wedge lies in the subspace x < 0. As we have seen, if transaction

costs are sufficiently large, we may have p∗ < q∗ < 1 and then this is not the case.



OPTIMAL CONSUMPTION AND INVESTMENT UNDER TRANSACTION COSTS 13

Shreve and Soner (1994) give bounds on p∗ and p∗. They state in (11.4), (11.5)

and (11.6) of Shreve and Soner (1994) that

(5.1) p∗ <
µ

1
2 (1− γ)σ2R+ γµ

;

if R > 1 or R < 1 and 0 < µ < σ
√

2Rβ
1−R

(5.2) p∗ >
µ

(1− γ)σ2R+ γµ
;

and if R > 1 or R < 1 and 0 < µ < σ
√

2Rβ
1−R , and if µ < σ2R 1+λ

λ

(5.3) p∗ <
µ

(1 + λ)σ2R− λµ
.

The bounds (5.1), (5.2) and (5.3) can be seen to follow from our results, some-

times under weaker assumptions.

If 0 < qM < 1 (equivalently 0 < µ < σ2R) and the problem is well-posed then as

m is a quadratic and n is monotone we must have (1−R)m(q∗) = (1−R)n(q∗) <
(1 − R)n(q∗) = (1 − R)m(q∗) and so q∗ − qM < qM − q∗ < qM . We conclude that

q∗ < min{2qM , 1}. Then, as q∗ < qM < q∗,

p∗ =
q∗

(1 − γ) + γq∗
<

2qM
(1 − γ) + γ2qM

=
µ

1
2 (1− γ)σ2R + γµ

;(5.4)

p∗ =
q∗

(1 − γ) + γq∗
>

qM
(1 − γ) + γqM

=
µ

(1− γ)σ2R+ γµ
;(5.5)

p∗ =
q∗

(1 + λ)− λq∗
<

qM
(1 + λ) − λqM

=
µ

(1 + λ)σ2R− λµ
.(5.6)

Note that from q∗ < 1 we also have the bound p∗ < 1, and the no-transaction

wedge lies in the region where x > 0 and the agent never leverages her position.

If qM > 1 (equivalently µ > σ2R) and the problem is well-posed then due to

(1 − R)m(q∗) = (1 − R)n(q∗) < (1 − R)n(1) = (1 − R)m(1) we have q∗ − qM <

qM −max{q∗, 1} ≤ qM − 1. Then 1 < qM < q∗ < 2qM − 1 and (5.4) can be refined

to

p∗ <
2qM − 1

(1− γ) + γ(2qM − 1)
=

2µ− σ2R

(1− 2γ)σ2R+ 2γµ
.

(5.5) and (5.6) hold as before, (5.6) provided µ < σ2R 1+λ
λ .

Shreve and Soner (1994) also conjecture that (p675) if qM > 1 then p∗ < qM
and the Merton line lies outside the no-transaction wedge. If qM > 1 then we

have q∗ < 2qM − 1 and p∗ < 2qM−1
(1−γ)+γ(2qM−1) . Then if 1

2qM
< γ < 1 so that

transaction costs on sales are large we have p∗ < 2qM−1
(1−γ)+γ(2qM−1) < qM and the

Shreve-Soner conjecture is true. However, if transaction costs on sales are small we

may find p∗ < qM < p∗, and the Merton line lies inside the no-transaction wedge.

In particular, if γ = 0 then p∗ = q∗ and p∗ > qM .
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5.2. Leverage and the independence of the sale boundary on the trans-

action cost parameter. Suppose µ > σ2R, or equivalently qM > 1. Then the

investor in the problem without transaction costs seeks to leverage her position by

borrowing to finance a large position in the risky asset. We want to discuss further

the implications for the behavior of the investor in the presence of transaction costs.

Recall the definition of Σ in (3.5). When 1 < r < ζ(r) it is clear that Σ is

well-defined. When r < 1 < ζ(r) it can be shown that the potential singularity at

q = 1 can be removed (note m(1) = n(1) and n′(1) = m′(1)) and hence that Σ(r)

is still continuous and strictly decreasing. Set

ξ = Σ(1) = exp

{∫ ζ(1)

1

dq
1

q(q − 1)

n1(q)−m(q)

n1(q)− �(q)

}
− 1.

Note that if R < 1 and mM < 0 then for r > 1, nr(q) < n1(q) over the domain

where both are defined, and hence Σ(q−) < Σ(1). Thus ξ < ξ.

Lemma 1 leads to the following result and corollary:

Lemma 10. If µ > σ2R and ξ ≥ ξ then q∗ ≤ 1 and q∗ does not depend on ξ.

Corollary 11. If µ > σ2R and ξ ≥ ξ then the ray x = 0 is contained in the

no-transaction wedge and p∗ does not depend on λ.

At first sight the final conclusion of Corollary 11 may appear surprising. At a

mathematical level, the result is a consequence of the fact that the relevant solution

nr passes through the singular point (1,m(1)) and on doing so ‘forgets’ its starting

point (r,m(r)). Hence q∗ does not depend on ξ for ξ ≥ ξ. As p∗ = q∗

(1−γ)+γq∗ we

find that p∗ does not depend on λ∗. The financial explanation of this result is fairly

simple also. If the no-transaction wedge includes the ray corresponding to x = 0 and

if ever x = 0, then the agent finances consumption first by spending cash reserves,

then by borrowing, and then when borrowing levels become too great, from sales

of the risky asset. But, once cash-wealth is non-positive, the agent will trade in

such a way that cash wealth is never positive at any future moment. Thus, once

x = 0 the agent will never again purchase units of risky asset, and the transaction

cost on purchases becomes irrelevant. Hence the location of the sell threshold does

not depend on λ. The same arguments show that the value function in the region

(x ≤ 0) does not depend on λ (for ξ ≥ ξ), although it continues to depend on λ in

the region x > 0.

Choi et al. (2013) show a related result and conclude that the shadow price and

value function are independent of the value of transaction costs in certain domains

(provided the level of the transaction cost is above a certain critical value). However,

they do not give a financial explanation of this result.

5.3. The small transaction cost limit. Both this paper and Choi et al. (2013)

give solutions to the Merton problem with general levels of proportional transaction

costs. Given these results for general transaction costs it is interesting to consider

the implications in the (often financially relevant) small transaction cost regime.

The aim is to understand how the location and width of the no-transaction region

depend on the transaction cost parameters.
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Rogers (2004) gives a general argument to show that for proportional transaction

costs we expect the width of the no-transaction wedge to be of the order of the size of

transaction costs to the one-third power. Janeček and Shreve (2004) formalize this

result and show that (provided the problem without transaction costs is well-posed

and µ /∈ {0, σ2R})

(5.7) p∗ = qM −∆
1/3
1 ξ1/3 +O(ξ2/3) p∗ = qM +∆

1/3
1 ξ1/3 +O(ξ2/3).

where qM = µ
σ2R is the fraction of wealth invested in the risky asset (the Merton

proportion) and

∆1 =

(
3q2M (1− qM )2

4R

)
=

(
3µ2(σ2R− µ)2

4σ8R5

)

Choi (2014) uses the results of Choi et al. (2013) to show that (when mM > 0

and qm /∈ {0, 1})
(5.8)

p∗ = qM−∆
1/3
1 ξ1/3−∆2∆

2/3
1 ξ2/3+O(ξ); p∗ = qM+∆

1/3
1 ξ1/3−∆2∆

2/3
1 ξ2/3+O(ξ).

where

∆2 =
2mM

3qM (1− qM )2δ2R
=
σ2R(2σ2Rβ − µ2(1 −R))

3µ(σ2R− µ)2
.

In principle, Choi’s results can be extended to give an expasion to any order. (In

fact Janeček and Shreve (2004) assume λ = γ and Choi (2014) assumes γ = 0 but

it is straightforward to translate their results to a more general setting.)

From Theorem 6 we have

p∗(λ, γ) =
q∗

1 + λ− λq∗
= q∗(ξ)− λq∗(ξ)(1− q∗(ξ)) +O(λ2, γ2)

and p∗(λ, γ) = q∗(ξ) + γq∗(ξ)(1 − q∗(ξ)) + O(λ2, γ2). Hence in calculating an

expansion for p∗ or p∗ up to order 2
3 as in (5.7) or (5.8) it is sufficient to consider

expansions of q∗(ξ) in powers of ξ1/3. It is only when we consider expansions to

order one that the individual transaction costs become important.

In this section we explain how our results yield (5.7) almost immediately. In

Appendix C we show how to derive (5.8), and give a method to extend the results

to higher order. We also consider what happens when qM = 1. Exceptionally, in

this case the leading order term is of different order, see Appendix C.

Proposition 12. Suppose µ = σ2R and 2β > σ2R(1 − R). Then p∗ = 1 and

p∗ = 1−Υ1/2ξ1/2 +O(ξ) where Υ = 2βmM

σ2R2 = 2β−σ2R(1−R)
σ2R2 .

For ease of exposition we discuss a derivation of (5.7) in the caseR < 1 and µ > 0.

Suppose µ �= σ2R and that the problem is well-posed. Consider nr(q) for r just a

little bit smaller than qM . On [r, ζ(r)] we have 0 ≤ nr(q)−m(q) ≤ nr(r)−m(qM ) =

m(r)−m(qM ) which is of order (r− qM )2. It follows that solutions to n′ = O(q, n)

are approximately horizontal lines. If we write n̂ for this approximate solution, and

ζ̂ and Σ̂ for the corresponding first re-crossing of m and approximate value of Σ
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then for small u > 0, n̂qM−u(q) = m(qM − u), ζ̂(qM − u) = qM + u and (we write

a ∼ b if the terms agree to leading order)

ln(1 + Σ̂(qM − u)) =

∫ ζ̂(qM−u)

qM−u

dq

q(1− q)

n̂qM−u(q)−m(q)

�(q)− n̂qM−u(q)

∼ 1

qM (1− qM )

1

�(qM )−m(qM )

∫ u

−u

dv[m(qM − u)−m(qM + v)]

=
R

q2M (1− qM )2

∫ u

−u

[u2 − v2]dv = ∆−1
1 u3

Taking inverses we find (ignoring terms of order ξ2/3 or higher) q∗(ξ) = qM −
∆

1/3
1 ξ1/3 and hence also q∗(ξ) = qM +∆

1/3
1 ξ1/3 as in (5.7).

5.4. Dependence of the no-transaction wedge on the drift.

Theorem 13. Suppose all parameters except the drift are constant and that the

problem is well posed. Then both the purchase and sale boundaries of the no-

transaction wedge are increasing in the drift in the underlying asset.

Proof. We want to show that both p∗ and p∗ are increasing in µ, which is equivalent

to q∗ and q∗ increasing in ε. We consider the case R < 1 and ε > 0; similar

arguments work for R > 1 and/or ε < 0.

Fix ε̂ > ε̃ and let n̂r and ñr denote the solutions of n′ = O(q, m̂, n) and n′ =
O(q, m̃, n) subject to nr(r) = 0 where

O(q,m, n) = −1−R

R

n

1− q

n−m(q)(
m(q) + δ2

2 (1−R)q(1− q)− n
) .

Here m̂(q) (respectively m̃) is the quadratic m̂(q) = 1− ε̂(1−R)q + δ2

2 R(1−R)q2

(respectively m̃(q) = 1− ε̃(1−R)q+ δ2

2 R(1−R)q2). In general let the ·̂ and ·̃ symbols

denote solutions defined relative to ε̂ and ε̃. Let m0(q) = 1 + 1
2δ

2R(1−R)q2.

Let â(q) = âr(q) = n̂r(q)− m̂(q). Then

â′(q) = O(q,m0(q)− ε̂(1−R)q,m0(q)− ε̂(1−R)q + â(q)) + ε̂(1−R)− δ2R(1−R)q

= O(q,m0(q),m0(q) + â)− δ2R(1−R)q

+ε̂(1 −R)

[
1−R

R

q

(1− q)

â

(12δ
2(1−R)q(1 − q)− â)

+ 1

]

=: Ô(q, â).

For q < 1 we have 0 < a < �(q)−m(q) and Ô(q, a) > Õ(q, a), and we conclude that

away from q = r, âr and ãr cannot cross. Consideration of the case q > 1 leads to

the a similar conclusion.

Suppose first that ε̂ < δ2R so that we may restrict attention to r < q < 1. Fix r.

Then âr(q) > ãr(q) at least until ζ̂(r)∧ζ̃(r) and then it follows both that ζ̂(r) > ζ̃(r)

and Σ̂(r) > Σ̃(r), where we make use of a = n−m and the representation

Σ(r) = exp

(∫ ζ(r)

r

dq

q(1− q)

a(q)
δ2

2 R(1−R)q(1 − q)− a(q)

)
− 1,
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which we note only depends on ε through a. As Σ is decreasing in r we conclude

that q̂∗ = Σ̂−1(ξ) > Σ̃−1(ξ) = q̃∗ and that q∗ is increasing in ε.

In order to consider the sale boundary p∗ it is convenient to parameterize solu-

tions of the free boundary problem by the boundary point q∗ rather than q∗. Let

n solve n′ = O(q, n) in q ≤ s subject to ns(s) = m(s) and let as(q) = ns(q)−m(q).

Then, we have ζ−1(s) = sup{u ≤ s : ns(u) < m(s)} and we get that solutions

(as(q)){ζ−1(s)≤q≤s} are decreasing in ε; hence ζ−1(s) is increasing in ε and Σ is

decreasing in ε. It follows that q∗ is also increasing in ε.

Now we relax the assumption that ε̂ < δ2R. If ε̃ ≤ δ2R < ε̂, then q̃∗ ≤ 1 < q̂∗.
For q∗ the same proof as given above can be used.

Finally, if ε̃ > δ2R then for sufficiently small transaction costs we have q̂∗ > 1,

and then by the arguments as above we can conclude that q∗ and q∗ are monotonic.

The only point of delicacy is when transaction costs are larger, when we must

consider the case where both q̂∗ and q̃∗ lie below the singular point. Then, for

r < 1, âr(1) = ãr(1) = 0. Nonetheless, for r < 1 we have the inequality âr ≥ ãr
with strict inequality on (r, 1), and hence Σ̂(r) > Σ̃(r). Note that q̂∗ = q̃∗ for large

transaction costs.

�

6. Conclusion and further remarks

Our goal in this paper was to analyze the Merton problem with transaction costs.

Following Davis and Norman (1990) and Shreve and Soner (1994), our approach

is via the primal problem rather than the shadow-price approach of Kallsen and

Muhle-Karbe (2010),Choi et al. (2013) and Herczegh and Prokaj (2015). Thus our

approach brings different insights to the shadow-price literature. We were able to

show via judicious transformations that the problem could be reduced to solving a

first-order ordinary differential equation. There is a family of solutions to this ODE,

and the one we want satisfies an additional integral equation. The value function

for the consumption-investment problem can be constructed via integrating the

solution to this auxiliary problem; however, the locations of the boundaries to the

no-transaction wedge can be read immediately from the pair (q∗, q∗) which forms

part of the solution to the auxiliary problem. Thus, especially when the questions

of interest concern the location of the no-transaction wedge, our approach is very

powerful.

At one level our results are a re-parametrization of the results of Choi et al. (2013)

although the derivation is completely different. Choi et al. (2013) also reduce the

problem to solving a first order ODE, subject to smooth fit conditions on a free-

boundary, and subject to an integral condition. But in their case the points on the

free-boundary lie on an ellipse (rather than a quadratic) and the phase-diagram is

considerably more complicated. Our approach to the problem brings simplifications

to the analysis and allows us to prove further results. First, we can relate the

different cases to the different possible behaviors of a quadratic function of one

variable. Second, in the case where the problem is ill-posed for zero transaction

costs, we can give an algebraic expression for the value of the transaction costs at
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which the problem becomes ill-posed. (Choi et al. (2013) are only able to give this

as an integral involving the roots of a quadratic, see their Lemma 6.11) Third, it is

immediate from our approach that the integral equation which determines which of

the family of candidate solutions of the ODE we want has a monotonicity property.

In particular, it is immediate from our approach that Σ is strictly decreasing and

has an inverse: Choi et al. (2013) are not able to give a corresponding monotonicity

argument for their equivalent function (see their Remark 6.15). Fourth, a crucial

component of our solution is the pair (q∗, q∗) which correspond to the boundaries of

the no-transaction wedge. The fact that these quantities are an explicit element of

the solution allows us to give several results on the comparative statics associated

with these quantities. Some of these results have appeared in the literature, (in

which case the advance is that our analysis typically gives shorter derivations of

the key results). In other cases our results (for example, on the width of the no-

transaction wedge when µ = σ2R, and the comparative statics with respect to drift)

are new. Finally, our results bring an important insight into the phenomenon that

for some parameter values the location of the sell boundary does not depend in any

way on the transaction cost for purchases. Mathematically, this relates to the fact

that candidate solutions of the auxiliary problem all pass through the same singular

point. Financially, it relates to the fact that the ray corresponding to zero cash

wealth is in the no-transaction wedge, and if cash wealth ever hits zero, then under

optimal behavior it remains non-positive thereafter, and the purchase boundary is

never reached again.

In this paper we restrict attention to the case of a single risky asset. The situ-

ation with multiple risky assets and transaction costs is much more complicated.

Nonetheless, the methods of this paper can be generalized to the multi-asset case,

albeit only to a special case in which transaction costs are payable on one asset

only. See Hobson et al. (2016), and also Choi (2018).
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Janeček, K. and Shreve, S. (2004). Asymptotic analysis for optimal investment and

consumption with transaction costs. Finance and Stochastics, 8(2):181–206.

Kallsen, J. and Muhle-Karbe, J. (2010). On using shadow prices in portflio opti-

mization with transaction costs. The Annals of Applied Probability, 20(4):1341–

1358.

Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: the

continuous-time case. The Review of Economics and Statistics, 51(3):247–257.

Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-

time model. Journal of Economic Theory, 3(4):373–413.

Rogers, L. (2004). Why is the effect of transaction costs o(δ2/3)? Mathematics

of Finance, AMS Contemporary Mathematics Series 351. Editors G. Yin, Q.

Zhang, pages 303–308.

Shreve, S. E. and Soner, H. M. (1994). Optimal investment and consumption with

transaction costs. The Annals of Applied Probability, 4(3):609–692.

Zhu, Y. (2015). Investment-consumption model with infinite transaction costs. PhD

Thesis, University of Warwick.

Appendix A. Derivation of the candidate value function

Define P = (Pt)t≥0 by Pt =
YtΘt

Xt+YtΘt
. The solvency requirement can be expressed

as − 1
λ ≤ Pt ≤ 1

γ . Write

(A.1) V (x, y, θ, t) = e−βt (x+ yθ)1−R

1−R

(
R

β

)R

G

(
yθ

x+ yθ

)
,

and consider

(A.2) Mt :=

∫ t

0

e−βsC
1−R
s

1−R
ds+ V (Xt, Yt,Θt, t).

Applying Itô’s formula we find (subscripts x, y, θ denote space derivatives and V̇

denotes a time derivative)

dMt =
C1−R

t

1−R
e−βtdt+ V̇ dt+ VxdXt + VydYt + VθdΘt +

1

2
Vyyd[Y ]t

=

{
C1−R

t

1−R
e−βt − VxCt

}
dt+ [Vθ − Vx(1 + λ)Yt]dΦt + [Vx(1− γ)Yt − Vθ]dΨt

+e−βt (Xt + Ytθt)
1−R

1−R

(
R

β

)R

LG(Pt)dt+ σYtVydBt
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where for H = H(p)

LH = −βH+µ [(1−R)pH + p(1− p)H ′]+
σ2

2

[−R(1−R)p2H − 2Rp2(1− p)H ′ + p2(1− p)2H ′′] .
As M is a martingale under the optimal strategy and a super-martingale other-

wise, maximizing overCt we find Ct = e−
β
R tV

−1/R
x = β

R (Xt+Ytθt)
[
G(Pt)− PtG

′(Pt)
1−R

]−1/R

.

As consumption is non-negative we must have that G(p) > pG′(p)
1−R . Further, if dΦt >

0 then Vθ = (1 + λ)yVx. Hence, if dΦt > 0 then (1 − R)G(Pt) + (1 − Pt)G
′(Pt) =

(1 + λ)[(1 −R)G(Pt)− PtG
′(Pt)] or equivalently

−λ(1−R)G(Pt) + (1 + λPt)G
′(Pt) = 0.

Similarly, if dΨt > 0 then

(A.3) γ(1−R)G(Pt) + (1− γPt)G
′(Pt) = 0.

It follows that for − 1
λ ≤ p ≤ p∗ we have G(p) =

(
1+λp
1+λp∗

)1−R

G(p∗) and for p∗ ≤
p ≤ 1

γ we have G(p) =
(

1−γp
1−γp∗

)1−R

G(p∗).
Substituting for the optimal consumption we find that in the continuation region,

p∗ < p < p∗,

0 = β

[
G(p)− pG′(p)

1−R

]1−1/R

+ LG(p)

= β

[
G(p)− pG′(p)

1−R

]1−1/R

− βG(p) + µ [(1− R)pG(p) + p(1− p)G′(p)]

+
σ2

2

[−R(1−R)p2G(p)− 2Rp2(1− p)G′(p) + p2(1− p)2G′′(p)
]
.(A.4)

Now we can see the merit of the factor
(

R
β

)R
in the definition of V : we can

divide through by β to reduce the problem to one expressed in the dimensionless

quantities ε = µ
β and δ2 = σ2

β . (This completes the parameter reduction; the

original parameters µ, σ, β, R, λ, γ have been replaced by ε, δ, R and ξ.)

Set h(p) = sgn(p(1 − p))|1 − p|R−1G(p) and define w(h) = p(1 − p)dhdp . Then

away from 0 and 1,

dh

dp
= sgn(p(1− p))|1 − p|R−1

[
G′(p) + (1−R)

G(p)

1− p

]
and

(A.5) w(h) = sgn(p(1− p))|1− p|R−1 [p(1− p)G′(p) + (1−R)pG(p)] .

Moreover,

w(h)
d

dh
w(h) = p(1− p)

dh

dp

d

dh
w(h) = p(1− p)

d

dp
w(h)

and on differentiating (A.5) we find for p /∈ {0, 1}
w(h)w′(h)

= |1− p|R−1sgn(p(1− p))
[
p2(1− p)2G′′(p) + p(1− p)(1− 2Rp)G′(p) + (1−R)p(1−Rp)G(p)

]
.
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Then[−R(1−R)p2G(p)− 2Rp2(1− p)G′(p) + p2(1− p)2G′′(p)
]
= w(h)[w′(h)−1]|1−p|1−Rsgn(p(1−p)).

Also using (A.5) we have

G′(p) =
w(h)

|p||1− p|R − (1−R)
G(p)

1− p

and it follows that

G(p)− pG′(p)
1−R

= |1− p|−Rsgn(p)h(p)

(
1− w(h)

(1−R)h

)
.

As consumption must be non-negative this expression must be positive so we can

write it as G(p)− pG′(p)
1−R = |1− p|−R|h||1− w(h)

(1−R)h | and then

(
G(p)− pG′(p)

1−R

)1−1/R

= |1− p|1−R|h|1−1/R

∣∣∣∣1− w(h)

(1−R)h

∣∣∣∣
1−1/R

.

Cancelling factors of |1 − p|1−R and dividing by sgn(p(1 − p)) = sgn(h), (A.4)

becomes

0 = h|h|−1/R

∣∣∣∣1− w(h)

(1−R)h

∣∣∣∣
1−1/R

− h+ εw(h) +
δ2

2
w(h) [w′(h)− 1] ,

and with w(h) = (1−R)hW (h),

δ2

2
(1−R)2hW ′(h)W (h) = −|h|−1/R |1−W (h)|1−1/R + �(W (h)).

Then setting N =W−1 we find

1

N(q)

dN(q)

dq
=
δ2

2
(1−R)2

q

�(q)− |N(q)|−1/R|1− q|1−1/R
.

Finally set n(q) = |N(q)|−1/R|1− q|1−1/R. Then n > 0 and

n′(q)
n(q)

=
1−R

R(1− q)
− 1

R

N ′(q)
N(q)

.

In particular, n solves n′ = O(q, n) where O is as given by (3.4) for all values of

q ∈ [q∗, q∗] (except perhaps at the singular points q = 0 and q = 1).

Consider now the boundary conditions. Under the candidate optimal strategy,

the impact of a change in portfolio from a point outside the no-transaction wedge to

a point on the boundary does not affect the value function. Hence for − 1
λ ≤ p ≤ p∗

we have G(p) = A∗(1 + λp)1−R for some constant A∗. (We calculated A∗ in the

discussion after (A.3).) Then h(p) = sgn(p(1 − p))|1− p|R−1A∗(1 + λp)1−R and

h′(p) = (1−R)h(p)

[
1

1− p
+

λ

1 + λp

]
= (1−R)h(p)

1 + λ

(1− p)(1 + λp)
.

It follows that W (h) = (1+λ)p
(1+λp) ; then |1 −W (h)| = |1−p|

1+λp = (A∗
|h| )

1/(1−R). Writing

q =W (h) and h = N(q) for N =W−1 we have

n(q) = |N(q)|−1/R|1− q|1−1/R = A
−1/R
∗ .
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Note that q =W (h) = (1+λ)p
(1+λp) can be rewritten as

(A.6)
q

1− q
= (1 + λ)

p

1− p

which is valid for − 1
λ < p ≤ p∗ or equivalently −∞ < q < q∗ = (1+λ)p∗

(1+λp∗)
. A

similar analysis gives n(q) = (A∗)−1/R for q ∈ [q∗,∞) where q∗ = (1−γ)p∗

(1−γp∗) . Thus,

the condition of continuity of n′ at the free boundaries is equivalent to n′ = 0,

which in turn means that candidate locations of the boundary can be identified

with O(q, n(q)) = 0 or equivalently n(q) = m(q).

Note that q > 1 is equivalent to p > 1 and that each of these conditions cor-

responds to the case of leverage (where the agent borrows to finance the position

in the risky asset). Similarly q < 0 is equivalent to p < 0. These conditions

corresponds to a short position in the risky asset.

From (A.6) at (q∗, p∗) and the similar condition q
1−q = (1− γ) p

1−p at (q∗, p∗) we
have

1 + ξ =
1 + λ

1 − γ
=

p∗

1− p∗
1− p∗
p∗

q∗
1− q∗

1− q∗

q∗

and hence using w(h) = p(1− p)dhdp and a change of variable

(A.7) ln(1 + ξ) =

∫ p∗

p∗

dp

p(1− p)
−
∫ q∗

q∗

dq

q(1− q)
=

∫ h∗

h∗

dh

w(h)
−
∫ q∗

q∗

dq

q(1− q)
.

But

(A.8)

∫ h∗

h∗

dh

w(h)
=

∫ q∗

q∗
dq

N ′(q)
(1 −R)N(q)q

=
δ2(1− R)

2

∫ q∗

q∗
dq

1

(�(q)− n(q))
.

Further,

(A.9)

∫ q∗

q∗

dq

q(1− q)
=
δ2(1 −R)

2

∫ q∗

q∗
dq

[
1

�(q)−m(q)

]
,

where we use �(q)−m(q) = δ2

2 (1−R)q(1− q). Hence

(A.10) ln

(
p∗

1− p∗
1− p∗
p∗

(1− q∗)
q∗

q∗
(1− q∗)

)
=

∫ q∗

q∗
dq

1

q(1 − q)

[
n(q)−m(q)

�(q)− n(q)

]
.

Then the solution we want must have ln(1 + ξ) =
∫ q∗

q∗
dq 1

q(1−q)

[
n(q)−m(q)

(q)−n(q)

]
.

Appendix B. Proofs

Proof of Lemma 1. The point at issue is to understand solutions of n′ = O(q, n)

which pass through (1,m(1)). Similar issues arises in the analysis in Choi et al.

(2013), and more discussion can be found there.

We assume that δ2R < ε and also if R < 1 that ε < 1
1−R + δ2R

2 . Then (1 −
R)m′(1) < 0 and m(1) > 0. We are interested in the behavior of n as it passes

through the singular point (1,m(1)).

Let η(x) = n(1+x)−m(1+x)
1
2 δ

2(1−R)
. Then the singular point is now at the origin. Then

(B.1) η′(x) = −a(x, η)
x2

η + b(x)
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where

a(x, η) =
2

δ2R

m(1) + (1 −R)(δ2R− ε)x+ 1
2δ

2R(1−R)x2 + 1
2δ

2(1−R)η

1 + x+ η
x

b(x) = − 2

δ2(1−R)
m′(1 + x) =

2

δ2
[
ε− δ2R− δ2Rx

]
.

We have m(1) > 0 and m′(1) < 0 whence limx↓0 a(x, 0) = 2
δ2Rm(1) > 0 and

b(0) > 0. It can be shown that a typical solution to (B.1) passing through the

origin has η(x) = O(x2). Hence a and b are bounded near the origin and in order

to understand the behavior of n near 1 it is sufficient to understand the behavior

of solutions to

(B.2) f ′ = −A f

x2
+B, f(0) = 0.

for positive constants A, B. It can be shown (see (Choi et al., 2013, Lemma 6.8))

that there are multiple solutions for x ≤ 0, but a unique solution for x ≥ 0. All

these solutions have f ′(0−) = f ′(0+) = 0.

This result extends to our more general case, and if m′(1) < 0 there is a family

of solutions nr which pass through (1,m(1)) but to the right of this point these

solutions are identical. �

Proof of Proposition 2. They key step is to show that Σ is well-defined and mono-

tonic. We prove the results for R < 1 and µ > 0, the other cases being similar.

If 0 < r < q− ∧ qM < 1 then ζ(r) < 1 and Σ is well-defined. If qM > 1 then

there is a potential singularity at q = 1 for solutions nr with r < 1. But, at q = 1

then necessarily nr(1) = m(1) and n′
r(1) = m′(1). Hence any singularity at 1 can

be removed.

As the solutions nr cannot cross and nr(r) = m(r) and nr(ζ(r)) = m(ζ(r)) we

have
∂

∂r
ln(1 + Σ(r)) =

∫ ζ(r)

r

dq
1

q(1− q)

�(q)−m(q)

[�(q)− nr(q)]2
∂

∂r
nr(q) < 0

Then Σ is continuous and decreasing in r. By the monotonicity in r of nr we

can deduce that n0(·) = limr↓0 nr(q) exists. Some further arguments yield that

limr↓0 Σ(r) = ∞.

�

Remark 14. It is immediate from our approach that the integral equation which

determines which of the family of candidate solutions of the auxiliary we want has

a monotonicity property. In particular, it is immediate from our approach that Σ

is strictly decreasing and has an inverse. In contrast, in the shadow-price approach

(Choi et al., 2013, Remark 6.15) are not able to give a corresponding monotonicity

argument for their equivalent function.

Proof of Theorem 5. As the majority of this result is contained in Choi et al. (2013)

we only provide a sketch of the proof. Proofs of well-posedness for subsets of

the parameter combinations can also be found in Davis and Norman (1990) and

Herczegh and Prokaj (2015). The main innovations compared with Choi et al.
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(2013) is that we take a classical approach via the value function and the Hamilton-

Jacobi-Bellman equation, whereas Choi et al. construct a solution via the dual

problem and the shadow price.

For the parameter combinations listed as leading to a well-posed problem we can

construct a positive, C1-solution n to the auxiliary problem and thence a function G

and a candidate value function V C given by V C(Xt, Yt,Θt, t) = e−βt (x+yθ)1−R

1−R G( yθ
x+yθ ).

It remains to prove that this candidate value function is the value function V of the

optimal consumption/investment problem, and this can be done using a standard

verification argument. See Zhu (2015) for details.

In the ill-posed case it is sufficient to exhibit a strategy which yields infinite

expected utility. See Choi et al. (2013) for details. �

Proof of Lemma 8. It follows from the proof of Proposition 2 that Σ is decreasing

in r. Hence q∗ is increasing in ξ, and q∗ is decreasing in ξ. �

Appendix C. Asymptotics for small transaction costs

Our goal is to derive higher order expansions for the locations of the upper and

lower boundaries of the no-transaction wedge. We do not provide a complete proof

but rather explain how an expansion method can be used to generate the leading

order terms. A full proof can be constructed by a more careful analysis of the

relevant differential equations.

For ease of exposition we assume R < 1 and µ > 0 (for example, this allows us

to say that solutions to n′ = O(q, n) are decreasing) but the general case is similar.

DefineM(r) = m(r+qM )−mM , L(r) = �(r+qM )−mM and N(r) = n(r+qM )−
mM and set Ψ(r) = N(r)−M(r)

δ2R(1−R) . The Ψ solves an ODE and we want the solution

with initial condition Ψ(−u) = 0 for small u > 0. Write Ψu for this solution, which

is defined up to the first time r > −u for which Ψu(r) = 0.

Let θ = r/u and set Θ(θ) = Θu(θ) = Ψu(θu). Then Θ(−1) = 0 and Θ solves

Θ′(θ) = − 2u

δ2R

{mM +M(uθ) + δ2R(1−R)Θ(θ)}
(1 − qM − uθ){qM (1 − qM ) + uθ(1− 2qM )− u2θ2 − 2RΘ(θ)}Θ(θ)−θu2.

Note that M(uθ) = δ2

2 R(1 − R)u
2θ2

2 . We look for an expansion of Θ in u of the

form Θ(θ) =
∑

k≥0 u
kak(θ). Proceeding from the power series expressions we find

on comparing coefficients of u0 that a′0(θ) = 0 and hence a0(θ) = 0. Further,

a′1(θ) = 0 and a1(θ) = 0. Then a′2(θ) = −θ (and a2(−1) = 0) which has solution

a2(θ) =
1−θ2

2 . We can easily calculate higher order terms. In particular,

a′3(θ) = −3∆2a2(θ)

and then a3(θ) = −∆2

2 (θ + 1)2(2 − θ). Then

Ψu(r) = Θ(r/u) =
u2 − r2

2
− ∆2

2
(r + u)2(2u− r) +O(u4)

Let ζ̃(u) = inf{r > −u : Ψu(r) = 0}. Then, ζ̃(u) = u − ηu2 + O(u3) we find

η = 2∆2. Then we can calculate

ln(1 + Σ(qM − u)) = ∆−1
1

{
u3 − 3∆2u

4 +O(u5)
}
.
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A derivation of (5.8) now follows in a few lines.

C.1. The size of the no-transaction wedge in the case µ = σ2R. Suppose

µ = σ2R and that the problem is well-posed for zero transaction costs. Then we

have qM = 1 and mM > 0. We want to consider Ψ given by Ψ(r) = n(1+r)−m(1+r)
δ2R(1−R)

for r < 0. In particular, Ψu solves

(C.1) Ψ′
u(r) = −a(r,Ψ(r))

Ψu(r)

r2
− r

subject to Ψu(−u) = 0, where u > 0 and

a(r, ψ) =
2

δ2R

(mM +M(r) + δ2R(1−R)ψ)

(1 + r + 2R
r ψ)

.

We can understand solutions to this equation from the leading order term, which

leads us to consider

Φ′
u(r) = −κΦu(r)

r2
− r,

subject to Φu(−u) = 0, where κ = 2mM

δ2R . Note that in contrast to (B.2) the

inhomogeneous term is not a constant, but rather r, and this leads to different

asymptotics near 0.

This ODE has solution Φu(r) = e
κ
r

∫ r

−u |s|e−
κ
s ds. Note that e

κ
r ↓ 0 as r ↑ 0. It

is easy to see that

Ψu(r) =
e

κ
r

κ

∫ r

−u

|s|3κe
−κ

s

s2
ds < e

κ
r
u3

κ

∫ r

−u

κe−
κ
s

s2
ds <

u3

κ
,

and, integrating by parts,

Ψu(r) = −e
κ
r

κ
κ

∫ r

−u

s3
κe−

κ
s

s2
ds =

[ |r|3
κ

− u3

κ
e

κ
r +

κ
u +

∫ r

−u

3s2

κ
e

κ
r −κ

s ds

]
.

It follows that for −1 < θ ≤ 0, Ψu(uθ) =
|θ|3
κ u3 +O(u4).

The above results extend easily to the case where the constant κ is replaced by

a strictly positive continuous function A = A(r) with A(0) = κ, and with a little

more work to the case in which κ is replaced by a = a(r, ψ) as in (C.1).

Let Λ(u) = log(1 + Σ(u)). Then

Λ(u) =

∫ 0

−u

dr

r(1 + r)

2RΨu(r)

[r(1 + r) + 2RΨu(r)]
∼ u2

∫ 0

−1

dθ

θ2
2R

|θ|3
κ

=
R

κ
u2.

Proposition 12 follows.


