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SUMMARY
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is
frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that
loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma
and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of
mRNA encoding components of the core translational machinery, thereby driving global protein synthesis.
Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering
MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full
protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of
which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer
MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate
for this loss by ectopic DDX3Y expression.
INTRODUCTION

Burkitt lymphoma (BL) is an aggressive non-Hodgkin lymphoma,

with a 3:1 male:female incidence ratio (Morton et al., 2006; Smith

et al., 2015). BL arises from the germinal center (GC) stage of B

cell development, where B cells undergo somatic hypermutation

of the immunoglobulin genes associated with cycles of intense

proliferation and selection (Basso and Dalla-Favera, 2015). The

oncoprotein MYC is required for this process, but its expression

is transient and limited to aminority ofGCBcells undergoingpos-

itive selection (Calado et al., 2012; Dominguez-Sola et al., 2012).

TheGC is alsoassociatedwith class switch recombination (CSR),

a process that involves double-stranded breakage and rejoining

of the immunoglobulin genes. An unwanted by-product of CSR is
Molecular Cell 81, 4059–4075, Octo
This is an open access article und
the risk of translocation of the MYC oncogene into the immuno-

globulin loci leading to sustained and high-level expression of

MYC. Translocation between MYC and one of the immunoglob-

ulin genes is observed in >95% of BL (Swerdlow et al., 2016).

MYC translocation is also seen in 10% of diffuse large B cell lym-

phoma (DLBCL), where it confers a poor prognosis (Savage et al.,

2009). Many cases of MYC-translocated DLBCL fall into the mo-

lecular high-grade (MHG) transcriptional subtype (Painter et al.,

2019; Sha et al., 2019). Those cases of MHG without detectable

MYC rearrangement frequently possess cryptic alterations lead-

ing to the deregulation of MYC expression (Hilton et al., 2019).

Mouse models reveal that high-level MYC expression alone is

insufficient to drive lymphomagenesis, and further cooperating

genetic events are required (Sander et al., 2012).
ber 7, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 4059
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DDX3X is a ubiquitously expressed ATP-dependent RNA heli-

case. DDX3X is located on the X chromosome and escapes X

chromosome inactivation (Berletch et al., 2011). The Y chromo-

some homolog DDX3Y shares 92% amino acid conservation

with DDX3X. DDX3Y is widely transcribed; however, in normal

adult tissues, protein expression is restricted to the testis (Ditton

et al., 2004; Foresta et al., 2000; Rauschendorf et al., 2011).

DDX3X is reported to function at multiple stages of RNA biology,

including transcription, nuclear export, stress granule dynamics,

and mRNA translation (Sharma and Jankowsky, 2014; Soto-Rifo

andOhlmann, 2013). It has been proposed to act as both a trans-

lational activator and a repressor (Shih et al., 2008). Themutation

of DDX3X has been reported in BL (Bouska et al., 2017; Grande

et al., 2019; López et al., 2019; Richter et al., 2012; Schmitz

et al., 2012), chronic lymphocytic leukemia (CLL) (Ojha et al.,

2015; Takahashi et al., 2018), natural killer (NK)-T cell lymphoma

(Jiang et al., 2015), and medulloblastoma (Jones et al., 2012;

Pugh et al., 2012; Robinson et al., 2012). However, its role in ma-

lignancy remains controversial, and it has been classified as both

a tumor suppressor and an oncogene (He et al., 2018; Soto-Rifo

et al., 2012). Here, we investigate the role of DDX3Xmutations in

BL andMYC-drivenDLBCL.We reveal that somatic loss-of-func-

tionmutations ofDDX3X facilitate the early stages ofMYC-driven

lymphomagenesis by buffering the effects of MYC on translation

and global protein synthesis. In contrast, established lymphoma

cells restore full translation by the ectopic expression of DDX3Y.

Thus, the sequential loss of DDX3X, followed by the gain of

DDX3Y, allows cells to adopt a level of protein synthesismatched

to the stage-specific needs of the developing tumor.

RESULTS

DDX3X is preferentially mutated in MYC-driven
lymphomas
We applied targeted sequencing to 39 cases of BL. The most

frequently mutated genes were MYC, ID3, TP53, CCND3,

DDX3X, ARID1A, FOXO1, and SMARCA4 (Figure 1A; Table S1).
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WhileMYC, ID3, TP53, and CCND3 have been intensively inves-

tigated, little is known about the role of DDX3X mutation in lym-

phoma. Mutation of DDX3X was found in 12 of 39 cases

(30.8%) of BL (11 males and 1 female). In contrast, when the

same targeted panel and variant calling strategy was applied to

928 cases of DLBCL, we detected DDX3X mutation in only

5.2% (Lacy et al., 2020), a figure similar to that of other recent

DLBCL sequencing studies (Figure 1B) (Chapuy et al., 2018;

Reddy et al., 2017; Schmitz et al., 2018). DDX3X mutations

were predominantly clonal (Figure S1A).

DDX3Xmutation was recently noted to be enriched among the

MHG transcriptional subtype of DLBCL (Sha et al., 2019). To

extend this observation, we analyzed mutation data from a pre-

viously characterized UK cohort of DLBCL enriched forMYC-re-

arranged cases (Cucco et al., 2020). DDX3Xmutation was found

in 12.8% of cases with MYC rearrangement, but only 4.2% of

cases lacked MYC rearrangement (p = 0.001; chi-square test)

(Figure 1C). Among 558 caseswith gene expression,DDX3Xmu-

tation was enriched inMHG (16.7%) compared to GCB (4.3%) or

ABC (2.2%) DLBCL (p = 0.001; chi-square test) (Figure 1D). We

then reanalyzed publicly available RNA sequencing (RNA-seq)

data from 553 DLBCL patients enrolled in the GOYA trial

(McCord et al., 2019) (Figures 1E and S1B–S1D; Table S1).

Once again, we found DDX3X mutation to be enriched in the

MHG DLBCL subtype (19.0%), compared to GCB (8.1%) and

ABC (3.0%) (p < 10�5; chi-square test). Meta-analysis, including

cases sequenced in this and previously published studies of BL

and DLBCL with available sex data, confirmed that DDX3X mu-

tation was more frequent in male patients (relative risk [RR] =

1.23, 95% confidence interval [CI] 1.15–1.33, p = 0.0002;

random effects model) (Figures S1E and S1F).

Examining the distribution of mutations from this and previous

studies (Figure 1F; Table S1) revealed a predominance of muta-

tions within the C-terminal helicase domain. Some of these mu-

tations, including R475 and R534, are shared with medulloblas-

toma and known to abolish helicase activity (Epling et al., 2015;

Floor et al., 2016; Lennox et al., 2020). However, in contrast to

mailto:djh1002@cam.ac.uk
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E

B Figure 1. DDX3X is preferentially mutated in

MYC-driven lymphomas

(A) Mutation frequency (%) for the indicated genes

detected using a 293-gene panel applied to 39

cases of Burkitt lymphoma (BL).

(B) Frequency of DDX3X mutation across pub-

lished sequencing studies of BL and DLBCL.

(C) Proportion of cases with MYC rearrangement

detected by fluorescence in situ hybridization

(FISH) from a cohort of 550 cases of DLBCL

stratified by DDX3X mutation status.

(D) Frequency of DDX3X mutation in 558 cases of

DLBCL stratified by transcriptional subtype.

(E) Frequency of DDX3X mutation determined by

analysis of RNA-seq in 553 cases of DLBCL

enrolled in the GOYA trial, stratified by transcrip-

tional subtype.

(F) Distribution of DDX3X mutations identified in

this and published studies of BL and DLBCL.

The p values were calculated by the chi-square

test.

See also Figure S1.
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medulloblastoma (Jones et al., 2012; Pugh et al., 2012; Robinson

et al., 2012), nonsense and frameshift mutations were frequent in

lymphoma, suggesting that the functional impact of DDX3X mu-

tation may differ between cancer types (Figures 1F and S1G).

Analyses across multiple patient cohorts reveal that DDX3X is

preferentially mutated in MYC-driven B cell lymphomas. This

suggests that the loss of DDX3X helicase activity may cooperate

with MYC during lymphomagenesis.

DDX3X mutation cooperates with MYC in ex vivo-
cultured human GC B cells
Forced expression of wild-type (WT) or mutant DDX3X or DDX3Y

in lymphoma cell lines induced cell death (Figures S2A–S2G). In
Molecular
contrast, HEK293 cells tolerated DDX3X

overexpression without toxicity (Fig-

ure S2H), underscoring the potential for

tissue and context-specific effects of

DDX3X. Since BL arises from GC B cells,

we used a strategy to culture and trans-

duce primary humanGCBcells in a cocul-

ture system designed to mimic the GC

microenvironment (Caeser et al., 2019,

2021). Genetic manipulation of these cells

allows us to model the early stages of hu-

man GC lymphomagenesis. GC B cells

tolerated the forced expression of DDX3X

(Figure S2I). Furthermore, a competitive

advantagewas seen in cells cotransduced

with bothMYCand the dominant-negative

DDX3X mutant (K230E) (Yedavalli et al.,

2004) or with the two most common lym-

phoma helicase mutations, R475C and

R528C (Figures 2A and S2J–S2L). This

competitive advantage in MYC-trans-

duced cells was not seen when cells

were cotransduced with WT DDX3X or
DDX3Y (Figure 2A). Furthermore, no competitive advantage was

seen inmutant DDX3X-transduced cells when the alternative lym-

phoma oncogene BCL6 was used in place of MYC (Figure 2A).

GC B cells cultured ex vivo remained viable in culture for only

7–10 days. Extended culture can be achieved by the cotrans-

duction of BCL2 and MYC (Caeser et al., 2019). Therefore, we

cotransduced cells withMYC, BCL2, andDDX3X (WT ormutant).

A competitive advantage was again seen in cells expressing

MYC and mutant DDX3X (Figure 2B), but was not observed

with WT DDX3X, nor when BCL6 was used in place of MYC (Fig-

ure 2B). Overall, these experiments reveal a cooperative effect

between MYC expression and loss-of-function, or dominant-

negative, DDX3X helicase mutation.
Cell 81, 4059–4075, October 7, 2021 4061
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Figure 2. DDX3X mutation cooperates with

MYC in ex vivo human GC B cells

(A) Human GC B cells were expanded ex vivo and

cotransduced withMYC plus the indicated DDX3X

construct at day 0. The frequency of DDX3X-

transduced cells (marker positive) as a proportion

of all MYC-transduced cells was monitored by

flow cytometry and is shown over time relative to

day 2.Where indicated, BCL6was used in place of

MYC.

(B) Human GC B cells were cotransduced with

MYC-2A-BCL2 plus the indicated DDX3X

construct at day 0. The frequency of DDX3X-

transduced cells (marker positive) as a proportion

of all MYC-transduced cells is shown over time

relative to day 2.Where indicated, BCL6-2A-BCL2

was used in place of MYC-2A-BCL2.

Data show means ± SEMs for replicate cultures

from 4–7 human donors, as indicated; *p < 0.01,

**p < 0.01, ***p < 0.001, independent t test.

See also Figure S2.
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Protein and mRNA interactomes implicate DDX3X in the
regulation of mRNA translation in lymphocytes
Previous reports across multiple tissue types have implicated

DDX3X in multiple stages of RNA biogenesis. To establish the

role of DDX3X in human lymphoid cells, we sought to identify

DDX3X-interacting proteins. We performed immunoprecipitation

(IP) and mass spectrometry (MS) of endogenous DDX3X from

two lymphoma cell lines, U2932 and Mutu, which express WT

and R475S helicase mutant DDX3X, respectively (Figures 3A–3C

and S3A–S3C; Table S2). We detected strong enrichment for the
4062 Molecular Cell 81, 4059–4075, October 7, 2021
components of the translation initiation

machinery, including eukaryotic initiation

factor4E (eIF4E), eIF4A,eIFG4, andalmost

all of the subunits of the eIF3 complex (Fig-

ures 3A–3C). These interactions were de-

tected in both the WT and the helicase

mutant cell lines.CoIPofDDX3X fromcon-

trol and R475C CRISPR-edited U2932

clones and immunoblotting for eIF3a and

eIF3b showed no evidence that the heli-

case mutation altered these protein-pro-

tein interactions (Figures S3D and S3E).

These findings are consistent with a previ-

ously described ability of DDX3X to pro-

mote mRNA translation (Lee et al., 2008;

Soto-Rifo et al., 2012). Other interacting

proteins (including DDX1, ATXN2L, NU-

FIP2, PDCD4, USP10, UPF1, and EW

SR1) are known components of stress

granules, cytoplasmic messenger ribonu-

cleoprotein foci associated with stalled

translation initiation (Buchan and Parker,

2009; Jainetal., 2016).Thesefindingssug-

gest that in lymphoid cells, DDX3Xmay in-

fluence mRNA translation, either through

direct involvement in translation initiation

or by remodeling of stress granules.
To establish whether DDX3X acts globally or on a specific sub-

set of mRNAs, we performed individual nucleotide resolution

crosslinking IP (iCLIP). Previous studies of DDX3X have exam-

ined DDX3X-bound transcripts in HEK cells (Calviello et al.,

2021; Oh et al., 2016; Valentin-Vega et al., 2016). To establish

the identity of transcripts bound by endogenous DDX3X in

lymphoid cells, we performed iCLIP in two lymphoma cell lines

U2932 (female, DDX3X-WT) and Mutu (male, DDX3X-R475S),

as well as non-malignant human GC B cells from female

tonsil tissue (Figures S3F–S3I). Crosslinking sites mapped
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Figure 3. Protein and mRNA interactomes in lymphocytes implicate DDX3X in the regulation of translation
(A) DDX3X-interacting proteins were identified by stable isotope labeling by/with amino acids in cell culture-mass spectrometry (SILAC-MS) following immu-

noprecipitation of endogenous DDX3X in U2932 andMutu. Scatterplot shows log2 SILAC ratios of interacting proteins. Proteins significantly enriched in both cell

lines are labeled.

(legend continued on next page)
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predominantly to mature protein-coding mRNA transcripts (Fig-

ure 3D). We found considerable overlap between transcripts

bound byDDX3X in all three cell types (Figures 3E and S3H), sug-

gesting that the R475 mutant did not abolish interaction with

target mRNA transcripts. Metagene analysis showed the great-

est enrichment of iCLIP crosslinks at translation initiation sites

(TISs) (Figure 3F). DDX3X bound to a large number of transcripts

across a broad range of mRNA expression (Figure S3J). Howev-

er, strong enrichment was seen for mRNAs encoding compo-

nents of the core protein synthesis machinery, in particular, the

protein subunits of the ribosome (Figures 3G, 3H, and S3K; Table

S3). While not excluding involvement in alternative aspects of

RNA processing, our findings suggest that DDX3Xmay influence

the translation of a cohort of mRNA transcripts encoding compo-

nents of the core protein synthesis machinery.

DDX3X regulates ribosome biogenesis and global
protein synthesis
To establish how DDX3X affects the translation of its mRNA tar-

gets, we performed transcriptome-wide translational profiling

(ribo-seq) in cell lines following short hairpin RNA (shRNA)

knockdown of DDX3X (Figure 4A). Using 2 separate DDX3X

shRNAs, we profiled 8 replicate knockdowns in the WT cell

line U2932 and 4 replicate knockdowns in the R475S mutant

cell line Mutu. Ribo-seq data quality was confirmed by mRNA

ribosome footprint length, evidence of triplet codon periodicity,

high consistency between replicate experiments, and the

abrupt dropoff of footprints at the stop codon (Figures S4A–

S4F). Overall, 90 genes showed decreased transposable ele-

ments (TEs) (TE-down) and 70 genes showed increased TE

(TE-up) after knockdown of DDX3X in the WT cell line U2932

(Figures 4B and 4C; Table S4). TE-up genes were not enriched

among iCLIP targets and were not associated with any signifi-

cantly enriched Gene Ontology (GO) term. However, TE-down

genes were strongly enriched among iCLIP target genes

(adjusted p < 10�6; Fisher test) (Figures 4D, 4E, S4G, and

S4H). Furthermore, TE-down genes were strongly enriched for

transcripts encoding components of the core translational ma-

chinery (Figures 4C, 4F, and 4G; Table S4). GO analysis of TE-

down transcripts revealed terms associated with translation, in

particular, protein constituents of the ribosome (Figures 4F and

4G). TE was reduced for almost all of the transcripts encoding

protein subunits of the ribosome (Figure 4H), an effect that ap-

peared specific to components of the cytosolic ribosome. In

contrast to the depletion of WT DDX3X, the depletion of

R475S mutant DDX3X from the cell line Mutu had little effect

on mRNA translation, consistent with the expected loss-of-

function nature of this mutation.
(B) Venn diagram showing overlap of DDX3X-interacting proteins in Mutu and U2

(C) Gene Ontology (GO) enrichment of DDX3X-interacting proteins identified in b

(D) Density of iCLIP crosslink sites mapping to the indicated genetic features is s

(E) Overlap between DDX3X-bound transcripts detected in iCLIP experiments in

(F) Metagene summary of crosslink density across DDX3X-boundmRNA transcrip

regions. ORF, open reading frame; TIS, translation initiation site; TTS, translation

(G) Validation by RNA immunoprecipitation and RT-PCR of mRNA transcripts bou

cell line.

(H) GO enrichment of DDX3X-bound transcripts identified by iCLIP in the indicat

See also Figure S3.
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To validate the conclusion of our ribo-seq experiments, we

performed proteomic profiling. This confirmed the reduced

abundance of almost all of the ribosome proteins following

shRNA depletion of DDX3X in U2932 (Figures S4I and S4J; Table

S5). GO analysis of changing proteins was enriched for terms

related to translation, protein synthesis, and the ribosome

(Figure S4I). In an orthogonal approach, we interrogated the

ProteomeHD database, which uses data from 5,288 mass spec-

trometry runs across multiple tissue types and biological condi-

tions to infer a co-regulation map of the human proteome (Kus-

tatscher et al., 2019). This revealed 81 proteins co-regulated with

DDX3X (Figure S4K; Table S5). Of these, 27 were components of

the GO term cytosolic ribosome (adjusted p = 7.2E�42). Eight

further proteins were components of the core translational ma-

chinery. The most enriched GO terms were ribonucleoprotein

(RNP) complex, mRNA metabolism, translation initiation, and

cytosolic ribosome. The analysis of iCLIP, translational profiling,

proteomic, and ProteomeHD results converged onto the regu-

lated translation of mRNAs encoding components of core trans-

lation and protein synthesis machinery.

The reduced translation of components of protein synthesis

machinery predicted a reduction in global protein synthesis

following the depletion of DDX3X. Accordingly, we saw reduced

global protein synthesis by quantifying O-propargyl-puromycin

(OPP) incorporation in U2932 following the depletion of DDX3X

(Figure 4I). Suppression of global protein synthesis was also

seen in human GC B cells transduced with helicase mutant or

dominant-negative DDX3X (Figure 4J). These data reveal that

by promoting the translation of mRNAs encoding components

of the translation machinery, DDX3X activity determines global

protein synthesis capacity.

DDX3X buffers proteotoxic stress in MYC-transduced
primary GC B cells
This impairment of protein synthesis capacity in DDX3X mutant

cells sits in apparent contrast to the effect of MYC, which pro-

motes ribosome biogenesis and global protein synthesis. We

sought to confirm the effects ofMYC in humanGCBcells. Trans-

duction of MYC alone into primary ex vivo GC B cells led to

increased global protein synthesis but also increased apoptosis

(Figure S5A). Neither effect was seen after the transduction of

MYC into established lymphoma lines (Figure S5B), nor was it

seen in primary GC B cells transduced with BCL6 (Figure S5C).

To overcome this apoptosis and allow us to determine the tran-

scriptional response to MYC, we cotransduced GC B cells with

MYC and BCL2. As controls, cells were transduced with either

BCL2 alone or BCL6 and BCL2. RNA-seq showed the upregula-

tion of a signature of ribosome biogenesis in MYC-transduced
932.

oth cell lines.

hown for the indicated cell types.

lymphoma cell lines and primary human GC B cells.

ts, showing length-scaled coding region and 3 kb of the 50- and 30-untranslated
termination site.

nd by DDX3X in U2932. DDX3Y is included as a negative control in this female

ed cell types.
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cells (Figure 5A). Gene set enrichment analysis (GSEA) revealed

the induction of the unfolded protein response (UPR), suggestive

of proteotoxic stress (Figure 5B). We confirmed the induction of

endoplasmic reticulum (ER) stress in MYC-transduced human

GC B cells by immunoblot for the ER stress marker phosphory-

lated eIF2a (p-eIF2a) (Figure 5C) and PCR and qRT-PCR for the

spliced isoform of XBP1 (XBP1s), which undergoes alternative

splicing in response to activation of the UPR (Figures 5D and 5E).

To determine whether MYC-induced proteotoxicity was caus-

ally related to the observed MYC-induced apoptosis in human B

cells, we treated MYC-transduced human GC B cells with rapa-

mycin, a consequence of which is to suppress ribosome biogen-

esis. While a higher concentration led to increased cell death, a

lower concentration of rapamycin abolished MYC-induced in-

crease in global protein synthesis and was associated with a

modest reduction in MYC-induced apoptosis (Figures 5F, S5D,

and S5E).

We hypothesized that DDX3X mutation may allow GC B cells

to tolerate the high-level expression of MYC by moderating

MYC-induced global protein synthesis and proteotoxic stress.

We therefore cotransduced human GC B cells with MYC plus

either WT or mutant DDX3X. Mutant DDX3X abrogated both

the MYC-induced increase in global protein synthesis and

MYC-induced apoptosis (Figures 5G, 5H, and S5F–S5H). To

confirm that the effects of mutant DDX3X were due to loss of

function, we used CRISPR-Cas9 to delete DDX3X from human

GC B cells, followed by the forced expression of MYC and

BCL2. DDX3X deletion reduced the impact of MYC on global

protein synthesis, and ER stress judged by XBP1s and p-eIF2a

expression (Figures 5I–5K). Our findings suggest that increased

MYC expression in human GC B cells is associated with

increased global protein synthesis and proteotoxic stress. These

effects are buffered by the loss of DDX3X activity.

DDX3X mutation alters the ER stress response
We used CRISPR editing to create the R475C helicase mutant

and control U2932 clones (Figure S6A). RNA-seq changes in

CRISPR-edited homozygous mutant clones were compared

with those from RNA-seq in shRNA-depleted cells. Samples

with the strongest knockdown of DDX3X showed the greatest
Figure 4. DDX3X regulates ribosome biogenesis and global protein sy

(A) Knockdown of DDX3X using 2 independent shRNAs.

(B) Scatterplot comparing changes in mRNA abundance (RNA-seq) with changes

U2932. Data are from 8 replicate knockdowns using 2 different shRNAs. Transcri

by color.

(C) Scatterplot showing changes in TE plotted against mRNA abundance. Signifi

(D) Scatterplot showing changes in TE plotted against crosslinking density from

(E) Bar chart showing the proportion of transcripts, with differential translation ide

within each category is indicated. Adjusted p values (Fisher test) are shown and

(F) GO enrichment of genes with reduced TE following DDX3X depletion.

(G) Heatmap showing fold change in RNA-seq, ribo-seq, and TE across 8 replicate

are shown (Mass Spec). DDX3X targets identified from iCLIP and genes encodin

(H) Cumulative distribution of TE change in U2932 following shRNA depletion o

proteins, or all other genes. The p value was calculated using the Kolmogorov-S

(I) Global protein synthesis quantified by OPP incorporation at the indicated time p

shRNA. Data show means ± SEMs; *p < 0.05, ***p < 0.001; ANOVA with multiple

(J) OPP incorporation 48 h after overexpression of WT or mutant DDX3 constru

means ± SEMs; *p < 0.05, ***p < 0.001; ANOVA with multiple comparison testing

See also Figure S4.
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gene expression overlap with the R475C-edited clones (Fig-

ure S6B), reinforcing that R475C mutation should be considered

loss of function. Strikingly, GSEA revealed how R475C mutant

clones were associated with a transcriptional profile opposite

to that seen in MYC-transduced GC B cells (Figures 5B and

6A; Table S6). Among the most downregulated gene sets in

DDX3X-mutant clones were ‘‘MYC targets V1,’’ ‘‘mTORC1

signaling,’’ and ‘‘UPR’’ (Figure 6A). The UPR genes ERN1 (en-

coding IRE1) andXBP1were strongly downregulated (Figure 6B).

These data support the conclusion that loss-of-function DDX3X

mutations act to oppose the effects of MYC, at least in part by

constraining the ability of MYC to drive global protein synthesis

and proteotoxic stress.

Proteomic profiling of R475C mutant clones showed a

reduced abundance of proteins related to the ER and ER stress

(Figures 6C and 6D; Table S6). Nearly one-third of downregu-

lated proteins were related to the ER or ER stress (Figure 6C).

We exposed WT and R475C mutant clones to the ER stress

inducer thapsigargin. While equivalent at baseline, we saw

reduced eIF2a phosphorylation following exposure to thapsigar-

gin (Figure 6E), suggesting a reduced ER stress response in

DDX3X mutant cells.

Analysis of gene expression data from two published BL

studies (Grande et al., 2019; Schmitz et al., 2012) recapitulated

the changes seen in CRISPR-edited clones. DDX3X mutant bi-

opsies showed reduced expression of the gene sets ‘‘MYC tar-

gets,’’ ‘‘mTORC1 signaling’’ and ‘‘UPR’’ (Figure 6F; Table S6)

and reduced expression of the UPR genes ERN1 and XBP1 (Fig-

ures 6G and S6C).

It was previously reported that a reduced basal level of ER

stress may render cells more sensitive to pharmacological in-

ducers of ER stress (Huber et al., 2013). Therefore, we tested

the sensitivity of R475C-edited clones and DDX3X mutant cell

lines to the ER stress-inducing agents thapsigargin and tunica-

mycin. This revealed increased sensitivity of DDX3Xmutant cells

to pharmacological inducers of ER stress (Figures 6H and 6I).

Our data do not exclude the possibility that DDX3X regulates

alternative tumor suppressor pathways; however, together,

they support the conclusion that mutant DDX3X acts to buffer

the increase in global protein synthesis and the resulting
nthesis

in ribosome footprint density (ribo-seq) following shRNA depletion of DDX3X in

pts with altered translational efficiency (TE) or mRNA abundance are indicated

cantly changing genes are colored.

iCLIP experiments.

ntified as direct targets of DDX3X in iCLIP experiments. The number of genes

reflect the comparison of each category with stable genes.

knockdowns for all differentially translated genes. Protein abundance changes

g ribosomal proteins (RPs) are indicated by purple or red bands, respectively.

f DDX3X is plotted for genes encoding cytosolic or mitochondrial ribosome

mirnov test.

oints following shRNA depletion of DDX3X in U2932 and normalized to control

comparison testing; n = 4 replicate experiments.

cts in human GC B cells normalized to empty vector (EV) control. Data show

; n = 5 replicate human donors.
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Figure 5. DDX3X buffers proteotoxic stress in MYC-transduced human GC B cells

(A) RNA-seq from human GC B cells transduced with BCL2, BCL6-2A-BCL2, or MYC-2A-BCL2 showing expression change of genes belonging to the gene set

‘‘Ribosome Biogenesis’’ (GO: 0042254).

(legend continued on next page)
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proteotoxic stress that would otherwise occur as a consequence

of MYC expression. Furthermore, these data reveal a potential

therapeutic vulnerability of mutant cells to drugs that induce

ER stress.

Upregulation of DDX3Y rescues loss of DDX3 helicase
activity
The negative impact of DDX3X mutation on MYC-driven protein

synthesis appeared inconsistent with previous data showing

how increased translation is required for MYC-driven lymphoma

(Barna et al., 2008).We hypothesized that this inconsistencymay

reflect stage-specific requirements during lymphomagenesis

and that DDX3X mutant cells may later acquire mechanisms to

compensate for their reduced translational capacity.

Given the enrichment of DDX3X mutation in male lymphoma

(Figures S1E and S1F) and previous reports of DDX3X mutation

in other male-skewed cancers (Alkallas et al., 2020; Dunford

et al., 2017), we considered the possibility that the Y chromo-

some homolog DDX3Y may compensate in male cells (Fig-

ure S7A). Although widely transcribed, DDX3Y protein is not

expressed in normal adult tissue outside of the testis (Ditton

et al., 2004; Foresta et al., 2000; Rauschendorf et al., 2011). Us-

ing a DDX3Y-specific antibody, we saw no expression of DDX3Y

protein in normal male GC B cells. However, DDX3Y was de-

tected in all of the male lymphoma cell lines tested (Figure 7A).

Furthermore, we observed the expression of DDX3Y protein in

all four male BL patient-derived xenografts and all five male pri-

mary BL biopsies tested (Figures 7B and 7C). The specificity of

our DDX3Y antibody was evidenced by reduced expression after

shRNA knockdown in male cell lines (Figure S7B) and the

absence from any female cell or biopsy (Figures 7A,–7C).

Consistent with previous reports that DDX3Y is regulated at

the level of translation (Jaroszynski et al., 2011), we observed

no correlation with mRNA abundance (Figures S7C–S7E). We

therefore cloned the 50 UTR of human andmouse DDX3Y into re-

porter constructs and expressed these in primary GCB cells and

in lymphoid cell lines. This revealed a striking suppression of re-

porter expression by the human but not the mouse DDX3Y 50

UTR (Figure S7F). This reinforces the potential for translational

regulation to determine DDX3Y protein expression and high-

lights potential interspecies differences in the regulation of this

protein.

We found no evidence from our iCLIP or ribo-seq data that the

DDX3Y transcript was a direct target of DDX3X. Furthermore, the
(B) Gene set enrichment analysis (GSEA) of RNA-seq from human GC B cells tran

gene sets related to MYC, UPR, and mammalian target of rapamycin complex 1

(C–E) Assessment of ER stress markers in human GC B cells 5 days after transd

spliced XBP1 by RT-PCR and Pst1 digestion (D), or spliced XBP1 by isoform-s

(GAPDH) (E). Bar charts show means ± SEMs relative to BCL2 control for 3 hum

(F) Effect of rapamycin (50 nM) onMYC-induced apoptosis quantified by flow cytom

in human GC B cells transduced with MYC or EV control. *p < 0.05; Wilcoxon pa

(G and H) Global protein synthesis by OPP incorporation (G) or apoptosis (H) in cu

mutant DDX3. Values are normalized to EV control withoutMYC. *p < 0.05, **p < 0.

as indicated.

(I–K) Global protein synthesis by OPP assay (I), spliced XBP1 by qRT-PCR (J), o

deletion, then transduced with MYC-2A-BCL2 or BCL6-2A-BCL2. Significance a

munoblots are representative of 5 donors.

See also Figure S5.
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deletion of DDX3X in male GC B cells did not induce the expres-

sion of DDX3Y protein in vitro, assessed 5 days after deletion

(Figure 7D). To establish whether DDX3X depletion may lead to

the induction of DDX3Y in a longer-term, in vivo tumorigenesis

experiment, we deleted DDX3X from primary human GC B cells

and then transduced them with MYC-2A-BCL2. Cells were then

injected into immunodeficient mice, an approach we have previ-

ously used to create experimental tumors (Caeser et al., 2019).

Tumors formed in all of the mice and were harvested at 7 weeks

after injection. While modest depletion of DDX3Xwas seen at the

time of injection, complete loss or truncation was seen in most

tumors 7 weeks later, suggesting the selection of DDX3X-

deleted clones during the process of MYC-driven lymphoma-

genesis (Figure 7D). In contrast, DDX3Y, while not detected in

GC B cells at the time of injection, showed abundant expression

in all tumors (Figure 7D). Furthermore, the expression of DDX3Y

was greater in DDX3X-depleted cells. This suggests that deregu-

lated translation of DDX3Y may be a feature of transformed B

cells and that its expression is indirectly induced or selected in

DDX3X-depleted cells.

RNA IP revealed that DDX3Y bound many of the same mRNA

targets as DDX3X (Figure 7E), suggesting that it may function

similarly to DDX3X. The knockdown of DDX3Y reduced global

protein synthesis in male but not female cell lines (Figures 7F

and S7G). Furthermore, the expression of a DDX3Y construct

was able to rescue the defects in both global protein synthesis

and cell growth whenDDX3Xwas deleted by CRISPR in cultured

female murine B cells (Figures 7G and 7H). Knockdown of

DDX3Y was toxic to almost all male cell lines tested (Figure 7I),

suggesting that male lymphoma cells are addicted to the aber-

rant expression of DDX3Y. These data suggest that the ectopic

expression of DDX3Y protein in established male lymphomas

compensates for DDX3X loss and restores protein synthetic ca-

pacity. DDX3Y is thus an induced tumor-essential gene.

DISCUSSION

DDX3X mutations have been reported in a variety of malig-

nancies. Here, we have characterized the role of DDX3X and

its mutation in MYC-driven B cell lymphoma. Initial studies of

DDX3X mutation in medulloblastoma focused on the activation

ofWNT signaling by helicase-dead DDX3X. However, the pattern

of mutation in lymphoma differs from that in medulloblastoma,

suggesting that the effect of DDX3Xmutationmay differ between
sduced with MYC-2A-BCL2 compared to BCL2 alone, showing enrichment of

(mTORC1) signaling.

uction with the indicated constructs. Data show immunoblot for p-eIF2a (C),

pecific qRT-PCR normalized to glyceraldehyde 3-phosphate dehydrogenase

an donors; *p < 0.05, independent t test.

etric staining for cleaved poly(ADP-ribose) polymerase (PARP) and caspase-3

ired t test, 10 replicate donors.

ltured human GC B cells 48 h after transduction with MYC and either EV, WT, or

01, ***p < 0.001; ANOVAwithmultiple comparison testing, 6–7 replicate donors,

r p-eIF2a expression (K) in human GC B cells depleted of DDX3X by CRISPR

nalyzed by paired t test. *p < 0.05, **p < 0.01, ***p < 0.001; paired t test. Im-
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these two malignancies. Furthermore, our data suggest that the

requirement for DDX3X activity may change throughout the

development of the tumor and may be accompanied by signifi-

cant cellular adaptation. These observations underscore the

importance of the experimental system used. The use of primary

human GC B cells grown ex vivo in a co-culture designed to

mimic the GC microenvironment allowed us to model the initial

stages of human lymphomagenesis in a manner that was not

possible in established cell lines.

Previous reports have proposed individual target mRNAs,

including Kr€uppel-like factor 4 (KLF4) (Cannizzaro et al., 2018)

and microphthalmia-associated transcription factor (MITF)

(Phung et al., 2019), whose translation is regulated by DDX3X.

We did not detect KLF4 expression, nor did we observe changes

in MITF translation in our experiments in lymphoid cells. In me-

dulloblastoma, mutant DDX3X promotes WNT activity in a heli-

case-independent fashion through an association with CSNK1E

protein (Cruciat et al., 2013; Pugh et al., 2012). We did not find

evidence of this association in lymphoid cells, perhaps due to

the tissue specificity of these interactions. Our data do not

exclude the possibility that DDX3X may exert other functions

beyond translation; however, multiple independent lines of

investigation converged on the regulation of mRNAs’ encoding

components of the core translational machinery and a conse-

quent effect on protein synthesis and ER stress. This leads us

to conclude that during lymphomagenesis, loss or mutation of

DDX3X acts to buffer proteotoxic stress associated with the

translocation of MYC in a GC B cell.

The role of DDX3X in mRNA translation has been the subject of

previous studies. DDX3X promotes the translation of target tran-

scripts by binding to eIF3 and the 40S subunit to facilitate joining

of the 60S subunit and formation of the 80S complex (Geissler

et al., 2012; Lee et al., 2008). DDX3X also plays a non-redundant

role with eIF4a in the unwinding of structured regions within the

50 UTR of target transcripts to allow joining of the 43S pre-initia-

tion complex (Soto-Rifo et al., 2012). Finally, studies of the yeast

homolog Ded1 show how it is able to nucleate stress granule

formation in a helicase-independent manner. In contrast, Ded1

helicase activity is required to release transcripts from stress

granules, thereby promoting their translation (Hilliker et al.,

2011). Recent studies using overexpressed mutant DDX3X

reveal increased stress granule formation (Lennox et al., 2020;

Valentin-Vega et al., 2016). Therefore, helicase mutant DDX3X
Figure 6. DDX3X mutation alters endoplasmic reticulum (ER) stress re
(A) GSEA of RNA-seq comparing DDX3X R475C-edited or control clones (left), a

(B) Relative expression of the UPR marker transcripts ERN1 (encoding IRE1) an

nificance from differential expression analysis (DESeq2).

(C) Heatmap showing proteins with altered abundance in proteomic profiling o

0005783) and ER-associated protein degradation pathway (ERAD) (GO: 0036503

(D) GO terms enriched among proteins with decreased expression in DDX3X R4

lecular function.

(E) Immunoblot showing eIF2a phosphorylation in control and CRISPR-edited DDX

a summary of p-eIF2a quantification by densitometry across 3 DDX3X WT and m

(F and G) GSEA of RNA-seq data from the indicated studies reanalyzed to compa

downregulated in the presence of mutantDDX3X (F) or the relative abundance of th

(H) Sensitivity of DDX3X R475C-edited U2932 or control clones to the ER stress

(I) Sensitivity of cell lines carrying WT (n = 5) or mutant DDX3X (n = 5) to thapsiga

See also Figure S6.

4070 Molecular Cell 81, 4059–4075, October 7, 2021
may reduce the access of its target transcripts to the translating

ribosome by sequestration in stress granules. While we do not

define the precise mechanism, our data show how the loss of

DDX3X is associated with the reduced translation of target tran-

scripts encoding the core translational machinery, thereby lead-

ing to reduced global protein synthesis.

The requirement to limit global protein production has been re-

ported in other malignancies. Suppressed translation by eEF2 ki-

nase allows developing neuroblastoma cells to survive nutrient

deprivation (Leprivier et al., 2013). This effect was specific to

the MYC-N-driven tumor models (Delaidelli et al., 2017). The

loss of Runx1 in myelodysplasia leads to reduced ribosome

biogenesis and attenuation of the UPR, providing stress resis-

tance and competitive advantage to Runx1-deleted hematopoi-

etic stem cells (Cai et al., 2015). The enzyme protein kinase R-like

ER kinase (PERK) is activated by mutation in human medullo-

blastoma; mouse models show that PERK is essential for the

suppression of translation during tumor initiation, but, in a

manner similar to our proposed DDX3X model, PERK becomes

dispensable in an established tumor (Ho et al., 2016). Together

with our findings, these reports exemplify how global protein

translation and the cellular response to ER stress must be main-

tained within strict boundaries, the limits of which may change

depending upon the stage of tumor development. This stage-

and tissue-specific requirement may explain conflicting descrip-

tions of DDX3X as a tumor suppressor in some contexts and as

an oncogene in others.

Our conclusions may appear inconsistent with findings from

mouse models of MYC-driven lymphoma. Haploinsufficiency for

Rpl24 reduces global protein synthesis and abrogates the devel-

opment ofMYC-induced lymphoma (Barna et al., 2008).However,

genetic ablation of Rpl24 leads to a permanent suppression of

translation. In contrast, mutation of DDX3X can be rescued by

ectopic DDX3Y, allowing a cell to titrate helicase activity to suit

the stage of tumorigenesis. While we do not exclude subtle differ-

ences in the target repertoire, our data, combined with the almost

completeaminoacidconservation in the helicaseRNA-interacting

domain, support a model in which the ectopic expression of

DDX3Y acts to rescue the translational defect associated with

the lossofDDX3X.Recently publisheddata support a redundancy

between DDX3X and DDX3Y (Venkataramanan et al., 2020). This

potential to reactivate DDX3Y may contribute to the sex bias

seen in BL and other male-skewed cancers in which DDX3X is
sponse
nd DDX3X shRNA knockdown experiments (right).

d XBP1 mRNA in RNA-seq from DDX3X R475C-edited clones. Statistical sig-

f DDX3X R475C-edited clones. Proteins included in the GO terms ER (GO:

) are indicated by red and orange highlighting, respectively.

75C-edited clones. BP, biological process; CC, cellular component; MF, mo-

3XR475C clones in the presence or absence of thapsigargin. Bar chart shows

utant clones. *p < 0.05, paired t test.

re cases of sporadic BL with either WT or mutant DDX3X. Relevant gene sets

e UPR transcripts ERN1 and XBP1 (G). Statistical significance is fromDESeq2.

-inducing agent thapsigargin.

rgin and tunicamycin.
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Figure 7. Upregulation of DDX3Y in estab-

lished tumors rescues loss of DDX3 heli-

case activity

(A–C) Immunoblots showing DDX3Y protein

abundance in lysates from normal GC B cells and

lymphoma cell lines (A), normal GC B cells and BL

patient-derived xenografts (BL PDX) (male cell line

DOHH2 included as a positive control) (B), or BL

patient biopsies (C).

(D) Immunoblot showing expression of DDX3X and

DDX3Y in experimental tumors created by

CRISPR deletion of DDX3X (or control) from

normal human GC B cells from a male donor, fol-

lowed by transduction with MYC-2A-BCL2 and

engraftment into immunodeficient mice. The re-

sulting tumors were harvested 7 weeks after in-

jection. Expression is also shown for lysates har-

vested from cells immediately before injection (day

5 after transduction) and in unmanipulated GC B

cells from the same donor (GC B).

(E) RNA-IP using antibodies specific for DDX3X,

DDX3Y, or isotype control followed by RT-PCR for

the indicated transcripts from the female line

U2932 or the male line Mutu.

(F) Global protein synthesis by OPP assay in male

and female cell lines at the indicated time points

after shRNA depletion of DDX3Y. Graphs show

means ± SEMs of 3 replicate experiments.

(G and H) Global protein synthesis measured by

OPP assay (G) or competitive growth assay (H) in

female Cas9-transgenic cultured murine B cells

transduced with single-guide RNA (sgRNA) tar-

geting Ddx3x or control, and cDNA encoding

either human DDX3Y or EV. Graphs showmeans ±

SEMs from 3 mice.

(I) Knockdown of DDX3Y in lymphoma cell lines.

The percentage of shRNA-transduced cells was

followed over time and presented as % shRNA+

cells relative to day 0. Bars showmeans ± SEMs of

3–4 replicate experiments per cell line.

*p < 0.05, **p < 0.01, ***p < 0.001; ANOVA with

multiple comparison testing.

See also Figure S7.

ll
OPEN ACCESSArticle
commonlymutated. In male lymphomas, our shRNA experiments

demonstrate addiction to DDX3Y in almost every cell line tested.

The absence ofDDX3Ymutation in any cell line tested and the rar-

ity ofDDX3Ymutation across published data are consistentwith a

requirement for the ongoing expression of functional DDX3Y in

male lymphoid tumors.

Our findings have relevance to the treatment of MYC-driven

lymphoma and identify DDX3Y as an attractive therapeutic
Molecular
target. While essential for male lym-

phoma lines, DDX3Y protein is not ex-

pressed in normal adult human cells (Dit-

ton et al., 2004; Foresta et al., 2000;

Rauschendorf et al., 2011). Ectopic

DDX3Y expression was observed and

required in lymphoma cell lines, even in

the absence of DDX3X mutation, sug-

gesting it may be a therapeutic target in-

dependent of DDX3X status. Germline
deletion of DDX3Y is observed in a proportion of infertile males

and has no phenotype beyond azoospermia (Foresta et al.,

2000; Rauschendorf et al., 2011), suggesting the toxicity of ther-

apeutic DDX3Y inhibition would be low. Two inhibitors of DDX3

have been developed (Bol et al., 2015; Brai et al., 2016). Howev-

er, both target the DDX3 helicase domains, which are conserved

between DDX3X and DDX3Y. Specific inhibitors or degraders of

DDX3Y have yet to be developed. A previous report described
Cell 81, 4059–4075, October 7, 2021 4071
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the ability of CD8 T cells to specifically recognize aberrantly ex-

pressed DDX3Y protein in leukemic stem cells, suggesting the

potential to harness ectopic DDX3Y expression as a target for

immunotherapy (Rosinski et al., 2008).

In summary, our data reveal a complex stage-specific require-

ment for DDX3X helicase activity. We propose a two-stagemodel

wherebymutant DDX3Xmoderates the ability ofMYC to drive up-

regulation of the core translational machinery. As a result, MYC-

induced global protein synthesis is buffered, allowing cells to

tolerate the sustained, high-level expression of MYC. Following

full transformation, tumor cells increase translational capacity

by the ectopic expression of DDX3Y. These findings suggest

that drugs that disrupt the delicate balance of translation and pro-

teotoxic stress, or those that specifically target DDX3Y, represent

attractive therapeutic strategies for MYC-driven lymphoma.

LIMITATIONS OF THE STUDY

The model we propose arises predominantly from experiments

in ex vivo human GC B cells and lymphoma cell lines rather

than in vivo models of MYC-driven murine lymphoma. Despite

the recurrent finding of frequent DDX3X mutation in human BL,

ddx3x mutation has not been observed in murine models of BL

(Lefebure et al., 2017; Sander et al., 2012). Several factors may

explain this observation. First, and in contrast to the human, is

the apparent constitutive expression of DDX3Y protein in mouse

hematopoietic and lymphoid cells. In keeping with this, deletion

of ddx3x is not associated with a phenotype in male mice (Szap-

panos et al., 2018). Our own reporter experiments suggest

potential species differences in the regulation of DDX3Y expres-

sion. Second, mice express a third DDX3 family gene, d1pas1,

that is not present in the human genome. D1pas1 expression

was proposed to explain previously noted differences between

DDX3Y loss in mouse and humans (Matsumura et al., 2019).

These interspecies differences make it unlikely that our pro-

posed two-stage ‘‘loss and rescue’’ model would be recapitu-

lated in murine models of BL. However, we anticipate that future

mouse models will elucidate further mechanistic understanding

about the role of DDX3X in MYC-driven lymphoma.
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Antibodies

DDX3X Bethyl Laboratories Cat #A300-474A,; RRID: AB_451009

DDX3X Santa Cruz Cat# sc-130736; RRID:AB_2092882

b-actin Sigma Cat # A5441; RRID: AB_476744

Rabbit IgG isotype control Invitrogen Cat # ab27478; RRID: AB_2616600

Cleaved PARP BD Bioscience Cat# 564129; RRID:AB_2738611

Active caspase 3 antibodies BD Bioscience Cat# 560626; RRID:AB_1727414

DDX3Y This paper N/A

peIF2a Cell signaling Cat# 3597S; RRID: AB_390740

eIF3a Novus Cat# NBP1-18891; RRID:AB_1625664

eIF3b Cambio Cat# A301-761A; RRID:AB_1210995

Phospho-eIF2a (Ser51) Cell signaling Cat# 3597S; RRID: AB_390740

MYC Santa Cruz Cat# SC-764; RRID: AB_631276

BCL6 Santa Cruz Cat# SC-368; RRID: AB_2258974

Bacterial and virus strains

NEB stable Competent E Coli New England Biolabs Cat # C3040

Biological samples

Sporadic BL for targeted sequencing UK Haematological Malignancies

Research Network.

N/A

Human germinal center B cells Cambridge Blood and Stem Cell

Biobank, University of Cambridge

N/A

Burkitt lymphoma xenografts This paper N/A

Primary BL samples for western blot Children’s Cancer and Leukaemia

Group Tissue Bank

N/A

Chemicals, peptides, and recombinant proteins

Tunicamycin Sigma Cat# T7756-1mg, CAS 11089-65-9

Thapsigargin Fisher scientific Cat# 10798352, CAS 67526-95-8

Rapamycin Cambridge Bioscience Cat# SM83-5, CAS 53123-88-9

TransIT-293 Cambridge Bioscience Cat# MIR2700

Alt-R� S.p. Cas9 Nuclease V3 IDT Cat# 1081058

Alt-R� Cas9 Electroporation Enhancer IDT Cat# 1075916

Critical commercial assays

NucleoSpin RNA extraction kit Machery-Nagel Cat# 740955.250

SuperScript III First-Strand

Synthesis SuperMix

Invitrogen Cat# 18080400

NEBNext Poly(A) mRNA magnetic

isolation module

New England Biolabs Cat# NEB E7490

RNA clean up and concentration kit Norgen Biotek Cat# 23600

Click-iT Plus OPP Alexa Fluor 647

Protein Synthesis Assay

Fisher Scientific Cat# C10458

Cell Titer-Glo Luminescent Cell

Viability Assay kit

Promega Cat# G7572

P3 primary cell 4D nucleofector kit S Lonza Cat# V4XP-3032
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Deposited data

Targeted BL sequencing data This paper EGAS00001004649

Ribo-Seq and RNA-Seq sequencing data

(DDX3X shRNA in U2932 and Mutu)

This paper GSE143393

RNA-Seq sequencing data comparing

DDX3X R475C knockout versus

control edited cell line clones

This paper GSE144983

Western blot data This paper doi: 10.17632/gsd2w927yy.1

Code used for analysis of RiboSeq data This paper GitHub https://doi.org/10.5281/

zenodo.5082127

Experimental models: Cell lines

U2932 Gift from Dr. Louis Staudt RRID: CVCL_1896

Mutu Gift from Dr. Louis Staudt RRID: CVCL_ZY05

BL41 Gift from Dr. Louis Staudt RRID: CVCL_1087

BJAB Gift from Dr. Louis Staudt RRID: CVCL_5711

BL2 Gift from Dr. Louis Staudt RRID: CVCL_1966

Gumbus Gift from Dr. Louis Staudt RRID: CVCL_2051

Namalwa Gift from Dr. Louis Staudt RRID: CVCL_0067

Defauw Gift from Dr. Louis Staudt RRID: CVCL_0083

DOHH2 Gift from Dr. Louis Staudt RRID: CVCL_1179

Raji Gift from Dr. Louis Staudt RRID: CVCL_0511

Lenti-X 293T Takara Cat# 632180, RRID:N/A

Oligonucleotides

shDDX3X_1 sequence: 50-GATCCCCGGA

TCTCGTAGTGATTCAAGATTCAAGAGA

TCTTGAATCACTACGAGATCCTTTTTA-30

This paper N/A

shDDX3X_2 sequence: 50-GATCCCCG

GTAGAATAGTCGAACAAGATTTCAAG

AGAATCTTGTTCGACTATTCTACC

TTTTTA-30

This paper N/A

shDDX3Y sequence: 50-GATCCCCG

CCAGCAGTATTCTTCAGTAATTCAA

GAGATTACTGAAGAATACTGCTG

GCTTTTTA-30

Sigma N/A

Mouse Ddx3x sgRNA sequence:

GAAAGGGGGCAGATTCGCTGG

This paper N/A

Human DDX3X sgRNA for CRISPR

mutagenesis: CACCGTCCAT

GGAGACCGTTCTCAG

This paper N/A

Non-Pam strand template_WT for CRISPR

mutagenesis sequence: A*G*C*GGAAC

TGGTGAAGGGCCTCTTCTCTATCAC

TCTGAGAACGGTCTCCATGGATACT

AGTACATGCGTATCCTTCATGGTA

TAAGAAATCCTCCAGAGAATC*T*G*C

This paper N/A

Non-Pam strand template_mutant for

CRISPR mutagenesis sequence:

A*G*C*GGAACTGGTGAAGGGCCTC

TTCTCTATCACTCTGAGAACAGTC

TCCATGGATACTAGTACATGCGTA

TCCTTCATGGTATAAGAAATCCTCC

AGAGAAT*C*T*G

This paper N/A
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PAM strand template with 30 overhang_WT

for CRISPR mutagenesis sequence:

A*T*A*CCATGAAGGATACGCATGTAC

TAGTATCCATGGAGACCGTTCTCA

GAGTGATAGAGAAGAGGCCCTTC

ACCAGTTCCGCTCAGGAAAAAG

CCCAATTTTAGTGGCT*A*C*A

This paper N/A

PAM strand template with 30 overhang_
mutant for CRISPR mutagenesis sequence:

A*T*A*CCATGAAGGATACGCATGTACTA

GTATCCATGGAGACTGTTCTCAGAGTG

ATAGAGAAGAGGCCCTTCACCAGTTC

CGCTCAGGAAAAAGCCCAATTTTAGT

GGCT*A*C*A

This paper N/A

Forward primer for amplify genomic DDX3X

for CRISPR mutagenesis screening: CAC

TACAGCCCAGAACTCCTAGACTTAGAC

This paper N/A

Reverse primer for amplify genomic DDX3X

for CRISPR mutagenesis screening: ACA

TGTTTCACATTTGAAATGTCCAGTCCTC

TTGC

This paper N/A

Forward sequencing primer for CRISPR

mutagenesis screening:

GTATGCCATGATTGCACCTG

This paper N/A

Reverse sequencing primer for CRISPR

mutagenesis screening:

CCAGTCCTCTTGCTGCTACC

This paper N/A

RPL5-Forward: attatgctcggaaacgcttg This paper N/A

RPL5-Reverse: acgggcataagcaatctgac This paper N/A

RPS24-Forward: ttttcctccttggctgtctg This paper N/A

RPS24-Reverse: atgacatccggtgtggtctt This paper N/A

RPL23-Forward:acacaggagccaaaaacctg This paper N/A

RPL23-Reverse: gctctggtttgcctttcttg This paper N/A

RPL28-Forward: ggaactgctccagtttcctg This paper N/A

RPL28-Reverse: ggatctccgcttaatgacca This paper N/A

RPS11-Forward: aagatggcggacattcagac This paper N/A

RPS11-Reverse: taccagtgaaggggcatttc This paper N/A

BTG1-Forward: gaggatggctccatctgtgt This paper N/A

BTG1-Reverse: tcgttctgcccaagagaagt This paper N/A

CSNK1E-Forward: ggctatccctccgaattctc This paper N/A

CSNK1E-Reverse: accgaatttcagcatgttcc This paper N/A

RPL13A-Forward:ctggaccgtctcaaggtgtt This paper N/A

RPL13A-Reverse: tggtacttccagccaacctc This paper N/A

RPL36A-Forward: ggctatggtgggcaaactaa This paper N/A

RPL36A-Reverse: ctcctcccagttcaaaatgc This paper N/A

RPS16-Forward: ctggagccagttctgcttct This paper N/A

RPS16-Reverse: tctccttcttggaagcctca This paper N/A

XBP1s-Forward:

TGCTGAGTCCGCAGCAGGTG

van Schadewijk et al., 2012 N/A

XBP1s-Reverse:

GCTGGCAGGCTCTGGGGAAG

van Schadewijk et al., 2012 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

XBP1 total-Forward: AAACAGAGTA

GCAGCTCAGACTGC

van Schadewijk et al., 2012 N/A

XBP1 total-Reverse:

TCCTTCTGGGTAGACCTCTGGGAG

van Schadewijk et al., 2012 N/A

GAPDH-Forward:

GAAGGTGAAGGTCGGAGTC

This paper N/A

GAPDH-Reverse:

GAAGATGGTGATGGGATTTC

This paper N/A

sgDDX3X: CGTGGACGGAGTGATTACGA This paper N/A

Non-targeting control sgRNA:

TCAGCAAAGGACGAAACAAA

This paper N/A

Software and algorithms

GENCODE v.29 Frankish et al., 2019 https://www.gencodegenes.org

STAR 2.5.4a Dobin et al., 2013 https://github.com/alexdobin/STAR

GATK 3.8 toolkit Van der Auwera et al., 2013 https://gatk.broadinstitute.org/hc

Picard 2.20 N/A http://broadinstitute.github.io/picard

ExAC database 0.3.1 N/A http://exac.broadinstitute.org

DLBCL transcriptomic classification into

ABC, GCB AND Unclassified

Reddy et al., 2017 N/A

DLBCL transcriptomic classification

into MHG

Sha et al., 2019 N/A

rpart R package Zhang et al., 2018 CRAN rpart

GTEx datasets (V8) N/A https://gtexportal.org/home/

TCGAbiolinks 2.18.0 R package Colaprico et al., 2016 Bioconductor TCGAbiolinks

meta R package N/A CRAN meta

iMaps server König et al., 2010 https://imaps.genialis.com/iclip/

iCount Curk, 2019 https://github.com/tomazc/iCount

Cutadapt 1.16 Martin, 2011 https://cutadapt.readthedocs.io/en/stable

FastQC 0.11.5 N/A https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

Bowtie2 2.3.4 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

RiboWaltz R package N/A https://github.com/LabTranslational

Architectomics/riboWaltz

Deeptools 3.3.0 Ramı́rez et al., 2014 https://deeptools.readthedocs.

io/en/develop

GenomicFeatures R package Lawrence et al., 2013 Bioconductor GenomicFeatures

DESeq2 R package Love et al., 2014 Bioconductor DESeq2

Rsubread R package Liao et al., 2019 Bioconductor Rsubread

clusterProfiler R package Yu et al., 2012 Bioconductor clusterProfiler

Reactome Fabregat et al., 2018 https://reactome.org

BWA Li and Durbin, 2009 N/A

CaVEMan Wellcome Sanger Institute https://github.com/cancerit/CaVEMan

MSigDB v. 7.0 Subramanian et al., 2005 https://www.gsea-msigdb.org/

gsea/msigdb/index.jsp

MaxQuant Tyanova et al., 2016

Proteome Discoverer 2.1 Thermo Fisher Scientific N/A

DEP R package Bioconductor DEP

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Graphpad Prism 7 Graphpad N/A

Adobe Illustrator Adobe N/A

FlowJo Treestar N/A
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Lead contact
Requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr Daniel J Hodson (djh1002@

cam.ac.uk).

Materials availability
Plasmids and stable cell lines uniquely generated in this study are available on request to the Lead Contact.

Data and code availability
Targeted sequencing data have been deposited to EGA: EGAS00001004649. RNA-seq and ribosome profiling data have been

deposited to GEO: GSE144983, GSE143393. The data are publicly available as of the date of publication.

Original western blot images have been deposited at Mendeley and are publicly available as of the date of publication: https://doi.

org/10.17632/gsd2w927yy.1. All bioinformatic code used to analyze ribosome profiling data has been uploaded to GitHub: https://

doi.org/10.5281/zenodo.5082127, https://github.com/ashakru/lymphDDX3X. Any additional information required to reanalyze the

data reported in the paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
DNAwas collected from 39 cases of previously untreated sporadic BL (6 females and 33males; aged between 3 and 86 years old). All

cases were diagnosed at a central diagnostic laboratory HMDS, Leeds, and enrolled in the UK Haematological Malignancies

Research Network (https://HMRN.org). Protein lysates from Burkitt Lymphoma xenografts used for immunoblotting were sourced

from the Intergroup Trial for Children or Adolescents with B cell NHL or B-AL: Evaluation of Rituximab Efficacy and Safety in

High-Risk Patients (NCT01516580), (REC reference: 13/EE/0202) with ethical approval for the generation of PDX models (REC num-

ber 07-Q0104-16). Diagnostic Burkitt lymphoma biopsy samples used for immunoblotting were sourced from the Children’s Cancer

and Leukaemia Group (CCLG) Tissue Bank. Project and ethics approval were granted via the CCLG Biological Studies Steering

Group (REC 18/EM/0134; Biological Study 2012 BS 08). Patients were aged between 5 and 14 years old; sex is indicated in the rele-

vant figure or legend.

Primary human B cell culture
Primary GCB cells were purified from freshly discarded tonsil tissue, from children (19 females and 25males; aged between 2 and 16

years old) undergoing tonsillectomy at Addenbrooke’s ENT Department, Cambridge with written informed consent of the patient/

parent/guardian. Ethical approval for the use of human tissue was granted by the Health Research Authority Cambridgeshire

Research Ethics Committee (REC no. 07/MRE05/44). GC B cells were purified from discarded tonsil tissue using the human B

cell negative selection isolation Kit II (Miltenyi Biotec)modified to include negative selection antibodies to IgD andCD44, as described

(Caeser et al., 2021).GC B cells were then cultured on irradiated CD40ligand-expressing feeder cells in Advanced RPMI medium

(GIBCO) supplemented with 20% FBS, 1% penicillin/streptomycin and human IL21 (Peprotech). Primary cells used in these exper-

iments were confirmed to be EBV negative by PCR (Caeser et al., 2021).

Human lymphoma cell line culture
Human Burkitt lymphoma and DLBCL cell lines were a gift from Dr Louis Staudt and were cultured in RPMI medium (GIBCO) sup-

plemented with 10% testified tetracycline-free FBS (GIBCO). All cell lines used in this study were confirmed to be free from myco-

plasma contamination and identity was verified using a 16-amplicon multiplexed copy number variant fingerprinting assay (Phelan

et al., 2018). All cells were cultured at 37�C and 5% CO2. The DDX3X mutation status, EBV status and sex of the cells used in this

study is included as Table S7

Murine B cell culture
For experiments involving murine B cell cultures, resting splenic B cells were purified using mouse B cell negative selection isolation

kit (Miltenyi Biotech) from R26-LSL-Cas9-GFP mb-1: cre/+ mice (aged 10-12 weeks; sex is indicated in the respective figures or leg-

ends) purchased from The Jackson Laboratory. Cells were culture cultured on 40LB cells (Nojima et al., 2011) in IL4 for 4 days fol-

lowed by IL21 for 3 days.

Xenograft models
Primary B cells isolated from discarded tonsil tissue from a male donor (aged 10 years) were electroporated with Cas9-sgRNA ribo-

nucleoprotein complexes (targeting DDX3X or non-targeting control) (see CRISPR knockout in primary B cells). Cells were trans-

duced withMYC-2A-BCL2 three days after electroporation. The edited cells were harvested five days after transduction and 5million

cells per mouse were resuspended in 125ul of HBSS solution, mixed with 125ul of Matrigel and injected subcutaneously into the
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flanks of irradiated female NSG mice (aged 11 weeks) (Jackson). Tumor size was monitored by a technician blinded to tumor geno-

type. This research has been regulated under the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012 following

ethical review by the University of Cambridge Animal Welfare and Ethical Review Body (AWERB-PPL number P846C00DB).

Plasmids
The coding sequences of DDX3X and DDX3Y were amplified by PCR from cDNA of non-malignant human GC B cells and cloned into

pBNM-LyT2 and MSCV vectors using Gibson assembly (NEB). DDX3X mutations were constructed using G-blocks (IDT) and inserted

usingGibsonassembly.ShRNAvectorsweregeneratedbycloningannealedoligonucleotides (sequencesshown inKey resources table)

into the retroviral vectorbackbonepRSMX-PG(agift fromDrLouisStaudt).Sequencesweredesigned toavoidcross-targetingofDDX3X

andDDX3Y.CRISPRguideRNAswerecloned intoBbs1-linearizedpSpCas9(BB)-2A-GFP (PX458,Addgene,RRID:Addgene_48138) for

electroporation. Guide RNAs to murine ddx3x were cloned into was cloned into the hU6-sgRNA-PGK-Thy1.1 retroviral vector.

Custom-made DDX3Y antibody
Custom-made rabbit polyclonal antibody specifically against DDX3Ywas generated by custom antibody production services of Gen-

Script Corporation, Piscataway, NJ, USA. DDX3Y-specific rabbit polyclonal antibody was prepared against synthetic peptide

SHVVVKNDPELDQ (NP_001116137, residues 2-13 of human DDX3Y).

METHOD DETAILS

Sequencing and variant ID
DNA from 39 diagnostic biopsies of sporadic BL were sequenced using a 293-gene hybrid capture hematological panel. The panel

has been previously described (Lacy et al., 2020). Sequencing libraries were generated (SureSelect XT, Agilent Technologies) using

50-200ngDNA and sequenced on Illumina HiSeq 2500 instruments using 75nt paired end sequencing. Paired end readswere aligned

to the reference genome (GRCh37) using Burrows-Wheeler Aligner (Li and Durbin, 2009). The variant calling pipeline of the Cancer

Genome Project, Wellcome Trust Sanger Institute, was used to call substitutions (CaVEMan: Cancer Variants Through Expectation

Maximization1) and indels (Pindel2). For substitutions, CaVEMan was run using a composite normal control (as only tumor samples

were sequenced in this study). Unmapped reads, PCR duplicates and off-target variants were removed. Post-processing was then

performed to remove likely artifact, which involved the removal of variants meeting the following criteria: 1) variant base position sup-

ported by < 10 total reads. 2) variant supported by < 3 reads reporting the variant. 3) variant with an allele fraction < 0.05. 4) variant

with a repeat length > 4 in a region present in > 10% of normal individuals. 5) less than one third of variant alleles at minimum base

quality of 25. 6) composite normal control harbors 3% or more reads reporting the variant allele at minimum base quality of 15. 7)

variant alleles lacking bidirectional support (< 2 supporting reads in each direction). 8) variants lacking bidirectional support where

mean variant base quality was less than 21 (< 4% supporting reads in each direction). 9) variants falling within the second half of

a read containing a GGC[AT]G motif in sequenced orientation where the mean base quality after the motif was less than 20. 10)

mean mapping quality of the variant allele < 21. 11) variant falls within a simple or centromeric repeat. 12) more than 10% of reads

reporting the variant contain an indel. 13) more than 80% of reads contain the variant allele at the same read position. 14) variant falls

within a blacklisted region (based on coordinates) known to generate artifactual results. 15) variant is reported byR 3 reads inR 1%

of samples in composite normal control sample.

For indels, Pindel was run using a composite normal control (as only tumor samples were sequenced in this study). Unmapped

reads, PCR duplicates and off target variants were removed. Post-processing was then performed to remove likely artifact using

the filters built into Pindel136. Variants meeting the following criteria were also removed: 1) variant base position supported by <

10 total reads. 2) variant supported by < 3 reads reporting the variant. 3) variant with an allele fraction < 0.05. 4) variant with a repeat

length > 4 in a region present in > 10% of normal individuals.

Variant annotation
Germline variants were filtered by referencing against the ExAC database using non-TCGA samples (alleles present 10 or more times

were excluded). Each variant was then annotated according to likely biological effect, as either a driver event, a passenger event, or a

reflection of somatic hypermutation. Any gene disrupting events targeting tumor suppressor genes were classed as driver variants

(frameshift, nonsense, essential splice [-2,�1, +1, +2, +5], loss of start, in-frame indelR 2 codons). Missense variants and in-frame in-

dels in either tumor suppressor genes or oncogenes were classed as driver alleles based on codon-level recurrence if any of the

following conditionsweremet: (i)R 5 sampleswith a variant at the codon in a cohort of 1,529 lymphoma cases, (ii)R 10 cases reported

across published datasets: COSMIC, AACR-GENIE v1.0 and PMID 28985567, or (iii) known driver event with biological support from

published literature. Splice variants in oncogenes were annotated as driver events using the same rules as missense variants.

DDX3X SNV calling and cell of origin assignment from RNA sequencing data
Single Nucleotide Variant (SNV) calling was performed using paired-end RNA-Seq data from 553 GOYA trial patient samples accord-

ing to GATK guideline: (https://gatk.broadinstitute.org/hc/en-us/articles/360035531192?id=3891). Briefly, RNA-Seq paired-end

reads were mapped to the reference genome using STAR 2.5.4a 2-pass mode (Dobin et al., 2013). Read groups were added with
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AddOrReplaceReadGroups and duplicated reads were identified withMarkDuplicates script fromPicard tools https://broadinstitute.

github.io/picard/. Sequences overhanging intronic regions were hardclipped and STARmapping qualities were reassigned to match

GATK software (Van der Auwera et al., 2013). Variant callingwas performedwith HaplotypeCaller GATK script, with phredScore 20 as

minimal variant calling confidence. Variants clusters (at least 3 valid variants in a window of 35 bases) were removed to diminish the

effect of RNA-Seq mapping errors. Standard variants quality filtering was applied with VariantFiltration GATK script: Fisher Strand

values > 30.0 andQual ByDepth < 2.0with. Individual SNVswere then annotatedwith gene names and their predicted consequences

on protein function using VariantAnnotation Bioconductor package and gene models from GENCODE comprehensive gene anno-

tations set (v.28) (Frankish et al., 2019). In order to identify samples with potential DDX3X mutation, ENSG00000215301 (gene ID)

and ENST00000644876 (transcript ID) DDX3X models were used as a reference. All nonsense, frameshift and non-synonymous

SNVs with the ratio of variant coverage: reference coverage > 0.2, localized in DDX3X helicase domain and not previously reported

in the ExAC database (ver. 0.3.1, http://exac.broadinstitute.org) of common population variants were considered as valid hits (Fig-

ures S1A and S1B).

Classification of GOYA trial cases into four transcriptomic subtypes: ABC, GCB, Unclassified and Molecular High Grade (MHG)

DLBCL was performed as previously described (Reddy et al., 2017; Sha et al., 2019). Briefly, read counts were TMM normalized,

log2 transformed and z-scores were computed across the genes. The subtype score was obtained per sample by subtracting

mean z-scores of ABC-signature genes (ABC score) from mean z-scores of GCB-signature genes (GCB score). Each sample was

assigned to a subtype according to the following criteria: ABC – subtype score > 0.25 and GCB score < 0.75; GCB - subtype score <

�0.25 and ABC score < 0.75; Unclassified - not assigned to ABC or GCB subtype. MHG cases were identified among the GCB group

using BDCR package (Sha et al., 2015). Chromosome Y expression identification in the GOYA dataset was performed using decision

tree algorithm implemented in rpart R package: https://cran.r-project.org/web/packages/rpart/index.html. The model was trained

using RNA-Seq data fromGenotype-Tissue Expression (GTEx) Project, which includes gene expression samples from 54 tissue sites

in non-diseased individuals (11688 samples in total)(2013). The GTEx datasets (V8) were obtained from https://gtexportal.org/home/.

Raw RNA-Seq counts were filtered and TMM normalized. Per gene scaled gene expression values were used as an input. The GTEx

data were randomly split into a training and test set comprising, respectively, 80% (9333 samples) and 20% (2355) of the data. The

algorithm running on default parameters achieved high performance: F1 score = 0.9973, AUC = 0.9973, 8 males were misclassified.

KDM5D, DDX3Y, USP9Y, RPS4Y1, TXLNGY, XIST were identified as classifying genes. In order to assess the ability of the algorithm

to classify cancer samples, GTEx trained model was benchmarked against cancer dataset. TCGA gene expression data (RNA-Seq

only) (Weinstein et al., 2013) were downloaded using TCGAbiolinks, the Bioconductor package for integrative analysis with GDCdata

(Colaprico et al., 2016). Similarly, the dataset was split into a training (80%, 9198 samples) and test set (20%, 2336 samples). The

algorithm achieved lower performance than in GTEx data: F1 score = 0.9624, AUC = 0.9779, 46 males and 37 females were misclas-

sified on default parameters. When the GTEx trained model was tested on the TCGA test dataset, the number of misclassified fe-

males and males was 2 and 295, respectively. The 295 males classified as females showed remarkably lower expression of genes

localized on chromosomeY, which could reflect previously reported loss of chromosomeY during oncogenesis (Dunford et al., 2017).

In order to obtain high-confidence set of male DLBCL patient samples with chromosome Y expression, the GTEx trained model was

used to classify samples in the GOYA dataset.

Meta-analysis of DDX3X mutation associated sex skew

A total of 6 previous studies with accessible mutation and sex data were included along with our mutation data from 39 cases of BL

and our DDX3X variant annotation from RNA-Seq data downloaded from GOYA trial data were also included. Mantel-Haenszel ran-

dom-effectsmodel was used to calculate the overall Relative Risk (RR) and 95%CI. The RR in all studies had a range of 1.06–1.45 and

RR of 1.23. The heterogeneity across studies was assessed by Cochran’s Q test and Tau-squared (p value 0.8338, t2 = 0.0033). All

computations were performed using meta R package:

https://cran.r-project.org/web/packages/meta/index.html.

Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP)
iCLIP was performed as previously described (Huppertz et al., 2014) with minor modification. In brief, cells were cross-linked at

300mJ and then lysed in 1ml of IP lysis buffer (Thermo scientific, Cat No. 87787). The lysate was incubated with 15 mL of Dynabeads

at 4�C for 4h for pre-clearing and then further incubated with antibody (4 mg per sample) overnight at 4�C. Beads were washed

sequentially with high salt buffer, PNK buffer and water. After washing, beads were re-suspended in 20 mL of IP lysis buffer and incu-

bated with 5 mL of TurboDNase and 0.5U RNase I at 37�C for 3min and then on ice for another 3min. The beads were then washed

sequentially with high salt buffer, PNK buffer andwater. After on-bead RNase digestion, 30-RNA dephosphorylation, 30-Linker ligation
and 50-labelingwith 32P reactionwas carried out as previously described (Huppertz et al., 2014). Protein was eluted from the beads by

incubation at 70�C for 10min in 20 mL of 2x LDS loading dye supplemented with 5%2-mercaptoethanol. The whole lysate was loaded

onto SDS-PAGE gel and electrophoresis and transferring of proteins onto PVDF membranes was carried out as described in Immu-

noblotting section. Radioactive signal was visualized by exposing the membrane to X-ray film and the desired bands were cut from

the membrane. Protein on the membrane was digested by Proteinase K in PK buffer and extracted by phenol-chloroform. RNA was

precipitated overnight at 4�C and the pellet was washed in 80% Ethanol. Reverse transcription was performed using the primer as

previously described (Huppertz et al., 2014). The cDNA was precipitated and loaded onto TBE-urea gel for purification. The bands

between the size of 75bp and 200bp were cut out and extracted using D-tube Dialyzer (VWR, Cat No. 71504-3) by electrophoresis.
e7 Molecular Cell 81, 4059–4075.e1–e11, October 7, 2021

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
http://exac.broadinstitute.org
https://cran.r-project.org/web/packages/rpart/index.html
https://gtexportal.org/home/
https://cran.r-project.org/web/packages/meta/index.html


ll
OPEN ACCESSArticle
The extracted cDNA was precipitated and ligated with oligo onto 50- end. The libraries were amplified using 14 to 18 cycles of PCR

with Phusion master mix and P3/P5 primers. Libraries were purified by TBE gel electrophoresis and the quality was assessed by Bio-

analyzer before sequencing on an Illumina Hiseq-4000.

iCLIP data analysis

Replicates of iCLIP data were analyzed using iMaps web server (https://imaps.genialis.com/iclip/), following procedures described

elsewhere (König et al., 2010). Briefly, Unique Molecular Identifiers were used to distinguish and remove PCR duplicates before

removing experimental barcodes and Solexa adapters. We mapped the trimmed reads to GENCODE GRCh38 v.27 using iCount

mapstar with default parameters (Curk, 2019; Dobin et al., 2013) (https://github.com/tomazc/iCount). First nucleotide after the

UMI was assigned as the crosslink site defined by the truncated cDNA. Crosslink significant sites were determined by the iCount

peaks finding algorithm (False Discovery Rate < 0.05), by weighting the enrichment of crosslinks versus shuffled random positions.

Neighboring cDNA start position less than 15 nt apart were join to form high confidence crosslink clusters with iCount clusters func-

tion (Curk, 2019). Genes with more than 4 cross-linking peaks in at least one experiment were considered as valid DDX3X targets.

RNA-sequencing & ribosome profiling
Experiments were performed in two cell lines (U2932 and Mutu) using scrambled control or two separate shRNAs against DDX3X.

Following shRNA transduction cells were selected for 48hours with puromycin and then induced with doxycycline. Cells were har-

vested at 24 and 48 hours after shRNA induction. For each sample, we prepared parallel sequencing libraries for RNA-Seq and Ri-

boSeq from the same lysate. For Mutu we analyzed four replicate comparisons. For U2932 the experiment was repeated on two

separate occasions, providing eight replicate comparisons.

Ribosome profiling was conducted as previously described (Ingolia et al., 2012) with minor modifications. 5million cells per sample

were treated with 100mg/ml of cycloheximide and immediately centrifuged and lysed in 300ml of buffer containing 20mM Tris-HCl,

pH7.4, 150mM NaCl, 5mM MgCl2, 1% NP40, 1mM DTT and 100mg/ml cycloheximide. 100ml of the lysate were reserved for paired

RNA-Sequencing and the rest treated with DNase I and RNase I. Ribosomemonomers were purified usingMicrospin S-400 columns.

The ribosome protected RNA fragments (RPF) were extracted using RNA clean up and concentration kit (23600, Norgen Biotek). RPF

were resolved in 15%Novex TBE-Urea gels, stained with SYBR gold and fragments with 26-34nt were excised from the gel. The RNA

was extracted from the gel by electrophoresis using D-tube (MWCO 3.5 kDa,71506-3, Merck Chemical). Precipitated RNA was de-

phosphorylated by T4 polynucleotide kinase and ligated to universal miRNA Cloning Linker (NEB) using T4 RNA ligase 2 truncated.

cDNA was prepared with SuperScript III and reverse transcription primer containing a degenerate 5-nucleotides molecular barcode

sequence. The cDNA was resolved by polyacrylamide gel electrophoresis, excised and extracted by D-tube(71504-3, Merk). The

extracted cDNA was then circularized and PCR amplified. The final library was separated from PCR primers by electrophoresis

and extracted with D-tube(71504-3,Merk) before sequencing on an Illumina Hi-seq4000.

For RNA-seq, total RNA was extracted using NucleoSpin RNA extraction kit (Machery-Nagel, Cat No. 740955.250) according to

manufacturer’s protocol. 500ng of total RNAwas used to prepare RNA-seq libraries using NEBNext Poly(A) mRNAmagnetic isolation

module (Cat No. NEB E7490) as per the manufacturer’s instruction. Final libraries were amplified by PCR for 12 cycles, purified with

AMPure XP beads and analyzed by Agilent Bioanalyser before sequencing on an Illumina Hi-seq4000.

Analysis of Ribo-seq and RNA-seq data
Sequencing reads pre-processing and alignment

Raw FASTQ files were stripped of adaptor sequence using Cutadapt 1.16 (Martin, 2011) reads shorter than 15 nucleotides were dis-

carded. After quality check with FastQC 0.11.5 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, Ribo-Seq reads were

additionally filtered by rRNA using Bowtie2 2.3.4 with seed length 23 (Langmead and Salzberg, 2012). The remaining reads were then

mapped to the human genome (GRCh38) using STAR (Dobin et al., 2013) with parameters as follows:–outFilterType BySJout–

alignSJoverhangMin 8–outFilterMultimapNmax 20–alignSJDBoverhangMin 1–outFilterMismatchNmax 999–outFilterMismatchNo-

verReadLmax 0.04–alignIntronMin 20–alignIntronMax 1000000–alignMatesGapMax 1000000. The reference human rRNA index

was constructed from RefSeq database. STAR genome index was built with GENCODE v.29 comprehensive gene annotation set.

Ribo-Seq specific quality check: sequencing reads length distribution, triplet nucleotide periodicity and open reading frame enrich-

ment was performed using RiboWaltz R package

https://github.com/LabTranslationalArchitectomics/riboWaltz.

Metagene analysis

A metagene analysis for scaled density of Ribo-Seq reads or iCLIP hits relative to start and stop codon was performed using deep-

tools (Ramı́rez et al., 2014). The coverage of sequencing reads was normalized per sample by the total number of uniquely mapped

reads (CPM) excluding sex chromosomes. Scaled coverage per each transcript was computed using computeMatrix function with

parameters as follows: scale-regions bs 20 -m 5000 -b 3000 -a 3000 -p 40–metagene–exonID CDS–transcriptID transcript –skip-

Zeros. Transcripts models were built using GENCODE v.29 basic gene annotation set (Frankish et al., 2019).

Read counting

Trimmed genemodels were built using GENCODE v.29 comprehensive gene annotation set withGenomicFeatures R package (Law-

rence et al., 2013). The first 30nt and last 30nt of each CDS region were removed to reflect translation elongation intensity, as

described previously (McGlincy and Ingolia, 2017). Trimmed CDS models representing different transcript isoforms were merged
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by gene. As is expected from Ribo-seq, 28-30 nt long fragments with evident triplet nucleotide periodicity relative to start and stop

codon were the most abundant and were selected for further analysis. Localization of ribosomal P-site was determined by offset be-

tween 50end of fragments spanning translation start site and annotated start codon, which was 12 nt for read lengths of 28-30 nt. Per

sample per gene P-sites countsmatriceswere build usingGenomic RangesRpackage allowing for assignment of a uniquelymapped

read to more than one overlapping features. At least 25 overlapped bases were required to assign a read to a gene. Corresponding

RNA-Seq samples were counted using the same gene models. Genes with low counts were filtered out with a threshold of minimum

128 counts.

Differential translation analysis was performed as previously described (Sendoel et al., 2017). Briefly, genes differentially ex-

pressed were identified using DESeq2. RNA-Seq and Ribo-Seq derived read counts were analyzed separately. Median of ratios

normalized expression values were obtained from DESeq2. Translation efficiency (TE) was computed by dividing normalized gene

expression measured with Ribo-Seq by mRNA relative abundance. We applied the following rules to define differentially translated

genes:

i. A significant change in RiboSeq (Adjusted p value < 0.1)

ii. TE log2 fold change threshold ± 0.3

iii. No change in RNA-Seq (log2fc < 0.5)

Differential expression and downstream analysis of RNA-seq

Uniquely mapped reads were assigned to genes using featureCounts function from Rsubread package (Liao et al., 2019) allowing for

assignment of a read to more than one overlapping features. At least 25 overlapped bases were required to assign a read to a gene.

Differential expression analysis was performed using standard workflow from DESeq2 package (Love et al., 2014). Identified upre-

gulated and downregulated genes were used to perform gene ontology analysis with enrichGO function from clusterProfiler package

(Yu et al., 2012). Enrichment scores were computed using in-house scripts by taking the ratio between the number of differentially

expressed genes overlapping with a gene ontology set and the number of background genes assigned to this gene set. Pathway

analysis was performed using browser-based Reactome Pathway Database (Fabregat et al., 2018). A list of all expressed genes

detected in RNA-Seq was used as a background set for over-representation testing. Gene Set Enrichment Analysis (GSEA) was per-

formed using the GSEA function from clusterProfiler package. Gene expression measurements were normalized using variance sta-

bilizing transformation, as implemented in DESeq2 package, and analyzed for enrichment in hallmark gene set from MSigDB v. 7.0

(Subramanian et al., 2005).

SILAC-based mass spectrometry for DDX3X Interactomes
Onemillion of cells were cultured in SILACmedium devoid of lysine and arginine supplemented with 10%h.i. dialyzed FCS and heavy

(13C615N4 L-arginine and 13C615N2 L-lysine) or regular (light) amino acids (12C614N4 L-arginine and 12C614N2 L-lysine) (Thermo

Scientific) for at least 5 generations. The cells cultured in light medium were lysed and immunoprecipitated with IgG (Abcam) and the

cells cultured in heavy medium were lysed and immunoprecipitated with DDX3X (Bethyl Laboratories, specific for DDX3X) or DDX3Y

(Sigma, recognizes both DDX3X and DDX3Y (Figure S3)), antibodies using the same procedures as described in RNA-IP section. Af-

ter the immunoprecipitation, Dynabeads Protein A beadswere boiled with 25 mL of LDS loading buffer (Invitrogen) supplemented with

b-mercaptoethanol and the light and heavy samples were mixed at 1:1 ratio. The total 50 mL lysate were run on SDS-PAGE gel and

stained with Coomassie Brilliant Blue. Each gel lane was cut into 23 pieces, which were subjected to in-gel protein digestion with

trypsin (16h, 37�C) after reduction with dithiothreitol and alkylation with iodoacetamide.

Peptide samples were analyzed by LC-MS/MS on a Q Exactive HF orbitrap mass spectrometer (Thermo Fisher Scientific) coupled

to an Ultimate 3000 RSLCnano HPLC system (Dionex / Thermo Fisher Scientific). The peptides were first trapped on a precolumn

(ReproSil-Pur 120 C18-AQ, 5 mm; Dr. Maisch GmbH; 100 mm x 5 cm) and separated on an analytical column (ReproSil-Pur 120

C18-AQ, 1.9 mm; Dr. Maisch GmbH; 280 3 0.075 mm) with a 80-min linear gradient of 2%–40% solvent B [80% (vol/vol) ACN,

0.1%FA] versus solvent A (0.1%FA in water) at a constant flow rate of 300 nL$min–1. Eluting peptides were analyzed by data-depen-

dent acquisition using a top 30 MS/MS method with a survey scan resolution setting of 120,000 FWHM and an MS/MS resolution

setting of 15,000 FWHM at 200 m/z. The 30 most abundant precursor peptide ions within the m/z 350-1600 range (charge states

2 to 5, intensity > 4x10^4) were selected for higher-energy collision-induced dissociation (HCD) with a normalized collision energy

setting of 30% and an isolation width of 1.6 m/z. Target values for automatic gain control (AGC) and maximum ion injection times

for MS and MS/MS were set to 1 3 10^6 in 50ms and 1 3 10^5 in 50ms, respectively. Selected precursor mass-to-charge ratio

values were dynamically excluded from fragmentation for 20 s.

Processing of LC/MS data

Raw data files from LC-MS/MS measurements were analyzed with the MaxQuant software (MPI for Biochemistry) (Tyanova et al.,

2016). Fragment ion spectra were searched using the Andromeda search engine (Cox et al., 2011) against the UniProtKB human

reference protein database supplemented with frequently observed contaminants and setting trypsin as enzyme for protein diges-

tion. After initial recalibration, precursor and fragment ionmass tolerances of 6 and 20 ppmwere set, respectively. Oxidation ofmethi-

onine and protein N-terminal acetylation were allowed as variable modifications and carbamidomethylation of cysteine was defined

as fixed modification. Minimal peptide length was set to seven amino acids, with a maximum of two missed tryptic cleavages. On
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both the peptide and protein level the maximum false discovery rate (FDR) was set to 1% using a forward-and-reverse concatenated

decoy database search strategy. SILAC multiplicity was set to double labeling (Lys+0/Arg+0, Lys+8/Arg+10), requiring at least two

ratio counts for peptide quantitation and enabling the ‘‘re-quantify’’ option.

Proteomic profiling
A total of 100 mgprotein fromeachconditionwassubjected to in-solutiondigestionbefore labeling the resultantpeptidesusing theTMT-

6plex Isobaric Label Reagent Set (ThermoScientific, Rockford, IL,USA) according to themanufacturer’s protocol. The labeled samples

were combined prior to fractionation on a Xbridge C18 column (4.63 250 mm,Waters, Milford, MA, USA) and subsequent analysis by

LC-MS/MS. The fractionated peptides were separated and analyzed using a Dionex Ultimate 3000 RSLCnano system coupled to a Q

Exactive instrument (Thermo Fisher Scientific, MA, USA). Separation was performed on a Dionex EASY-Spray 75 mm3 10 cm column

packed with PepMapC18 3 mm, 100 Å (Thermo Fisher Scientific) using solvent A (0.1% formic acid) and solvent B (0.1% formic acid in

100% ACN) at flow rate of 300 nL/min with a 60 min gradient. Peptides were then analyzed on a Q Exactive apparatus with an EASY

nanospray source (Thermo Fisher Scientific) at an electrospray potential of 1.5 kV. A full MS scan (350–1,600 m/z range) was acquired

at a resolution of 70,000 and a maximum ion accumulation time of 100ms. Dynamic exclusion was set as 30 s. The resolution of the

higher energy collisional dissociation (HCD) spectra was set to 350,00. The automatic gain control (AGC) settings of the full MS scan

and the MS2 scan were 5E6 and 2E5, respectively. The 10 most intense ions above the 2,000 count threshold were selected for frag-

mentation in HCD, with a maximum ion accumulation time of 120ms. An isolation width of 2 m/z was used for MS2. Single and unas-

signed charged ions were excluded from MS/MS. For HCD, the normalized collision energy was set to 30%. The underfill ratio was

defined as 0.3%. Raw data files from the three technical replicates were processed and searched using Proteome Discoverer 2.1

(ThermoFisher Scientific). The rawLC-MS/MSdata fileswere loaded into SpectrumFiles (default parameters set in SpectrumSelector)

and TMT 6-plexwas selected for the Reporter Ion Quantifier. The SEQUEST algorithmwas then used for data searching to identify pro-

teins using the following parameters;missed cleavage of two; dynamicmodificationswere oxidation (+15.995 Da) (M) anddeamidation

(+0.984 Da) (N). The staticmodificationswere TMT-6plex (+229.163 Da) (anyN terminusandK) andCarbamidomethyl (+57 Da) (C). The

false discovery rate for protein identification was < 1%. The Normalization mode was set based on total peptide amount. Differential

peptides abundance analysis was performed using standard workflow from DEP R package with default settings (Zhang et al., 2018).

RNA-immunoprecipitation (RNA-IP)
Cells were harvested and lysed in IP-lysis buffer (Thermo scientific, Cat No. 87787). The lysate was pre-cleared by incubating with

15 mL of Dynabeads Protein A (Invitrogen, Cat No. 1002D) for 4h at 4�C. Afterward, 50 mL of lysate was saved as Input. The remaining

lysate was divided equally into 3 portions for incubation overnight at 4�C with IgG (Abcam, Cat No. ab27478, RRID:AB_2616600),

DDX3X (Bethyl Laboratories) and DDX3Y (custom antibody). The next day, the lysate was incubated with 15 mL of Dynabeads Protein

A for 4h at 4�C. Beads were then washed three times with high salt buffer (as per iCLIP protocol). RNA was extracted from beads or

Input with Trizol (Life Technologies, Cat No. 15596026) according to manufacturer’s protocol. mRNA was converted to cDNA using

SuperScript III First-Strand Synthesis SuperMix and PCR carried out using DreamTaq Green PCRMaster Mix (Thermo scientific, Cat

No. K1080) according to the manufacturer’s protocol. The primer sequences were listed in the Key resources table.

Transfection and transduction
Transfection of HEK293T cells for virus production and transduction of lymphoma cell lines or primary GC B cells were performed as

previously described (Caeser et al., 2019, 2021). Retroviral packaging plasmid pHIT60 and GaLV envelope plasmid were used as

follows: 1 mg pHIT60 (gag-pol), 1 mg GaLV_WT (envelope) and 4 mg of retroviral construct were used to transfect each 10 cm2

dish of HEK293T, after mixing with 1mL of Opti-MEMmedia (Invitrogen) and 18 mL of TransIT-293 (Mirus). For lentivirus transfections,

packaging plasmids pCMVDeltaR8.91 and GaLV_MTR envelope were used as follows: 8.3 mg pCMVDeltaR8.91 (gag-pol), 2.8 mg

GaLV_MTR and 11 mg of a lentiviral construct per 10 cm2 dish, incubated with 1 mL of Opti-MEM media (Invitrogen) and 33 mL of

TransIT-293 (Mirus). For transduction of cell lines, pMD2.G (VSV-G envelope) was used instead of GaLV_MTR. pMD2.G was a gift

from Didier Trono (Addgene plasmid # 12259; http://addgene.org/12259; RRID:Addgene_12259). The packaging line Lenti-X 293T

Cell Line (Clontech Laboratories) was used for all transfections. Viral supernatant was harvested after 24 to 48hrs and filtered through

a 0.45 mM filter. Target cells were centrifuged (1500 3 g, 90 min at 32�C) in the presence of viral supernatant, 10 mg/ml Polybrene

(INSIGHT biotechnology) and 25 mM HEPES (ThermoFisher). Viral supernatant was replaced with fresh media immediately after

centrifugation for retroviral infection or after > 4 hours if transducing lentiviral constructs.

To generate viral supernatant for mouse B cell transduction, PlatE cells were transfected with 1ug retroviral plasmid and 3ul 293T

Trans-it reagent in a 12 well plate. Media was replaced with B cell culture media after 24 hours and harvested after 48 hours. Trans-

duction occurred on day 3 of culture. Media was replaced with viral media supplemented to 4ug/ml polybrene and IL4 and cells were

infected by centrifugation 1000xg, 45 min at 32oC. Viral media was replaced with fresh media after 4 hours.

CRISPR knockout in primary B cells
The knockout of DDX3X in primary B cells was achieved by delivering ribonucleoprotein (RNP) complex into the cells by electropo-

ration using Amaxa 4D electroporator as previously described. Primary B cells were stimulated in coculture with YK6-CD40Lg-IL21

feeder cells for two days before electroporation. 5ug of recombinant cas9 protein (IDT) was mixed with either DDX3X sgRNA (IDT,
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sequence CGTGGACGGAGTGATTACGA) or non-targeting control sgRNA (IDT, sequence TCAGCAAAGGACGAAACAAA) at amolar

ratio of 2:1 and electroporated into 10^6 cells resuspended in P3 Primary Cell Buffer (Lonza, V4XP-3032) using the Amaxa 4D nu-

cleofector (program EO-117). Cells were transduced with MSCV-MYC-t2A-BCL2-hCD2 or MSCV-BCL6-t2A-BCL2-hCD2 three

days after electroporation. Cells were harvested for immunoblot or RT-qPCR five days post-transduction.

Targeted CRISPR editing of U2932 cell lines
sgRNAs were cloned into pSpCas9(BB)-2A-GFP (PX458, Addgene, RRID: Addgene_48138) and the plasmid was electroporated into

the cells together with annealed double strand template using Amaxa nucleofector. Both control and R475C templates also con-

tained silent mutations to disrupt the PAM site as well as introducing a SpeI restriction enzyme digestion site used for screening tar-

geted cells. Two days after electroporation, GFP-positive cells were sorted by FACS. Genomic DNA was extracted and the modified

segment of DDX3X was amplified followed by SpeI digestion to detect template incorporation. Cells were then single cell cloned into

96 well plates and expanded. Colonies were screened using SpeI digestion and correct targeting verified by Sanger sequencing. Se-

quences for templates and sgRNAs are listed in Key resources table.

Protein extraction and immunoblotting
Cellpelletsor frozen tissueswerehomogenized,washedwithPBSand lysed in1XRIPA (CellSignaling,CatNo. 9806S)bufferon ice.10mg

of proteinwas loaded into eachwell of the gel. Electrophoresiswas donewith Bolt 4% to 12%Bis-Tris gel (Invitrogen). Membraneswere

blocked in5%milk followedby incubationwithprimaryantibodies includingDDX3X (BethylLaboratories,A300-474A,RRID:AB_451009),

b-actin (Sigma, Cat No. A5441, RRID: AB_476744), DDX3Y (Sigma, WH0008653M1, RRID: AB_1841225), DDX3Y (custommade) over-

night at 4�C.Membraneswerewashedwith 1x TBST and incubatedwith secondary antibodies for 90mins. ECL substrate (Bio-Rad, Cat

No. 170-5061) was added onto the membranes and the images were captured by Azure Biosystem C300 and exported as JPEG.

Total RNA extraction, cDNA synthesis and RT-qPCR
Total RNAwas extracted using NucleoSpin RNA extraction kit (Machery-Nagel, Cat No. 740955.250) according tomanufacturer’s pro-

tocol. Up to 2 mg of RNA was converted to cDNA using SuperScript III First-Strand Synthesis SuperMix (Invitrogen, Cat No. 18080400)

according tomanufacturer’s protocol. DDX3X andDDX3Ywere quantified by RT-qPCR using custom-made Taqman probeswith Taq-

man master mix (Invitrogen, Cat No. 4461881). PGK1 was used as internal control for normalization (Cat No. 43337657).

Apoptosis assay
Cells were harvested 48h post-transduction, fixed in fixation buffer (BD Bioscience, Cat No. 564129), permeabilized in 1x PermWash

Intracellular staining buffer (Biolegend, Cat No. 421002) and stained with Cleaved PARP (BD Bioscience, Cat No. 564129) and active

caspase 3 antibodies (BD Bioscience, Cat No. 560626). The stained cells were then analyzed on flow cytometer and the data were

analyzed by FlowJo.

Assessment of spliced XBP1
The XBP1s splicing assay was performed as previously described (van Schadewijk et al., 2012). XBP1s abundance was evaluated

either by RT-qPCR quantification using the XBP1s-specific primers, or by PCR amplification of XBP1 cDNA followed by Pstl1 restric-

tion enzyme digestion, which cuts only the unspliced isoform. The products were visualized by agarose gel electrophoresis.

Click-IT OPP assay
Cells were harvested either the specified time points and global translation was measured using Click-iT Plus OPP Alexa Fluor 647

Protein Synthesis Assay Kit (Fisher Scientific, Cat No. C10458) according tomanufacturer’s protocol. The cells were then analyzed by

flow cytometer and the data were analyzed by FlowJo.

Cell viability assay
Cell lines were treated with the drugs indicated for 48h using the concentrations indicated while control cells were treated with

DMSO. Cell viability was measured using Cell Titer-Glo Luminescent Cell Viability Assay kit (Promega, Cat No. G7572) and analyzed

on Spectramax M5. Results were calculated as percentage of luminesce reading relative to DMSO control.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of the band intensity was done using ImageJ (Schneider et al., 2012). All the t tests were performed in Graphpad Prism

7 and described in the figure legends.

GRAPHICS DESIGN

Visual Abstract was generated with BioRender.com
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