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Abstract 

Autism is a neurodevelopmental condition currently defined and diagnosed by the presence of 

lifelong difficulties in the domains of social interaction, social communication and social imagination, 

as well as restricted or stereotyped interests or behaviors. While early conceptualizations of autism 

incorporated sensory differences, they have been relatively neglected in proceeding years. 

Recognition of sensory differences in formal diagnostic criteria is now starting to be reintroduced. To 

date, sensory research suggests that both external and internal signal perception diverges in autistic 

individuals, but has been largely segregated between interoceptive and exteroceptive domains, 

impeding the construction of a general framework for understanding how perceptual experiences 

may differ for autistic individuals. We review recent findings detailing exteroceptive and 

interoceptive processing in autism and discuss their neurobiological basis. Based on this synthesis, 

we suggest that future work should be sensitive to individual differences to determine if divergent 

patterns of sensory processing are observed within individuals, rather than looking for global 

changes at a group level. Determining whether divergent patterns of exteroceptive and 

interoceptive sensory processing may contribute to prototypical social and cognitive characteristics 

of autism may drive new directions in our conceptualization of autism.  
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Public Significance Statement 

Autism is traditionally characterized by the presence of cognitive and social difficulties and 

differences. However, recent research lends support to early observations and autistic anecdotal 

accounts that sensory perception may also be atypical. Here, we review findings showing that 

autistic individuals perceive both the environment and their bodies differently. We argue that this 

divergent perception may account for many of the difficulties and differences experienced by 

autistic individuals, but also form part of their unique strengths. 
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Autism Spectrum Disorder (henceforth, ‘autism’) is a complex neurodevelopmental condition, 

clinically defined and diagnosed by the presence of lifelong difficulties with social interaction and 

communication as well as restricted and repetitive behaviors (DSM-5; American Psychiatric 

Association, 2013). Autism is now also commonly conceptualized as a form of neurodivergence i.e. ‘a 

specific neurological state’ (Beardon, 2017: 13) or ‘disposition’ (Milton, 2014) that is ‘different, not 

less’ (Fletcher-Watson & Happé, 2019: 23). In this paper we review a wide range of studies, many of 

which have been reported on in terms belonging to the former perspective (e.g. ‘deficits’, 

‘impairments’, ‘disorder’. etc.). We have made an effort to strike the balance between accurate 

reporting on findings and the use of non-pathologizing language. 

In recent years, research interest has turned towards the sensorimotor and perceptual 

differences associated with autism (Robertson & Baron-Cohen, 2017), and the ways in which these 

differences may have cascading effects on higher order behavioral, communicative, and social skills. 

Sensory processing may be divided into two primary types; exteroception responds to external cues, 

while interoception is the sensing of signals originating from within the body. Although there is a 

growing body of research indicating that for autistic individuals, aspects of both interoceptive and 

exteroceptive processing may be atypical, these two research fields have rarely been combined. 

 The atypical sensory perception of autistic individuals was included in the earliest 

conceptualizations of the condition (Kanner, 1943). Throughout the rest of the 20th century, theories 

exploring how sensory perception might give rise to differences in behavior and sense of self in autistic 

individuals (Bergman & Escalona, 1947; Eveloff, 1960; Hermelin & O’Connor, 1970) were put forth, 

but a focus on the social difficulties associated with autism dominated. The formal inclusion of 

sensory-perceptual differences as part of an autism diagnosis occurred only in 2013, when the fifth 

edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American Psychiatric 

Association, 2013) incorporated “hyper-or–hypo-reactivity to sensory input or unusual interests in 

sensory aspects of the environment” as a type of restricted and repetitive behavior.  

https://www-sciencedirect-com.ezproxy.sussex.ac.uk/topics/neuroscience/diagnostic-and-statistical-manual-of-mental-disorders
https://www-sciencedirect-com.ezproxy.sussex.ac.uk/science/article/pii/S1878929316301736
https://www-sciencedirect-com.ezproxy.sussex.ac.uk/science/article/pii/S1878929316301736
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Interoception is defined as the “process by which the nervous system senses, interprets, and 

integrates signals originating from within the body, providing a moment-by-moment mapping of the 

body’s internal landscape across conscious and unconscious levels” (Khalsa et al., 2018). Two main 

interoceptive pathways relaying visceral signals from afferent fibers in the body to the brain have been 

identified. Motivational signals (e.g. hunger and satiety) originate from different types of 

visceroceptors, such as chemoreceptors or baroreceptors and travel mostly along cranial nerves (e.g. 

the vagus nerve) to the nucleus of the solitary tract (Critchley & Harrison, 2013). Visceral signals 

related to tissue damage, originating from thermoreceptors and nociceptors (e.g., C-fibers; Craig, 

2003), enter the spinal cord via lamina 1 neurons and are further projected along the spinothalamic 

tract. Signals from both pathways are further relayed to the thalamus, amygdala, hypothalamus, 

anterior cingulate cortex, and insula (Critchley et al., 2004). Posterior insula (PI) has been identified as 

the primary interoceptive cortex representing the objective physiological state of the body, while 

anterior insula (AI) is thought to contain a subjective meta-representation of interoceptive signals 

(Craig et al., 2000). Interoception is not a unitary construct. Various taxonomies have been proposed 

that delineate interoception across neural, behavioral, subjective and metacognitive 

domains(Critchley & Garfinkel, 2017; Garfinkel et al., 2015; Khalsa et al., 2018; Quadt et al., 2018). 

Measures to date largely center around a) interoceptive accuracy, measured by objective behavioral 

tests, b) subjective report of interoceptive signals, also termed interoceptive sensibility, typically 

measured by questionnaires, and c) interoceptive awareness (also termed interoceptive insight), the 

metacognitive ability to judge one’s interoceptive accuracy, typically measured by confidence-

accuracy correspondence. Over recent years, several groups have investigated if interoception differs 

along these three dimensions between autistic and non-autistic individuals, though research to date 

has largely focused on the cardiac axis. 

There are a number of theories offering perspectives on autistic perception (Brock et al., 2002; 

Casey et al., 1993; Frith & Happé, 1994; Mottron et al., 2001). These theories tend to focus on specific 

neural or psychological mechanisms and can be restricted in their capacity to account for a range of 
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empirical findings. An early account of divergent perception in autism is the weak central coherence 

theory (Frith & Happé, 1994), stating that autism is marked by increased focus on local stimuli and 

decreased integration of stimuli into their global context (Happé, 1996). Other researchers have 

proposed that autism is characterized by ‘temporal binding deficits’ arising out of weak neural 

synchronization (Brock et al., 2002), or by general perceptual enhancement (Mottron, Burack, 

Dawson, Soulières, & Hubert, 2001). A monotropic account of autism (Murray, 2018; Murray et al., 

2005) proposes that attention allocation is atypical in autism, focusing more intensely and more 

narrowly on just a few interests at a time, making parsing of multiple information streams much more 

cognitively demanding.  

In the last decade, several accounts have emerged that attempt to describe sensory 

processing differences associated with autism from a Bayesian, or predictive processing perspective 

(e.g. Brock, 2012; Cruys et al., 2014; Friston et al., 2013; Karvelis et al., 2018; Lawson et al., 2014, 2017; 

Palmer et al., 2017; Pellicano & Burr, 2012; van Boxtel & Lu, 2013). These generally argue that in 

autism, bottom-up signals in both the exteroceptive (Pellicano & Burr, 2012) and interoceptive domain 

(Quattrocki & Friston, 2014) are given more weight in the perceptual process than top-down prior 

models about these signals. This may then lead to attentional biases in favor of sensory signals, 

potentially causing atypical perception and behavior. 

In one of the initial Bayesian accounts of autism, Pellicano and Burr (2012) hypothesized that 

top-down expectations about incoming sensory stimuli are attenuated in autism, leading to ‘hypo-

priors’, and, consequently, a greater reliance on real-time, bottom-up sensory input. A greater 

weighting of sensory signals in Bayesian perceptual inference might either increase or decrease the 

accuracy of perception depending on the context: When the current sensory input is reliable or prior 

expectations are not well-informed it can increase accuracy, but in noisy environments it is likely to 

decrease accuracy. Further elaborations converged on the idea that while priors might be intact in 

autism, their function to attenuate bottom-up error signals is reduced. These error signals are then 

weighted as highly precise and can therefore travel back up the hierarchy and influence prior models, 
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exaggerating their effect on future predictions of incoming sensory signals (Cruys et al., 2014; Friston 

et al., 2013; Lawson et al., 2014, 2017; Palmer et al., 2017; Quattrocki & Friston, 2014). 

The goal of this review is twofold. Firstly, we provide a broad review of studies investigating 

both exteroceptive and interoceptive sensory differences observed in autism. We aim to uncover 

shared or interacting mechanisms, and to summarize how existing theories attempt to account for 

autistic information processing across perceptual domains. If autism is characterized by a general 

difference in how the brain receives or processes incoming information, this might affect neural 

processing of stimuli from different sensory domains in similar ways. Secondly, we investigate the 

extent to which the divergent exteroceptive and interoceptive perceptual abilities of autistic people 

may jointly account for what are currently understood to be the prototypical social and cognitive 

characteristics of autism. Thirdly, we outline a unified framework in which we summarize the links 

between biological and behavioral findings, computational mechanisms and diagnostic features of 

autism that are discussed throughout this review. We end with a recommendation for future research 

to embrace the diversity and heterogeneity of the autistic population by building an understanding of 

sensory profiles in individuals rather than trying to frame autistic sensory experiences in absolute 

terms. 

Literature selection 

The studies considered in this review fulfill the following eligibility criteria. Studies are original articles 

published between 2000 and 2020 in a peer-reviewed journal written in English. Studies assess visual, 

auditory, tactile, multisensory or interoceptive processing using perceptual tasks, neural measures or 

self-report. Experimental outcomes are compared between a sample of participants diagnosed with 

autism, applying standardized diagnostic methods (DSM, ICD, ADI or ADOS) and non-autistic control 

participants. Samples must contain at least 10 participants that are matched for chronological age. 

Studies applying perceptual tasks must match both samples for cognitive abilities, while this 

requirement is not applied to studies using subjective questionnaires. Finally, in order to draw 

conclusions about sensory processes in autism that are not confounded by social processing 
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differences, this review does not include studies involving social stimuli (e.g. faces). One exception are 

audio-visual speech stimuli, as these constitute a primary area of research into multisensory binding 

in autism. However, we only review studies focusing on phonetic and non-semantic aspects of speech 

processing. Moreover, we included meta-analyses of perceptual tasks in autism, even if they did not 

adhere to the eligibility criteria we applied for original studies.  

The literature on exteroceptive processing in autism is extensive and contains numerous 

inconsistencies. Therefore, we focus on either replicated results or novel methods. Conversely, 

literature on interoceptive processing in autism is, at present, relatively scarce. As such, we have also 

included studies relating measures of interoception with autistic traits in non-autistic individuals. 

Some authors argue that differences in interoception observed in autism are not linked to autistic 

traits per se, but rather to alexithymia (Shah et al., 2016), which can be defined as a difficulty to 

describe or identify one’s emotions. While alexithymia is not included in the diagnostic criteria for 

autism, it has an estimated 50% co-occurrence rate among autistic people, compared to just 10% in 

the general population (Berthoz & Hill, 2005; Hill et al., 2004). Therefore, we additionally included 

studies relating measures of interoception to alexithymia. 

Exteroceptive processing 

Visual processing 

Basic visual discrimination 

In the visual domain, a compelling number of studies measuring visual acuity (Bölte et al., 2012; 

Kéïta et al., 2010; Tavassoli et al., 2016), orientation (Freyberg et al., 2016; Grubb et al., 2013; Koh et 

al., 2010; but see Bertone et al., 2005; Dickinson et al., 2016;), motion direction (Manning et al., 

2015), and flicker discrimination of simple stimuli (Bertone et al., 2005; Pellicano et al., 2005) 

indicate that basic visual discrimination abilities of autistic individuals are mostly indistinguishable 

from those of control participants. While conflicting with the perceptual enhancement hypothesis 

(Mottron et al., 2001), assuming that such visual discrimination abilities are elevated in autism, these 
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findings suggest that differences observed in more complex visual tasks, which will be reviewed in 

the following, are indeed not driven by differences in low-level stimulus perception.  

Visual search 

A widely replicated finding related to visual processing in autism is superior performance in visual 

search tasks requiring participants to determine if a target stimulus is present in a cluttered field of 

distractors. Autistic participants respond quicker than controls in conjunctive search, where two 

features need to be integrated to find the target (O’Riordan, 2004; O’Riordan et al., 2001; O’Riordan 

& Plaisted, 2001; Shirama et al., 2017), as well as in difficult disjunctive search, where the target is 

defined by a unique feature (Hessels et al., 2014; Joseph et al., 2009; O’Riordan, 2004; O’Riordan et 

al., 2001; Shirama et al., 2017). Moreover, the autism advantage is stronger when the target is 

absent (Hessels et al., 2014; Joseph et al., 2009; Keehn & Joseph, 2016; O’Riordan, 2004; O’Riordan 

et al., 2001; O’Riordan & Plaisted, 2001; Shirama et al., 2017), and at large set sizes (Hessels et al., 

2014; O’Riordan, 2004; O’Riordan et al., 2001; Shirama et al., 2017). This advantage in visual search 

remains when applying backwards masking (Shirama et al., 2017), or dynamical search (Joseph et al., 

2009), both of which disrupt top-down serial search strategies.  

Even though superior visual search in autism has been widely replicated, some studies 

report no difference between samples (Constable, 2010; Edmondson et al., 2020; Grubb et al., 2013; 

Iarocci & Armstrong, 2014; Keehn et al., 2013; Lindor et al., 2018). As visual search requires fine 

control of saccades, discrepancies between findings might be influenced by differences in motor 

abilities (Lindor et al., 2018), as many autistic individuals show atypical motor responses (Donnellan 

et al., 2013; Fournier et al., 2010; D. Green et al., 2009).  

In sum, there appears to be evidence for superior visual search abilities in autism, 

particularly in difficult search conditions. However, it is worth noting that while these effects have 

been replicated across numerous studies, they have not been universally obtained. This is consistent 

with a recent meta-analysis that found evidence for a low to moderate autism advantage in visual 

search across 15 studies (Constable et al., 2020), and more pronounced for conjunctive search.  
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Parallel processing 

According to perceptual load theory (Lavie, 1995), the amount of information presented to an 

individual determines to what degree distracting information will be processed. With low perceptual 

load, distractors interfere with task performance, while this interference disappears with high 

perceptual load. Autistic participants require a higher perceptual load to ignore distracting visual 

information (Remington et al., 2009, 2012), which indicates higher perceptual capacity. Drawing on 

these findings, it has been argued that the autism advantage in visual search might be accounted for 

by increased parallel processing, and consequently decreased automatic filtering of stimuli. 

Speculatively, this might also explain why the autism advantage in visual search prevails when the 

target is absent and at large set sizes, as in these cases, many stimuli are processed simultaneously.  

Local-global processing 

It has been widely claimed that the visual processing style of autistic participants is locally, rather 

than globally, focused (Happé, 1999; Happé & Frith, 2006; Mottron et al., 2003). A common method 

to probe local-global perception is the figure disembedding task (Witkin, 1971), which requires 

participants to respond to local aspects of a stimulus, while ignoring its global features.  

 In two meta-analyses on disembedding tasks, one found no difference between autistic and 

control participants (Van Der Hallen et al., 2015), while the other demonstrated a small superiority 

of autistic participants (Muth et al., 2014), where neither age nor IQ accounted for inconsistencies 

between studies. Higher accuracy among the autistic cohort has recently been observed in a more 

rigorous version of the figure disembedding task (Van der Hallen et al., 2018), supporting a local 

processing style where autistic individuals pay attention to local, rather than global aspects of 

complex stimuli (Nayar et al., 2017; Wang et al., 2015). 

Addressing the notion that autistic individuals have difficulties with global processing, a 

number of studies investigated global motion coherence perception, where participants need to 

report the overall direction of motion of a randomly moving cloud of dots. A recent meta-analysis 

investigating 20 motion coherence studies found a small group difference, indicating that non-



10 
EXTEROCEPTION & INTEROCEPTION IN AUTISM 

autistic participants are more accurate, faster, and require less information compared to autistic 

participants (Van der Hallen et al., 2019). Two studies (Robertson et al., 2012, 2014) found that 

differences in global motion perception might depend on stimulus duration, where an non-autistic 

advantage is only present at very short stimulus durations. Together, these results suggest that 

autistic participants tend to focus on local aspects of stimuli, and in line with weak central coherence 

theory (Happé & Frith, 2006), may have difficulties integrating local stimuli in the global context. 

Binocular rivalry 

In binocular rivalry paradigms, two distinct visual stimuli are presented simultaneously to each of the 

participant’s eyes, and perception switches between both percepts. Notably, switch rates are 

diminished in autistic adults (Freyberg et al., 2015; Robertson et al., 2013; Spiegel et al., 2019), and 

show longer durations of mixed percepts, during which both stimuli are perceived simultaneously 

(Freyberg et al., 2015; Robertson et al., 2013). However, another study found no difference in mixed 

percept durations (Said et al., 2013). Inconsistencies between studies might be explained by 

differences in stimulus complexity, as complex stimuli evoke stronger lateral inhibition (Alais & 

Melcher, 2007). Differences in binocular rivalry have not been replicated in autistic children (Karaminis 

et al., 2017), possibly indicating a developmental effect. 

These findings potentially speak to reduced lateral inhibition between neuronal populations 

encoding competing, complex stimuli during binocular rivalry (Tong et al., 2006) in autistic adults. 

Oscillatory differences 

Atypical oscillatory responses to visual stimuli in the gamma frequency band (30-120 Hz) have been 

observed in autism. Evoked oscillations in the gamma range in response to complex or illusory stimuli 

are decreased (Buard et al., 2013; Stroganova et al., 2012), compared to typical gamma band 

responses to simple visual stimuli (Milne et al., 2009; Stroganova et al., 2012). Conversely, gamma 

power is elevated in autism during sustained visual attention (Orekhova et al., 2007).  

When presented with periodic visual stimuli, neural ensembles can synchronize their activity 

with the frequency of the stimulus, as well as with multiples of the stimulus frequency, a process 
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known as neural entrainment (Lazarev et al., 2001). Autistic participants show reduced neural 

entrainment at the stimulation frequency (Snijders et al., 2013), as well as at multiples of the 

stimulation frequency (Lazarev et al., 2009). Next to these local effects within brain regions, 

synchronization of oscillations between brain regions also appears to be atypical. Specifically, beta-

range interhemispheric synchronization in sensory cortices (Lazarev et al., 2013; Peiker et al., 2015), 

and alpha-range feedback connectivity from V4 to V1 is decreased for autistic individuals when 

presented with visual stimuli (Seymour et al., 2019). The latter effect has been reported in conjunction 

with reduced cross-frequency coupling between alpha and gamma oscillations in V1. 

This evidence suggests that the synchronization of neural oscillations within and between 

brain regions in response to visual stimuli is less strong in autistic individuals. 

Visual predictions 

Autistic individuals appear to rely to a lesser extent on prior knowledge in tasks related to depth 

perception, resulting in more veridical perception of stimuli (Bedford et al., 2016; Mitchell et al., 2010; 

Ropar & Mitchell, 2002). Moreover, in a cued visual association task, autistic participants gazed longer 

at the correct location when the incorrect location was predicted by the cue (Greene et al., 2019). 

These finding indicate a possible decreased reliance on top-down predictions during visual perception 

in autism. 

Auditory processing 

Auditory mismatch negativity 

Auditory deviance processing in autism has been frequently investigated by examining mismatch 

negativity (MMN) in auditory oddball paradigms. Results are highly heterogeneous, and MMN 

amplitude differences seem to strongly depend on stimulus features (speech sounds or non-speech 

sounds), as well as deviance type (frequency, duration, or phoneme category). A recent meta-analysis 

of 28 studies reports that autistic participants show reduced MMN amplitudes in response to speech-

sound phoneme deviants, as well to non-speech duration deviants, but not to other stimuli (Chen et 

al., 2020). An earlier meta-analysis reports no main effect of group on MMN amplitude, and 



12 
EXTEROCEPTION & INTEROCEPTION IN AUTISM 

emphasizes the importance of counterbalancing features of standard and deviant stimuli (Schwartz et 

al., 2018). Out of 22 reviewed studies, only six were counterbalanced. Among those, MMN amplitudes 

are decreased in autistic participants for non-speech, but not for speech-sounds. In both meta-

analyses, age differences contribute to the heterogeneity of results, with MMN differences being 

more pronounced in children, and less in adults.  

 Overall, current evidence from MMN studies does not suggest that deviance processing is 

generally divergent in autism, but rather indicates a strong dependence on stimulus characteristics, 

age, and task design. 

Sound segregation 

Autistic individuals have been found to exhibit difficulties with automatic filtering of auditory stimuli, 

such as streams of tones with distinct frequency ranges (Lepistö et al., 2009). When participants are 

required to identify auditory stimuli among distractors with common features, reduced automatic 

filtering in autism leads to processing advantages (Lin et al., 2015). 

Moreover, autistic individuals show an increased ability to extract local features from 

melodies, while the perception of global features of the melody is indistinguishable between groups 

(Bouvet et al., 2014; Mottron et al., 2000), paralleling findings of enhanced visual disembedding.  

In sum, when presented with complex auditory stimuli made up of several parts, autistic 

participants may filter and group stimuli less, and may display an increased tendency to perceive each 

part independently, potentially indicating weak stimulus binding. 

Oscillatory differences 

Atypical oscillatory responses to auditory stimuli in autistic participants have been described 

frequently. Findings differ between evoked oscillations, which are phase-locked to the onset of a 

stimulus and induced activity, which is phase-independent and marks a change in oscillatory power 

after onset of a stimulus. Specifically, evoked gamma power (40-60 Hz) is decreased in response to 

pure tones, while induced gamma power is increased (Edgar, Fisk, et al., 2015; Edgar, Khan, et al., 

2015; Rojas et al., 2008). This is reflected by reduced inter-trial coherence in autism (sometimes 
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referred to as phase locking factor) (Edgar, Khan, et al., 2015; Gandal et al., 2010; Rojas et al., 2008), 

which expresses how consistent the phase of neural oscillations is over trials. Autistic participants 

further show reduced neural entrainment to acoustic click trains in the gamma range (Seymour et al., 

2020; Wilson et al., 2007).  

 These results parallel findings from the visual domain and indicate that the precise timing of 

neural oscillations to the onset of a stimulus is affected in autism, while the production of neural 

oscillations per se is indistinguishable from that of non-autistic individuals. 

Auditory predictions and habituation 

The attenuating effect of predictions and habituation on auditory processing appears to be diminished 

in autistic participants. One approach to investigate auditory predictions is to vary the predictability 

of deviant stimuli in an auditory oddball paradigm. For autistic participants, the MMN amplitude to 

deviant stimuli decreases less over time than for control participants (Hudac et al., 2018), and less 

attenuation by a higher occurrence rate of the deviant stimulus was observed (Goris et al., 2018). 

These findings can be interpreted as results of decreased top-down predictions in the auditory 

domain, mirroring findings observed for diminished visual predictions. Alternatively, they might reflect 

decreased habituation to recurring deviant stimuli in autism, which relies on local neural populations 

in the auditory cortex. These two processes are hard to tease apart (Garrido et al., 2009) but can be 

unified by the Bayesian approach to perception, as detailed in the “Theoretical Frameworks” section 

below. 

Tactile processing 

Tactile habituation 

When tactile stimulation starts at an imperceptible level and slowly increases in strength, it is harder 

to perceive than tactile stimulation of constant strength (Zhang et al., 2011). This tactile habituation 

effect has consistently found to be reduced in autistic participants (Puts et al., 2014, 2017; Tavassoli 

et al., 2016), and is thought to depend on lateral GABAergic inhibition (Blankenburg et al., 2003; 

Tommerdahl et al., 2010). Magnetic resonance spectroscopy (MRS) studies have demonstrated 
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decreased GABA levels in somatosensory cortex of autistic adults (Sapey-Triomphe et al., 2019) and 

children (Puts et al., 2017). 

These findings indicate that atypical tactile processing in autism might manifest in part as 

decreased sensory habituation caused by reduced neuronal inhibition. 

Oscillatory differences 

As in the visual and auditory domains, reduced gamma wave synchronization in autism has been 

observed in response to tactile stimuli. The entrained response to a 25 Hz vibrotactile stimulus at 50 

Hz (within the gamma range) was found to be diminished for autistic participants compared to non-

autistic controls (Khan et al., 2015), which the authors attribute to increased feedforward, but 

decreased feedback functional connectivity. 

A related finding is that tactile perception thresholds of autistic participants appear unaffected 

by the presentation of a competing vibrotactile stimulus (Tommerdahl et al., 2008), while perception 

thresholds of non-autistic individuals increase three- to four-fold when a competing stimulus is 

presented. It is argued that this indicates reduced oscillatory synchronization between nearby neural 

ensembles in autism, potentially impeding the binding of the two stimuli, resulting in an increased 

likelihood that they will be perceived individually. 

Multisensory processing  

Perception of synchrony 

The closer two stimuli from different sensory modalities are perceived in time, the more likely they 

are to be bound into a unified percept (Stevenson et al., 2016). The time window in which multisensory 

stimuli are likely to be perceptually bound is termed the multisensory temporal binding window 

(Wallace & Stevenson, 2014). Temporal binding windows can be assessed by synchrony or temporal 

order judgments of stimuli from different sensory modalities. A recent meta-analysis of 12 studies 

reports, with moderate effect size, weak multisensory temporal binding in autistic individuals 

(Meilleur et al., 2020), which is more pronounced for audio-visual speech stimuli than for non-speech 



15 
EXTEROCEPTION & INTEROCEPTION IN AUTISM 

stimuli. For non-speech stimuli, the authors report a high variation of findings between studies, which 

is likely due to differences in stimulus features and modalities.  

The typical fast habituation to asynchronous non-linguistic audio-visual stimuli observed in 

non-autistic participants(Van der Burg et al., 2013) is diminished for autistic individuals (Noel et al., 

2017; Turi et al., 2016). This may again point to reduced habituation in autism, this time manifesting 

for multisensory integration. Whereas non-autistic participants can adapt within one trial to 

asynchrony between two stimuli, autistic participants have a reduced tendency to adjust their 

perception of synchrony based on past stimuli.  

Multisensory facilitation 

Multisensory facilitation occurs when perception of a stimulus is facilitated by an additional stimulus 

in another modality. Reduced multisensory facilitation for autistic participants has been found in 

audio-visual response time tasks (Brandwein et al., 2013; Ostrolenk et al., 2019), as well visual search 

with auditory cues (Collignon et al., 2013). Findings from multisensory tasks consistently indicate that 

autistic individuals have difficulties in multisensory stimulus binding and show reduced multisensory 

facilitation, which might give rise to problems with speech comprehension (Stevenson et al., 2018). 

Self-report 

 Autistic self-reports (Kern et al., 2006; Minshew & Williams, 2007), and reports by parents of autistic 

children (Ben-Sasson et al., 2007; Minshew & Hobson, 2008; Silva & Schalock, 2012; Tomchek & Dunn, 

2007) consistently identify an atypical subjective experience of exteroceptive stimuli. Interestingly, 

according to self- and parent-reports, autism is associated both with increased under- and over-

reactivity to sensory stimuli. In line with this, sensory under- and over-reactivity correlates in a large 

sample of autistic children (N = 222), and sensory over-reactivity tends to co-occur with repetitive 

behaviors and strong attentional focus (Liss et al., 2006). It is speculated that overly focused attention 

and repetitive behaviors might be compensatory mechanisms for sensory over-reactivity, as they limit 

the scope of incoming information and might thus moderate arousal levels. 
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Interoceptive processing 

Heartbeat perception 

Interoception - the tracking and responding to physiological states of the body, such as hunger, 

thirst, temperature, fatigue or pain - is often experienced atypically in autistic individuals (Fiene & 

Brownlow, 2015), as we will detail below. Interoception is a crucial component for recognizing and 

interpreting emotions both in the self and in other, as well as for intuitive decision making (Dunn et 

al., 2010; Fukushima et al., 2011; Herbert et al., 2011): abilities that have traditionally been 

considered impaired in autism. Interoception is additionally thought to play a central role in anxiety 

(Paulus & Stein, 2010) which often co-occurs alongside autism (Brosnan et al., 2016; Garfinkel et al., 

2016; Silani et al., 2008). 

To date, the majority of interoceptive research in autism has focused on the cardiac domain, 

potentially because heartbeats are discrete and easily measurable (Larsson et al., 2020). Historically, 

the majority of cardiac interoception paradigms tended to use either tracking or discrimination-based 

tasks. In heartbeat tracking tasks (Schandry, 1981), participants are required to count their heartbeats 

over different time intervals (typically between 25 and 60 seconds) without taking their pulse, and the 

accuracy is based on the ratio of perceived to actual heartbeats. It is common practice not to instruct 

participants on how or where to detect heart beats, and the location of heart beat sensations during 

these tasks has been neglected by research, although there are now investigations in the spatial and 

temporal relationships in heartbeat detection tasks (Betka et al., 2020). Findings to date using this 

tracking task are mixed, with some studies demonstrating higher accuracy in non-autistic adults (Mul 

et al., 2018) and children (Nicholson et al., 2019; Palser et al., 2018). This is also supported by Garfinkel 

and colleagues (2016), although the study does meet eligibility criteria for our review, as samples were 

not matched for cognitive abilities. Conversely, other studies found no differences in interoceptive 

accuracy between autistic and non-autistic adults (Failla et al., 2019; Nicholson et al., 2018, 2019; Shah 

et al., 2016), or children (Schauder et al., 2015). These mixed findings might be partially due to differing 

exclusion criteria: Schauder and colleagues (2015) excluded participants if they reported no 
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heartbeats, assuming this indicates poor understanding of the instructions. Consequently, all 

participants with very low interoceptive accuracy were excluded. If these individuals were over-

represented in the autistic participant group, this could account for no observed differences between 

groups in this study. Additionally, mixed findings might also reflect the heterogeneity of autism, where 

reduced interoceptive sensibility may only be observed in some samples, and/or may be driven by the 

presence and degree of co-occurring conditions. It has been suggested that differences in alexithymia 

between non-autistic and autistic individuals may drive apparent reduced interoceptive accuracy in 

autism. Where alexithymia has been equated between the autistic and non-autistic groups, no 

differences in interoceptive accuracy has been observed, and reduced interoceptive accuracy 

inversely correlates with heightened alexithymia (Shah et al., 2016). This inverse relationship between 

interoceptive accuracy and alexithymia has also been found in non-autistic populations (Herbert et 

al., 2011), although not consistently (Mul et al., 2018; Nicholson et al., 2018, 2019; Zamariola, 

Maurage, et al., 2018). The variation of results concerning the relationship between autism and 

interoceptive accuracy might further be accounted for by individual differences in autistic 

characteristics, age, or the presence of additional mental health conditions. For example, autistic 

people are known to experience elevated levels of depression and anxiety (Simonoff et al., 2008), and 

both are associated with differences in interoceptive processing (Garfinkel et al., 2016; Paulus & Stein, 

2010). Alexithymia and interoceptive accuracy have been found to correlate in non-autistic adults, but 

only when controlling for depression and anxiety scores (Murphy, Brewer, et al., 2018).  

In heartbeat discrimination tasks (Katkin et al., 1983; Whitehead et al., 1977; Wiens & Palmer, 

2001), participants are asked to judge if a series of auditory or visual stimuli is synchronous or 

asynchronous to their own heartbeat. No differences in interoceptive accuracy measured by 

heartbeat discrimination tasks were found between non-autistic and autistic adults (Mul et al., 2018), 

or children (Palser et al., 2018). However, the number of trials in these studies was below the 

recommended number of 40 trials recommended by some to acquire reliable results (Kleckner et al., 

2015). While the heartbeat discrimination task has been widely used as a measure of interoceptive 
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accuracy (Forkmann et al., 2016; Garfinkel et al., 2016; Katkin et al., 1983), successful performance on 

this task requires combining exteroceptive and interoceptive information. This highlights that 

established tests of interoceptive accuracy can require additional types of processing and cannot be 

considered ‘pure’ tests of interoception. 

It has been argued that heartbeat tracking tasks may not actually test sensitivity to heart 

beats, but instead reflect the accuracy of participants’ beliefs about their own heart rate (Brener & 

Ring, 2016), coupled with their capacity to accurately estimate time (Desmedt et al., 2020). Moreover, 

interoceptive accuracy is negatively correlated with heart rate (Ainley et al., 2020; Zamariola, 

Vlemincx, et al., 2018), as individuals have a tendency to under-report their heartbeats. Those 

individuals with a lower heart rate may thus appear more sensitive. While some authors claim that 

this undermines the validity of the paradigm (Zamariola, Maurage, et al., 2018), others argue that 

interoceptive perception necessarily depends on individual physiological properties, in this case heart 

rate (Ainley et al., 2020). Concerning the heartbeat discrimination task, it has been argued that 

accuracy depends on the temporal delays of heartbeats and heartbeat sensations, which differ 

between individuals (Brener & Ring, 2016). These arguments call out for further understanding and 

potential refinement of existing interoception methods as well as for the development of novel 

paradigms to assess interoceptive accuracy. 

Novel interoceptive tasks 

Novel approaches to measure interoceptive accuracy in noncardiac axes have recently been proposed. 

Targeting the respiratory domain, Murphy and colleagues (2018) have defined interoceptive accuracy 

as the strength of reliance on interoceptive cues (opposed to auditory cues) when estimating the 

speed of one’s breath (Murphy, Catmur, et al., 2018). In a non-autistic sample, alexithymia, but not 

autistic traits, predicted a weaker reliance on interoceptive information. The authors also found that 

alexithymia, but not autistic traits, correlated with the accuracy of estimating muscular effort 

(Murphy, Catmur, et al., 2018). Finally, the consistency of subjective arousal ratings and skin 

conductance responses to emotionally arousing pictures has been proposed as a marker for 



19 
EXTEROCEPTION & INTEROCEPTION IN AUTISM 

interoceptive accuracy (Gaigg et al., 2018). Again, alexithymia, but not autistic traits, predicts weaker 

correspondence between arousal ratings and skin conductance response.  

Interoceptive sensibility 

While there is evidence for increased interoceptive sensibility in autistic adults (Garfinkel et al., 2016), 

typical interoceptive sensibility has been observed in autistic children (Palser et al., 2018). 

Interestingly, both studies report that the interoceptive trait prediction error (i.e. the difference in 

interoceptive sensibility and interoceptive accuracy) was higher in autistic participants opposed to 

controls. Autistic participants of all ages thus reported to be sensitive to interoceptive signals, but 

showed low accuracy relative to this self-report measure when assessed, resulting in greater 

interoceptive error in both autistic children and adults.  

Decreased interoceptive sensibility in autistic adults has also been observed (Fiene & 

Brownlow, 2015; Mul et al., 2018). This apparent discrepancy might be due to the different 

questionnaires used to assess interoceptive sensibility. Garfinkel and colleagues (2016) as well as 

Palser and colleagues (2018) applied the Body Perception Questionnaire (BPQ; Porges, 1993), which 

assesses the frequency of being aware of bodily sensations, such as swallowing or stomach pain. Other 

research used the Multidimensional Assessment of Interoceptive Awareness (MAIA; Mehling et al., 

2012) or the Body Awareness Questionnaire (BAQ; Shields et al., 1989), both of which assess the belief 

in accurate interpretation and control of body signals (e.g. ‘I notice distinct body reactions when I am 

fatigued’). Further work is needed to further delineate the different interoceptive components that 

may drive distinct self-report measures to assess whether they diverge selectively in autism.  

Integration of interoceptive and exteroceptive processing 

Cardio-visual temporal binding windows measured by a variant of the heartbeat discrimination task 

appear to be enlarged four-fold for autistic participants, as compared to non-autistic participants 

(Noel et al., 2018). This provides the first evidence for atypical integration of interoceptive and 

exteroceptive signals. This effect was several orders of magnitude larger than the enlargement of 
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temporal binding windows for visuo-tactile and audio-visual stimuli. However, samples were not 

matched for cognitive abilities and replication is needed to draw clear conclusions. 

Theoretical frameworks 

There exists a range of neurobiological, psychological, and computational theories offering accounts 

for divergent sensory processing in autism (see Box 1). Rather than being mutually exclusive, many of 

these theories can be viewed as complementary. One strand of theories speaks towards a divergent 

manner of stimulus binding in autism, while another strand uses Bayesian accounts of sensory 

processing to explain atypical autistic perception. We will address how both theoretical frameworks 

account for the findings reviewed above, how they might relate to each other, and which links they 

suggest between perceptual and behavioral differences.  

Weak stimulus binding 

Weak central coherence theory (Happé, 1996; Happé & Frith, 2006) posits that autism is characterized 

by reduced binding of local stimuli into global percepts. In line with this, autistic individuals tend to 

show performance advantages in tasks where stimuli need to be perceived in isolation, such as visual 

search (Constable et al., 2020), disembedding (Van der Hallen et al., 2018), or auditory segregation 

tasks (Lin et al., 2015), and display a locally focused processing style (Nayar et al., 2017; Wang et al., 

2015). Conversely, autistic individuals show difficulties in tasks where stimuli need to be combined or 

grouped, reflected by reduced perception of motion coherence (Van der Hallen et al., 2019), reduced 

multisensory facilitation (Brandwein et al., 2013), inaccurate perception of synchrony (Grossman et 

al., 2015), increased temporal binding windows (Meilleur et al., 2020), reduced filtering based on 

stimulus features (Lepistö et al., 2009), and diminished integration of interoceptive and exteroceptive 

information (Noel et al., 2018). Reduced automatic filtering of stimuli might result in sensory over-

reactivity (Kern et al., 2006). It has been proposed (Hatfield et al., 2019) that autism is marked by a 

reduced capacity for global integration of interoceptive stimuli into an ‘interoceptive scene’, akin to 

the reduced stimulus binding observed in the exteroceptive domain. For instance, the physiological 
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state of being thirsty can only be inferred by integrating several distinct interoceptive sensations. If 

global interoceptive integration is weakened in autism, Hatfield and colleagues argue, this might give 

rise to difficulties in interpreting and responding to bodily and emotional states. This argumentation 

is in line with reduced binding of external and internal signals might lead to increased salience 

(Garfinkel et al., 2016), along with reduced interpretability of the overall bodily state (Fiene & 

Brownlow, 2015), observed in some autistic adults. 

Interpreting bodily states requires the integration of both interoceptive and exteroceptive 

signals. A pounding heart, sweat and heavy breathing might be a sign of arousal, fear or physical 

exertion and clues to disambiguate these can be found in the external environment. Weak integration 

of external and internal cues might thus give rise to both difficulties in responding to bodily needs and 

alexithymia, as the experience of emotions is thought to depend on the perception of bodily states 

(Damasio & Carvalho, 2013). 

 On a neural level, weak stimulus binding can translate into reduced synchronized neural 

activity in response to stimuli (Brock et al., 2002; Simon & Wallace, 2016), as gamma range 

synchronization is thought to underlie stimulus binding. Locally evoked synchronized gamma 

oscillations in response to stimuli (Buard et al., 2013; Edgar, Khan, et al., 2015; Khan et al., 2015), long-

distance synchronization (Peiker et al., 2015), and cross-frequency coupling (Seymour et al., 2019) 

have been found to be decreased in autism, all of which are mechanisms involved in multisensory 

binding (Simon & Wallace, 2016). Interestingly, baseline oscillatory activity and induced gamma 

oscillations are increased in autism (Edgar, Fisk, et al., 2015; Edgar, Khan, et al., 2015; Rojas et al., 

2008), suggesting that the temporal precision of gamma wave production, rather than their 

production per se, is atypical in autism. 

On a molecular level, reduced evoked gamma range synchronization may be driven by an 

increased excitation/inhibition ratio in autism (Robertson et al., 2016; Rubenstein & Merzenich, 2003). 

GABAergic inhibition is necessary to produce phase-locked gamma waves in response to stimuli (Sohal 

et al., 2009), whereas downregulation of inhibitory activity might increase resting-state gamma 
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oscillations (see: Edgar, Khan, et al., 2015, for a discussion). Findings of decreased GABA receptor 

expression in cortical areas in autism (Gaetz et al., 2014; Harada et al., 2011; Oblak et al., 2010; Puts 

et al., 2017; Sapey-Triomphe et al., 2019), as well as diminished sensory habituation (Puts et al., 2014, 

2017), and atypical binocular rivalry (Robertson et al., 2013) constitute evidence for reduced neural 

inhibition in autism. 

 On the level of neural circuits, weak stimulus binding in the autistic brain might give rise to 

divergent patterns of functional connectivity. There is evidence for wide-spread under-connectivity 

(Di Martino et al., 2014; Just et al., 2004), but also over-connectivity (Courchesne et al., 2007; 

Supekar et al., 2013; Uddin et al., 2013) in the brains of autistic individuals. In particular, functional 

connectivity of the anterior insula, an area where interoceptive and exteroceptive information 

converge (Craig, 2009), is reported to be increased (Green et al., 2016; Supekar et al., 2013), or 

decreased in autism (Ebisch et al., 2011; von dem Hagen et al., 2013). It has been proposed that 

“idiosyncratic connectivity patterns of individuals with ASD may […] stem from the altered 

interaction of the autistic individual with the external environment” (Hahamy et al., 2015). In line 

with this idea, one might speculate that inconsistent neural responses to stimuli, such as reduced 

phase-locked gamma oscillations, may contribute to highly individual neural connectivity patterns in 

autism. 

Overall, reduced stimulus binding in autism accounts for a wide range of findings from 

perceptual tasks and can be linked to robust neural and molecular observations. 
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The Bayesian approach 

Several Bayesian accounts of autism propose that the core mechanism underlying divergent autistic 

perception and behavioral characteristics is atypical perceptual inference in the exteroceptive (Cruys 

et al., 2014; Lawson et al., 2014; Pellicano & Burr, 2012) or interoceptive domain (Quattrocki & Friston, 

Box 1. Theories of autistic perception 

Excitation-inhibition balance. Decreased GABA 

levels in autistic individuals lead to globally 

reduced neural inhibition (Robertson et al., 2016). 

Neural synchronization hypothesis. Autism is 

characterised by reduced synchronization of 

neural oscillations, leading to difficulties in 

stimulus binding (Simon & Wallace, 2016). 

Under-connectivity hypothesis. Long-range 

under-connectivity between frontal and posterior 

regions of the brain underlies the autistic 

phenotype (Just et al., 2012).  

Intense world hypothesis. Increased local neural 

connectivity and plasticity leads to hyper-

perception and -attention in autism (Markram 

2007). 

Weak central coherence. Autism is characterized by 

difficulties in processing information in its context, 

leading to a locally focused processing style (Happé & 

Frith, 2006). 

 

Perceptual enhancement. Low level perceptual 

abilities are enhanced in autism (Mottron et al., 

2001). 

Monotropism. Autistic characteristics emanate 

from atypical attention allocation. In autism, 

attention allocation supports few synchronous 

interests, each highly aroused (monotropism), 

compared to typical attention allocation 

supporting multiple interests, less highly aroused 

(Murray, 2018; Murray et al., 2005).  

Bayesian account. Attenuation of prediction 

errors in the exteroceptive (Lawson et al., 2014) 

and interoceptive domain (Quattrocki & Friston, 

2014) is biased towards sensory error signals. This 

leads to an increased influence of error signals on 

predictive model generation that drive perception.  
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2014). These accounts are based on Bayesian, predictive coding principles (Friston & Kiebel, 2009) 

postulating that in non-autistic individuals, perception heavily relies on top-down models which 

predict the most likely incoming sensory input and are compared against actual signals from the body 

and external environment, generating an error signal that can then be used to update models. 

Importantly, predictive processing involves a mechanism that estimates the reliability and precision 

of both predictive models and incoming signals. This estimate determines how much influence 

predictions or error signals have in forming percepts and sensations. 

Bayesian accounts of autism converge on the idea that for autistic individuals, perception is 

driven less by top-down generative models than in non-autistic individuals, and is instead more 

influenced by incoming error signals (Palmer et al., 2017). In other words, autistic perception is 

thought to be dominated more by sensory evidence and less by prior beliefs. One explanation for this 

disbalance is a reduced attenuation of prediction errors by top-down prior predictions in autism, 

which renders prediction errors overly precise and context-insensitive. Consequently, individual 

prediction error signals strongly influence predictive models and thereby hamper the learning of 

general, widely applicable rules and structures (Lawson et al., 2014). Especially in complex, noisy and 

uncertain environments, requiring a high error tolerance, reduced sensory attenuation might exert 

pronounced effects on perception (Cruys et al., 2014). In the interoceptive domain, it has been 

suggested that overly precise interoceptive prediction errors in autism result in difficulties with 

autonomic regulation (Quattrocki & Friston, 2014). It is proposed that in non-autistic individuals, 

attention is shifted away from one’s own body, enabling the contextualizing of bodily sensations with 

external stimuli. If this does not happen, due to a lesser attenuation of interoceptive error signals and 

ongoing attention on bodily sensations, these sensations will be amplified. Given the strong 

relationship between interoceptive processing and emotional states, this may ultimately lead to 

atypical emotional regulation (Quattrocki & Friston, 2014).  

Research designed to test the implications of the Bayesian account has found reduced effects 

of top-down predictions on visual and auditory perception (Goris et al., 2018; Greene et al., 2019; 
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Hudac et al., 2018; van Laarhoven et al., 2020). In line with this, a possible mediator of top-down 

prediction signals is feedback connectivity in response to stimuli, which has been found to be reduced 

in autism (Khan et al., 2015; Seymour et al., 2019). The Bayesian account further suggests that 

habituation to sensory stimulation is reduced in autism, as it relies on the attenuation of bottom-up 

signals (Lawson et al., 2014). This is supported by converging evidence for reduced tactile (Puts et al., 

2014, 2017), and audiovisual (Noel et al., 2017; Turi et al., 2016) habituation.  

An interesting finding to be considered under the Bayesian account is reduced auditory 

deviance processing observed for certain configurations of stimulus features in autism (Chen et al., 

2020). Reduced deviance processing is thought to be driven either by reduced habituation to repeating 

stimuli, or by reduced predictions of upcoming stimuli (Garrido et al., 2009), and both effects are in 

line with the Bayesian account. Findings of sensory over-reactivity (Minshew & Williams, 2007) also fit 

with the notion that autistic individuals show reduced attenuation of bottom-up information. Finally, 

if bottom-up signals are weighed disproportionally high in autism, one might expect autistic 

individuals to excel at tasks requiring accurate discrimination of low-level stimulus features 

irrespective of their context. This is empirically reflected by the autistic advantage in visual search, 

disembedding, and segregation tasks (Constable et al., 2020; Lin et al., 2015; Van der Hallen et al., 

2018).  

Some of the behavioral characteristics associated with autism may be explained by a Bayesian 

account of atypical perceptual inference. As autistic individuals are thought to show reduced 

attenuation of prediction errors, social situations – noisy and complex in their nature – become 

inherently unpredictable, resulting in challenges with social interaction (Cruys et al., 2014). Repetitive 

behavior patterns and focused interests can be understood as compensatory mechanisms to reduce 

uncertainty by providing a predictable environment (Lawson et al., 2014). Moreover, if there is no 

strong attenuation of interoceptive prediction errors, autistic individuals might not attribute salience 

to socially relevant exteroceptive stimuli and show less attenuation of self-generated stimulation, 

leading to a stronger focus on their own sensations (Quattrocki & Friston, 2014). Supporting the notion 
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that divergent interception might lead to behavioral differences, heightened interoceptive sensibility 

and accuracy in autism have been associated with divergent social-affective behavior and restricted 

behaviors, respectively (Palser et al., 2020). 

Attenuation of prediction errors is thought to be mediated by neuromodulators, specifically 

noradrenaline and acetylcholine for the exteroceptive domain (Yu & Dayan, 2005), and oxytocin for 

the interoceptive domain (Quattrocki & Friston, 2014). Post mortem studies have established an 

association between autism and the loss of acetylcholine receptors (Martin-Ruiz et al., 2004; Perry et 

al., 2001). Moreover, increased tonic pupil size (Anderson & Colombo, 2009; Blaser et al., 2015), and 

increased phasic changes of pupil size in sensory tasks (Blaser et al., 2015; Lawson et al., 2017) might 

indicate atypical noradrenaline function in autism. Regarding oxytocin, plasma levels have been found 

to be increased (Green et al., 2001; Modahl et al., 1998), and a recent meta-analysis revealed an 

association between autism and differences of the oxytocin receptor gene (LoParo & Waldman, 2015). 

Finally, it has been proposed that attenuation of prediction errors is exerted via NMDA receptors 

(Friston, 2005) and differences of genes coding for NMDA receptors have been associated with autism 

(Lee et al., 2015).  

Taken together, the Bayesian approach links differences in perceptual inference with common 

behavioral patterns in autism, and studies testing the implications of the Bayesian account provide 

consistent results. There is a fair amount of evidence indicating that neuromodulatory systems 

underlying attenuation of prediction errors might be atypical in autism (Green et al., 2001; Martin-

Ruiz et al., 2004; Modahl et al., 1998; Perry et al., 2001). However, the Bayesian account does not 

derive from consistently observed neurobiological changes, such as atypical excitation-inhibition 

balance and weak neural synchronization. 

A unified framework 

How might reduced stimulus binding and atypical perceptual inference relate to one another? An 

interesting parallel is that both approaches postulate that autism is characterized by a lower tendency 

to combine different types of information (signals from different sensory modalities or bottom-up and 
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top-down signals). If information integration is atypical in multiple ways, this might be reflected in 

highly individual functional connectivity patterns between brain regions encoding those different 

types of information. Indeed, this has been observed in autistic individuals (Hahamy et al., 2015).  

The interaction between the neurobiological mechanisms proposed by both frameworks has 

not been systematically investigated. However, there is some evidence suggesting that atypical 

neuromodulatory systems, which are thought to underlie weakened sensory attenuation, might affect 

the inhibition/excitation ratio, which is the neural mechanism proposed to underlie weak stimulus 

binding. For instance, oxytocin influences GABAergic functioning in early in development (Quattrocki 

& Friston, 2014; Tyzio et al., 2006), and acetylcholine release decreases neural inhibition and plays a 

central role in the production of gamma oscillations (see Feldman & Friston, 2010, for a discussion).  

 Atypical perceptual inference and weak stimulus binding might interact and reinforce each 

other and jointly account for the diversity of autistic presentations. While weak stimulus binding can 

account for reduced bottom-up integration of stimuli, the Bayesian framework highlights decreased 

top-down effects on sensory processing. 

A unified framework can provide an account for how perceptual differences in autism may 

cascade towards social difficulties (figure 1). For example, difficulties in social interaction might be 

influenced by reduced binding of auditory and visual information during speech perception and from 

reduced reliance on top-down predictions. Reduced binding of interoceptive and exteroceptive 

information has the potential to hamper the attribution of salience to social stimuli and so may make 

it harder to interpret one’s bodily and emotional state: which is crucial for the understanding of 

emotions in self and other. Moreover, avoidance of social situations, repetitive behaviors, and a strong 

attentional focus may be understood as compensatory mechanisms to prevent sensory overload and 

construct a predictable environment. 

We urge researchers to consider that while there is much evidence of atypical processing at 

the neural, cognitive and perceptual level in autism, this does not translate to ‘deficits’ at the personal 

and social level. While the differences between autistic and non-autistic sensory processing and their 
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potential consequences need to be considered and may, as described above, lead to differences in 

personal and social behavior, there is an important distinction to be made between these different 

levels of description. ‘Deficient functioning’ may be ascribed to autistic individuals on the basis of 

observed differences in neural, perceptual or cognitive processing, when in reality it might be a world 

not set out to accommodate and welcome these atypical profiles that leads to perceived deficits. We 

describe below why existing standards to measure ‘function’ in non-autistic populations do not always 

apply to the autistic population.  

Crucially, autism is a highly heterogeneous condition and no single framework can describe 

the autistic population as a whole. Both the features suggested by our model, as well as the strength 

of causal relationships between those features are thought to apply to autistic individuals to varying 

degrees depending on individual profiles. 

Limitations and future directions 

Due to the large amount of studies reviewed in this paper, we did not systematically investigate effects 

of age or gender on sensory processing in autism. However, these and other factors likely affect 

results. We excluded all studies involving social stimuli (such as faces or semantic and pragmatic 

aspects of language processing), thus limiting the review to basic sensory processes. In the interest of 

brevity, we did not include studies into proprioceptive perception in autism. However, research 

suggests that proprioceptive processing is also atypical in autism: possibly resulting from weak 

integration of other sensory modalities (Cascio et al., 2012; Greenfield et al., 2015) in line with the 

argument provided in this review. Moreover, it has been reported that symptoms of autonomic 

dysregulation such as fatigue, pain or digestion issues occur frequently in autistic individuals (Csecs et 

al., 2020). Even though interoceptive processing and autonomic regulation are closely linked (Craig, 

2003; Quattrocki & Friston, 2014), we did not discuss findings of autonomic functioning in this review. 

Finally, the review of sensory processing in the exteroceptive domain is far from exhaustive, and we 

limited our review to frequently replicated or novel findings.  
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There are also important limitations regarding the reviewed studies. Many of the findings 

outlined in this review are inconsistent. Reasons for this variability may include small sample sizes in 

many studies as well as a strong dependence of outcomes on stimulus properties. Methodological 

features, such as stimulus types, number of trials, exclusion criteria and scoring methods often differ 

within sets of studies that employ the same task. Moreover, the method employed to match groups 

for cognitive abilities differs, possibly confounding the results. A further limitation is the lack of 

standardized self-report questionnaires. In the interoceptive domain, a significant issue is the absence 

of consensus about which percepts are considered interoceptive and which methods are best suited 

to test interoceptive accuracy.  

Arguably, the biggest challenge for research on sensory processing in autism is the high level of 

heterogeneity across the autism spectrum. Despite the common neuro-developmental diagnosis, it 

is likely that the neurobiological mechanisms and genetic differences underlying these diverse 

phenotypes vary, and this may be reflected in divergent patterns of sensory experiencing among 

different autistic individuals. Also of note is the fact that of the studies we reviewed, the majority 

included only those autistic individuals with an IQ greater than 70: thus disregarding approximately 

50% of the autistic population (Newschaffer et al., 2007). Within autism research, IQ has traditionally 

been linked to so-called ‘functioning ability’, however it is increasingly recognized that it is not really 

possible to match IQ to a specific and stable level of function (Kenworthy et al., 2010) Furthermore, 

the very notion of functioning ability is becoming outdated, based on the fact that it can be both 

misleading and stigmatizing (Botha et al., 2021; Bottema-Beutel et al., 2021). Unlike within the non-

autistic population, IQ is a poor predictor of abilities, adaptability and performance for autistic 

people (Estes et al., 2011), largely on account on the ‘spiky profile’ of (Milton, 2012: 8) of cognitive 

abilities that autistic individuals tend to possess. The heterogeneity of the population might account 

for inconsistent findings observed in many paradigms discussed in this review. In line with this 

observation and the highly varied individual sensory experience in autism, we suggest that 

generalizations about differences between autistic and non-autistic people is too simplistic. Instead, 
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both empirical and clinical research would benefit from approaching an understanding of individual 

sensory profiles and their potential implications for emotional and behavioral characteristics.  

An interesting avenue for future research would be to combine interoceptive and 

exteroceptive processing tasks to investigate whether sensory processing differences exist in similar 

ways across modalities for autistic individuals and how perceptual atypicality may influence behavior. 

We further hope that future research will help elucidate how weak stimulus binding and atypical 

perceptual inference might interact on the molecular, neural and circuit levels in the autistic brain.  

Conclusion 

In this review, we outlined and linked a wide range of findings from studies investigating the 

exteroceptive and interoceptive processing of autistic individuals. A large part of these findings can 

be explained by reduced neural synchronization and consequently reduced binding of sensory 

stimuli into global percepts. Another set of findings speaks to atypical perceptual inference in 

autistic individuals, who seem to rely more on incoming evidence and less on prior predictions than 

non-autistic individuals. Weak stimulus binding and atypical perceptual inference – though described 

as distinct theories in the literature – might complement each other and describe the complex 

bottom-up and top-down differences of autistic perception, respectively. We aimed to unify 

scattered theories and findings of autistic perception into a more general framework and argue that 

that some of the prototypical social and cognitive characteristics of autism may be seen as 

consequences of, or compensatory mechanisms for, atypical exteroceptive and interoceptive 

perceptual processing. Crucially, the sometimes atypical perceptual abilities of autistic individuals 

should not be categorized simply as impairments. Instead, these divergent ways of processing 

incoming information within the brain can lead to both advantages and disadvantages, depending on 

task demands and environment. This final point is significant. For both autistic and non-autistic 

individuals, relative strengths and limitations in their exteroceptive and interoceptive processing 

have been identified. Perhaps what most meaningfully impacts upon whether these differing 

abilities are ultimately considered impairments or become disabling characteristics is the 
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environment in which the individual resides. Built and social environments designed to meet the 

sensory profiles of non-autistic individuals may not be felicitous for autistic individuals: and vice 

versa. Shifting research efforts towards individualized approaches could foster the notion that 

instead of impaired perception, we need to understand sensory differences as individual facets of a 

highly diverse and heterogeneous phenotype with equally varying emotional, social, and behavioral 

implications. 
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