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Summary: We provide estimation methods for nonseparable panel models based on low-
rank factor structure approximations. The factor structures are estimated by matrix-completion
methods to deal with the computational challenges of principal component analysis in the
presence of missing data. We show that the resulting estimators are consistent in large panels,
but suffer from approximation and shrinkage biases. We correct these biases using matching
and difference-in-differences approaches. Numerical examples and an empirical application
to the effect of election day registration on voter turnout in the US illustrate the properties and
usefulness of our methods.
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1. INTRODUCTION

Nonseparable models are useful to capture multidimensional unobserved heterogeneity, which is
an important feature of economic data. The presence of this heterogeneity makes the effect of
covariates on the outcome of interest different for each unit due to factors that are unobservable
or unavailable to the researcher. In the absence of further restrictions, a different data generating
process essentially operates for each unit, which creates identification and estimation challenges.
One way to deal with these challenges is the use of panel data, where each unit is observed
on multiple occasions. In this paper, we develop an approach to estimate nonseparable models
from panel data based on homogeneity restrictions and low-rank factor approximations. While
homogeneity restrictions have been used previously in this context, the application of low-rank
factor approximations is more novel.

The nonseparable model that we consider includes observed discrete covariates or treatments,
multidimensional unobserved individual and time effects, and idiosyncratic errors. We construct
the effects of interest as averages or quantiles of potential outcomes constructed from the model by
exogenously manipulating the value of the treatments. These effects are generally not identified
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from the observed data because the treatment assignment is usually determined by the unobserved
individual and time effects. Following the previous panel literature, we impose cross-section and
time-series homogeneity restrictions to identify the effects of interest; see, e.g., Chamberlain
(1982), Manski (1987), Honoré (1992), Evdokimov (2010), Graham and Powell (2012), Hoderlein
and White (2012) and Chernozhukov et al. (2013).

The estimation of the nonseparable model is challenging due to the presence of the multidi-
mensional unobserved individual and time effects. We cannot just exclude these effects because
they are endogenous, i.e., related to the treatments. We deal with this problem by approximating
their effect with a low-rank factor structure. This approach can be interpreted as a series or sieve
approximation on the unobservables. We characterize the error of this approximation in terms
of the functional singular value decomposition of the expectation of the outcome conditional on
the treatment and unobserved effects. For smooth conditional expectation functions, the mean
squared error of the approximation error vanishes with the rank of the factor structure at a
polynomial rate.

We develop an estimator of the low-rank factor approximation in the case where the covariate
of interest is binary. This is an empirically relevant case as it covers the treatment effect model
for panel data. We also show how to extend the model to include additive controls and fixed
effects. Here, we rely on the analogy between the estimation of treatment effects and the matrix-
completion problem previously noted by Athey et al. (2021) and Amjad et al. (2018). Thus, given
that the principal components program is combinatorially hard in the presence of missing data,
we consider the convex relaxation of this program that replaces a constraint in the rank of a matrix
by a constraint in its nuclear norm, following Fazel (2003) and Srebro and Jaakkola (2003). The
resulting estimator is the matrix-completion estimator.

The main theoretical result of the paper is to show that the matrix-completion estimator is
consistent under asymptotic sequences where the two dimensions of the panel grow to infinity
at the same rate. This result does not follow from the existing matrix completion literature that
assumes that the matrix to complete has low rank. In our case, the underlying matrix of interest
can have full rank, but we impose appropriate smoothness assumptions on the data generating
process that guarantee that the singular values of the matrix form a rapidly decreasing sequence.
This allows a low-rank approximation, and it also implies a bound on the nuclear norm of the
matrix. Our consistency proof for the matrix-completion estimator therefore crucially relies on the
bound of the nuclear norm, but does not impose any low-rank conditions. Our proof strategy also
avoids the high-level restricted strong convexity assumption (see, e.g., Negahban and Wainwright,
2012). We instead provide interpretable conditions on the underlying process of the observable
and unobservable variables directly.

The matrix-completion estimator is consistent, but can be biased in small samples. This bias
comes from two different sources: approximation bias due to the low-rank factor structure approx-
imation; and shrinkage bias due to the nuclear norm regularization of the principal component
analysis program (Cai et al., 2010; Ma et al., 2011; Bai and Ng, 2019b). We propose matching
approaches to debias the estimator. For each treatment level, the simplest approach consists of
finding the observation in the other treatment level that is the closest in terms of the estimated
factor structure. We also propose a two-way matching procedure that combines matching with
a differences-in-differences approach. The two-way procedure is related to several recent pro-
posals, such as the matching approach of Imai and Kim (2019) to estimate causal effects from
panel data and the blind regression of Li et al. (2017) for matrix completion. The difference with
these proposals is in the information used to match the observations. Imai and Kim (2019) use
the treatment variable and Li et al. (2017) the outcome, whereas we use the estimated factor
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structure. In this sense, the estimation of the factor structure can be seen as a preliminary de-
noising step of the data as in Chatterjee (2015). Amjad et al. (2018) proposed a similar debiasing
procedure based on the estimated factor structure, but they rely on synthetic control methods
instead of matching. In contemporaneous and independent work, Chernozhukov et al. (2020)
have developed an alternative rotation-debiasing method that can be applied to make inference
on heterogenous treatment effects in low-rank models. This method consists of the application of
iterative least squares to the left and right singular vectors of the matrix-completion estimator.

We illustrate our methods with an empirical application to the effect of election day registration
(EDR) on voter turnout and numerical simulations. We estimate average and quantile effects
using a state-level panel dataset on the 24 US presidential elections between 1920 and 2012
collected by Xu (2017). We find that, after controlling for possible nonrandom adoption, EDR
has a positive effect, especially at the bottom of the voter turnout distribution. Our methods
uncover stronger effects than standard difference-in-differences methods that rely on restrictive
parallel trend assumptions. The simulation results show that our theoretical results provide a good
representation of the behaviour of the estimators in small samples.

The rest of the paper is organized as follows. Section 2 describes the model and effects of
interest. Section 3 introduces the low-rank factor approximation and derives the properties of its
matrix-completion estimator. The matching methods to debias the matrix-completion estimator
are discussed in Section 4. Section 5 reports the results of the numerical examples. All the proofs
of the theoretical results are gathered in the Appendix.

2. MODEL AND EFFECTS OF INTEREST

Throughout this paper we consider the following nonseparable and nonparametric panel data
model:

ASSUMPTION 2.1. (MODEL)

Yit = g(X it, Ai , Bt , U it), i ∈ N = {1, . . . , N}, t ∈ T = {1, . . . , T }, (2.1)

where i and t index individual units and time periods, respectively; Yit is an observed outcome
or response variable with support Y ⊆ R; g is an unknown function; X it is a vector of observed
covariates or treatments with finite support X; Aiand Bt are vectors of individual and time
unobserved effects, possibly correlated with X it, with supports A ⊆ Rda and B ⊆ Rdb , respectively;
and U it is a vector of unobserved error terms of unspecified dimension, for which we assume
that

U it
d= U js | XNT, AN, BT , for all i, j ∈ N, t, s ∈ T, (2.2)

and

U it ⊥⊥ (XNT, AN, BT ) | Ai , Bt , for all i ∈ N, t ∈ T, (2.3)

where XNT = {X it : i ∈ N, t ∈ T}, AN = {Ai : i ∈ N}, BT = {Bt : t ∈ T}, and ⊥⊥ denotes
stochastic independence. We also assume that, for all i ∈ N, t ∈ T, the support of (X it, Ai , Bt )
is equal to the Cartesian product X × A × B, and that E Y 2

it < ∞.

This model can be motivated from a purely statistical perspective as a latent variable model
using the Aldous-Hoover representation for exchangeable random matrices, e.g., Xu et al. (2014),
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Chatterjee (2015), Orbanz and Roy (2015), and Li and Bell (2017).1 We motivate it instead as a
structural model where the unobserved effects Ai and Bt are associated with individual hetero-
geneity and aggregate shocks, respectively. Additional exogenous covariates can be incorporated
in the usual way by carrying out the analysis conditional on them. We focus on discrete covari-
ates but, from a theoretical perspective, the extension to continuous covariates is straightforward
by using appropriate smoothing methods—it is, however, not clear to us whether that extension
would be practically useful with realistic sample sizes. We therefore think that it would complicate
our presentation without much benefit.

The main restriction imposed by Assumption 2.1 is the unit and time homogeneity in (2.2).
A sufficient condition for unit homogeneity is that the observations are identically distributed
across i, which is a common sampling assumption for panel data. Time homogeneity has also
been commonly used in panel data models (Chamberlain, 1982; Manski, 1987; Honoré, 1992;
Evdokimov, 2010; Graham and Powell, 2012; Hoderlein and White, 2012; Chernozhukov et al.,
2013). It implies that time is randomly assigned, conditional on covariates and unobserved effects.
The additional restrictions in (2.3) are exogeneity conditions on (XNT, AN, BT ) with respect to
U it, conditional on Ai and Bt . The most substantive is the exogeneity of X it. Given (2.2), this is
a mild condition as time homogeneity already imposes that any relationship between U it and X it

can only be unit and time-invariant. Taken together, (2.2) and (2.3) impose that

U it | Ai , Bt
d= U js | Aj , Bs , for all i, j ∈ N, t, s ∈ T. (2.4)

The product support condition guarantees overlap in the support of the unobserved effects for
all values of the treatments. This condition is similar to the overlap condition used in cross section
treatment effect models under unconfoundedness or selection on observables. Thus, together with
(2.3), it implies that Pit(x) := Pr

(
Xit = x | AN, BT

)
> 0, a.s., for all i ∈ N, t ∈ T and x ∈ X,

where Pit(x) is the analog of the propensity score in our setting. This condition is plausible in
many applications; for example, in our empirical application in Section 5.1, Xit = 1{t ≥ τi},
where τi is the date of the law change in state i. In that case, if we consider τi to be a random
variable with sufficiently large support conditional on the unobserved effects, then the condition
Pit(x) > 0, a.s., is satisfied.

The model considered is similar to the static model in Chernozhukov et al. (2013), but there
are three important differences. First, the structural function g has time effects as arguments
and therefore allows the relationship between Yit and X it to vary over time in an unrestricted
fashion even under (2.2). For example, it can include location and scale time effects. Second,
Chernozhukov et al. (2013) impose that Yit and X it are identically distributed across i, which
is stronger than the unit homogeneity in (2.4). Thus, unit homogeneity does not restrict the
treatment assignment process. Third, they analyse short panels, whereas we rely on large T

for identification. Our model also encompasses the nonseparable model with time effects in
Freyberger (2017), where in our notation Yit = gt (X it, AT

i Bt + U it).2 We provide more examples
of models covered by Assumption 2.1 below.

The structural function g is generally not identified, but can be used to construct interesting
effects. Let Yit(x) := g(x, Ai , Bt , U it(x)) be the potential outcome for individual i at time t

obtained by setting exogenously X it = x ∈ X, where

U it(x)
d= U it | AN, BT . (2.5)

1 In the Aldous-Hoover representation, Ai , Bt , and U it are independent uniform random variables.
2 Note that our model allows for g to depend on t because the dimension of Bt is unspecified.
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Here we impose rank similarity as the distribution of U it(x) conditional on AN and BT does not
change with x. The main effects of interest are the average structural functions (ASFs)

μt (x) := 1

N

N∑
i=1

E
[
Yit(x) | AN, BT

]
, μ(x) := 1

T

T∑
t=1

μt (x), (2.6)

and the conditional average structural functions (CASFs)

μt (x | X0) := 1

Nt (X0)

N∑
i=1

1{X it ∈ X0}E
[
Yit(x) | AN, BT

]
, Nt (X0) =

N∑
i=1

1{X it ∈ X0},

μ(x | X0) := 1

n(X0)

T∑
t=1

Nt (X0)μt (x | X0), n(X0) =
T∑

t=1

Nt (X0), (2.7)

where X0 ⊆ X, provided that n(X0) > 0. The ASFs and CASFs correspond to averages of the
potential outcome Yit(x) at a given time period or aggregated over the observed time periods.
In both cases the average is over the cross sectional units in the observed sample or finite
population. Infinite-population versions of the effects can be obtained by taking probability
limits as N → ∞. If X it includes only a binary treatment, the ASFs and CASFs can be used to
form treatment effects. For example, μ(1) − μ(0) is the time-aggregated average treatment effect
and μt (1 | {1}) − μt (0 | {1}) is the average treatment effect on the treated at time t . Distribution
structural functions (DSFs) can be constructed analogously replacing Yit(x) by 1{Yit(x) ≤ y} in
(2.6) and (2.7) for y ∈ Y. Quantile effects can then be formed by taking left-inverses of the DSFs
and taking differences. For example, the τ -quantile treatment effect at time t is qt,τ (1) − qt,τ (0),
where

qt,τ (x) = inf

{
y ∈ Y :

1

N

N∑
i=1

E
[
1{Yit(x) ≤ y} | AN, BT

] ≥ τ

}
.

We provide some examples of data generating processes that satisfy Assumption 2.1. The
purpose is to show that Assumption 2.1 covers a great variety of models commonly used in
empirical analysis. Our estimation methods are generic in that we do not need to specify the data
generating process, beside satisfying Assumption 2.1. Of course, using more information about
the data generating process would lead to more efficient estimators, but at the cost of robustness
to model misspecification.

EXAMPLE 2.1. (LINEAR FACTOR MODEL) Consider the linear panel model with factor struc-
ture in the error terms:

Yit(x) = xTβ + λT
i f t + σi(x)σt (x)Uit(x), Uit(x) | XNT, AN, BT ∼ i.i.d. FU ,

where Uit(x) is a zero mean random variable with marginal distribution FU , which does not depend
on x. This is special case of Assumption 2.1 with Yit = Yit(X it), Ai = (λi , {σi(x) : x ∈ X}) ,

Bt = (
f t , {σt (x) : x ∈ X}), and U it = Uit(X it). The average effect of changing the covariate

from x0 to x1 at t is

μt (x1) − μt (x0) = μt (x1 | {x1}) − μt (x0 | {x1}) = (x1 − x0)Tβ.

A version of this model was considered by Kim and Oka (2014) to analyse the effect of
unilateral divorce laws on divorce rates in the US. This model encompasses the standard
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difference-in-differences model, Yit(x) = xTβ + λi + ft + σi(x)σt (x)Uit(x), by setting λi =
(λi, 1)T and f t = (1, ft )T.

EXAMPLE 2.2. (BINARY RESPONSE MODEL) Assume that the potential outcome Yit(x) is
binary and generated by

Yit(x) = 1{m(x, Ai , Bt ) ≥ Uit(x)}, Uit(x) | XNT, AN, BT ∼ i.i.d.U (0, 1),

for some unknown function m. Here, assuming that Uit(x) is uniform is a normalization, since m
can be arbitrary. This latent index model with unobserved effects is a special case of Assumption
2.1 with Yit = Yit(X it) and U it = Uit(X it). The ASFs at x and t is

μt (x) = 1

N

N∑
i=1

m(x, Ai , Bt ).

Similar latent index models for count or censored responses are also covered by Assumption 2.1.

EXAMPLE 2.3. (TREATMENT EFFECT FACTOR MODEL) Assume that X it contains only a
binary treatment indicator, i.e., X = {0, 1}. The potential outcomes are generated by the linear
factor model

Yit(x) = λi(x)T f t (x) + σi(x)σt (x)Uit(x), Uit(x) | XNT, AN, BT ∼ i.i.d. FU , x ∈ X,

where Uit(x) is a zero mean random variable with marginal distribution FU , which does not depend
on x. This is special case of Assumption 2.1 with Yit = Yit(X it), Ai = ({λi(x), σi(x) : x ∈ X}),
Bt = ({ f t (x), σt (x) : x ∈ X}), and U it = Uit(X it). The average treatment effect at t is

μt (1) − μt (0) = 1

N

N∑
i=1

[λi(1)T f t (1) − λi(0)T f t (0)],

and the average effect on the treated at t is

μt (1 | {1}) − μt (0 | {1}) = 1

Nt (1)

N∑
i=1

1{X it = 1}[λi(1)T f t (1) − λi(0)T f t (0)],

provided that Nt (1) = ∑N
i=1 1{X it = 1} > 0. Versions of this model have been considered by

Hsiao et al. (2012), Gobillon and Magnac (2016), Athey et al. (2021), Li and Bell (2017), Xu
(2017), Li (2018), Bai and Ng (2019a), Xiong and Pelger (2019), and Chan and Kwok (2021).
Example 2.1 is a special case with λi(x)T f t (x) = xTβ + λT

i f t .

Throughout this paper we use standard panel data notation, with the two panel dimensions
being denoted by units i and time t . However, one could also consider pseudo-panel or network
applications of our results, where the two panel dimensions are denoted by i and j , and Yij

could, for example, be wage of worker i in firm j , consumption of member i in household j ,
a friendship indicator between individuals i and j , or the volume of trade from country i to
country j . The existing literature on two-way heterogeneity in network models usually either
makes stronger parametric assumptions than we impose here (e.g., Graham, 2017; Dzemski,
2019; Zeleneev, 2020; Chen et al., 2021) or uses stochastic blockmodels or graphon models,
which typically ignore the effect of covariates (e.g., Holland et al., 1983; Wolfe and Olhede,
2013; Gao et al., 2015; Auerbach, 2019). Our methods of estimating nonparametric models with
two-way heterogeneity may therefore also be of interest in a network context.
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3. ESTIMATION VIA FACTOR STRUCTURE APPROXIMATION

A natural starting point to estimate the effects in (2.6) and (2.7) is to use empirical analogs. This
amounts to replacing E

[
Yit(x) | AN, BT

]
by an estimator. There are two complications with this

approach. First, the potential outcome Yit(x) is not observable. We deal with this complication by
noting that

E
[
Yit(x) | AN, BT

] = E
[
g(x, Ai , Bt , U it(x)) | AN, BT

]
= E

[
g(x, Ai , Bt , U it) | AN, BT

] = E [g(x, Ai , Bt , U it) | X it = x, Ai , Bt ]

= E [Yit | X it = x, Ai , Bt ] ,

under the rank similarity in (2.5) and Assumption 2.1. Hence, we can write the expectation of the
potential outcome as an expectation of the observed outcome. The second complication is that Ai

and Bt are not observable, so that we cannot directly estimate E [Yit | X it = x, Ai , Bt ]. To deal
with this complication, we start by noticing that

E [Yit | X it = x, Ai = a, Bt = b] = E [g(x, a, b, U it) | Ai = a, Bt = b]

=: m(x, a, b),
(3.1)

where the function m does not vary with i and t , by implication (2.4) of Assumption 2.1. We show
next how this function can be approximated and estimated using a low-rank factor structure.

3.1. Low-rank factor structure approximation

For ease of exposition, we assume in the rest of the paper that the covariate vector X it includes
only a binary treatment and X = {0, 1}. Accordingly, we denote the covariate and its values by
Xit and x instead of X it and x. In what follows, x denotes a generic element of X and all the
assumptions and results hold for all x ∈ X1 ⊆ X, where X1 = X if we are interested in the entire
population, X1 = {0} if we are interested in the treated subpopulation, and X1 = {1} if we are
interested in the untreated subpopulation.

The approximation that we propose is based on the singular value decomposition of the function
(a, b) �→ m(x, a, b) for each x ∈ X. We make two assumptions on this decomposition. The first
assumption is a sampling condition on the unobserved effects that will be useful to define a norm
for the eigenfunctions.

ASSUMPTION 3.1. (SAMPLING OF Ai and Bt ) (i) Ai is independent and identically distributed
across i ∈ N with distribution FA, (ii) Bt is independent and identically distributed over t ∈ T
with distribution FB , and (iii) Ai and Bt are independent for all i, t .

For simplicity we consider the case where both Ai and Bt are independently distributed across
i and over t , but since we consider asymptotic sequences where both N and T become large one
could also allow for appropriate weak dependence across both i and t . Formalizing this weak
dependence would complicate both the assumption and the proof of the following results, which
is why we decided to stick to independence in our presentation here.

The next assumption is a regularity condition on the function m(x, a, b).

C© 2021 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/24/2/C

40/6177679 by C
atherine Sharp user on 02 N

ovem
ber 2021



Low-rank approximations of nonseparable panel models C47

ASSUMPTION 3.2. (SMOOTHNESS OF (a, b) �→ m(x, a, b)) The function (a, b) �→ m(x, a, b)
admits a singular value decomposition

m(x, a, b) =
∞∑

j=1

sj (x) uj (x, a) vj (x, b),

under the L2(FA × FB) norm, where the eigenfunctions uj (x, a) and vj (x, b) are orthonormal,
i.e.,

E uj (x, Ai)
2 = 1, E uj (x, Ai)uk(x, Ai) = 0,

E vj (x, Bt )
2 = 1, E vj (x, Bt )vk(x, Bt ) = 0, j �= k ∈ {1, 2, 3 . . .},

and the singular values s1(x) ≥ s2(x) ≥ s3(x) ≥ . . . ≥ 0 satisfy

∞∑
j=1

sj (x) < ∞.

There is a large literature on singular value decompositions of functions, which shows that,
under appropriate conditions, the singular values satisfy sj (x) � j−α ,3 where the decay coefficient
α depends on the dimensions of the arguments a, b, and on the smoothness of (a, b) �→ m(x, a, b).
For sufficiently smooth functions, α > 1 and therefore

∑∞
j=1 sj (x) < ∞. For example, if (a, b) �→

m(x, a, b) is continuously differentiable up to order s and A and B are compact, then

sj (x) � j
− s

da∧db ,

by theorem 3.3 of Griebel and Harbrecht (2013), where da ∧ db is the minimum of da and db. This
implies that

∑∞
j=1 sj (x) < ∞ if s > da ∧ db. Assumption 3.2 is therefore a high-level smoothness

assumption on (a, b) �→ m(x, a, b), very similar to the assumption 2.2. in Menzel (2018), where
an analogous condition on the singular values is imposed, with the same aim of controlling the
behaviour of a function of unobserved two-dimensional heterogeneity.

The formulation of this smoothness assumption is convenient for our purposes, because it im-
mediately leads to a low-rank approximation of m(x, a, b). The low-rank approximation truncates
the singular value decomposition to the first R elements,

m(x, a, b) =
∞∑

j=1

sj (x)1/2uj (x, a)︸ ︷︷ ︸
=:φj (x,a)

sj (x)1/2vj (x, b)︸ ︷︷ ︸
=:ψj (x,b)

=
R∑

j=1

φj (x, a)ψj (x, b) + ζR(x, a, b). (3.2)

The first term is the approximation and the second term is the approximation error. Under
Assumption 3.2,

E ζR(x, Ai , Bt )
2 → 0 as R → ∞.

3 Here, sj (x) � j−α means that there exists a constant c > 0 such that sj (x) ≤ c j−α , for all j .
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In other words, the approximation error can be made negligible by increasing the truncation point
R. For example, if sj (x) � j−α with α > 1, then

E ζR(x, Ai , Bt )
2 = E

⎡⎣ ∞∑
j=R+1

sj (x) uj (x, Ai) vj (x, Bt )

⎤⎦2

=
∞∑

j,k=R+1

sj (x)sk(x)E
[
uj (x, Ai)uk(x, Ai)

]
E
[
vj (x, Bt )vk(x, Bt )

]

=
∞∑

j=R+1

sj (x)2 �
∞∑

j=R+1

j−2α ≤
∫ ∞

R

j−2αdj � R1−2α,

by Assumptions 3.1 and 3.2. Hence, ζR(x, Ai , Bt ) converges in mean square to zero at a polyno-
mial rate with R.

Combining (3.1) and (3.2), we obtain the approximate factor model

Yit = λi(Xit)
T f t (Xit) + ζR(Xit, Ai , Bt ) + Eit, Eit := Yit − E [Yit | Xit, Ai , Bt ] , (3.3)

where λi(x) = [φ1(x, Ai), . . . , φR(x, Ai)]T, f t (x) = [ψ1(x, Bt ), . . . , ψR(x, Bt )]T, and the com-
posite error νit := ζR(Xit, Ai , Bt ) + Eit contains the approximation error, ζR(Xit, Ai , Bt ), and
the conditional expectation error, Eit. The factor structure can be seen as a series or sieve ap-
proximation to the function (a, b) �→ m(x, a, b) with basis functions {φj (x, a)ψj (x, b)}∞j=1 if we
let R = RN,T to grow with N and T such that ζR(x, a, b) vanishes as N, T → ∞. The factor
structure approximation is exact in some cases for fixed R. For instance, in Example 2.3

m(x, Ai , Bt ) = λi(x)T f t (x),

so that ζR(x, Ai , Bt ) = 0, a.s., if R is greater or equal to the number of factors.
In the model (3.3) the factor structure changes with the treatment level. In other words, we

have a different pure factor model for each x ∈ X, that is

Yit = λi(x)T f t (x) + νit if Xit = x.

This observation leads to our first estimation strategy where the data is partitioned by the treatment
level and separate factors and factor loadings are estimated in each element of the partition by
solving the least squares program

min
{λi }Ni=1,{ f t }Tt=1

1

2

N∑
i=1

T∑
t=1

Dit(x)
(
Yit − λT

i f t

)2
, (3.4)

where Dit(x) := 1{Xit = x}. Unfortunately, we cannot solve this problem using standard principal
component analysis due to the presence of missing data, that is, each observational unit (i, t) is
not available at all treatment levels. In the next section, we apply matrix-completion methods to
deal with this problem.

3.2. Estimation by matrix-completion methods

We start by expressing the program (3.4) in matrix form. Let �R(x) = λN (x) f T (x)T,
where λN (x) = [λ1(x), . . . ,λN (x)]T, a N × R matrix of factor loadings, and f T (x) =
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[ f 1(x), . . . , f T (x)]T, a T × R matrix of factors. The least squares estimator of �R(x) is the
N × T matrix � with typical element 
it that solves

min
{�∈RN×T :rank(�)≤R}

1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − 
it)
2 . (3.5)

Let Y (x) be a N × T matrix whose (i, t) element is Yit if Xit = x and is missing otherwise. The
previous program is closely related to the problem of completing the missing entries of Y (x)
using a low-rank approximation matrix �R(x) (Rennie and Srebro, 2005; Candès and Recht,
2009; Candés and Tao, 2010). This connection was previously noticed by Athey et al. (2021) and
Amjad et al. (2018) in the context of treatment effects models. The solution is the N × T matrix
of rank R whose entries are the closest in the mean squared error sense to the corresponding
entries of Y (x).

The previous program is combinatorially hard because of the constraint in the rank of the matrix
Srebro and Jaakkola (2003). Following Fazel (2003) we consider the convex relaxation of this
program. Let ‖M‖∞ be the spectral norm of a RN×T -matrix M, and define the nuclear norm (also
called trace norm) of � as the corresponding dual norm ‖�‖1 := max{M∈RN×T : ‖M‖∞≤1} Tr

(
M′�

)
.

This nuclear norm can equivalently be defined as the sum of the singular values of �. Using this
norm we can write the convex relaxation of the program (3.5) as follows,

min
{�∈RN×T :‖�‖1≤R1}

1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − 
it)
2 ,

where R1 is a positive constant such that R = f (R1), where f is an increasing function. Hence,
ζR(x, Ai , Bt ) vanishes in mean square as R1 → ∞. We replace the rank constraint, rank(�) ≤ R,
by a constraint on the nuclear norm of the matrix, ‖�‖1 ≤ R1, i.e., we replace a constraint in the
number of nonzero singular values by a constraint in the sum of singular values. This program is
convex in � and can be reformulated in Lagrange form as

min
{�∈RN×T }

1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − 
it)
2 + ρ(R1)‖�‖1, (3.6)

where ρ(R1) ≥ 0 is a regularization parameter, which is a one-to-one increasing function of R1.
There exist efficient algorithms to solve this program (Mazumder et al., 2010).

Let �̂(x) be a solution to (3.6) with typical element 
̂it(x). Then, we can form estimators of
the ASF and CASF as

μ̂t (x) = 1

N

N∑
i=1

[
Dit(x)Yit + {1 − Dit(x)}
̂it(x)

]
,

and

μ̂t (x | {x0}) =
∑N

i=1 Dit(x0)
[
Dit(x)Yit + {1 − Dit(x)}
̂it(x)

]∑N
i=1 Dit(x0)

.

In the next section, we provide conditions under which these estimators are consistent using
asymptotic sequences where N, T → ∞. These estimators, however, might display shrinkage
biases in finite samples due to the nuclear norm regularization (Cai et al., 2010; Ma et al., 2011;
Bai and Ng, 2019b). We propose two matching procedures to debias the estimator in Section 4.
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3.3. Consistency of matrix-completion estimator

Let �∞(x) be the N × T matrix with typical element 
∞
it (x) = m(x, Ai , Bt ) and E(x) be the

N × T matrix with typical element

Eit(x) :=
{

Eit = Yit − 
∞
it (x) if Xit = x,

0 otherwise.
(3.7)

Note that �∞(x) = limR→∞ �R(x) a.s. Furthermore, we introduce the notation D(x) = {(i, t) ∈
N × T : Xit = x}, and n(x) = |D(x)| for the number of observations with Xit = x.

Recall that

�̂(x) ∈ argmin
�∈RN×T

QNT(�, ρ, x),QNT(�, ρ, x) = 1

2

∑
(i,t)∈D(x)

(Yit − 
it)
2 + ρ‖�‖1, (3.8)

where ρ := ρ(R1). Here, if the argmin over � ∈ RN×T is not unique, then we can choose �̂(x)
arbitrarily from the set of minimizers—our results are not affected by that, we only require
that QNT(�̂(x), ρ, x) ≤ QNT(�, ρ, x), for all � ∈ RN×T . We want to show that �̂(x) converges
to �∞(x) as N, T → ∞ in some sense such that μ̂(x) − μ(x) = oP (1). For that we require
additional assumptions.

ASSUMPTION 3.3. (ERROR MOMENTS) Conditional on XNT, AN , and BT , Eit(x) is indepen-
dent across (i, t) ∈ D(x), and there exists a constant b < ∞ that does not depend on i, t , N , T ,
such that

E
[
Eit(x)4 | AN, BT , XNT

] ≤ b.

Furthermore, we assume that n(x)−1 ∑
(i,t)∈D(x) 


∞
it (x)2 = OP (1).

For the purpose of showing Lemma 3.1 and Theorem 3.1, we could alternatively replace
Assumption 3.3 by the two high-level conditions:

2

n(x)

∑
(i,t)∈D(x)


∞
it (x)Eit = oP (1), ‖E(x)‖∞ = OP

(√
N + T

)
,

where again ‖ · ‖∞ denotes the spectral norm. The first of those conditions is implied by As-
sumption 3.3 through application of the weak law of large numbers, while the second follows,
for example, by the spectral norm inequality in Latała (2005). In principle, we could still derive
those high-level conditions if we allowed for appropriate weak dependence of Eit(x) across i and
over t , but we again focus on the independent case for simplicity of presentation.

We first provide a consistency result for the entries of �̂(x) that correspond to the observed
values of Y (x).

LEMMA 3.1. Let the Assumptions 3.1, 3.2, and 3.3 hold, and assume that ρ = ρNT is chosen
such that ρNT/

√
N + T → ∞ and ρNT

√
NT/n(x) → 0 as N, T → ∞. Then,

1

n(x)

∑
(i,t)∈D(x)

[

̂it(x) − 
∞

it (x)
]2 = oP (1).

A necessary condition for the existence of the sequence ρ = ρNT in Lemma 3.1 is
n(x)/

√
(N + T )NT → ∞; that is, the fraction n(x)/(NT ) of observations with Xit = x can

converge to zero, but not too fast. Apart from that, Lemma 3.1 does not restrict the assignment
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process that determines XNT. Notice also that Lemma 3.1 does not require Assumption 2.1
because 
∞(x) is a reduced-form parameter.

Applying the Cauchy-Schwarz inequality⎛⎝ 1

n(x)

∑
(i,t)∈D(x)

ait

⎞⎠2

≤ 1

n(x)

∑
(i,t)∈D(x)

a2
it,

with ait = 
̂it(x) − 
∞
it (x), Lemma 3.1 guarantees that

1

n(x)

∑
(i,t)∈D(x)

[

̂it(x) − 
∞

it (x)
] = oP (1).

Nevertheless, Lemma 3.1 is not directly useful to show the consistency of the estimators of
the ASF, because it only guarantees L2-consistency of �̂(x) over the set of entries (i, t) for
which Xit = x. Those are exactly the observations for which an unbiased estimator of 
∞

it (x) =
m(x, Ai , Bt ) is already available, namely Yit. The consistency result we would like to obtain is

1

NT

N∑
i=1

T∑
t=1

[

̂it(x) − 
∞

it (x)
]2 = oP (1), (3.9)

but such a result will certainly require stronger assumptions on XNT than we have imposed so far.
The existing literature on matrix completion relies on the concept of restricted strong convexity

to derive (3.9). This approach shows that under certain conditions on a RN×T -matrix M with
entries Mit, and on XNT (which determines the set D(x)), there exists a constant c > 0 such that
with high probability

1

NT

N∑
i=1

T∑
t=1

M2
it ≤ c

n(x)

∑
(i,t)∈D(x)

M2
it .

See theorem 1 in Negahban and Wainwright (2012), lemma 12 in Klopp et al. (2014), and lemma 3
in Athey et al. (2021). Thus, if Mit = 
̂it(x) − 
∞

it (x) and XNT satisfy restricted strong convexity,
then (3.9) would follow from Lemma 3.1.

We pursue a different strategy than the existing matrix completion literature to show that

μ̂(x) := 1

T

T∑
t=1

μ̂t (x) = 1

NT

N∑
i=1

T∑
t=1

Dit(x) Yit + 1

NT

N∑
i=1

T∑
t=1

[1 − Dit(x)] 
̂it(x),

is a consistent estimator of (NT )−1 ∑N
i=1

∑T
t=1 
∞

it , which under Assumption 2.1 is equal to
μ(x) defined in (2.6). We believe that our approach is simpler in the setting of this paper where

∞

it (x) is not necessarily of low rank. In particular, we do not aim to show (3.9), but instead
we derive consistency of μ̂(x) directly. However, the following theorem still requires additional
assumptions on the assignment process that determines XNT, in the same way that additional
conditions on XNT are required to verify restricted strong convexity. For simplicity, we focus
on consistency of μ̂(x) in the main text, but results for more general weighted averages of
the form (NT )−1 ∑N

i=1

∑T
t=1 Wit(x) 
∞

it (x), with known weights Wit(x) ∈ R, are presented in
Appendix A. For example, in the case of the treatment effects on the treated that we consider in
the empirical application of Section 5.1, Wit(x) = n(1)−1NT Xit.
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THEOREM 3.1. Let the Assumptions 2.1, 3.1, 3.2, and 3.3 hold. Consider N, T → ∞ at
the same rate, and let ρ = ρNT be chosen such that ρNT/

√
N + T → ∞ and ρNT/

√
NT →

0. Let Pit(x) = Pr
(
Xit = x | AN, BT

)
, and assume that (NT )−1 ∑N

i=1

∑T
t=1 P −1

it (x) = OP (1).
Let G(x) be the N × T matrix with entries Git(x) = P −1

it (x)(Dit(x) − Pit(x)), and assume that
‖G(x)‖∞ = OP (

√
N + T ), and

1

NT

N∑
i=1

T∑
t=1

P −1
it (x) Git(x) = oP (1),

1

NT

N∑
i=1

T∑
t=1


∞
it (x) Git(x) = oP (1). (3.10)

Then,

μ̂(x) = μ(x) + oP (1).

To interpret the conditions in Theorem 3.1, notice that due to the definitions Dit(x) = 1{Xit =
x} and Pit(x) = Pr

(
Xit = x | AN, BT

)
, E

[
Git(x) | AN, BT

] = 0 by construction, and Git(x)
therefore plays a role very similar to the error term Eit(x). In particular, the conditions in (3.10)
can be verified by a weak law of large numbers, as long as P −1

it (x) is not too large, and Git(x)
is not too strongly correlated across i and over t . Regarding the condition on the spectral norm
‖G(x)‖∞ = OP (

√
N + T ), there are many results in the random-matrix theory literature that

show this rate for mean-zero random matrices G(x); see, for example, Geman (1980), Bai et al.
(1988), Silverstein (1989), and Yin et al. (1988). In particular, if Git(x) is independent across
both i and t , then this rate result follows from the very elegant spectral norm inequality in Latała
(2005), see the proof of Lemma 3.1 in Appendix A, where we apply that inequality to Eit(x).
However, that simple argument would require Xit to be independently distributed across i and t ,
conditional on AN , BT . More generally, we expect ‖G(x)‖∞ = OP (

√
N + T ) to hold whenever

the matrix entries Git(x) have zero mean, sufficiently bounded moments, and weak correlation
across both i and t , see section S.2 of the supplementary material of Moon and Weidner (2017)
for details.

We have thus shown that consistent estimates for ASFs can be obtained via the matrix-
completion estimator even if the estimand 
∞

it (x) = m(x, Ai , Bt ) itself is not of low rank. This
is the main technical result of this paper. However, inference on μ(x) based on μ̂(x) can be
problematic, because μ̂(x) is subject to both low-rank approximation and shrinkage biases. The
low-rank approximation bias is due to the approximation error ζR(x, a, b) in the decomposition
of m(x, a, b) in equation (3.2). The shrinkage bias comes from bias in �̂(x) due to the presence
of the nuclear norm penalization in the objective function of (3.8). To isolate this bias, consider
a simple case where Yit(x) follows a deterministic pure factor model

Yit(x) = 
it(x) =
R∑

j=1

sj (x)uj (x, Ai)vj (x, Bi).

Then, the matrix-completion estimator of 
it(x) in (3.8) yields


̂it(x) =
R∑

j=1

[sj (x) − ρ]+uj (x, Ai)vj (x, Bi),

where [z]+ = max(z, 0). Compared to �(x), �̂(x) has the same eigenvectors but the singular
values are shrunk toward zero. This argument carries over to the case where Yit(x) follows an
approximate factor structure (Cai et al., 2010; Ma et al., 2011; Bai and Ng, 2019b). Because of
these biases, we explore alternative estimates for μ(x) in Section 4.
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3.4. Covariates and fixed effects

As we mentioned in Section 2, exogenous covariates can be incorporated by conditioning on their
values. This method can produce very noisy estimators in small samples unless the covariates
take only on few values. Here we consider a semiparametric version of the model that imposes
additivity in the effect of the exogenous covariates, which may be continuous, discrete, or mixed. It
also allows for additive unobserved individual and time effects that might vary across the covariate
level x. These effects can be subsumed in the factor structure, but are usually considered separately
in empirical analysis as the estimators perform better without regularizing them (Athey et al.,
2021).

Let C it be a dc-vector of covariates, α(x) = (α1(x), . . . , αN (x)) be a N -vector of individual
effects and δ(x) = (δ1(x), . . . , δT (x)) be a T -vector of time effects. Then, we can replace the
program (3.6) by

min
{β∈Rdc ,α∈RN ,δ∈RT ,�∈RN×T }

N∑
i=1

T∑
t=1

1{Xit = x} (Yit − CT
itβ − αi − δt − 
it

)2 + ρ(R1)‖�‖1,

Chernozhukov et al. (2018), Moon and Weidner (2018), and Beyhum and Gautier (2019)
provide algorithms to solve this program. Let β̂(x), α̂(x) = (̂α1(x), . . . , α̂N (x)), δ̂(x) =
(̂δ1(x), . . . , δ̂T (x)), and �̂(x) be the solution of the previous program. We can form estimators of
the ASF and CASF as

μ̂t (x) = 1

N

N∑
i=1

[
1{Xit = x}Yit + 1{Xit �= x} {CT

itβ̂(x) + α̂i(x) + δ̂t (x) + 
̂it(x)
}]

,

and

μ̂t (x | {x0}) =∑N
i=1

[
1{Xit = x0 = x}Yit + 1{Xit = x0 �= x} {CT

itβ̂(x) + α̂i(x) + δ̂t (x) + 
̂it(x)
}]∑N

i=1 1{Xit = x0}
.

4. DEBIASING USING MATCHING METHODS

The matrix-completion estimator of the ASF is generally biased. As we explained in Section 3.3,
the bias comes from two sources: low-rank approximation bias and shrinkage bias. One could
attempt to correct the shrinkage bias by shifting the singular values of �̂(x) upwards. However,
inference results on the ASFs based on matrix completion are generally very difficult to obtain even
if �∞(x) is truly low rank. In our setting, the presence of the additional low-rank approximation
bias makes this even more challenging. We instead discuss alternative estimators and show
that they have significantly lower biases than the matrix-completion estimators in the numerical
simulations of Section 5.2.

To construct the estimators of �∞(x), we start by extracting the factor structure of �̂(x) in
(3.8). Let λ̂i(x) and f̂ t (x) be the R × 1 vectors that satisfy


̂it(x) = λ̂i(x)T f̂ t (x),
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subject to the usual normalizations that T −1 ∑T
t=1 f̂ t (x) f̂ t (x)T is the identity matrix of size R

and N−1 ∑N
i=1 λ̂i(x) λ̂i(x)T is a diagonal matrix. Next, we apply a matching procedure to this

factor structure. In its simplest version, we estimate each entry �∞
it (x) such that Xit �= x, by

matching with the observation with Xjs = x that is the nearest neighbour in terms of the vectors
λ̂i(x) and f̂ t (x). In particular, 
̆it(x) = Yi∗∗(i,t,x),t∗∗(i,t,x) where i∗∗(i, t, x) ∈ N and t∗∗(i, t, x) ∈ T
are a solution to the program

minj∈N,s∈T

∥∥̂λi(x) − λ̂j (x)
∥∥2 + ∥∥ f̂ t (x) − f̂ s(x)

∥∥2

s.t. Xjs = x.

We also consider a two-way matching procedure that combines matching with a difference-in-
differences approach. It consists of two steps:

(i) For all x ∈ X and (i, t) ∈ N × T such that Xit �= x, find the matches i∗(i, t, x) ∈ N and
t∗(i, t, x) ∈ T that solve the program

minj∈N,s∈T

∥∥̂λi(x) − λ̂j (x)
∥∥2 + ∥∥ f̂ t (x) − f̂ s(x)

∥∥2

s.t. Xis = Xjt = Xjs = x.

(ii) Estimate 
it(x) by


̃it(x) = Yi,t∗(i,t,x) + Yi∗(i,t,x),t − Yi∗(i,t,x),t∗(i,t,x).

In other words, we find the match (j, s) with Xjs = x that not only is the closest to (i, t) in
terms of the estimated factor structure, but also corresponds to a unit j with Xjt = x and a time
period s with Xis = x. Then, we estimate the counterfactual 
it(x) as a linear combination of Yjt ,
Yis , and Yjs .

The additional difference-in-differences step in the two-way procedure is useful to reduce bias.
To see this, we can compare 
̃it(x) with the simple matching estimator 
̆it(x). Thus, abstracting
from the estimation error in the factors and loadings,

E[
̆it(x) − 
it(x) | AN, BT , XNT] = m(x, Ai∗∗(i,t,x), Bt∗∗(i,t,x)) − m(x, Ai , Bt )

= OP (‖Ai∗∗(i,t,x) − Ai‖ + ‖Bt∗∗(i,t,x) − Bt‖),

by a first-order Taylor expansion of (ai , bt ) �→ m(x, ai , bt ) around (Ai , Bt ); whereas

E[
̃it(x) − 
it(x) | AN, BT , XNT] = m(x, Ai∗(i,t,x), Bt∗(i,t,x)) − m(x, Ai , Bt )

= OP (‖Ai∗(i,t,x) − Ai‖2 + ‖Bt∗(i,t,x) − Bt‖2),

by a second-order Taylor expansion of (ai , bt ) �→ m(x, ai , bt ) around (Ai , Bt ). The two-way
matching removes the leading term of the Taylor expansion, reducing the bias of the match-
ing by one order of magnitude because i∗∗(i, t, x) �= i or t∗∗(i, t, x) �= t . On the other hand,
‖Ai∗(i,t,x) − Ai‖ ≥ ‖Ai∗∗(i,t,x) − Ai‖ and ‖Bt∗(i,t,x) − Bt‖ ≥ ‖Bt∗∗(i,t,x) − Bt‖ a.s. because the
two-way procedure imposes the additional restrictions Xis = Xjt = x. Whether the first or sec-
ond order bias dominates would generally be determined by the proportion of observations with
Xjs = x and the distributions of Ai and Bt . We provide a numerical comparison of the biases of
the matching estimators in Section 5.2.
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We develop the theory for a debiased estimator that allows for multiple matches and estimated
factors and loadings. Multiple matches are expected to reduce dispersion at the cost of increas-
ing bias. Let λi = λ(x, Ai) and f t = f (x, Bt ) be the transformations of Ai and Bt that are
consistently estimated by λ̂i and f̂ t .

4 We define

Ni =
{
j ∈ N \ {i} :

∥∥∥̂λi − λ̂j

∥∥∥ ≤ τNT

}
, Tt =

{
s ∈ T \ {t} :

∥∥∥ f̂ t − f̂ s

∥∥∥ ≤ υNT

}
,

for some bandwidth parameters τNT > 0 and υNT > 0. The debiased estimator of μ(x) is then
given by

μ̃(x) = 1

NT

N∑
i=1

T∑
t=1

Ỹit(x),

with

Ỹit(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Yit if Xit = x,
1

nit

∑
j∈Ni

∑
s∈Tt

1 {Xis = Xjt = Xjs = x}(Yis + Yjt − Yjs)

if Xit �= x and nit > 0,
1

n(x)

∑
(j,s)∈D(x)

Yjs if nit = 0,

(4.1)

where nit := ∑
j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x}. Here, for Xit �= x, we construct the counter-
factual Ỹit(x) by averaging over all units (j, s) ∈ Ni × Tt that satisfy the constraint Xis = Xjt =
Xjs = x. Notice that if Xit �= x and nit = 0, then we cannot construct a suitable counterfactual
by that method. In that case we assign Ỹit(x) the average of the observations with Xjs = x to
make sure that μ̃(x) is always well-defined, but our assumption below guarantees that this rarely
happens.

This estimator has similar debiasing properties to the nearest neighbour described above, but
it is more tractable theoretically because it varies more smoothly with respect to the factors and
loadings.

Indeed, μ̃(x) can be written as

μ̃(x) = 1

NT

N∑
i=1

T∑
t=1

ωit Yit,

where the weights ωit are functions of λ̂j and f̂ s for all j ∈ N and s ∈ T. To show that μ̃(x) is a
consistent estimator of μ(x), we use the following assumption:

ASSUMPTION 4.1. (TWO-WAY MATCHING ESTIMATOR) There exists a sequence ξNT > 0
such that ξNT → 0 as N, T → ∞, and

(i) 1
NT

∑N
i=1

∑T
t=1 1 {Xit �= x & nit = 0} = OP (ξNT).

(ii) Yit is uniformly bounded over i, t, N, T .
(iii) Yit is independent across both i and t , conditional on XNT, AN , BT .

4 The matching method discussed here is also applicable to settings where the matching is based on variables other
than the estimated factor structure. These include, for example, cross section and time series averages of the observable
variables. See Appendix A for a more general treatment.
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(iv) The function (a, b) �→ m(x, a, b) is at least twice continuously differentiable with uniformly
bounded second derivatives.

(v) There exists c > 0 such that ‖a1 − a2‖ ≤ c ‖λ(a1) − λ(a2)‖ for all a1, a2 ∈ A, and
‖b1 − b2‖ ≤ c ‖ f (b1) − f (b2)‖ for all b1, b2 ∈ B.

(vi) 1
N

∑N
i=1

(∥∥̂λi − λi

∥∥2 + maxj∈Ni

∥∥̂λj − λj

∥∥2
)

= OP (ξNT).

1
T

∑T
t=1

(∥∥ f̂ t − f t

∥∥2 + maxs∈Tt

∥∥ f̂ s − f s

∥∥2
)

= OP (ξNT).

(vii) τ 2
NT = OP (ξNT) and υ2

NT = OP (ξNT).
(viii) 1

NT

∑N
i=1

∑T
t=1 E

[
ω2

it

∣∣ XNT, AN, BT
] = OP (NT ξ 2

NT).
(ix) Let Y NT

−(i,t),−(j,s) be the outcome matrix Y NT, but with Yit and Yjs replace by zero (or some
other nonrandom number), and all other outcomes unchanged. We assume

1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) �= (j, s)} E

[∣∣∣ωit
(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)
− ωit(Y NT) ωjs(Y NT)

∣∣∣ ∣∣∣∣ XNT, AN, BT

]
= OP

(
ξ 2

NT

)
.

REMARK 4.1. (Assumption 4.1) Part (i) guarantees that Xit �= x and nit = 0 only happens for
a small fraction of observations (i, t). We are therefore able to construct proper counterfactuals
Ỹit(x) for most observations. Part (ii) is a boundedness condition that is standard in the matrix
completion literature. Part (iii) is an independence condition that is convenient to simplify the
derivations but can be generalized to weak correlation across both i and t . We use part (iv)
to bound the error terms of the Taylor expansions for the bias. Part (v) imposes an injectivity
condition. The functions a �→ λ(a) and b �→ f (b) need to be such that Ai and Bt can be uniquely
recovered from λi = λ(Ai) and f t = f (Bt ). A necessary condition is that the dimensions of λi

and f t are greater than or equal to the dimensions of Ai and Bt , respectively. This holds in
our factor structure approximation when let R grow with the sample size, provided that the
dimensions of Ai and Bt are fixed. Part (vi) holds if λ̂i − λi and f̂ t − f t are of order N−1/2 and
T −1/2. We expect this assumption to be satisfied for rates ξNT � max(N−1, T −1). The bandwidth
parameters τNT and υNT should not be chosen too large according to part (vii). For example, if
we want to achieve a rate ξNT � max(N−1/2, T −1/2), then we need τNT � max(N−1/4, T −1/4)
and υNT � max(N−1/4, T −1/4). Part (viii) requires that any given outcome Yit is not chosen too
often with too high weight in the construction of the counterfactuals Ỹjs(x). Finally, part (ix)
is a high-level assumption that could be justified by appropriate distributional assumptions on
Xit, Ai , Bt , and on the estimators λ̂i and f̂ t . We prefer to present it as a high-level assumption,
because formally working out the distributional assumptions is quite cumbersome. Intuitively, if
nit is sufficiently large, then changing Y NT to Y NT

−(i,t),−(j,s) should not change the constructions of
the counterfactual Ŷit(x) very much. If that is true for all (i, t), then the weights ωit(Y NT) should
be very close to the weights ωit

(
Y NT

−(i,t),−(j,s)

)
and the assumption is satisfied.

THEOREM 4.1. Under Assumptions 2.1 and 4.1,

μ̃(x) − μ(x) = OP (ξNT) .

As discussed in the above remark, one can achieve rates ξNT � max(N−1/2, T −1/2) for suffi-
ciently regular data generating processes, and if the bandwidth parameters τNT and υNT are chosen
sufficiently small. By contrast, the low-rank approximation bias in μ̂(x) will usually prevent us
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from achieving such a convergence rate for μ̂(x). This finding is consistent with our Monte Carlo
results in Section 5.2, where μ̃(x) is found to typically have much smaller bias than μ̂(x).

5. NUMERICAL EXAMPLES

5.1. Election day registration and voter turnout

We illustrate the methods of the paper with an empirical application to the effect of allowing voter
registration during the election day on voter turnout in the US (Xu, 2017). Voting in the US used
to require registration prior to the election day in most states. Registration increased the cost of
voting and was considered as one possible reason for low turnout rates. In response, some states
implemented EDR laws that allowed eligible voters to register on election day when they arrived
at the polling stations. These laws were not passed by all the states, and there was variation in the
time of adoption across states. Thus, they were enacted by Maine, Minnesota, and Wisconsin in
1976; Wyoming, Indiana, and New Hampshire in 1994, and Connecticut in 2012.

We use a dataset on the 24 presidential elections for 47 states between 1920 and 2012 collected
by Xu (2017). It includes state-level information about the turnout rate, Yit, measured as the total
ballots counted divided by voting-age population in state i at election t , and a treatment indicator
for EDR, Xit, that equals one if the state i has an EDR law enacted at election t . Following Xu
(2017), we exclude North Dakota where registration was never needed, and Alaska and Hawaii
that were not states until 1959. Since there are only nine states that are ever treated and the
treatment started in the 1976 election, we focus on effects on the treated at the elections between
1976 and 2012. We estimate average treatment effects and quantile treatment effects at multiple
quantile indices.

Figure 1 compares the average turnout of states that are ever treated with states that are never
treated in elections prior to the first implementation of the EDR laws in 1976. It shows that ever
treated states have higher turnout rates on average than never treated states without the EDR
treatment. We consider several methods to deal with this likely nonrandom assignment of EDR
to estimate the ATTs (average treatment effects on the treated) for each election after 1976.
First, we do a naive comparison of means between treated and nontreated states in each election
(Dmeans). Second, we consider a difference-in-differences method that uses the nontreated states
as controls at each election (DiD). In particular, we estimate the effects from a linear regression
with state effects and election effects interacted with a EDR indicator. This method yields the
ATT for each election under a parallel trend assumption between treated and nontreated states.5

Third, we compute our estimator based on matrix completion methods without debiasing (MC)
with additive state and election effects and the parameter ρ such that the number of factors is
R = 6. Fourth, we debias the MC estimates using the two-way matching method with 10 matches
(TWM-10). Fifth, we consider the simple matching method with 5 matches (SM-5). We choose
the number of matches roughly based on the numerical simulations of Section 5.2.

Figure 2 reports the estimates of the ATT of EDR at each election. The methods that account
for possible nonrandom assignment of the EDR produce lower estimates of the effect than the
naive comparison of means between treated and nontreated states. This finding agrees with the
pre-EDR differences found in Figure 1. MC, TWM-10, and SM-5 estimates are generally larger
and more stable across elections than DiD estimates. According to TWM-10, EDR laws increase

5 The DiD model is a special case of our model with additive effects. In this case, it imposes that there are only additive
state and election effects that are the same for both treatment levels.
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Figure 1. Pre-trends in turnout rate.

Figure 2. Average treatment effect on treated.
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Figure 3. Time-averaged QTT.

voter turnout between 5 and 9% depending on the election. This effect is an economically
significant relative to 55%, the average turnout rate for states without EDR. The estimates of the
election-aggregated ATTs are 10.71%, 0.67%, 7.35%, 5.56%, and 4.87% for Dmeans, DiD, MC,
TWM-10, and SM-3, respectively.

Figure 3 plots the estimates of the election-aggregated quantile treatment effect on the treated
(QTT) of EDR as a function of the quantile index. We report estimates from four methods: a
naive comparison of quantiles between treated and nontreated states (Dquantiles); our estimator
based on matrix completion methods without debiasing (MC) with additive state and election
effects and the parameter ρ such that the number of factors is R = 3; two-way matching with
10 matches (TWM-10); and simple matching with 5 matches (SM-5). The QTT is the difference
of the quantiles between the observed turnout for the treated observations and the corresponding
potential turnout had they not been treated. The quantiles of the observed turnout are estimated
using sample quantiles. The estimates of the quantiles of the potential outcomes are obtained
by inverting the corresponding estimates of the distribution, which are obtained by our methods
replacing Yit by the indicator 1(Yit ≤ y) and repeating the procedure over a grid of values of y that
includes the sample quantiles of observed turnout with indices {0.10, 0.11, . . . , 0.98}.6 Here, we
find that the effect of EDR is decreasing across the distribution of turnout and ranges between 10
and 0% according to TWM-10. EDR is therefore more effective at the bottom of the voter turnout
distribution. Comparing with the Dquantiles estimates, we find that the sign of the selection bias
switches from positive to negative around the middle of the turnout distribution.

6 We rearrange the estimates of the distribution to guarantee that they are increasing with respect to y (Chernozhukov
et al., 2010).
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Table 1. Results for μ(0 | {1}).
Bias St. Dev. RMSE

Dmeans 0.59 0.02 0.59
DiD 0.70 0.03 0.70
MC 0.74 0.02 0.74
TWM-1 0.03 0.14 0.14
TWM-5 0.03 0.11 0.12
TWM-10 0.04 0.10 0.11
TWM-30 0.07 0.09 0.12
SM-1 0.12 0.10 0.16
SM-5 0.15 0.07 0.17
SM-10 0.19 0.06 0.20
SM-30 0.31 0.05 0.31

Notes: based on 1,000 simulations.

5.2. Monte Carlo simulations

To evaluate the performance of our methods in a controlled synthetic environment, we generate
potential outcomes from an additive linear model where

Yit(x) = x + g(Ai, Bt ) + Uit(x), x ∈ {0, 1}, i ∈ {1, . . . , 30}, t ∈ {1, . . . , 30},
Uit(x) ∼ N (0, 1/4) independently over i, t and x, Ai ∼ U (0, 1) independently over i, Bt ∼
U (0, 1) independently over t , Uit(x), Aj and Bs are independent for all i, t , j and s, and g is the
Gaussian kernel, i.e.,

g(a, b) = 1√
2πσ

exp

(
− (a − b)2

σ 2

)
.

This design is similar to that used in Bordenave et al. (2020), with kernel function specification
from the numerical simulations in Griebel and Harbrecht (2013).7 The parameter σ controls the
decay of the singular values of g and can be calibrated to make sure the singular values decay
slowly. Smaller values for σ lead to greater dispersion in the kernel function (a, b) �→ g(a, b)
and a slower singular value decay, hence can be interpreted as a measure of smoothness.8 The
assignment of Xit that determines what potential outcomes are observed is similar to the election
application. In particular, only observations for the first half of the units, i ∈ {1, . . . , 15}, and the
second half of the panel, t ∈ {15, . . . , 30}, may be treated. For these observations, Xit is related
to the unobserved effects (Ai, Bt ) via Xit = 1{g(Ai, Bt ) ≥ c}, where c is a constant calibrated to
Pr(g(Ai, Bt ) ≥ c) = 0.5.

We apply similar methods to Section 5.1 to estimate the CASFs μt (0 | {1}), t ∈ {15, . . . , 30},
and μ(0 | {1}) using the observed variables Xit and Yit = Yit(Xit). Thus, we consider Dmeans,
DiD, MC without additive effects and with the parameter ρ such that R = 5, and multiple versions
of TWM and SM with the number of matches equal to 1, 5, 10, and 30. For each method, we
compute the bias, standard deviation and RMSE (root mean square errror) from 1,000 simulations.
Across the simulations, we redraw the values of Uit(x) and hold Ai , Bt and Xit fixed. Table 1

7 We find similar results in a multiplicative model where Yit(x) = (1 + x)g(Ai, Bt ) + Uit(x). We omit these results for
the sake of brevity.

8 Smoothness here is specifically related to numerical smoothness, i.e., variability in the function within close neigh-
bourhoods of its arguments.
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Figure 4. Results for t �→ μt (0 | {1}).

reports the results for the time-aggregated CASF, μ(0 | {1}), and Figure 4 plots the results for the
CASF, μt (0 | {1}), as a function of t . The results show that Dmeans, DiD and MC are severely
biased relative to their standard deviations. All the matching estimators reduce bias and rmse,
despite increasing dispersion. As one would expect, increasing the number of matches reduces
the variability of the matching estimators but increases their biases. The number of matches that
minimizes the rmse is larger for the TWM than for the SM. Overall, these small-sample findings
agree with the asymptotic results of Sections 3.3 and 4.
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APPENDIX A: PROOFS OF RESULTS

We start with a preliminary result that relates the nuclear norm of �∞(x) with the sum of the singular values
of the function (a, b) �→ m(x, a, b). This link will be useful to bound the approximation error of �̂(x). We
define

‖m(x, ·, ·)‖∗ :=
∞∑

j=1

sj (x).

LEMMA A.1. Let Assumptions 3.1 and 3.2 hold. Then, as N, T → ∞,

‖�∞(x)‖1 ≤ √
NT ‖m(x, ·, ·)‖∗ + oP (

√
NT) = OP (

√
NT).

Lemma A.1 implies that ‖�∞(x)‖1 grows with N and T at the same rate as any low-rank matrix M
with elements that are of order one with bounded second moments such that ‖M‖1 ≤ √

rank(M) ‖M‖2 =√
rank( M)

∑N

i=1

∑T

t=1 M2
it = OP (

√
NT). This result will be useful for the proofs of Lemma 3.1 and of

Theorem 3.1. The proof of Lemma A.1 is provided at the end of the Appendix.
The following technical lemma provides the key step in the proof of Lemma 3.1 in the main text.

LEMMA A.2. Under Assumptions 3.1 and 3.2,

1

n(x)

∑
(i,t)∈D(x)

(

̂it(x) − 
∞

it (x)
)2 ≤ 2 ρ ‖�∞(x)‖1

n(x)
− 2

n(x)

∑
(i,t)∈D(x)


∞
it (x)Eit,

for all ρ ≥ ‖E(x)‖∞.

Notice that Lemma A.2 is a nonstochastic finite-sample result, which only requires that Eit(x) and �̂(x)
are as defined in (3.7) and (3.8). The proof of Lemma A.2 is provided at the end of the Appendix. We are
now ready to provide the proof of the lemma in the main text.

Proof of Lemma 3.1. The definition of Eit(x) in (3.7) guarantees that E
[
Eit(x) | AN, BT , XNT

] = 0, and
Assumption 3.3 furthermore guarantees that Eit(x) is independent across i and t and has a finite fourth
moment, conditional on XNT, AN and BT . Furthermore, 
∞

it (x) = m(x, Ai , Bt ) only depends on AN and
BT . We therefore find

E

⎡⎣(
1

n(x)

∑
(i,t)∈D(x)


∞
it (x) Eit

)2
∣∣∣∣∣∣ AN, BT , XNT

⎤⎦
= 1

n2(x)

∑
(i,t)∈D(x)

[

∞

it (x)
]2

E
[
E2

it

∣∣ AN, BT , XNT
]

≤ b1/2

n2(x)

∑
(i,t)∈D(x)

[

∞

it (x)
]2 = OP (1/n(x)),

where b is the constant from Assumption 3.3. From this we conclude that

1

n(x)

∑
(i,t)∈D(x)


∞
it (x) Eit = OP

(
1

n1/2(x)

)
= oP (1). (A.1)
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Next, applying Assumption 3.3 and theorem 2 in Latała (2005) we find

E
[‖E(x)‖∞ | AN, BT , XNT

] ≤ C

{
max

t

√∑
i

E
[
Eit(x)2 | AN, BT , XNT

]
+ max

i

√∑
t

E
[
Eit(x)2 | AN, BT , XNT

]

+
(∑

i,t

E
[
Eit(x)4 | AN, BT , XNT

])1/4 }

≤ C b1/4
{√

N +
√

T + n(x)1/4
}

= OP

(√
N + T

)
,

where C is a universal constant. We therefore have ‖E(x)‖∞ = OP

(√
N + T

)
, and since we assume that

ρ = ρNT satisfies ρNT/
√

N + T → ∞ we conclude that

ρNT ≥ ‖E(x)‖∞

with probability approaching one. We can therefore apply Lemma A.2 to find that, with probability ap-
proaching one, we have

1

n(x)

∑
(i,t)∈D(x)

(

̂it(x) − 
∞

it (x)
)2 ≤ 2 ρNT ‖�∞(x)‖1

n(x)
− 2

n(x)

∑
(i,t)∈D(x)


∞
it (x)Eit

= 2 ρNT OP (
√

NT)

n(x)
+ oP (1)

= oP (1),

where we applied (A.1) and Lemma A.1, as well as the condition ρNT

√
NT/n(x) → 0. �

In the following consider a generic reduced-form parameter

ν0(x) = 1

NT

N∑
i=1

T∑
t=1

Wit(x) 
∞
it (x), (A.2)

with corresponding estimator

ν̂(x) = 1

NT

N∑
i=1

T∑
t=1

Wit(x) 
̂it(x), (A.3)

where Wit(x) are given weights.
The following proposition provides a finite-sample nonstochastic bound for the error of this reduced-form

estimator.
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PROPOSITION A.1. Let the Assumptions 3.1, 3.2, and 3.3 hold. Let Pit(x) be nonzero real numbers for all
(i, t) ∈ N × T. Define

Vit(x) := Wit(x) P −1
it (x)(Dit(x) − Pit(x))

1
NT

∑N

i=1

∑T

t=1 Wit(x)2P −1
it (x)

,

c1 := 1 − 1
NT

∑N

i=1

∑T

t=1 Wit(x)P −1
it (x)Vit(x)

1
NT

∑N

i=1

∑T

t=1 Wit(x)2P −1
it (x)

,

c2 := 1

NT

N∑
i=1

T∑
t=1

Vit(x) 
∞
it (x),

c3 := 2 ρ

c1 NT
‖�∞(x)‖1 − 2

c1 NT

∑
(i,t)∈D(x)

Eit(x) 
∞
it (x) +

(
c2

c1

)2

,

c4 := √
c3 + |c2|

c1
,

and let V (x) be the N × T matrix with elements Vit(x). If c1 > 0 andρ > ‖E(x)‖∞ + c4‖V (x)‖∞, then

|̂ν(x) − ν0(x)| ≤ c4.

The proof of Proposition A.1 is provided at the end of the Appendix. Proposition A.1 is the key step
required for the proof of Theorem 3.1. However, before proving this main text result we want to provide an
informal remark on the usefulness of Proposition A.1 more generally.

REMARK 5.1. (Consistency of ν̂(x)) Proposition A.1 holds for all Pit(x) ∈ R \ {0}, but for the proposition
to be useful in showing consistency of ν̂(x) we need to choose Pit(x) such that c2 and ‖V (x)‖∞ are not too
large. The easiest way to guarantee this is to consider Xit to be random and weakly correlated across both i

and t , and to define Pit(x) as the propensity score; that is,

Pit(x) = Pr
(
Xit = x | AN, BT

)
,

which is assumed to be positive and not too small—e.g., we need that

q :=
[

1

NT

N∑
i=1

T∑
t=1

Wit(x)2P −1
it (x)

]−1

,

converges to some positive constant. Then Vit(x) has mean zero, analogous to Eit(x), and

c1 = q + OP (1/
√

NT),

c2 = OP (1/
√

NT)

c3 = 2 ρ

q NT
‖�∞(x)‖1 + OP (1/

√
NT),

c4 =
√

2 ρ

q NT
‖�∞(x)‖1 + smaller order terms.

Thus, if, as in Lemma 3.1, ρ = ρNT such that ρNT/
√

N + T → ∞ and ρNT/
√

NT → 0 as N, T → ∞, then

ν̂(x) = ν0(x) + oP (1).

The following proof formalizes this heuristic argument for the case that Wit(x) = 1.
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Proof of Theorem 3.1. Let Wit(x) = 1, and let ν0(x) and ν̂(x) be as defined in (A.2) and (A.3) above. We
then have

μ(x) = ν0(x),

μ̂(x) = ν̂(x) + 1

NT

∑
(i,t)∈D(x)

Eit(x) − 1

NT

∑
(i,t)∈D(x)

[

̂it(x) − 
∞

it (x)
]
. (A.4)

We drop all the arguments x in the rest of this proof. We want to apply Proposition A.1 with
Pit = Pr

(
Xit = x | AN, BT

)
> 0. Let Git = P −1

it (Dit − Pit) be as defined in Theorem 3.1, and also de-

fine q :=
[

1
NT

∑N

i=1

∑T

t=1 P −1
it

]−1
. Since Pit ∈ [0, 1] we also have q ∈ [0, 1], and the theorem assumes

that q−1 = OP (1). Using Lemma A.1 we know that ‖�∞‖1 = OP (
√

NT), and we have already found that∑
(i,t)∈D 
∞

it Eit = OP

(
n1/2

)
in (A.1) above. Using this together the other assumptions in the theorem we

find that

Vit = q Git

c1 = q

(
1 − q

NT

N∑
i=1

T∑
t=1

P −1
it Git

)
= q [1 − oP (1)],

c2 = q

NT

N∑
i=1

T∑
t=1

Git 

∞
it = oP (1),

c3 = 2 ρ OP (
√

NT)

c1 NT
− OP

(
n1/2

)
c1 NT

+
(

c2

c1

)2

= oP (1),

c4 = √
c3 + |c2|

c1
= oP (1).

We furthermore have

‖V‖∞ = q ‖G‖∞ = OP (1) OP (
√

N + T ) = OP (
√

N + T ).

In the proof of Lemma 3.1 we already argued that ‖E‖∞ = OP

(√
N + T

)
. Since we assume that ρ = ρNT

satisfies ρNT/
√

N + T → ∞ we conclude that

ρ > ‖E‖∞ + c4‖V‖∞,

with probability approach one. We can therefore apply Proposition A.1 to find that with probability approach
one we have

|̂ν − ν0| ≤ c4 = oP (1).

We have thus shown that ν̂ = ν0 + oP (1).
Furthermore, analogous to the result in (A.1) we can show that

∑
(i,t)∈D Eit = OP

(
n1/2

)
, and we therefore

have 1
NT

∑
(i,t)∈D Eit = oP (1). Finally, applying Lemma 3.1 we have Next, from which we know that[

1

n

∑
(i,t)∈D

(

̂it − 
∞

it

)]2

≤ 1

n

∑
(i,t)∈D

(

̂it − 
∞

it

)2 = oP (1),

and therefore 1
NT

∑
(i,t)∈D(x)

[

̂it(x) − 
∞

it (x)
] = oP (1). Plugging those results into (A.4) we find μ̂(x) =

μ(x) + oP (1). �
In this section we present and prove a more general version of Theorem 4.1. Let φi = φ(x, Ai) and

ψ t = ψ(x, Bt ) be transformations of Ai and Bt . Let φ̂i and ψ̂ t be corresponding estimators. In the main
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text we presented the special case where φ̂i and ψ̂ t were equal to the factor loadings and factors obtained
from �̂(x), but many other choices of φ̂i and ψ̂ t are conceivable. We again define

Ni = {
j ∈ N \ {i} :

∥∥φ̂i − φ̂j

∥∥ ≤ τNT

}
, Tt = {

s ∈ T \ {t} :
∥∥ψ̂ t − ψ̂ s

∥∥ ≤ υNT

}
,

for some bandwidth parameters τNT > 0 and υNT > 0. A debiased estimator of the reduced-form parameter
in (A.2) is given by

ν̃(x) = 1

NT

N∑
i=1

T∑
t=1

Wit(x) Ỹit(x),

where Ỹit(x) is defined as in (4.1). In the main text we only discussed the special case Wit(x) = 1. We can
write ν̃(x) as

ν̃(x) = 1

NT

N∑
i=1

T∑
t=1

ωit Yit,

where the weights ωit are functions of φ̂j and ψ̂ s for all j ∈ N and s ∈ T. Assumption 4.1 in the main text
is generalized as follows.

ASSUMPTION A.1. There exists a sequence ξNT > 0 such that ξNT → 0 as N, T → ∞, and

(i) 1
NT

∑N

i=1

∑T

t=1 Wit(x) 1 {Xit �= x & nit = 0} = OP (ξNT).
(ii) Yit and Wit(x) are uniformly bounded over i, t, N, T .

(iii) Yit is independent across both i and t , conditional on XNT, AN , BT .
(iv) The function (a, b) �→ m(x, a, b) is twice continuously differentiable with uniformly bounded second

derivatives.
(v) There exists c > 0 such that ‖a1 − a2‖ ≤ c ‖φ(a1) − φ(a2)‖ for all a1, a2 ∈ A, and ‖b1 − b2‖ ≤

c ‖ψ(b1) − ψ(b2)‖ for all b1, b2 ∈ B.

(vi) 1
N

∑N

i=1

(∥∥φ̂i − φi

∥∥2 + maxj∈Ni

∥∥φ̂j − φj

∥∥2
)

= OP (ξNT).

1
T

∑T

t=1

(∥∥ψ̂ t − ψ t

∥∥2 + maxs∈Tt

∥∥ψ̂ s − ψ s

∥∥2
)

= OP (ξNT).

(vii) τ 2
NT = OP (ξNT) and υ2

NT = OP (ξNT).
(viii) 1

NT

∑N

i=1

∑T

t=1 E
[
ω2

it

∣∣ XNT, AN, BT
] = OP (NT ξ 2

NT).
(ix) Let Y NT

−(i,t),−(j,s) be the outcome matrix Y NT, but with Yit and Yjs replace by zero (or some other
nonrandom number), and all other outcomes unchanged. We assume

1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) �= (j, s)} E

[∣∣∣ωit

(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)
− ωit(Y NT) ωjs(Y NT)

∣∣∣ ∣∣∣∣ XNT, AN, BT

]
= OP

(
ξ 2

NT

)
.

The generalized version of Theorem 4.1 is given in the following.

THEOREM A.1. Under Assumptions 2.1 and A.1,

ν̃(x) − ν0(x) = OP (ξNT) .

Proof of Theorem A.1 (containing Theorem 4.1 as a special case). Define mit(x) := m(x, Ai , Bt ). We
decompose

ν̃(x) − ν0(x) = e0(x) + e1(x) + e2(x), (A.5)
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where

e0(x) = 1

NT

N∑
i=1

T∑
t=1

Wit(x) 1 {Xit �= x & nit = 0} [mit(Xit) − mit(x)] ,

and

e1(x) := 1

NT

N∑
i=1

T∑
t=1

1 {Xit �= x & nit > 0} Wit(x) e1,it (x),

e1,it (x) :=
∑

j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x} [mis(x) + mjt (x) − mjs(x) − mit(x)
]∑

j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x} ,

and

e2(x) := 1

NT

N∑
i=1

T∑
t=1

ωit Eit.

In the following we consider e0(x), e1(x), e2(x) separately.
# Bound on e0(x): Assumption A.1(i) and (ii) guarantee that

|e0(x)| ≤ (maxit |mit(Xit) − mit(x)|) 1
NT

∑N

i=1

∑T

t=1 Wit(x) 1 {Xit �= x & nit = 0}
= OP (ξNT) . (A.6)

# Bound on e1(x): Assumption A.1(iv) guarantees that there exists a constant b > 0 such that∣∣∣∣m(x, a, b) − m(x, Ai , Bt ) − (a − Ai)
′ ∂m(x, Ai , Bt )

∂ Ai

− (b − Bt )
′ ∂m(x, Ai , Bt )

∂ Bt

∣∣∣∣
≤ b

(‖a − Ai‖2 + ‖b − Bt‖2) .

Using this we find that

mis(x) + mjt (x) − mjs(x) − mit(x) ≤ 2 b
(∥∥Ai − Aj

∥∥2 + ‖Bt − Bs‖2
)

,

and therefore

∣∣e1,it (x)
∣∣ ≤

2 b
∑

j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x}
(∥∥Ai − Aj

∥∥2 + ‖Bt − Bs‖2
)

∑
j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x}

≤ 2 b

(
max
j∈Ni

∥∥Ai − Aj

∥∥2 + max
s∈Tt

‖Bt − Bs‖2

)
.

We thus find

|e1(x)| ≤ 2 b
(

max
ij

|Wit(x)|
)( 1

N

N∑
i=1

max
j∈Ni

∥∥Ai − Aj

∥∥2 + 1

T

T∑
t=1

max
s∈Tt

‖Bt − Bs‖2

)

≤ 2 b c
(

max
ij

|Wit(x)|
)( 1

N

N∑
i=1

max
j∈Ni

∥∥φ(Ai) − φ(Aj )
∥∥2

+ 1

T

T∑
t=1

max
s∈Tt

‖ψ(Bt ) − ψ(Bs)‖2

)

= 2 b c
(

max
ij

|Wit(x)|
)( 1

N

N∑
i=1

max
j∈Ni

∥∥φi − φj

∥∥2 + 1

T

T∑
t=1

max
s∈Tt

∥∥ψ t − ψ s

∥∥2
)

.
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Using the triangle inequality, the definition of Ni , and the general inequality (x1 + x2 + x3)2 ≤ 3(x2
1 + x2

2 +
x2

3 ), for x1, x2, x3 ∈ R, we have

max
j∈Ni

∥∥φi − φj

∥∥2 ≤ max
j∈Ni

(∥∥φ̂i − φ̂j

∥∥ + ∥∥φ̂i − φi

∥∥ + ∥∥φ̂j − φj

∥∥)2

≤ max
j∈Ni

(
τNT + ∥∥φ̂i − φi

∥∥ + ∥∥φ̂j − φj

∥∥)2

≤ 3τ 2
NT + 3

∥∥φ̂i − φi

∥∥2 + 3 max
j∈Ni

∥∥φ̂j − φj

∥∥2
.

Analogously we find

max
s∈Tt

∥∥ψ t − ψ s

∥∥2 ≤ 3υ2
NT + 3

∥∥ψ̂ t − ψ t

∥∥2 + 3 max
s∈Tt

∥∥ψ̂ s − ψ s

∥∥2
.

We thus obtain

|e1(x)| ≤ 6 b c

(
max

ij
|Wit(x)|

){
τ 2

NT + υ2
NT

+ 1

N

N∑
i=1

(∥∥φ̂i − φi

∥∥2 + max
j∈Ni

∥∥φ̂j − φj

∥∥2
)

+ 1

T

T∑
t=1

(∥∥ψ̂ t − ψ t

∥∥2 + max
s∈Tt

∥∥ψ̂ s − ψ s

∥∥2
)}

= OP (ξNT) . (A.7)

# Bound on e2(x): We have

[e2(x)]2 = 1

(NT )2

N∑
i,j=1

T∑
t,s=1

ωit(Y NT) ωjs(Y NT) Eit Ejs = T0 + T1 + T2,

where

T0 := 1

NT

N∑
i=1

T∑
t=1

ω2
it(Y

NT) E2
it,

T1 := 1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) �= (j, s)}

× [
ωit(Y NT) ωjs(Y NT) − ωit

(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)]
Eit Ejs,

T2 := 1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) �= (j, s)}ωit

(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)
Eit Ejs.

We have

E
[
T0

∣∣∣ XNT, AN, BT
]

≤
(

max
i,t

|Eit|
)2 1

(NT )2

N∑
i=1

T∑
t=1

E
[
ω2

it

(
Y NT

) ∣∣∣ XNT, AN, BT
]

= OP (ξ 2
NT),
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and

∣∣∣E [
T1

∣∣∣ XNT, AN, BT
]∣∣∣

≤
(

max
i,t

|Eit|
)2 1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) �= (j, s)}

× E
[∣∣ωit(Y NT) ωjs(Y NT) − ωit

(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)∣∣ ∣∣∣ XNT, AN, BT
]

= OP (ξ 2
NT),

where we used that Yit (and thus Eit) is uniformly bounded, together with Assumption A.1(viii) and (ix).
Next, for (i, t) �= (j, s) we have

E
[
ωit

(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)
Eit Ejs

∣∣∣Y NT
−(i,t),−(j,s), XNT, AN, BT

]
= ωit

(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)
E
[
Eit Ejs

∣∣∣Y NT
−(i,t),−(j,s), XNT, AN, BT

]
= ωit

(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)
E
[
Eit

∣∣∣Y NT
−(i,t),−(j,s), XNT, AN, BT

]
E
[
Ejs

∣∣∣Y NT
−(i,t),−(j,s), XNT, AN, BT

]
= 0,

where we used E
[
Eit | XNT , AN, BT

] = 0 together with the assumption that Yit (and thus Eit) is independent
across both i and t , conditional on XNT, AN , BT . By the law of iterated expectations the last display result
also implies that for (i, t) �= (j, s) we have

E
[
ωit

(
Y NT

−(i,t),−(j,s)

)
ωjs

(
Y NT

−(i,t),−(j,s)

)
Eit Ejs

∣∣∣ XNT, AN, BT
]

= 0.

Using this we obtain that

E
[
T2

∣∣∣ XNT, AN, BT
]

= 0.

Combining those results on T0, T1, T2 we obtain

E
{

[e2(x)]2
∣∣∣ XNT, AN, BT

}
= OP (ξ 2

NT),

which implies e2 = OP (ξNT). Together with (A.5), (A.6), and (A.7) this gives the statement of the
theorem. �
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Proof of Lemma A.1. Let uj (x) be the N -vector with elements uj (x, Ai), and let vj (x) be the T -vector
with elements vj (x, Bt ). Then we have �∞(x) = ∑∞

j=1 sj (x) uj (x) vT
j (x), and therefore

‖�∞(x)‖1 ≤
∞∑

j=1

sj (x)
∥∥uj (x)

∥∥ ∥∥vj (x)
∥∥

= √
NT

∞∑
j=1

sj (x)

√√√√ 1

N

N∑
i=1

[uj (x, Ai)]2

√√√√ 1

T

T∑
t=1

[vj (x, Bt )]2

≤ √
NT

∞∑
j=1

sj (x)

(
1 +

1
N

∑N

i=1[uj (x, Ai)]2 − 1

2

)(
1 +

1
T

∑T

t=1[vj (x, Bt )]2 − 1

2

)

= √
NT

∞∑
j=1

sj (x) + √
NT RNT

= √
NT ‖m(x, ·, ·)‖∗ + √

NT RNT,

where for the second inequality we used that
√

z ≤ 1 + z−1
2 , for all z ≥ 0, and we defined RNT =

1
NT

∑N

i=1

∑T

t=1 rit, with

rit =
∞∑

j=1

sj (x)

{
[uj (x, Ai)]2 + [vj (x, Bt )]2

4
+ [uj (x, Ai)]2[vj (x, Bt )]2

4
− 3

4

}
.

Assumption 3.2 guarantees that [uj (x, Ai)]2 and [vj (x, Bt )]2 have mean equal to one, which implies that rit

has mean zero. Assumption 3.1 and the WLLN therefore guarantees that RNT = oP (1). We have thus shown
that ‖�∞(x)‖1 ≤ √

NT ‖m(x, ·, ·)‖∗ + oP (
√

NT), and since ‖m(x, ·, ·)‖∗ is finite and nonrandom we also
have ‖�∞(x)‖1 = OP (

√
NT). �

Proof of Lemma A.2. The nuclear norm (or trace norm) can be defined by

‖�‖1 = max{M∈RN×T : ‖M‖∞≤1} Tr
(
M ′�

)︸ ︷︷ ︸
=

N∑
i=1

T∑
t=1

Mit
it

. (A.8)

Our assumption ρ ≥ ‖E(x)‖∞ guarantees that a possible choice in this maximization is M = ρ−1 E(x), and
we therefore have

ρ ‖�‖1 ≥
N∑

i=1

T∑
t=1

Dit(x) Eit(x) 
it.
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Using this and the model Yit = 
∞
it (x) + Eit(x), for Xit = x, we find that

QNT(�, ρ, x)

= 1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − 
it)
2 + ρ‖�‖1

≥ 1

2

N∑
i=1

T∑
t=1

Dit(x)
(

∞

it (x) + Eit(x) − 
it

)2 +
N∑

i=1

T∑
t=1

Dit(x) Eit(x) 
it

= 1

2

N∑
i=1

T∑
t=1

Dit(x)
(

∞

it (x) − 
it

)2 +
N∑

i=1

T∑
t=1

Dit(x) 
∞
it (x)Eit(x)

+ 1

2

N∑
i=1

T∑
t=1

Dit(x) E2
it(x).

By definition we have

QNT(�̂(x), ρ, x) ≤ QNT(�∞(x), ρ, x) = 1

2

N∑
i=1

T∑
t=1

Dit(x) E2
it(x) + ρ‖�∞(x)‖1.

Combining the results in the last two displays gives the statement of the lemma. �

Proof of Proposition A.1. In this proof we drop the argument x everywhere, and we define θ = NT ν

and θ0 = NT ν0. Define the NT -vectors γ = vec(�), γ ∞ = vec(�∞), w = vec(Wit : i ∈ N, t ∈ T), d =
vec(Dit : i ∈ N, t ∈ T), and p = vec(Pit : i ∈ N, t ∈ T). Then, diag( p) is an NT × NT diagonal matrix.
For ρ > 0 and θ ∈ R we define

LNT(θ, ρ) = min{�∈RN×T : θ=w′γ} QNT(�, ρ),

which is the profile objective function that minimizes QNT(�, ρ) over almost all parameters �, only keeping
our parameter of interest fixed at θ = w′γ = ∑N

i=1

∑T

t=1 Wit
it. Our goal is to show that the minimizing
value

θ̂ := argmin
θ∈R

LNT(θ, ρ) =
N∑

i=1

T∑
t=1

Wit
̂it,

is close to θ := w′γ ∞ = ∑N

i=1

∑T

t=1 Wit

∞
it . Using the definition of QNT(�, ρ) and Yit = 
∞

it + Eit, for
Dit = 1, we find that

LNT(θ, ρ) ≤ QNT(�∞, ρ) = 1

2

N∑
i=1

T∑
t=1

Dit E
2
it + ρ‖�∞‖1. (A.9)

If for a given value of θ = w′γ we have that the matrix M(θ ) with elements Mit(θ ) := Dit Eit −
w′(γ−γ ∞)

w′diag( p)−1w

(Dit−Pit)Wit
Pit

satisfies ‖M(θ )‖∞ ≤ ρ, then by the definition of ‖ · ‖1 in (A.8) we have ρ‖�‖1 ≤
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Tr(�′ M(θ )) = ∑N

i=1

∑T

t=1 Mit(θ )
it. Using this and Yit = 
∞
it + Eit, for Dit = 1, we find that

QNT(�, ρ) = 1

2

N∑
i=1

T∑
t=1

Dit (Yit − 
it)
2 + ρ‖�‖1

≥ 1

2

N∑
i=1

T∑
t=1

Dit

[(

∞

it − 
it

) + Eit

]2 +
N∑

i=1

T∑
t=1

{
Dit Eit − [(γ − γ ∞)′ w]

w′diag( p)−1w

(Dit − Pit)Wit

Pit

}

it

= 1

2

N∑
i=1

T∑
t=1

Dit

(

it − 
∞

it

)2 − [(γ − γ ∞)′ w]

w′diag( p)−1w

N∑
i=1

T∑
t=1

(Dit − Pit)Wit

Pit

(

it − 
∞

it

)
︸ ︷︷ ︸

=:Q(low,1)
NT (�)

+
N∑

i=1

T∑
t=1

Mit(θ ) 
∞
it + 1

2

N∑
i=1

T∑
t=1

Dit E
2
it︸ ︷︷ ︸

=:Q(low,2)
NT

,

where in the last step we added and subtracted
∑N

i=1

∑T

t=1 Mit(θ ) 
∞
it , and we multiplied out[(


∞
it − 
it

) + Eit

]2
, which leads to some simplifications. Notice that Dit Eit = Eit by construction of

Eit, so that some occurrences of Dit above could be dropped, but we find it clearer to keep track of Dit

explicitly here.

Next, we define the NT × NT idempotent matrices P = diag( p)−1w w′
w′diag( p)−1w

and R = INT − P. We then have

Q
(low,1)
NT (�)

= 1

2
(γ − γ ∞)′ diag(d) (γ − γ ∞) − [(γ − γ ∞)′ w]

w′diag( p)−1w

[
w′ diag( p)−1 diag(d − p) (γ − γ ∞)

]
= 1

2
(γ − γ ∞)′

(
P′ + R′) diag(d) (P + R) (γ − γ ∞)

−(γ − γ ∞)′P′diag(d − p) (P + R) (γ − γ ∞)

= 1

2
(γ − γ ∞)′R′diag(d)R(γ − γ ∞) + 1

2
(γ − γ ∞)′P′diag (2 p − d) P(γ − γ ∞),

= 1

2
(γ − γ ∞)′R′diag(d)R(γ − γ ∞)

+1

2
(γ − γ ∞)′P′diag ( p − d) P(γ − γ ∞) + 1

2

[
(γ − γ ∞)′w

]2

w′diag( p)−1w
,

where all the ’mixed terms’ (that involve both P and R) cancel because we have P′ diag( p) R = 0, and in
the last step we used that P′ diag ( p) P = w w′

w′diag( p)−1w
. We have

min{�∈RN×T : θ=w′γ}(γ − γ ∞)′ R′ diag(d) R (γ − γ ∞) = 0,
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because γ ∗ = Rγ ∞ + θ
diag( p)−1w

w′diag( p)−1w
is a possible choice in the minimization problem, which satisfies w′γ ∗ =

θ and R (γ ∗ − γ ∞) = 0. We therefore have

min{�∈RN×T : θ=w′γ}Q
(low,1)
NT (�)

= 1

2
(θ − θ0)2

(
1

w′diag( p)−1w
+ w′diag( p)−1diag ( p − d) diag( p)−1w

(w′diag( p)−1w)2

)

= 1

2
(θ − θ0)2

(
1∑N

i=1

∑T

t=1 W 2
it P

−1
it

+
∑N

i=1

∑T

t=1 W 2
it P

−2
it (Pit − Dit)

(
∑N

i=1

∑T

t=1 W 2
it P

−1
it )2

)

= NT

2
c1 (ν − ν0)2,

with c1 as defined in the statement of the proposition, and ν − ν0 = (NT )−1 (θ − θ0).
Thus, if Mit(θ ) = Dit Eit − (ν − ν0)Vit satisfies ‖M(θ )‖∞ ≤ ρ, then we have

LNT(θ, ρ) ≥ min{�∈RN×T : θ=w′γ} Q
(low,1)
NT (�) + Q

(low,2)
NT

= NT

2
c1 (ν − ν0)2 +

N∑
i=1

T∑
t=1

Mit(θ ) 
∞
it + 1

2

N∑
i=1

T∑
t=1

Dit E
2
it,

and combing this with (A.9) gives

LNT(θ, ρ) − LNT(θ0, ρ)

NT
≥ c1

2
(ν − ν0)2 + 1

NT

N∑
i=1

T∑
t=1

Mit(θ ) 
∞
it − ρ

NT
‖�∞‖1

= c1

2
(ν − ν0)2 + 1

NT

N∑
i=1

T∑
t=1

Dit Eit 

∞
it

− (ν − ν0)
1

NT

N∑
i=1

T∑
t=1

Vit 

∞
it − ρ

NT
‖�∞‖1.

Using the assumption c1 > 0 and definitions of c2 and c3 in the proposition, this inequality can equivalently
be written as

2 [LNT(NT ν, ρ) − LNT(NT ν0, ρ)]

c1 NT
≥ (ν − ν0)2 − 2 c2

c1
(ν − ν0) +

(
c2

c1

)2

− c3

=
(

ν − ν0 − c2

c1

)2

− c3. (A.10)

Notice that c3 > 0 because our assumptions guarantee that ‖E‖∞ < ρ and therefore ρ‖�∞‖1 ≥∑N

i=1

∑T

t=1 Eit 

∞
it , according to (A.8).

The inequality in (A.10) was derived under the assumption that ‖M(NT ν)‖∞ ≤ ρ. Define ν∗
+(ε) ∈ R and

ν∗
−(ε) ∈ R by

ν∗
±(ε) := ν0 ± (c4 + ε) , for 0 < ε ≤ ρ − ‖E‖∞ − c4‖V‖∞

‖V‖∞
.

Our assumption ‖E‖∞ + c4‖V‖∞ < ρ guarantees that such an ε > 0 exists. Using the triangle inequality
we find that

‖M(NT ν∗
±(ε))‖∞ = ‖E − (ν∗

±(ε) − ν0)V‖∞ ≤ ‖E‖∞ + |ν∗
±(ε) − ν0|‖V‖∞ ≤ ρ,
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where the final inequality follows from the definition of ν∗
±(ε). The conditions for (A.10) is therefore satisfied

by ν = ν∗
±(ε); that is, we have

2
[
LNT(NT ν∗

±(ε), ρ) − LNT(NT ν0, ρ)
]

c1 NT
≥
(

ν∗
±(ε) − ν0 − c2

c1

)2

− c3

=
(

c4 + ε ∓ c2

c1

)2

− c3

=
(√

c3 + ε + |c2| ∓ c2

c1

)2

− c3

≥ (√
c3 + ε

)2 − c3

> 0,

where we used the definition c4 = √
c3 + |c2|

c1
.

LNT(NT ν, ρ) is a convex function of ν = θ/NT , because it was obtained via profiling of the convex
function QNT(�, ρ). The value ν0 lies in the interval [ν∗

+(ε), ν∗
−(ε)], and we have shown that LNT(NT ν0, ρ) <

LNT(NT ν∗
±(ε), ρ). It must therefore be the case that the optimal ν̂ = NT θ̂ that minimizes LNT(NT ν, ρ) also

lies in the interval [ν∗
+(ε), ν∗

−(ε)]—otherwise we obtain a contradiction to the convexity of LNT(NT ν, ρ).
Thus, we have shown that

|̂ν − ν0| ≤ c4 + ε,

and because we can choose ε > 0 arbitrarily small it must be the case that

|̂ν − ν0| ≤ c4,

which is what we wanted to show. �
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