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Abstract 

Background: Network meta-analysis (NMA) has attracted growing interest in evidence-based medicine. Consistency 
between different sources of evidence is fundamental to the reliability of the NMA results. The purpose of the present 
study was to estimate the prevalence of evidence of inconsistency and describe its association with different NMA 
characteristics.

Methods: We updated our collection of NMAs with articles published up to July 2018. We included networks with 
randomised clinical trials, at least four treatment nodes, at least one closed loop, a dichotomous primary outcome, 
and available arm-level data. We assessed consistency using the design-by-treatment interaction (DBT) model and 
testing all the inconsistency parameters globally through the Wald-type chi-squared test statistic. We estimated the 
prevalence of evidence of inconsistency and its association with different network characteristics (e.g., number of 
studies, interventions, intervention comparisons, loops). We evaluated the influence of the network characteristics 
on the DBT p-value via a multivariable regression analysis and the estimated Pearson correlation coefficients. We also 
evaluated heterogeneity in NMA (consistency) and DBT (inconsistency) random-effects models.

Results: We included 201 published NMAs. The p-value of the design-by-treatment interaction (DBT) model was 
lower than 0.05 in 14% of the networks and lower than 0.10 in 20% of the networks. Networks including many stud-
ies and comparing few interventions were more likely to have small DBT p-values (less than 0.10), which is probably 
because they yielded more precise estimates and power to detect differences between designs was higher. In the 
presence of inconsistency (DBT p-value lower than 0.10), the consistency model displayed higher heterogeneity than 
the DBT model.

Conclusions: Our findings show that inconsistency was more frequent than what would be expected by chance, 
suggesting that researchers should devote more resources to exploring how to mitigate inconsistency. The results 
of this study highlight the need to develop strategies to detect inconsistency (because of the relatively high preva-
lence of evidence of inconsistency in published networks), and particularly in cases where the existing tests have low 
power.
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Background
Network meta-analysis (NMA) is a useful approach for 
exploring effects of multiple interventions by simultane-
ously synthesizing direct and indirect evidence, and in 
recent years the number of published NMAs has grown 
continually [1, 2]. The reliability of inferences from NMA 
depends on the comparability of studies evaluating the 
multiple interventions of interest [3–5]. NMA results 
are valid only when the transitivity assumption holds, 
i.e., the distribution of effect modifiers is similar across 
intervention comparisons. Lack of transitivity can create 
statistical disagreement between the information com-
ing from direct and indirect sources of evidence, that is 
inconsistency. The notion of inconsistency also refers to 
the disagreement between evidence coming from differ-
ent designs (i.e., studies of different sets of interventions 
across studies). For example, a study comparing interven-
tions A vs. B vs. C corresponds to a different design from 
study comparing A vs. B interventions. Several statisti-
cal methods exist to assess inconsistency in the network 
as a whole or locally on specific comparisons or loops 
of evidence (i.e., paths in the network of interventions 
that start and end at the same node) [6–12]. To date, the 
design-by-treatment interaction (DBT) model is the only 
method that both provides a global assessment of incon-
sistency for a network and is insensitive to the parame-
terization of studies with multiple arms [6, 8].

The majority of NMAs published in the medical litera-
ture in the recent years examine whether the prerequisite 
assumptions in NMA are met [1, 2, 13, 14]. However, a 
number of reviews still combine direct and indirect evi-
dence in a network of interventions without evaluating 
the condition of consistency or despite evidence of incon-
sistency [15, 16]. Empirical findings for dichotomous out-
comes suggest that inconsistency is present in one in ten 
loops of evidence and in one in eight networks [10]. It is 
encouraging though that authors of NMAs increasingly 
discuss transitivity and/or inconsistency (0% in 2005 vs 
86% in 2015), and use appropriate methods to test for 
inconsistency (14% in 2006 vs 74% in 2015) [2]. Another 
important consideration when conducting an NMA is 
that there is an inverse association between heterogene-
ity and statistical power to detect inconsistency [3]. The 
larger the heterogeneity, the less precise the direct and 
indirect estimates are, and hence statistical inconsistency 
may not be evident even when it is present. Empirical 
evidence using 40 networks of interventions suggested 
that increased heterogeneity was associated with low 
detection rates of inconsistency, and that the consistency 

model displayed higher heterogeneity than the inconsist-
ency model [10]. Also, the same study showed that the 
choice of the heterogeneity estimator (e.g., DerSimonian 
and Laird, maximum likelihood, restricted maximum 
likelihood, Paule and Mandel) can influence inferences 
about inconsistency particularly when few studies are 
available. In general inconsistency tests have low power 
to detect inconsistency, and power may vary depending 
on the network’s characteristics (e.g., number of partici-
pants and studies) [17].

The purpose of the present study was to estimate the 
percentage of NMAs for which evidence against the 
hypothesis of consistency is evident. We updated our 
previous empirical evaluation using a larger sample of 
published NMAs with dichotomous outcome data [10]. 
We also aimed to describe the association between evi-
dence against consistency and the NMA structural char-
acteristics, such as number of studies, interventions, and 
loops. We finally aimed to evaluate the amount of hetero-
geneity in consistency and inconsistency models.

Methods
Eligibility criteria for network database
The collection of published NMAs used in this paper 
has been described elsewhere [1, 2] (see also Additional 
file  1: Appendix  1). We included networks published in 
two distinct periods: 1) up to December 2015 (including 
NMAs identified from our previous search up to April 
2015 [18], and from our updated search up to December 
2015), and 2) between 2017 and 2018 (from our updated 
search up to July 2018 [19]). NMAs were eligible if they 
included only randomised clinical trials, had at least four 
intervention nodes (including placebo) in the network, 
had conducted any form of valid indirect comparison or 
NMA, included at least one loop, and had a dichotomous 
primary outcome with available arm-level data. Each eli-
gible article contributed only one network, including the 
primary outcome, as reported in the publication or, if this 
was unclear, the first outcome conducting a NMA pre-
sented in the article.

Synthesis
We performed a descriptive analysis of the eligible net-
works regarding the following characteristics: number of 
included studies, interventions, comparisons with direct 
evidence, presence of at least one intervention compari-
son informed by a single study, multi-arm studies, loops, 
number of unique designs, presence of complex interven-
tions (as defined by Welton et al. [20]), type of outcome 
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(objective, semi-objective and subjective), and type 
of intervention comparisons (pharmacological versus 
pharmacological, pharmacological versus placebo, non-
pharmacological versus any) [2, 21]. In particular, NMAs 
including pharmacological interventions and a placebo or 
control were categorized in the pharmacological versus 
placebo comparison type. NMAs with only pharmacolog-
ical interventions were categorized in the pharmacologi-
cal vs pharmacological comparison type, whereas NMAs 
with at least one non-pharmacological intervention were 
categorized in the non-pharmacological vs any interven-
tion comparison type.

We assessed consistency in each network using the 
DBT model that evaluates the entire network as a whole 
and encompasses the potential conflict between studies 
including different sets of interventions, named ‘designs’ 
[6, 8]. In this model we synthesised evidence in a way 
that reflects the extra variability due to inconsistency 
(i.e., beyond what is expected by heterogeneity or ran-
dom error) [22], and encompassed the potential conflict 
between studies with different sets of interventions [6, 
8]. We assessed evidence against the hypothesis of con-
sistency based on the p-value of the DBT test (see Addi-
tional file 1: Appendix 2). Since the tests of inconsistency 
are known to have low power [17, 23], and considering 
that empirical evidence showed that 10% of loops are 
inconsistent at p < 0.05 [10], we decided to use along with 
the commonly used cut-off p-value of 0.05, the cut-off 
p-value of 0.10.

We estimated the prevalence of NMAs for which there 
was evidence or strong evidence against the hypothesis 
of consistency was evident (at both 0.10 and 0.05 thresh-
olds) and explored its association with network structural 
characteristics. We present scatterplots and box plots for 
the aforementioned descriptive characteristics against 
the p-value of the DBT test. We visually assessed if 
inconsistency rate changed per year of study publication 
in a stacked bar plot. To explore the association between 
the DBT p-value and prevalence of evidence of inconsist-
ency with estimation of heterogeneity in consistency and 
inconsistency models, we plotted the estimated between-
study standard deviation values under the consistency 
and inconsistency models. We used a different colour 
scheme for each network to indicate evidence against 
the consistency hypothesis at 0.05 and 0.10 thresholds. 
To evaluate jointly the influence of the number of stud-
ies, interventions, direct intervention comparisons, and 
loops on the DBT p-value, we performed a multivariable 
regression analysis of the p-value with the glm function in 
R [24]. We also estimated the Pearson correlation coeffi-
cients to capture any dependencies between the p-values 
of the DBT model against the network structural charac-
teristics, using a logarithmic scale.

Among the several approaches that have been sug-
gested to estimate the between-study variance we 
selected the popular DerSimonian and Laird (DL) 
method and the restricted maximum likelihood (REML) 
method which has been shown to be a better alternative 
[25, 26]. For completeness, we investigated the impact of 
both ways to estimate the between-study variance on the 
consistency evaluation. We note that estimated hetero-
geneity in the inconsistency models represents within-
design heterogeneity only, while estimated heterogeneity 
in the consistency models represents both within- and 
between-design heterogeneity (Additional file 1: Appen-
dix  2). We conducted both consistency and inconsist-
ency models in Stata and R using the network [27] suite 
of commands and netmeta [28] package, respectively. We 
used both Stata and R software, since at the time of con-
ducting the analyses the REML estimator for heterogene-
ity was available in the network [27] command in Stata 
only, and the DL estimator in the netmeta [28] R package. 
Currently, both REML and DL estimators for heterogene-
ity are available in the netmeta [28] package. We also cal-
culated the I-squared statistic for each network using the 
netmeta package in R and assessed its association with 
the DBT p-values in a scatterplot.

Results
Description of the network database
From the 456 total NMAs identified from our previous 
search [2], we located 105 NMAs satisfying the eligibility 
criteria. Using the same process for the years 2015 (April 
2015 to December 2015), 2017 and 2018 we also included 
another 96 NMAs. Overall, we included and analysed 201 
NMAs that fulfilled the eligibility criteria, corresponding 
to 201 networks (Additional file 1: Appendix Figure 1).

The median number of studies per network was 20 
(IQR 13, 35), and the median number of interventions 
per network was seven (IQR 5, 9). Multi-arm trials were 
included in 142 networks (70%), with a median number 
of multi-arm studies one (IQR 0, 3). The median num-
ber of the unique direct intervention comparisons in 
the included networks was 10 (IQR 6, 14), whereas the 
median number of unique designs was eight (IQR 6, 13). 
Most networks included at least one comparison (186 
networks, 92.5%) informed by a single study. The median 
number of loops across networks was three (IQR 2, 7), 
and the median number of inconsistency parameters per 
network was four (IQR 2, 7) (see also Additional file  1: 
Appendix  1). The median I-squared statistic was 30% 
(IQR 0, 59%).

Prevalence of inconsistency
At the 0.05 threshold, evidence against the consistency 
hypothesis was detected in 28 (14%) networks when 
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using REML. At the 0.10 level, strong evidence against 
the consistency hypothesis was detected in 39 (20%) net-
works of the 201 total networks with REML. Changing 
from REML to DL estimators for heterogeneity had only 
a minor impact on the prevalence of evidence of incon-
sistency (see Additional file  1: Appendix Table  1) [25]. 
Most DBT p-values were considerably higher than 0.10, 
irrespective of heterogeneity estimator. No change in the 
prevalence of evidence of inconsistency was detected 
across years (p- value = 0.39, Additional file 1: Appendix 
Figure 2).

In the following, results are presented at the 0.05 
threshold and according to the REML estimation method 
for the within design heterogeneity variance of overall 
heterogeneity variance.. Results according to the DL esti-
mator are presented in the supplementary files.

Evidence of inconsistency across different network structural 
characteristics
Lower p-values in the DBT test were more likely in net-
works with many studies, many direct intervention com-
parisons, and many designs (Additional file 1: Appendix 
Figure 3). However, these associations were rather weak 

(studies in the network: correlation coefficient = − 0.08 
[p-value = 0.25], direct intervention comparisons in the 
network: correlation coefficient = − 0.07 [p-value = 0.33], 
designs in the network: correlation coefficient = − 0.03 
[p-value = 0.67]) and Fig.  1 shows that most factors do 
not greatly influence the p-value of inconsistency. A weak 
association was found between the ratio of the number 
of studies to the number of interventions the p-values 
in DBT (correlation coefficient = − 0.07 [p-value = 0.31]; 
see also Additional file  1: Appendix Figure  4 for results 
using the DL heterogeneity estimator). This was expected 
as power in detecting inconsistency is higher in networks 
with many studies per intervention comparison. It should 
also be noted that networks with few studies and many 
interventions were associated with larger heterogeneity, 
which can mask detection of inconsistency (Additional 
file 1: Appendix Figure 5). Overall, the correlation analy-
ses did not reveal an important association between net-
work characteristics and DBT test p-values.

In line with the weak associations found in Fig. 1, the 
multivariable regression analysis showed that none of the 
number of included studies in the network, number of 
interventions, number of unique pairwise comparisons 

Fig. 1 Plot of p-values (fourth-root scale) of the DBT model against ratios of network structural characteristics (logarithmic scale). a Explores the 
ratio of the number of studies to the number of interventions in a network (correlation coefficient [p-value] = − 0.07 [0.31]); b Explores the ratio 
of the number of loops to the number of interventions in a network (correlation coefficient [p-value] = 0.02 [0.72]); c Explores the ratio of the 
number of loops to the number of studies in a network (correlation coefficient [p-value] = 0.08 [0.28]); d Explores the ratio of the number of unique 
designs to the number of studies in a network (correlation coefficient [p-value] = 0.07 [0.28]); e Explores the ratio of the number of unique direct 
intervention comparisons to the number of studies in a network (correlation coefficient [p-value] = 0.06 [0.40]); f Explores the ratio of the number 
of multi-arm studies to the number of total studies in a network (correlation coefficient [p-value] = 0.09(0.19)). All analyses have used the REML 
estimator for heterogeneity. The horizontal green and purple lines represent the cut-off p-value = 0.05 and p-value = 0.10, respectively. The blue 
diagonal line is the regression line. * Networks with no multi-arm studies were treated as networks including a single multi-arm study, to avoid 
excluding them from the plot, since the logarithm could not be calculated. Abbreviations: DBT, design-by-treatment interaction model; REML, 
restricted maximum likelihood
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and number of loops affected significantly the DBT p-val-
ues (Additional file 1: Appendix Table 2).

The type of outcome (p-value = 0.86), type of interven-
tion comparisons in the network (p-value = 0.75), and the 
presence of complex interventions (p-value = 0.08) did 
not suggest important differences in the distribution of 
the p-values calculated in DBT. Similarly, the inclusion of 
at least one intervention comparison with a single study 
in the network did not affect the assessment of the global 
inconsistency in the network (p-value = 0.57) (Fig. 2 and 
Additional file 1: Appendix Figure 6).

Heterogeneity in consistency and inconsistency models
An increase in the I-squared statistic was associated with 
a decrease in the DBT p-value (Additional file 1: Appen-
dix Figure  7). In Fig.  3, we plot the estimated between-
study standard deviation values under the consistency 
and inconsistency models by levels of evidence against 
the consistency hypothesis (see also Additional file  1: 
Appendix Figure 8 for results using the DL heterogeneity 
estimator). Evidence against the consistency assumption 

was associated with heterogeneity being larger in the 
consistency model compared to the inconsistency model. 
In some networks the within-design heterogeneity (esti-
mated in the inconsistency model) is very small or zero, 
but the number of the degrees of freedom of the Wald 
chi-squared test is large with evidence of inconsistency 
(Additional file 1: Appendix Figure 9). Higher overall het-
erogeneity (estimated in the consistency model) when 
compared with zero within-design heterogeneity suggests 
evidence of inconsistency, and this is driven by between-
design heterogeneity. For zero within-design heterogene-
ity, we found 13 networks with the DL estimator and 15 
networks with the REML estimator that estimate higher 
overall heterogeneity.

Discussion
Our findings suggest that evidence of inconsistency was 
at least twice as frequent as what would be expected by 
chance if all networks were truly consistent (when we 
would expect one in 20 networks for 0.05 level, and one 
in 10 networks for 0.10 level under the null hypothesis 

Fig. 2 Box plot of p-values (fourth-root scale) of the DBT model per a type of outcome, b type of intervention comparison, c presence of at least 
one direct intervention comparison with a single study, and d presence of complex interventions. The horizontal green and purple lines represent 
the cut-off p-value = 0.05 and p-value = 0.10, respectively. All analyses have used the REML estimator for heterogeneity. Abbreviations: DBT, 
design-by-treatment interaction model; REML, restricted maximum likelihood
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of no inconsistent networks in our sample). Overall, evi-
dence against the hypothesis of consistency (as defined 
by the p-value of the DBT test) in NMAs with dichoto-
mous data was evident in one in seven networks using 
the threshold of 0.05. Taking into consideration the low 
power of the inconsistency test, and in particular the 
DBT model that has more degrees of freedom in con-
trast to other inconsistency tests [16, 17], we decided to 
use also the threshold of 0.10, where inconsistency was 
prevalent in one in five networks. Considering that the 
observed inconsistent NMAs are at 14% of the networks, 
we expect that the truly inconsistent networks range 
between 12 and 20%, assuming the test has a perfect type 
I error at 0.05 and power ranges between 50 and 80%.

Our study showed that structural network character-
istics only weakly impact the detection of inconsistency, 
potentially due to lack of powering of testing inconsist-
ency in most of the included networks. In particular, 
we found a mild association between networks includ-
ing both a high number of studies and a small num-
ber of interventions or loops, and lower p-values of the 
DBT test. This is probably due to the increased power to 
detect inconsistency in these types of networks. Another 

key finding of our study was that an important drop in 
heterogeneity when moving from the consistency to 
the inconsistency model is associated with evidence 
of inconsistency. This suggests that heterogeneity esti-
mated in the consistency model may account for dis-
crepancies between direct and indirect evidence in the 
network. A sharp rise in overall heterogeneity as com-
pared to the within-design heterogeneity in case of large 
inconsistency, is also explained through the definition 
of heterogeneity parameters in the consistency (overall 
heterogeneity) and inconsistency models (within-design 
heterogeneity) (see also Additional file  1: Appendix  2). 
Results were overall consistent among DL and REML 
heterogeneity estimators.

To the best of our knowledge, this is the largest empiri-
cal study used to evaluate the prevalence of evidence of 
inconsistency in networks of trial evidence. Overall, our 
findings are aligned with our previous study [10], where 
we evaluated 40 networks of interventions. The present 
research study includes five times the number of net-
works included in our previous review, and the explora-
tion of multiple structural network characteristics. In this 
study, we found equal to empirical rates of inconsistency 

Fig. 3 Plot of the between-study standard deviation in consistency against the inconsistency model. The black diagonal line represents equality in 
between-study standard deviation between consistency and inconsistency models. Circle points represent the networks consistent at the threshold 
of 10%, triangular points represent the inconsistent networks at α = 5%, and rectangular points represent networks inconsistent between the 
thresholds 5 and 10%. All analyses have used the REML estimator for heterogeneity. Abbreviations: DBT, design-by-treatment interaction model; 
REML, restricted maximum likelihood
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compared with our previous study (i.e., 14% of 201 net-
works vs. 13% of the 40 networks), suggesting that 
researchers should devote more resources to exploring 
how to mitigate inconsistency.

Our study has a few limitations worth noting. First, 
for the empirical assessment of consistency, we evalu-
ated articles with dichotomous outcome data restricting 
to the odds ratio effect measure. We expect our findings 
to be generalisable to other effect measures. Although 
our previous empirical study showed that in some cases 
inconsistency was reduced when moving from one effect 
measure to another, overall, the detected inconsistency 
rates were similar for different effect measures [10]. For 
completeness it would be interesting to carry out an 
empirical study for continuous outcomes to examine 
possible differences in inconsistency between mean dif-
ferences, standardized mean differences and ratios of 
means. Second, in the present study we considered a 
common within-network heterogeneity. This is often 
clinically reasonable and statistically convenient. Since 
most direct intervention comparisons in networks com-
prise only few studies, sharing the same amount of het-
erogeneity allows such comparisons to borrow strength 
from the entire network. However, assuming common 
within-network heterogeneity, intervention comparisons 
with a smaller heterogeneity than that of the remaining 
network will be associated with a larger reported uncer-
tainty around their summary effect, compared to what 
would be accurate. In such a case, the chances of detect-
ing inconsistency decrease. Although assuming a com-
mon within-network heterogeneity can underestimate 
inconsistency, it better reflects how summary effects are 
combined in an NMA in practice. Alternatively, when 
heterogeneity is believed to vary across comparisons, 
different heterogeneity parameters can be built into the 
model, but need to be restricted to conform to special 
relationships according to the consistency assumption 
[29]. Third, we assessed detection of inconsistency based 
on a threshold of the DBT p-value, which reflects com-
mon practice, and ignored the actual differences between 
the different designs and the direct and indirect esti-
mates. However, to avoid “vote-counting” of evidence 
against the consistency hypothesis we also explored the 
distribution of the DBT p-values according to several 
network structural characteristics. Fourth, we used the 
Wald test statistic, which under consistency follows a χ2 
distribution, but like any global test it may lack power. 
Therefore, when the hypothesis of consistency is not 
rejected, inconsistency may be present, and one should 
also consider the nature and design of the included stud-
ies before making any inferences. However, our results 
rely on the assumption that the Wald test statistic has a 
chi-squared distribution under the null. A reviewer has 

suggested that this assumption is not always valid. In par-
ticular, the validity of the Wald chi-square test improves 
as the degrees of freedom of the test increase and the 
within-design heterogeneity variance decreases. This 
suggests that false positive inconsistency results (i.e., 
low DBT p-values) may be apparent with small degrees 
of freedom and large within-design heterogeneity, 
whereas true positive inconsistency may result from large 
degrees of freedom and small within-design heterogene-
ity (see Additional file 1: Appendix Figure 9 for a plot of 
the between-study standard deviation in inconsistency 
against the degrees of freedom of the Wald chi-square 
test). Fifth, we did not exclude potential outlier networks, 
since this was outside of the scope of the study. Sixth, our 
investigation of inconsistency relies on what the origi-
nal authors included into their NMAs, and lower incon-
sistency could have been identified if we restricted our 
analysis to high-quality systematic reviews and NMAs. 
However, it should be noted that inconsistency, similar 
to between-study heterogeneity, is not a matter of study 
quality per se, but it should (or not) be expected.

In a systematic review and NMA, investigators should 
interpret evidence against the consistency hypothesis 
very carefully and be aware that inconsistency in a net-
work can be absorbed into estimates of heterogene-
ity. Given that the descriptive prevalence of evidence of 
inconsistency is frequent in published NMAs, authors 
should be more careful in the interpretation of their 
results. Confidence in the findings from NMA should 
always be evaluated, using for example the tools Con-
fidence In Network Meta-Analysis (CINeMA [30]) or 
Grading of Recommendations Assessment, Develop-
ment, and Evaluation (GRADE) for NMA approaches [31, 
32]. Since inconsistency tests may lack power to identify 
true inconsistency, we recommend avoiding interpret-
ing ‘no evidence for inconsistency’ as ‘no inconsistency’. 
We also recommend using both a global (e.g., the DBT 
model) and a local approach (e.g., loop-specific approach 
[10] or node-splitting [7] method) for the assessment of 
inconsistency in a network, before concluding about the 
absence or presence of inconsistency. However, detection 
of inconsistency often prompts authors to choose only 
direct evidence, which is often perceived as less prone 
to bias, disregarding the indirect information [23]. It is 
advisable though, instead of selecting between the two 
sources of evidence, to try to understand and explore 
possible sources of inconsistency and refrain from pub-
lishing results based on inconsistent evidence [5, 33].

NMA is increasingly conducted and although assess-
ment of the required assumptions has improved in recent 
years, there is room for further improvement [1, 2]. Sys-
tematic reviews and NMA protocols should present 
methods for the evaluation of inconsistency and define 
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strategies to be followed when inconsistency is present. 
The studies involved in an NMA should also be com-
pared with respect to the distribution of effect modifiers 
across intervention comparisons. Authors should follow 
the PRISMA (Preferred Reporting Items for Systematic 
Review and Meta-analysis)-NMA guidelines [34] and 
report their inconsistency assessment results, as well 
as the potential impact of inconsistency in their NMA 
findings.

Given that inconsistency is frequent in nature (with up 
to 20% of networks expected to be inconsistent), inves-
tigators should be more careful in the interpretation of 
their results. Our results highlight the need for a wide-
spread use of tools that assess confidence in the NMA 
findings, such as CINeMA [30], that factor-in inconsist-
ency concerns in the interpretation. Also, our findings 
shed more light on the drivers of power for the consist-
ency test, and underline that it is essential to develop 
strategies to detect inconsistency, particularly in cases 
where the existing tests have low power. Considering that 
the power for detecting inconsistency is low in many net-
works, it is difficult to judge whether inconsistency is rare 
or it is common but commonly not detectable. P-values 
of the global Wald test should be interpreted with cau-
tion since, similar to all global tests, they may lack power, 
as well as they are calculated under the assumption that 
the within-design heterogeneity is known. In particular, 
in networks with only a few degrees of freedom available 
for estimating the within-design heterogeneity param-
eter, this assumption is most likely not justified. More 
investigation is also needed to evaluate the performance 
of other inconsistency methods (e.g., node-splitting 
[7], Lu and Ades method [12]) and to understand their 
power under different meta-analytical scenarios. Fur-
ther investment is required in developing methods to 
potentially deal with inconsistent networks (e.g., net-
work meta-regression approaches, NMA methods for 
classes of interventions) and to educate researchers about 
their use. Careful considerations should also be made 
when building the network geometry and when decid-
ing what to include in a network (e.g., different doses 
and formulations). Another key consideration to help 
reduce inconsistency is to include studies relevant to the 
research question, where study populations, interven-
tions, outcomes, and study settings can be representative 
of the settings, populations, and outcomes of the system-
atic review (i.e., see indirectness in CINeMA [30] and 
GRADE [32]).”

Conclusion
Evidence of inconsistency is more frequent than what 
would be expected by chance if all networks were con-
sistent. This suggests that inconsistency should be 

appropriately explored. This empirical study shows that 
detection of inconsistency was mildly sensitive to vari-
ous network characteristics and their combination. Net-
works with a high number of studies, and a small number 
of interventions had larger power to detect inconsistency. 
Also, inconsistency was likely to manifest as extra heter-
ogeneity when the consistency model was fitted. Lower 
estimates of heterogeneity in the inconsistency model 
compared with the consistency model were associated 
with higher rates of detection of inconsistency. Overall, 
there was a good empirical agreement of inconsistency 
when different heterogeneity estimation methods were 
used.
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