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Abstract—A new framework is presented for training neural
networks that is based on the characterisation and stabilisation
of measurement variations. The framework results in a number
of useful properties that maximises the use of data as well as
aiding in the interpretation of results in a principled manner.
This is achieved via variance stabilisation and a subsequent
standardisation step. The method is a general approach that
may be used in any context where repeatability data is available.
Standardisation in this manner allows goodness of fit to be quan-
tified and measurement data to be interpreted from a statistical
perspective. We demonstrate the utility of this framework in the
analysis of advanced manufacturing data.

Index Terms—Variance stabilisation, neural network, multi-
layer perceptron, reduced chi-squre, chi-square per degree of
freedom, metal additive manufacturing

In this work a neural network is employed, as a generalised
regressor, to investigate the relationship between metal addi-
tive manufacturing (AM) process parameters and the resultant
meltpool geometrical properties for IN718 super alloy. The
analysis of additive manufacturing data is here presented as a
use case, but the framework itself is general and may be used
in any approach where repeatability data is available. Additive
manufacturing is a 3D printing process that builds components
in a layer-by-layer approach; the meltpool is the volume of
molten feedstock and substrate material. Understanding the
underlying physics and relationships between material and
meltpool is key to process optimisation, however opportuni-
ties for in-situ measurements are limited, hence fundamental
process understanding is lacking. The use of neural networks
in analysing advanced manufacturing process data presents
particular difficulties since gathering high quality data is ex-
pensive, complex and requires careful planning. This generally
results in datasets with a low number of samples [1], [2],
that need a systematic methodological approach to aid robust
interpretation.
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Recent articles have reported attempts at using neural net-
works, and in particular, the multilayer perceptron (MLP) [1]–
[4] in analysing AM data. However, the fundamental issues
of small data samples, and crucially, that of characterising
and accounting for uncertainties are not addressed. In this
work a new methodological framework is proposed, primarily
based on accounting for the properties of stochastic variations
in measurements, that makes full use of the available data,
allows for robust training, and aids in the interpretation of
results. From an application-specific perspective this enables
high confidence insights into the relationship between process
parameters and the fundamentals of transient thermomechan-
ical mechanisms during the AM process, such as meltpool
dynamics, and their influence on the final product properties.

Additive Manufacturing is a highly versatile manufacturing
approach that generates complex geometries directly from
digital design. Directed Energy Deposition Additive Manufac-
turing (DED-AM), which deposits powder or wire feedstock
through a nozzle and melts it with a laser, is one of the
most cost-effective AM methods and is specifically used
for producing large near-net-shape [5] freeform components
and for the repair of high-value components in aerospace,
biomedical and automotive industries.

The dataset used in this study was designed to have mul-
tiple repeated measurements that allow variations in meltpool
morphology to be investigated using Bland-Altman plots [6].
It was found that the stochastic variations in the measurement
variations are heteroscedasitc and correlate with the measure-
ment value itself. It is well known that for linear systems,
via the Gauss-Markov theorem, that the ordinary least squares
(OLS) solution results in the best linear unbiased estimate
(BLUE), when the uncertainties are uncorrelated, expectation
value of zero and equal variance (homoscedastic). Under
a relaxation of these assumptions, as with heteroscedastic
variations, the BLUE property can no longer be guaranteed.
It may be noted that normality of the residual distribution



is not a requirement to attain the BLUE estimator, however,
normality leads to other desirable properties that will be
discussed below. For non-linear estimation, as in the estimation
of neural network parameters, many of the properties derived
from linear estimation theory hold, at least asymptotically [7].

In the literature in general, two approaches, are commonly
used to deal with heteroscedasticity: weighted least squares
(WLS) and non-linear data transformations. Weighted least
squares appeals to the likelihood function, for normally dis-
tributed uncertainties, to derive a weight for each term of
the error function to be minimised [8]. The weight is the
inverse variance of the measurement uncertainty for each of
the dependent variable data points. In contrast, transformation
methods attempt to transform the data to a domain where the
assumptions of the estimation method are inherently met. Pre-
processing and transformation of data is not uncommon in the
use of neural networks, for instance, scaling, standardisation,
compression and decorrelation of input data [9]–[11]. In
this work we specifically consider variance stabilisation, to
transform the stochastic variations, such that the data meets
the ordinary least squares assumptions. To the authors knowl-
edge variance stabilisation has not been previously applied to
training of neural networks.

The main purpose of many transformation methods, where
the relationship between mean and variance is known (empir-
ically or theoretically) [12]–[14], is variance stabilisation to
obtain a measurement uncertainty that is constant. The method
of Box and Cox [15] defines a family of transformations
and optimises a joint likelihood function, with respect to the
transform and model parameters, that maximises the likelihood
of the residuals of a linear model being drawn from a
normal distribution. The method requires the estimation of
model parameters over a range of transformations. While the
underlying theory is not new, it poses a significant limitation
with respect to neural networks trained with gradient descent-
based optimisation methods, both in terms of computational
time and also, in terms of ensuring consistent minima are
found over the range of transformations.

To address this challenge, the use of a repeated measures
dataset allows a more pragmatic approach to be taken since
transformation of the difference of repeats can be made prior
to and independent of the estimation of model parameters.
Variance stabilising transforms generally have a small number
of parameters to be estimated. In this case we use a power
law with a single parameter, that is found empirically using a
Shapiro-Wilks test for normality.

As observed by Box and Cox, variance stabilising trans-
formations not only result in data that more closely meets
assumptions but can also be used to find a metric that more
succinctly expresses the results. Stabilisation and normalisa-
tion (in the sense of transforming to a normal distribution) al-
lows the distribution of the stochastic variations to be robustly
summarised with a single statistic; the variance (assuming
expectation to be zero). In terms of a neural network the
dependent output variable may be standardised by the standard
deviation of the variations resulting in an output space that has

TABLE I
PROCESS PARAMETERS SETTINGS. THE DATASET CONSISTS OF SAMPLES

FOR ALL COMBINATIONS OF THE THESE VALUES.

Laser Power (W) 100 150 200
Head Speed (mm/s) 1 & 2.5 1 & 2.5 1 & 2.5
Flow rate (g/min) 1,2, & 3 1, 2, & 3 1, 2, & 3

Fig. 1. Schematic of the meltpool measurement process from the x-ray images

a z-score style of statistical interpretation; the units may now
be expressed in standard deviations of ‘noise’. Standardisation
of the dependent variable in this manner also has implications
in interpreting reliability of the regression found by the neural
network in that the squared error cost function is now expected
to follow a reduced chi-square distribution. This property may
be used to objectively assess goodness of fit of the neural
network and may further be used, in this sense, as a stopping
criterion for the training process without the need for cross
validation.

I. METHODS AND DATA

A. Data

The data used in this case study is collected from Syn-
chrotron in situ x-ray imaging of the DED-AM process.
A DED-AM process replicator, which faithfully replicates a
commercial DED-AM system, was used to capture the key
physics during the laser matter interaction of IN718 on a
synchrotron beamline. Melt pool morphology (length, height
and volume) was mapped from a process map with a full
range of process parameters including laser power, traverse
speed and powder feedrate. Figure 1 shows a schematic of
the experimental set-up and details of the process may be
found in [16]. Experiments were performed at a number of
combinations of the process parameters shown in Table 1.

For each experiment 3 repeated measurements of the melt-
pool were made from the x-ray images for length and height.
Each measurement was made at fixed points, along each
track, spatially separated to ensure no correlation between
measurements due to dynamics. Volume estimates were also
calculated, as in [16], from the x-ray measurements.

B. Bland-Altman Plots

Bland-Altman plots were originally proposed as a method of
comparing the agreement between two measurement methods
by studying the mean difference [6], [17]–[20]. The x-axis
of the plots is the average of two measurements and the y-
axis show the difference between two measurements. Thus,



the spread in the y-axis direction shows the behaviour of
measurement variations as a function of the average of the
measurements. The method was further proposed as a method
of assessing measurement error [21] in terms of bias and
heteroscedasticity [22], [23] via repeated measurements.

It is assumed that errors due to the actual measurement
process are negligible in comparison to the natural variations
occurring in the meltpool. It is also assumed that the variations
in the meltpool are stochastic and not dynamically related
to previous measurements made along the same track, for
example due to material deposition variation.

C. Variance Stabilisation

Optimisation methods often attempt to minimise a least
squares loss function. Inherent in the assumptions of a least
square approach, via the link to the maximum likelihood
approach, is the assumption that the residuals are normally
distributed and have constant variance across the measurement
domain. Deviations from these assumptions leads to loss of
statistical efficiency in estimation of model parameters and
possible misleading results e.g. measurements with large un-
certainty can unduly weight regressions in comparison to more
accurate measurements with less stochastic perturbations.

An approach to handling data with non-constant variability
and non-Gaussian distribution, is to use variance stabilisation
techniques [15] to non-linearly transforms the variables to a
space where the noise has constant measurement accuracy;
known as the equal variance domain. After transformation the
data is in a form more closely matched to the assumptions
in an ordinary least squares setting and is here referred to as
transformed OLS (TOLS).

We define a transformation function, similar in nature to
that of Box and Cox [15], as f(x; θ) = xθ. The value of
θ for each measurement was found empirically such that a
Shapiro-Wilk test [24] indicated the difference of repeats has
a distribution that is Gaussian. Since this method is reliant
on the difference of repeats, the transformation function is
independent of the model and may be found prior to training.
It may be noted that this method requires the estimation of only
two parameters, the transform and a variance, from the entire
dataset in contrast to a method such as WLS that requires
multiple variance estimates from subsets of the full dataset.

D. Standardisation

In general measurements have an associated accuracy that is
dependent on the measurement process itself and other factors.
In this work we consider the variations in each measured
variable, as determined by the repeatability differences, to be
a summation of variances from all non-deterministic sources
and/or processes not directly associated with the process
parameter.

It is common to scale variables by their standard deviation as
a method of standardisation, however, this does not distinguish
between signal power and noise power. Due to stabilised re-
peatability measurements, with constant variance, signals may

be standardised by the standard deviation of the repeatability
noise, as in equation 1, such that

x̂n =
f(xn; θ)

σf(η;θ)
(1)

where xn is a single variable, η is the repeatability differences
and σf(η;θ) is estimated as

σf(η;θ) =

√√√√ 1

N

N∑
n

(f(x′n; θ)− f(v∗n; θ))
2 (2)

where x′n is the n-th measurement and x∗n is the corresponding
n-th repeated measurement. Since this is a repeated measure-
ment the mean difference is assumed to be zero.

In this form measurements may now be expressed in units
of standard deviations of ‘noise’ 1. This allows disparate,
and non-commensurate, measurements with differing units and
accuracies to be compared and considered in a principled
manner. For instance, differences in this standardised space
now have an interpretation that is similar to a z-score or a
Welch’s t-test.

E. Neural based Regression Analysis

To understand the relationship between the process param-
eters and the resultant meltpool morphology measures, neural
networks are employed as a generalised regressors. The struc-
tures used are multilayer perceptrons (MLPs) with a single
hidden layers, consisting of Tanh activation functions, and an
output layer consisting of a linear activation function. Three
separate networks were trained, with the process parameters
of laser power, head speed and powder flow rate as inputs;
outputs of each network were length, height and volume
respectively.

The network was trained by minimisation of the least
squares error

E =

N∑
n=1

(g(pn;φ)− x̂n)
2 (3)

using the backpropagation algorithm, in stochastic mode,
where g(·,φ) is the network function, φ is the network
parameters, p is the input vector of process parameters and x̂n
is the stabilised and standardised meltpool measurements given
by (1). Due to the process of stabilisation and standardisation
the squared error is expected, at the optimal parameters,
to follow a reduced chi-squared distribution (chi-square per-
degree-of-freedom) given by

χ2
red = χ2

N−k =
E

N − k
(4)

where N is the number of training data points and k is the
number of degrees of freedom of the network. The work of
Bartlett [25] showed that for large networks the generalisation

1Noise in this sense refers to stochastic variations that are primarily natural
meltpool variations.



performance depends on the size of weights and not the size
of the network and gives some justification to using networks
with more parameters than the number of training data points.
Building on this work Ingrassia and Morlini [26] further
showed that the equivalent number of degrees of freedom,
k, in a multilayer perceptron is k ≤ p + 1 where p is the
number of hidden units. For estimation of error variance, with
with early stopping as a regularisation technique, they suggest
setting k = p+ 1.

In this work we make use of these properties and use χ2
red

as a measure of goodness of fit. For networks whose parameter
sets are providing a good fit to the data the value of χ2

red is
close to 1. The variance of a chi-squared distribution with v
degrees of freedom, χ2

v , is given by σ2 = 2v. Thus we consider
values in the two sigma range of

(1− 2
√
2/(N − k)) < χ2

red < (1 + 2
√
2/(N − k)) (5)

to be a good fit, given the limits of the sample size, with a
low risk of over- or under-fitting2. It should be noted that the
analysis in this work is primarily interested in regression to
gain insight into the relationship between the process param-
eters and meltpool morphology. As such the χ2

red criterion,
(5), is used purely as a goodness of fit measure and does not
necessarily relate to generalisation.

II. RESULTS

The following sections show the results of applying the
methodology described above to the AM data. In this ap-
plication we wish to robustly identify any relationships that
may exist between the process parameters of laser power,
heed speed and powder flow rate and meltpool morphology
summarised by length, height and volume measurements. In
total 18 experiments were carried out with the DED-AM
replicator, for all combinations of settings given in table I, with
3 repeat measurements giving a total of 54 training samples
for each of 3 networks mapping process parameters to length,
height and volume respectively.

A. Bland-Altman plots and Variance Stabilisation

Figure 2 shows the Bland-Altman plots for length, Height
and Volume. The results of Shapiro-Wilk tests for normality
are shown in table II; the results pre- and post- stabilising
transformations are shown for comparison.

Figures 2(b) and (c) show clear evidence of variability that
is related to the mean value (heteroscedastic), for height and
volume, with smaller repeatability differences for small values
and larger repeatability differences for large values. This type
of variance characteristic tends to result in distributions that
are leptokurtic (kurtosis > 3); sharp peak with long tails in

2The chi-square distribution is actually skew. For degrees of freedom above
50 it is acceptable to approximate the distribution as Gaussian. For degrees
of freedom below this the true two sigma upper limit will be greater than
1+2

√
2/(N − k). Thus, the upper limit is safe for goodness of fit, however,

some care must be taken with this approximation, especially with the lower
limit, when the number of hidden units is comparable to the size of the training
data set.

(a)

(b)

(c)

Fig. 2. Bland-Altman plots showing the noise properties as a function of
the mean value for (a) length , (b) Base-Surface Height and (c) Volume. The
horizontal lines show 1 and 2 standard deviations of the repeatability noise.

comparison to Gaussian. This is reflected in the Shapiro-Wilk
tests showing clear evidence (p-values<<0.001) to reject the
null-hypothesis of a normal distribution.

For the length measurements, figure 2(a), the measurement
errors do not show any clear relationship to the mean values.
The estimated kurtosis value is greater than 3 indicating
leptokurtic behaviour but with the amount of samples available
this estimate is an unreliable stand alone test. A transformation
was neverless found that improved the results of the Shapiro-
Wilks test.

Figure 3 shows the Bland-Altman plots after stabilisation
by (1). These results show that after stabilisation there is
no evidence of the meltpool variations being related to the
mean values. This is reflected in table II with all Shapiro-
Wilk scores closer to one after stabilisation and no evidence to
reject the null-hypothesis at the 3σ level. It may also be noted
that the kurtosis scores for height and volume are close to
3; however for the length measurments the kurtosis, although
slightly improved, remains leptokurtic.



TABLE II
SHAPIRO-WILK SCORES, P-VALUES AND KURTOSIS FOR RAW AND STABILISED DATASETS. STABILISED DATASETS ARE INDICATED WITH A T IN

PARENTHESIS. THE ESTIMATED STABILISATION PARAMETER FOR THE FUNCTION f(x) = xθ IS ALSO SHOWN.

S-W p-value kurtosis θ S-W (T) p (T) kurtosis (T)
height 0.84 2e−5 5.8 0.2 0.97 0.24 2.7
length 0.92 5e−3 5.3 1.6 0.94 0.02 4.9
volume 0.60 3e−9 10.9 0.1 0.98 0.46 2.4

(a)

(b)

(c)

Fig. 3. Bland-Altman plots showing the noise properties as a function of the
mean value for stabilised versions (a) length , (b) Base-Surface Height and
(c) Volume.

B. Regression Analysis

The properties given by the reduced chi-square were also
utilised in model order selection. For each network, multiple
training runs were performed from random initial conditions,
with increasing network size until a reduced chi-square, within
the range give by (5), was found. Training was performed
with a large number of epochs (1,000,000) to ensure that
a representative minimum of the squared error was found.
A learning rate of 0.000005 was used. This was chosen
empirically to give the highest rate that gave smooth error
curves.

TABLE III
THE ESTIMATED MODEL ORDER FOR MAPPING THE PROCESS

PARAMETERS TO MELTPOOL HEIGHT, LENGTH AND VOLUME AND THE AN
ASSOCIATED REPRESENTATIVE χ2

red VALUE FOUND AFTER 1 MILLION
TRAINING EPOCHS. FOR HEIGHT NO MAPPING WAS FOUND THAT COULD

PROVIDE A SATISFACTORY FIT TO THE DATA.

N◦ hidden nodes χ2
red

height N/A >30
volume 7 1.13
length 5 1.36

Table III shows the results of systematically increasing the
number of hidden nodes of the neural network until a chi-
squared per degree of freedom could be found within the two
sigma range given by (5). For the mappings to the meltpool
height no reliable mapping was found.

Figure 4 shows the regression surfaces relating the stabilised
and standardised length measurements to the flow rate and
head speed at three power settings. For all power settings there
is no significant relationship between the powder flow rate
and the meltpool length and at low power (100W) there is no
head speed that is able to significantly change the length of
the meltpool. For a laser power setting of 144W there is an
increase in the meltpool length, that is approximately 2.5 times
the standard deviation of the noise, in reducing the head speed
from 2.5mm/s to 1mm/s and is thus on the limits of being a
significant change. At a laser power of 188W this change in
the meltpool length increases to approximately a 10 standard
deviation effect.

Figure 5 shows similar regression surfaces for the meltpool
volume. The ’base’ level for each regression is at approxi-
mately 33 standard deviations of noise. Thus, the meltpool
volume has significantly larger ratio of volume to variations
than the length. At laser power of 100W there is no combi-
nation of head speed or powder flow rate that significantly
changes the meltpool volume. At 144W both the powder flow
rate and the head speed can been seen to significantly change
the meltpool volume with decreased head speed and increased
powder flow increasing the meltpool volume. For the higher
laser power of 188w only the head speed has a significant
impact of the meltpool volume.

DISCUSSION AND CONCLUSIONS

In this work we have presented a new systematic method-
ological framework for training a MLP using repeatability
data. The framework is general in its approach and may
be applied to any datasets where repeatability information is



(a)

(b)

(c)

Fig. 4. Regression plots of head speed/flow vs standardised length at three
different power settings.

available. The approach uses variance stabilisation techniques
to transform the repeatability differences to a domain where
the variance is constant and has a distribution that is close
to Gaussian. The well established method of Box and Cox
[15] uses a similar transform, however, their approach attempts
to optimise a transform such that the residuals of a linear
model fit are stabilised. This is problematic in application
to neural networks, with non-linear optimisation by gradient
descent, both in terms of the computational load and in the
finding consistent parameter optimisations across transforms.
The transformation of repeatability differences allows the
stabilisation to be performed independent of the model and
prior to parameter optimisation.

Attempting to maintain the properties of constant variance

(a)

(b)

(c)

Fig. 5. Regression plots of head speed/flow vs standardised volume at three
different power settings.

and Gaussian distribution leads to a number of advantages
and properties. Firstly, the data more closely matches the
assumptions of least squares optimisation leading to more
statistically efficient estimation of the network parameters.
Statistical efficiency is of general importance but gains greater
significance in applications with small datasets, such is in AM,
where significant relationships between variables may require
the full use of the information contained in the data to be
revealed.

Secondly, the data may be standardised by the standard
deviation of the stochastic variations. This standardisation
means that the squared error cost function is now expected
to follow a reduced chi-square distribution at the optimal
solution. This may be utilised to assess the goodness of fit of



the regressions allowing poor fits to be rejected and not falsely
interpreted as showing a significant input-output relationship.
In this work, we further use this property as a criterion for
early stopping of training and thus makes full use of the small
dataset. We emphasise that this method is not necessarily
an indication of generalisation and is here purely used as a
goodness of fit measure for regression analysis.

Finally, standardisation, as above, allows output variables
to be interpreted in terms of standard deviations of noise.
This gives the output space a statistical interpretation that is
similar to a z-score and allows only significant changes to be
considered.

The framework has been employed on a repeated measures
dataset derived from experiments investigating the laser-matter
interface in advanced additive manufacturing processes. The
neural approach in this work uses the MLP as a generalised re-
gressor to gain insight into the dependencies between meltpool
morphology and the process parameters. The work of Caiazzo
and Caggiano [3] attempted to capture these dependancies, for
2024 Al Alloy, using a MLP but did not attempt to characterise
or account for the nature of meltpool variations.

Variations in the meltpool morphology were investigated,
independently of the model and prior to any training, using
Bland-Altman plots. The analysis shows clear indication of
heteroscedastic variations that correlate with the values itself
and does not meet the assumptions of a least squares minimi-
sation approach.

The variance of the measurements was stabilised by em-
pircally finding a non-linear transformation that maximised
the Shapiro-Wilk’s test score for normality. The properties
described above were then used to train neural networks to
find good fits to the data if possible. The results showed
that only the length and volume of the meltpool could be
meaningfully related to the process parameters using this data.
The framework also showed that the powder flow rate is not a
significant factor in determining the meltpool length but does
have significance in determining the volume of the meltpool.
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