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Title: DeepWML, a deep learning MRI white matter hyperintensity detection applicable to multi-center 1 

data  2 

Abstract 3 

Purpose: White matter hyperintense (WMHI) lesions on MR images are an important indication 4 

of various types of brain diseases that involve inflammation and blood vessel abnormalities. 5 

Automated quantification of the WMHI could be valuable for clinical management of the 6 

patients, but existing automated software is often developed for a single type of disease and 7 

may not be applicable for clinical scans with thick slices and different scanning protocols.  8 

Methods: We developed and evaluated “DeepWML”, a U-net method for fully automated 9 

white matter lesion (WML) segmentation of multi-center FLAIR images. We used MRI from 507 10 

patients, including in three distinct WM diseases, obtained in 9 centers, with a wide range of 11 

scanners and acquisition protocols. The automated delineation tool was evaluated through 12 

quantitative parameters of dice similarity, sensitivity and precision as compared to manual 13 

delineation (gold standard).  14 

Results: The overall median dice similarity coefficient was 0.78 (range 0.64~0.86) across the 15 

three disease types and multiple centers. The median sensitivity and precision was 0.84 (range 16 

0.67~0.94) and 0.81 (range 0.64~0.92), respectively. The tool’s performance increased with 17 

larger lesion volumes.   18 

Conclusion: DeepWML was successfully applied to a wide spectrum of MRI data in the three 19 

white matter disease types, which is potential to improve practical workflow of white matter 20 

lesion delineation.  21 

 22 
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Introduction 25 

MRI is widely used to detect the white matter hyperintensity (WMHI) lesions in 26 

neurological disorders such as multiple sclerosis (MS) [1, 2], neuromyelitis optica spectrum 27 

disorders (NMOSD) [3, 4], and cerebral small vessel disease (CSVD) [5, 6]. Accurate 28 

identification of WMHI has clinical relevance for diagnosis and predicting prognosis, especially 29 

in early disease phases [7, 8].  30 

In the current clinical workflow, though it is not challenging to identify the WM lesions 31 

manually, the large amount of images as daily workload is likely to cause decreased efficiency 32 

for radiologists. In addition, the delineation of the WM lesions usually relies on manual drawing 33 

by experienced radiologists, which is time-consuming. Intra- and inter-rater reproducibility can 34 

be compromised by the subjective judgement, the associated workload and the different 35 

experience of raters [9, 10]. Various conventional machine learning and deep learning methods 36 

have been proposed to automatically detect and segment WM lesions. Dadar et al. evaluated 37 

the segmentation performance from ten conventional linear and nonlinear classification 38 

techniques (naïve Bayes, logistic regression, decision trees, random forests, support vector 39 

machines, k-nearest neighbors, bagging, and boosting) and observed the superior performance 40 

from random forest algorithm [11]. Recently, a few studies reported the white matter 41 

hyperintensities (WMHI) segmentation results using convolution neural network [12-16]. 42 

Rachmadi et al. proposed 2D-CNN scheme to segment WMHI with none or mild vascular 43 

pathology, and compared with other 15 types of machine learning segmentation methods [17].  44 

3D-Unet scheme has also been widely used for automated WM lesion segmentations, for 45 
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example, in MS patient studies with T2-FLAIR and MP2RAGE images [18]. As the deep learning 46 

technique engendered such applications increasingly, a recent article with CLAIM guidelines has 47 

been provided for such studies [19]. 48 

To be clinically useful, the segmentation technique needs to provide accurate results 49 

under heterogeneous imaging protocols for routinely available FLAIR images (e.g. 2D images 50 

with different slice thicknesses), which often calls for multi-center studies[20, 21] . Thus, there 51 

is a growing need to develop a fully automated tool that can deal with heterogeneous clinical 52 

data across various WM diseases. Unfortunately, previous studies have rarely demonstrated 53 

FLAIR based deep learning WMHI lesion segmentation validated on multiple disease types and 54 

multicenter data.  55 

In this study, we present a deep learning (DL) based automated WM lesion 56 

segmentation tool using a single-modality clinical FLAIR image, that can be applied to data with 57 

WMHI lesions from multiple WM disease types (MS, NMOSD and CSVD) and from different 58 

clinical centers, with wide range of vendors, image resolutions and scanning slice thicknesses. 59 

The tool aims to assist the WM lesion detection and segmentation work for radiologists and 60 

clinicians. 61 

 62 

Methods 63 

Multi-center dataset 64 
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The MRI data from three disease types (MS, NMOSD and CSVD) that include WM lesions 65 

were collected from 9 centers (5 centers for MS and NMOSD and 4 centers for CSVD) (Table 1). 66 

MS diagnosis was determined according to 2017 McDonald criteria [22].  The NMOSD diagnosis 67 

was based on the 2015 International Panel on NMOSD Diagnosis [23] and all patients had 68 

antibodies against AQP4 using CBA method. CSVD diagnosis was based on the presence of 69 

white matter hyperintensity or more CSVD signs on MRI [24]. Patients who had other 70 

abnormalities such as brain tumor on MRI and well-defined macro-vascular stenosis on MRA 71 

were excluded.  72 

The data of the current study is from prospective studies, and the data partition was at image level. The 73 

consent forms were signed by patients and the data were anonymized. Routine clinical FLAIR 74 

images were acquired in axial orientation on 3.0T or 1.5T scanners from multiple vendors 75 

(Philips Achieva, GE Discovery MR750/Signa HDxt/Optima MR360 and Siemens Skyra/TrioTim). 76 

Each patient’s FLAIR contained 17-30 slices to cover the whole brain. After data acquisition, one 77 

patient with MS was excluded due to poor image quality. One patient with NMOSD was excluded due to 78 

the history of brain trauma. Nine patients with CSVD were excluded due to >50% intra-cranial macro-79 

vascular stenosis on MRA, and one CSVD patient was excluded due to incidental mengioma Fig. S1). The 80 

final dataset consisting of 507 patients with 10753 image slices took part in this multi-center 81 

study, including 135 MS patients (82 women; mean age (SD) 37.2 (12.7) years), 74 NMOSD 82 

patients  (62 women; 39.5 (13.5) years), and 298 CSVD patients (177 women; 43.0 (16.1) years). 83 

Original data had a wide range of in-plane resolution from 0.4102 × 0.4102 mm2/pixel to 0.9375 84 

× 0.9375 mm2/pixel, with slice thickness ranging from 3 mm to 8 mm. Details of the data 85 

parameters and distribution are shown in Table 1. As pre-processing step, all FLAIR image slices 86 
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were intensity-normalized and resampled to a matrix of 256 x 256 before the network training. 87 

Manual labeling of the WM lesions was performed using the software 3D Slicer [25]. 88 

Two experienced radiologists (Y.D with 12 years’ experience and W.G with 10 years’ experience) 89 

firstly completed a training session to reach a consensus on the evaluation of the imaging 90 

findings. After the training, they performed the manual labelling independently, and then Dice 91 

of the lesion masks from the two radiologists was calculated. The labels with relatively poor 92 

consistency (Dice < 0.85) need to be re-labelled to reach a good consensus (Dice ≥ 0.85) as 93 

ground truth for further analysis. 94 

 95 

Deep learning neural network 96 

We employed a 2-D Unet strategy [26] with network architecture shown in Figure 1. It 97 

consisted of a contracting path and an expanding path with skip connections between them. 98 

The operation block in the contracting path consisted of two blocks of 3x3 convolutions with a 99 

rectified linear unit (ReLU) (blue arrows in Fig.1). A 2x2 max pooling (red arrow in Fig.1) was 100 

performed at the end of each block to down-sample feature maps. In the expanding path, each 101 

operation block started with a 2x2 deconvolution for up-sampling (green arrow in Fig.1), 102 

followed by two blocks of 3x3 convolutions with ReLU. Skip connections (dashed line in Fig.1) 103 

carried the features from contracting path to the expanding path. The final layer was a fully 104 

convolutional layer with 1x1 kernel (orange arrow in Fig.1) which translated 64-channel 105 
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features to a single channel feature map. The output logits were compressed to range 0-1 to 106 

predict the final lesion activation map.  107 

 108 

Network Training and Testing 109 

The FLAIR images from all the centers were used for training and testing sessions. In the 110 

training and validation steps, 60% and 20% of the image dataset were randomly selected 111 

respectively, from each center and each disease type. This is to include data samples from all 112 

centers and all three disease types. This led to a total of 8640 image slices included in the 113 

training and validation procedure. The remaining 20% of the dataset was used as test set. The 114 

U-net was trained with a loss function of combined binary cross-entropy loss and Dice 115 

coefficient loss [27]. Training was performed for 200 epochs using Adam optimizer [28] with a 116 

starting learning rate of e-4. Data augmentation was performed including random horizontal flip 117 

and rotation (-10 to 10 degrees). The model was implemented using the Python Pytorch 1.4 118 

framework [29], with GPU NVIDIA GTX 1080 Ti*2 processor.  119 

 120 

Performance evaluation  121 

To quantitatively evaluate the performance of the networks, we calculated three 122 

evaluation metrics -- the Dice similarity coefficient (DSC), the true positive rate (i.e. Sensitivity), 123 
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and the Precision -- on each image in the test set. The median of the three metrics was 124 

calculated along each disease type and each clinical center, respectively.  125 

Moreover, we partitioned the test set by different lesion volumes. For each 2D image, 126 

the lesion volume (LV) was calculated as the manually labeled lesion area multiplied by its slice 127 

thickness. LV groups were partitioned as: G1) LV < 0.2ml; G2) 0.2ml ≤ LV < 0.7ml; G3) 0.7ml ≤ LV 128 

< 2ml; G4) 2ml ≤ LV < 5ml; G5) LV ≥ 5ml. The three metrics within each LV group were 129 

compared. 130 

 131 

Statistical analysis 132 

To explore the performance of our tool in the multicenter multi-diseased dataset, 133 

statistical analysis was applied on the three evaluation metrics using python scipy package 134 

(https://www.scipy.org). We employed the Shapiro-Wilk test to check data normality, and the 135 

Kruskal-Wallis test to evaluate the performance difference across disease types and groups 136 

based on lesion volume ranges. The Mann-Whitney tests were further performed as pairwise 137 

comparisons for those tests with significance (p-value < 0.05), and Bonferroni correction was 138 

performed.  139 

 140 

Results 141 

https://www.scipy.org/
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Figure 2 shows representative cases with WM lesions from MS (Fig.2-left panel), 142 

NMOSD (Fig.2-middle panel) and CSVD (Fig.2-right panel), with manual labeling (overlay in red) 143 

and automated segmentations (overlay in green) for comparison. Four typical cases in each 144 

disease type were randomly selected. Our tool could automatically segment the WM lesions in 145 

manner consistent with the manual labels, regardless of the variation in lesion patterns, 146 

locations, disease types and imaging parameters. The processing time for automated 147 

segmentation on each slice was within 0.3s. For a patient data with 17-30 slices in our dataset, 148 

the total time for a whole brain lesion segmentation was about 5-9s. 149 

Table 2 lists the quantitative results for each imaging center. The median DSC for the 150 

testing dataset had an average value of 0.78, with 0.80 for MS lesions, 0.77 for NMOSD lesions, 151 

and 0.78 for CSVD lesions. The median sensitivity and precision were 0.84 and 0.81, respectively. 152 

Figure 3 further details the distributions of the three performance metrics for each imaging 153 

center (Fig.3A-3C) and for each disease (Fig.3D-3F). The Kruskal-Wallis test showed that there 154 

was no significant difference in DSC (p-value = 0.09) (Fig.3D) or sensitivity (p-value = 0.54) 155 

(Fig.3E) among three disease types. However, the segmentation tool behaved differently 156 

among disease types in precision (p-value=0.009); in particular, the Mann–Whitney test 157 

demonstrated that the segmentation precision for MS lesions performed significantly better 158 

than for NMOSD and CSVD (p-value after Bonferroni correction << 0.05) (Fig.3F).  159 

Figure 4 shows the segmentation performance for different WM lesion volumes 160 

including all three disease types of lesions. The Kruskal-Wallis test showed a significantly higher 161 

performance (DSC, sensitivity and precision) as the lesion volume increased (p-value < .001 for 162 
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DSC; p-value = 0.03 for Sensitivity; p-value < .001 for Precision). As indicated in Fig.4A (DSC), 163 

significant DSC improvements were found among the LV groups of G3 versus G1 (p = 0.00025), 164 

G4 versus G3 (p = 2.4e-5), and G5 versus G4 (p = 6.5e-6). For Sensitivity (Fig.4B), there was 165 

significant improvement of G5 versus G4 (p = 0.0024). For Precision, there was a significant 166 

improvement of G3 versus G1 (p = 0.0002) and G4 versus G3 (p = 0.00011).   167 

 168 

Discussion 169 

We present DeepWML, an automated WM lesion delineation tool using DL network that 170 

is largely agnostic to disease and scanner. The network was trained based on a large amount of 171 

data with a wide range of imaging conditions, disease types and lesion sizes, therefore, can be 172 

applied to a wide spectrum of MRI data for automated WM lesion segmentation in three main 173 

WM diseases (MS, NMOSD and CSVD).  174 

In this study, we have employed three evaluation metrics (DSC, sensitivity and precision) 175 

to quantify the segmentation performance. The DSC depicts the overlap between the manual 176 

labeling and the automated result, and the median DSC reaches 0.78 for the overall multi-177 

center dataset. This is comparable to the results reported from alternative approaches [15].  178 

Moreover, a good median sensitivity (84%) ensures that most of the lesion pixels can be 179 

correctly identified; a good precision (81%) signifies that there are few false positive pixels. 180 

Importantly, the computation time per segmentation slice is within 0.3s (5-9s for each patient), 181 

which compares favorably with other DL algorithms. The few failure cases with discordant 182 
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segmentation result against the manual labels (shown in Fig. S2) were analyzed, and there are 183 

the following three causes of the detection failure. Firstly, some extremely small WM lesions 184 

which occupy less than 10 pixels (Fig.S2-Panel A) are difficult to be detected by the current 185 

DeepWML model, probably due to small portion of training data with extremely small lesion 186 

size. Secondly, Some WMHIs are contaminated with the normal tissue around the ventricle area 187 

(Fig.S2 – Panel B), because they share the high intensity feature. A third type of failure cases is 188 

due to the subtle intensity difference in WM lesion against their surrounding tissues (Fig.S2 – 189 

Panel C).  For the performance with different lesion volumes, our study reaches median dice of 190 

0.87 for lesion volume > 5ml, and 0.71 for lesion volume < 0.2ml which is good performance for 191 

such small lesions. Small lesions below the in-plane resolution are confusing for both the 192 

automatic tool and manual labeling. For the spatial accuracy expressed by Dice coefficient, our 193 

study showed a trend of increased median Dice along with the lesion volume increase (Fig.4-194 

left). This result is highly consistent with the finding from previous work [30], in which “a clear 195 

trend for worse performance at lower volumes” was stated. A larger dataset is recommended 196 

to further confirm this finding in the subgroup analysis.Our algorithms showed several 197 

advantages to be applied in clinical practice. First, many previous studies used multiple MR 198 

image contrasts to enrich the input information in order to achieve better segmentation 199 

performance on MS patients data [16, 31, 32]. However, the multi-contrast MR data requires 200 

additional scan time and usually need co-registration to integrate information from multiple 201 

channels. The input of our tool only requires routine 2D FLAIR images and can be applied for 202 

images from multiple scanners with different vendors, with a wide range of in-plane resolution, 203 

slice thickness, and other imaging parameters. Second, the applicability of the trained U-net 204 
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tool is not limited to the WM lesion of one specific disease type. Our results showed no 205 

significant difference in the overlap ratio between automated and manual results (DSC) from 206 

MS, NMOSD and CSVD, implying that it is not required to have specified diagnostic information 207 

before commencing the WM lesion segmentation. Lastly, the tool is not dependent on skull-208 

stripping of the images, which makes the pre-processing easier. The abovementioned features 209 

indicate great potential for our tool to be used in common clinical scenarios.  210 

There are several limitations for our tool. First, the proposed network is based on 2D 211 

images, as well as the evaluation of the lesions on 2D slice level. It is possible that expansion to  212 

a 3D network may achieve similar or better performance. One reason that we stick to 2D 213 

network is that there is large variation of the slice thickness in our clinical routine 2D FLAIR 214 

images (3 mm ~ 8 mm). This leads to very limited number of slices for certain patients, and the 215 

2D strategy may fit this situation. Second, the trained network was tested on the three 216 

common white matter disease types (MS, NMOSD and CSVD), while the performance of our 217 

tool in less common types of white matter diseases may need further validation. Lastly, the tool 218 

performance with small lesion volumes (e.g. less than 0.2 ml) needs to be improved. 219 

 220 

Conclusion 221 

In summary, we developed DeepWML, a DL-based automated WM lesion segmentation 222 

tool for WM lesion identification and delineation with satisfied performance in three main WM 223 

diseases. The robustness of the tool and the computation efficiency would allow integration 224 

into the clinical routine workflow. 225 
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 325 

Tables and figure legend: 326 

Table 1 Data distribution from multiple clinical centers. 2D FLAIR images of MS, NMOSD and 327 

CSVD are collected on scanners from multiple vendors (Philips, GE, Siemens), with slice 328 

thickness ranging from 3 to 8 mm, in-plane resolution ranging from 0.4102 × 0.4102 mm2/pixel 329 

to 0.9375 × 0.9375 mm2/pixel. 330 

 331 

Lesion 

type 

Center code # patients # 

image 

slices 

Slice 

thickness 

(mm) 

In-plane 

resolution 

(mm*mm/pixel) 

Scanner type 

MS Age (mean 

(SD)) 37.2 

(12.7) ys 

Gender - female 

ratio 

 82/135 (61%)  

   

 
Ctr_MS#1 30 588 5.5, 6, 

6.5 

(0.4688*0.4688), 

(0.9375*0.9375) 

GE Discovery 

MR750 3.0T 

Ctr_MS#2 37 592 8 (0.4688*0.4688) GE Discovery 

MR750 3.0T 

Ctr_MS#3 27 541 6.5 (0.4492*0.4492), Siemens 
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(0.7188*0.7188) Skyra 3.0T 

Ctr_MS#4 27 603 4, 5.2, 

5.36, 5.5, 

6.5 

(0.4102*0.4102), 

(0.4297*0.4297), 

(0.4395*0.4395), 

(0.6875*0.6875) 

Siemens 

Skyra 3.0T 

Ctr_MS#5 14 295 3, 4, 5, 6, 

6.5, 7.5 

(0.4297*0.4297), 

(0.4688*0.4688) 

Siemens 

TrioTIm 3.0T 

NMOSD Age (mean 

(SD)) 39.5 

(13.5) ys 

Gender - female 

ratio 

 62/74 (84%)  

   

 
Ctr_NMOSD#1 12 246 5, 6.5 (0.4688*0.4688), 

(0.5078*0.5078) 

GE Discovery 

MR750 3.0T 

Ctr_NMOSD#2 12 192 8 (0.4688*0.4688) GE Discovery 

MR750 3.0T 

Ctr_NMOSD#3 6 120 6.5 (0.7188*0.7188) Siemens 

Skyra 3.0T 

Ctr_NMOSD#4 43 1373 4, 5, 6, 

6.5, 7.5 

(0.4297*0.4297), 

(0.4688*0.4688), 

(0.5*0.5), 

(0.8*0.8), 

(0.9375*0.9375) 

Siemens 

TrioTIm 3.0T 
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CSVD Age (mean 

(SD)) 43.0 

(16.1) ys 

Gender - female 

ratio 

 177/298 (59%)  

   

 
Ctr_CSVD#1 52 1067 6, 6.5 (0.4688*0.4688), 

(0.8976*0.8976) 

GE Discovery 

MR750 3.0T 

Ctr_CSVD#2 34 620 6.5, 7 (0.4492*0.4492), 

(0.4688*0.4688) 

Philips 

Achieva 1.5T 

Ctr_CSVD#3 70 1562 6 (0.4492*0.4492) Philips 

Achieva 1.5T 

Ctr_CSVD#4 142 2954 6.5, 7, 

7.8, 8 

(0.4688*0.4688) GE Optima 

MR360 

/Signa HDxt 

1.5T 

 332 

 333 

 334 

 335 

 336 

 337 
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Table 2 Median DSC, Sensitivity and Precision of the WM lesions from three disease types of multi-center data. For DSC and 338 

Sensitivity, there is no significant difference across the three disease lesion types (P > 0.05).  339 

 340 

  

MS NMOSD CSVD 

Over

all 

MS 

Over

all 

Ctr_M

S#1 

Ctr_M

S#2 

Ctr_M

S#3 

Ctr_M

S#4 

Ctr_M

S#5 

NMOSD 

Overall 

Ctr_NM

OSD#1 

Ctr_NM

OSD#2 

Ctr_NM

OSD#3 

Ctr_NM

OSD#4 

CSVD 

Overall 

Ctr_CS

VD#1 

Ctr_CS

VD#2 

Ctr_CS

VD#3 

Ctr_CS

VD#4 

Dice 0.80 0.79 0.79 0.75 0.88 0.86 0.77 0.80 0.80 0.83 0.75 0.78 0.78 0.79 0.74 0.78 0.78 

Sensitivity 0.83 0.73 0.82 0.80 0.87 0.92 0.84 0.79 0.78 0.86 0.86 0.85 0.84 0.86 0.81 0.86 0.84 

Precision 0.86 0.89 0.85 0.75 0.89 0.83 0.79 0.89 0.88 0.77 0.75 0.79 0.77 0.84 0.79 0.80 0.81 
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 341 

Fig.1 The fully convoluted network architecture with U-net strategy. Each gray box represents a 342 

multi-channel feature map. Numbers on top of the boxes denote number of channels; 343 

width and height dimensions are denoted at bottom. Light gray boxes represent the 344 

copied features through skip connections. The operations are denoted using different 345 

types of arrows 346 

 347 

Fig.2  Representative cases of WM lesion automated segmentation result (in green) vs. manual 348 

labeling (in red). Four typical cases in each disease type are randomly selected and 349 

covered both lower and upper position of the brain structures. The U-net based 350 

automated segmentation accords with the manual labels for the various lesion patterns 351 

and lesion sizes. The DSC for these cases are above 0.8. The segmentation time for each 352 

case is within 0.3 s 353 

 354 

Fig.3 Distribution of the DSC (top row), Sensitivity (mid row) and Precision (bottom row) across 355 

three disease types on multi-center data. Each column corresponds to center-wise 356 

result for one type of disease. The right-most column shows result for three diseases. In 357 

Fig.3D, 3E, no significant difference in segmentation performance found in DSC or 358 

Sensitivity (p > 0.05); In Fig.3F, significantly better Precision in MS lesion type is found 359 

(*p < 0.05 after Bonferroni correction) 360 

  361 
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Fig.4 DSC, Sensitivity and Precision with regards to lesion volume (LV) partitions. The testing 362 

data were partitioned according to the manually labeled WM lesion volumes with 5 363 

groups: G1) LV < 0.2ml; G2) 0.2ml ≤ LV < 0.7ml; G3) 0.7ml ≤ LV < 2ml; G4) 2ml ≤ LV < 5ml; 364 

G5) LV ≥ 5ml. The segmentation performance improves along with the increasing WM 365 

lesion volume groups, with detailed statistical results marked in the figures. *p < 0.05 366 

after Bonferroni correction 367 


