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Abstract

Surviving in natural environments requires animals to sense sudden events and swiftly adapt 

behaviour accordingly. The study of such Reactive Adaptive Behaviour (RAB) has been central 

to a number of research streams, all orbiting around movement science but progressing in 

parallel, with little cross-field fertilization. We provide a concise review of these research 

streams, independently describing four types of RAB: (i) cortico-muscular resonance, (ii) stimulus 

locked response, (iii) online motor correction and (iv) action stopping. We highlight remarkable 

similarities across these four RABs, suggesting that they might be subserved by the same neural 

mechanism, and propose directions for future research on this topic.

Keywords

Electromyography (EMG); Electroencephalography (EEG); Movement; Sensorimotor processing; 
Saliency; Surprise

Introduction

In the animal world, movement and life go hand in hand: an animal not able to move 

effectively is less likely to survive. Yet, the constraints posed by living in a rapidly-changing 

environment have pushed brains to evolve not only a sophisticated motor system, but also 

a tight coupling between movement and sensory encoding. Development of the motor 

system is indeed guided by perception. Likewise, perception alone does not develop properly 

without movement (1).

Out of the myriad of examples of sensory-motor integrative processes only some are subject 

to volition – the individual’s ability to choose whether or not to act in a given circumstance 

(2). For instance, a monkey actively looking for food might deliberately choose to climb a 

particular tree when it sees lots of fruits hanging on it. Yet, a sudden and unexpected change 

in the sensory scene might trigger an unavoidable reactive behaviour, having higher priority 

compared to the initial goal to collect food. A rustling coming from the branches above the 

monkey might lead the animal to jump out of the tree. The same sound coming from the 
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ground might instead lead the monkey to climb even higher. Either of these clearly distinct 

actions – climbing or jumping off the tree – albeit appropriately chosen on the basis of the 

context, take often place with none or scarce influence of the animal’s volition. Yet, either is 

indispensable for survival.

Here we refer to this way of acting (or modulation of acting) as “Reactive Adaptive 

Behaviour” (RAB). RAB falls in the nexus between reflexive and volitional movements. 

Similarly to reflexes, RAB is reactive and therefore stimulus-driven. However, similarly 

to voluntary actions, RAB is adaptive, i.e. flexible to the ever-changing nature of the 

environment. As such, RAB questions the very dichotomy between reflexes and voluntary 

actions (3, 4), calling for a reflexive-volitional gradient wherein RAB itself lies.

We highlight four fundamental features that apply to RAB. First, RAB is evoked by sudden 

and unexpected changes in the sensory scene, i.e. by “salient” stimuli. Second, RAB 

is characterized by its short-latency: it is rapid, and elicited in situations where speedy 

responses can be vital. Third, RAB is adaptive, i.e. flexible on the basis of the context: it 

favours those behaviours (e.g. climbing vs. jumping, according to the above example) that 

ensure survival and, in the long term, maximise fitness. This implies that RAB is the result 

of relatively complex neural computations, selecting motor output on the basis of the current 

environmental context. Fourth, as already anticipated above, RAB takes place with none or 

scarce influence of a subject’s volition.

Considering the above features, it turns out that RAB has been studied across a wide 

range of disciplines concerned with studying biological movement, such as neuroscience, 

psychology and biomechanics. Over the past couple of decades, a number of original 

observations have characterized specific manifestations of RAB using distinct experimental 

paradigms. Yet, we were stunned to realise that these research streams are largely 

progressing in parallel, with little cross-field fertilization. This prompted us to conceive the 

current work. We aim to provide a concise review of some research streams independently 

describing four particular RABs: (i) Cortico-Muscular Resonance, (ii) Stimulus Locked 

Response, (iii) Online Motor Correction and (iv) Action Stopping. While doing so, we 

highlight how each of these behaviours fulfils the above-described criteria for RAB, and 

discuss the possibility that they could be partly subserved by the same neural mechanism.

[i] Cortico-Muscular Resonance (CMR)

The term Cortico-Muscular Resonance (CMR) has been recently proposed to refer to a 

series of fast modulations of muscular activity (and ensuing applied force) evoked by sudden 

sensory stimuli, irrespectively of their sensory modality (5, 6).

CMR has been observed using both electromyography (EMG) and force measurements. In 

a typical experiment, participants are required to exert a weak and constant isometric force 

on a transducer held between the index finger and thumb, while simple, task-irrelevant and 

fast-rising sensory stimuli (either auditory or somatosensory) are delivered (5, 6) (Fig. 1a). 

These stimuli evoke a multiphasic modulation of the exerted force: An initial transient force 

decrease (d1), peaking ~100 ms post-stimulus, is followed by a transient force increase (i1) 

peaking at ~250 ms, and by a second (longer lasting) force increase (i2) starting ~300-350 
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ms and lasting for ~2 seconds (Fig 2b). The two initial force modulations – d1 and i1 – 

have an EMG counterpart, detected when recording from the first dorsal interosseous muscle 

(FDI; i.e., the muscle contributing to the force exerted on the transducer using the index 

finger, Fig 1a). Expectedly, the EMG modulations have shorter latencies (~75 and ~110 

ms, respectively) compared to the corresponding force modulations, due to the well-known 

electromechanical delay of motion with respect to muscular activity (Fig. 1c, Box 1).

A few CMR features are worth being highlighted, as they nicely dovetail the features 

defining RAB (discussed in the previous section). First, CMR appears to be scarcely 

accessible to volition: not only participants are not meant to move in response to the 

stimuli, but they were mostly unaware of the modulation of their force output. Second, the 

CMR magnitude is considerably reduced when the eliciting stimulus has low behavioural 

relevance, e.g. when it is highly predictable (5). This observation highlights the adaptive 

character of the CMR, which is adjusted on the basis of the context, and preferentially 

triggered in response to stimuli that are more likely to require a swift reaction. Another 

feature that we highlight is that the CMR pattern evoked by auditory and somatosensory 

stimuli is extremely similar, indicating that CMR is consequent to a supra-modal neural 

mechanism. Notably, some research has described CMR-like modulations using also visual 

stimuli (7, 8).

The neural origin of CMR was explored using EEG recordings. It was observed that the 

stimuli eliciting CMR also evoke a concomitant Event Related Potential (ERP), dominated 

by two large negative-positive waves maximal at the scalp vertex (and therefore called 

‘vertex potential’ (9, 10)) (Fig 1c). Like CMR, this ERP is evoked irrespectively of the 

modality of the stimulus, and its amplitude is reduced when the stimulus is highly expected 

(10, 11). Importantly, trial-by-trial analysis of simultaneous EEG-force recordings showed 

that the ERP and the CMR are tightly coupled: brain activity measured above the motor 

cortex contralateral to the hand exerting the force predicts the magnitude of i1 and i2. 

Furthermore, brain activity measured contra-laterally to the hand receiving a somatosensory 

stimulus predicts the magnitude of i2 (Fig. 1d). All together, this suggests that CMR 

originates from the effect of the saliency-induced vertex potential on the activity of specific 

cortical modules engaged in a certain task, including the corticospinal drive arising from 

frontal premotor/motor areas during the exertion of isometric force (5, 6).

[ii] Stimulus Locked Response (SLR)

The term Stimulus Locked Response (SLR) has been coined to indicate short latency 

modulations of EMG activity evoked by sudden visual stimuli (12). These responses are 

typically recorded using intra-muscular EMG from neck and/or shoulder muscles of either 

human or non-human primates (12–14). SLRs exhibit a number of features typical of RAB, 

as discussed below.

[2.1] SLRs in non-human primates’ neck muscles during saccade tasks—
SLRs were first observed by Corneil et al., (2004) in monkeys performing a saccade task 

(Fig. 2a) [(13) task adapted from (15)]. Animals were trained to look at a central fixation 

point (FP). After a variable amount of time, the FP would disappear, and the monkeys 

had to look to a suddenly-appearing new peripheral target (PT), presented in one of two 

Novembre and Iannetti Page 3

Prog Neurobiol. Author manuscript; available in PMC 2021 September 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



diametrically opposite positions. The authors of this study noticed that, irrespective of 

whether the animals’ head had been restrained, three neck muscles that would turn the 

head towards the target (obliquus capitis inferior, rectus capitis posterior maior and splenius 
capitis) exhibited a first transient burst of muscular activity ~90 ms after PT appearance, 

and a second period of tonic muscular activity lasting until the saccade onset (Fig 2b). 

Notably, the latency of the first response was too short to be explained by a voluntary 

motor command and, most importantly, it was time-locked to stimulus presentation, and 

not to the ensuing saccade (which could be performed up to 150 ms following the first 

transient burst, and whose latency had a remarkably higher variability compared to that of 

the first burst). Suggesting a functional significance of this phenomenon, the magnitude of 

the transient burst predicted the latency of the following saccade, as if the neck musculature 

was ‘warming up’ while the decision to move was being formed (16, 17).

The SLR pattern of EMG activity comprising two consecutive responses, a transient burst 

followed by a more sustained enhancement (Fig 2b), is strongly reminiscent of the CMR, 

which also entails two consecutive force increases, the first being more transient and the 

second being more tonic (see section [2]; Fig 1b). Bearing in mind that CMR and SLR 

studies entailed different measures, stimulus modalities, tasks and species, the reader might 

wonder whether it is justified to suggest a relationship between the SLR and the CMR. 

It is difficult to answer this question, especially considering that the paradigm used in the 

first SLR investigation entailed a voluntary movement overlapping with the late parts of 

the CMR (13). However, in a following study, the same group used a cueing task (18). 

Briefly, monkeys were trained to saccade to a target, but before the target appearance a 

task-irrelevant cue was presented at either the same or the opposite location of the following 

target. When cue and target were separated by a sufficiently long time (i.e. 600 ms), it 

appeared that the cue alone evoked the same two EMG modulations in the head-turning neck 

muscle (obliquus capitis inferior) (Fig. 2c). Thus, even in the absence of a subsequent overt 

action, the cue evoked the typical multi-phasic SLR pattern, making its similarity with the 

CMR striking. We believe that this similarity is worth being explored in the future (BOX 2).

These SLRs (observable even before a overt action) were interpreted as suggestive of a 

“reflexive covert orienting” mechanism useful to “warm up” the neck musculature while 

the possible decision to presumably move the head and the eyes in synergy is formed 

(16, 17). This functional interpretation is not different from that provided for the CMR. 

However, when it comes to hypothesize the neural circuits underlying these responses, these 

interpretations differ considerably, at least on the surface. In fact, SLRs have been mostly 

interpreted as the result of a largely subcortical machinery, involving the tecto-reticulospinal 

pathway and the superior colliculus (17, 19). Instead, the CMR – as the name itself implies 

– appears to be related to activity of the cerebral cortex, and specifically the activity (or the 

modulation) of the motor cortex. These two accounts are, however, not mutually exclusive. 

Indeed, it has recently been suggested that the cortex might contribute to the early SLR, for 

instance by priming the putative subcortical circuit with information related to higher-level 

processing of the sensory input or contextual and task specific constrains (20–22). Hence, it 

is conceivable that SLR and CMR might be unified as being subserved by a single neural 

mechanism or network – a hypothesis obviously requiring careful scrutiny.
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[2.2] SLRs in humans’ shoulder and arm muscles during reaching tasks—
Following the first description in non-human primates, a number of studies have reported the 

existence of SLRs in humans (12, 23–26). Such studies have mostly adopted arm reaching 

tasks, often performed in the presence of a constant force field opposing the reach direction 

(27), given that a sustained background EMG activity appears to enhance the detectability 

of SLR (23). Again, the enhancement of the SLR in the presence of a stronger background 

force is reminiscent of the CMR, which is also optimally elicited during active isometric 

force exertion (5) and whose magnitude increases with enhanced background EMG activity 

(unpublished observation).

In the first SLR study in humans (12), participants could move their arm under a screen, 

while only the visual feedback of the hand position was provided as a coloured dot (Fig. 2d). 

Like in primate studies, participants had to hold the dot in a central position, and then move 

it to a peripheral target appearing in one among several possible locations. Intramuscular 

EMG was recorded from a number of shoulder (deltoid posterior, pectoralis major) and arm 

(triceps lateral, brachioradialis) muscles. The appearance of the peripheral target elicited a 

transient burst of muscle activity after approximately 100 ms (Fig. 2e). This initial burst of 

EMG activity was followed by the EMG activity consequent to the voluntary movement. 

Similarly to the SLR in primates, these EMG activities: (i) were spatially tuned, providing a 

glimpse of the pattern of muscle activation that would characterize the following voluntary 

action, and (ii) their amplitude predicted the overt response time latency.

SLRs fall nicely within the definition of RAB: they are evoked by fast-appearing stimuli, 

entail short-latency responses, and favour adaptive behaviour such as the preparation of an 

upcoming action in a spatially-tuned manner. A recent study (25) also examined whether 

the spatial tuning of the SLRs depends on volition – another feature defining RAB. The 

colour of a visual cue informed participants whether to perform a “reaching” movement 

towards a subsequently presented peripheral target, or an “anti-reaching” movement away 

from it (see also (28, 29), task adapted from (30)). This elegant design neatly dissociates 

the effects of stimulus position and goal position, which are congruent during “reaches” 

and incongruent during “anti-reaches” (Fig. 2f). The authors made an important observation: 

SLRs occurred in muscles necessary to move towards the target, irrespective of whether 

participants had to perform the reaching or anti-reaching movement (although, in the latter 

case, SLRs were slightly attenuated). In other words, the SLR implied the specification of 

a force useful for reaching the target, even though participants later voluntarily moved the 

arm to a diametrically opposite location. Thus, SLR depends mostly on the position of the 

suddenly-appearing visual target and can be only mildly modulated by volition.

[iii] Online Motor Correction (OMC)

There is a third body of work investigating motor responses falling within the criteria 

that define RAB. This literature describes how sensory events cause adjustments during 

action execution. For example, while moving the arm to reach a cup, an unexpected event 

such as someone hitting your arm requires the movement to be corrected on the basis of 

proprioceptive and visual feedback. These adjustments are labelled Online Motor Correction 

(OMC). They are normally studied combining kinematic and EMG measures, and are 
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assumed to be mediated by a number of cortical regions within the broad frontoparietal 

circuits that are often associated with goal-directed behaviour (3, 31–33). Like CMR and 

SLR, also OMC responses fulfil the criteria defining RAB.

The first studies of the neurophysiological processes underlying OMC date back to the 

middle of the last century. In the seminal work of Peter Hammond [(34, 35), reviewed in 

(36)], human subjects were required to exert a constant force to hold a weight attached to 

their wrist with a cable. A sudden perturbation – the pulling of the cable causing a stretch 

of the biceps muscle as well as displacement of the arm – evoked two EMG responses 

in the ipsilateral biceps: A first, short-latency monosynaptic response, peaking around 

30 ms post stimulus (most likely reflecting a stretch reflex (37)), followed by a second 

polysynaptic response, occurring at 50-100 ms post stimulus. Notably, the second response 

was observed irrespectively of whether participants were instructed to “resist” or to “let go” 

the perturbation. This suggests that, like the previously reviewed CMR and SLR, this second 

polysynaptic response underling OMC is also weakly modulated by volition (but see more 

direct evidence below).

Later studies considerably enriched our understanding of the second polysynaptic response 

described by Hammond. We now know that this was likely the summation of (at least) two 

independent responses called R2 and R3, peaking ~60 and ~90ms post perturbation, and 

reflecting two distinct phases of a hierarchical OMC process (3, 38). Specifically, it has been 

proposed that R2 mostly reflects correction of “how” to achieve a given goal, such as which 

trajectory employing while reaching for a cup of coffee. Instead, R3 would mostly reflect 

correction of “what” goal to achieve (e.g. reaching for a cup of coffee vs. a different object 

nearby) (3, 39, 40).

One elegant example of such functional dissociation was provided by Nashed et al. (39). 

Participants were instructed to reach a target with their arm (on a bi-dimensional plane) 

while a force was applied to activate their elbow extensor (lateral triceps), whose activity 

was recorded using EMG (Fig. 3a). Notably, participants were instructed to perform the 

task while avoiding two obstacles placed in between the start and the end position (Fig. 

3b, top). On some trials, participants received a somatosensory perturbation that displaced 

their arm so that it would be likely to hit one of the two obstacles – hence requiring an 

OMC. It was observed that such OMC was adaptive, i.e. it was different depending on 

how far the perturbation had displaced the arm from the original pathway (note that the 

size of the arm displacement caused by the perturbation depended on small deviations in 

the arm trajectory prior to the perturbation, and not on the magnitude of the perturbation). 

In particular, following a large displacement of the arm, participants revised their pathway 

to circumvent the obstacles, while following a small displacement of the arm they stuck 

to the original pathway and reached the goal by passing between the obstacles. Such 

“optimized” correction – adaptively minimizing path length in a context-dependent manner 

– was underlined by a muscular burst observable ~60ms following the perturbation, i.e. 

during the R2 epoch (Fig. 3b, top).

A complementary experiment tested the effect of a perturbation that did not prompt 

participants to change “how” to reach the target, but “which” target to reach (Fig. 3b, 
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bottom) (39). Specifically, following the arm displacement, participants could freely choose 

whether to reach for the original target or for another target placed nearby to where the 

arm had been displaced. In this case the OMC, implying a revision of the movement goal, 

occurred ~90 ms following the perturbation, i.e. during the R3 time window (Fig. 3b, 

bottom).

Similarly to the CMR, OMCs are also supra-modal: they occur not only following 

somatosensory perturbations but also in reaction to sudden changes in the visual 

environment (41, 42). Also in the visual domain it is possible to distinguish between 

corrections of “how” to achieve a given goal, and “what” goal to achieve. For instance, 

coming back to the previous example of a hand reaching for a cup, a sudden change of the 

perceived hand position (consequent to a surreptitiously altered visual feedback of the hand 

position) would imply a correction of how to achieve a goal, while a change of position 

of the cup would imply a correction of which goal to achieve (8, 43). Notably, these two 

distinct changes evoke OMC occurring after ~90 ms (R2: “how” correction) and ~110 

ms (R3: “what” correction), respectively (8). Given the longer processing time of visual 

input compared to proprioceptive input (Box 1), this result is reminiscent of the previously 

discussed hierarchical organization of R2 and R3 elicited by somatosensory stimuli, and of 

their functional significance [(3), but see (44)].

Another RAB-like feature of OMC – aligning it with both CMR and SLR – is that it is 

weakly modulated by volition. Evidence comes from a study by Franklin and Wolpert where 

participants moved their arm, visualized as a cursor, from a start to an end target (43). 

The cursor position was suddenly displaced (1.5 cm, orthogonally to the reaching direction) 

from the current hand position, and then swiftly restored to the actual hand position (the 

cursor displacement lasted 230 ms in total, see Fig. 3c). An OMC was observed in the 

EMG (pectoralis major), at ~100 ms following the onset of the cursor displacement, and 

in the force, at ~150 ms (BOX 1). To determine whether this OMC was voluntary or not, 

participants were instructed to perform a voluntary movement in the same direction of the 

perturbation, i.e. opposite to the OMC. Remarkably, even in this condition, there was an 

OMC identical to that observed in the experiment without instruction (i.e. in the direction 

opposite to the perturbation), followed by the voluntary response in the same direction of 

the perturbation (Fig. 3c). Thus, this experiment elegantly demonstrated that sensory-driven 

OMC are not voluntarily generated, but are largely automatic responses, poorly modulated 

by volition1.

[iv] Action Stopping (AS)

Another scientific community (and related literature) investigates RAB by examining the 

interruption of an ongoing action following a sudden stimulus, which is labelled Action 

Stopping (AS). This phenomenon is reminiscent of OMC in that it entails a change of 

1The fact that OMC is poorly modulated by volition does not imply that this behaviour would not be consistent with what an 
individual would intentionally do in a given circumstance. Rather, it simply implies that this behaviour is triggered automatically 
by the stimulus without an individual deliberately choosing to act. Notably, according to some computational accounts such as the 
“optimal feedback control”, relatively complex goal-directed behaviours can be automatically produced following a sophisticated 
manipulation of sensory feedback (36, 107). From this perspective, OMC and voluntary actions could lead to the very same behaviour, 
being it subject to volition or not.
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ongoing motor behaviour. However, here the emphasis is placed on the interruption, not on 

the correction. For instance, if someone hits your arm while you are reaching for an object 

in the dark, you might correct the movement trajectory (as in OMC), or you might stop the 

reaching movement entirely (as in AS). Under the assumption that AS is meant to prevent a 

future error (following the example above, not reaching the object), AS is often considered 

an adaptive behaviour (45, 46).

In the laboratory, AS is normally studied using the Stop Signal Task (SST) (47, 48). In 

the classic version of the SST, a “go signal” instructs a participant to perform an action 

such as pressing a button. After the action has been initiated, in a minority of trials, a 

sudden “stop signal” instructs the participant to interrupt the ongoing action. Depending 

on the time interval between the go signal and the stop signal, the action might or might 

not be successfully stopped. This allows the estimation of the following parameters: (i) the 

probability of stopping as a function of go-stop time interval, (ii) the response time of “go 

trials” (i.e. trials without a stop signal), and (iii) the response time of unsuccessfully stopped 

trials (which, notably, exhibits faster RTs compared to go trials). This information is used to 

compute what authors in this field call “stop signal reaction time”: a value, ranging between 

200 and 300 ms, indexing how long it takes to voluntarily cease an ongoing action (47, 49).

Surprisingly, nearly all studies using the SST have focused on estimating the stop signal 

reaction time, neglecting the modulation of the muscular activity before and during the 

actual stopping behaviour. Only a few recent studies have looked at this, using the following 

paradigm: on “go” trials, participants had to press two buttons in response to a visual cue, 

one with each hand. On “stop” trials, an additional (suddenly-appearing) visual stimulus 

prompted participants to suppress the response of one hand but to continue the response of 

the other hand [(50); Fig. 4A-B]. Surface EMG was measured from the abductor pollicis 
brevis of both hands, i.e. one of the muscles controlling the thumb, used for pressing 

the buttons. This paradigm allowed to sample EMG activity associated with both the 

stopped and the non-stopped action, and to compare those with the activity elicited by 

“go” trials. Two interesting observations were made. First, the EMG activity associated with 

successfully stopped actions displayed a short-latency inhibition, starting ~140 ms following 

the stop signal [(50); see also (51–53)]. This latency is compatible to (albeit slightly longer 

than2) the previously reviewed CMR, SLR and OMC. Second, a transient inhibition at the 

same latency was also present in the EMG measured from the other hand completing the 

task without stopping, implying that all ongoing actions were being stopped (Fig. 4C).

The latter observation is very important when we consider that, at first glance, the SST 

appears qualitatively different from the tasks used for measuring CMR, SLR or OMC. In 

particular, SST entails a voluntary response to a stimulus, while all previously described 

RABs are largely automatic responses, i.e. scarcely modulated by volition. However, AS is 

not strictly driven by volition either, because all ongoing actions are stopped, not only those 

2The latency of the EMG modulation associated with AS is relatively longer than the earliest EMG modulations associated with the 
RABs discussed so far (see Fig. 5). This apparent inconsistence might be explained by the fact that, in the SST, two distinct motor 
processes - the excitatory “go” and the inhibitory “stop” – compete with each other (Fig. 4B) (47). Importantly, because the “go” 
process is triggered before the “stop” process, the latter must override the former in order to successfully stop the ongoing action, 
which likely has a cost in latency. We have run preliminary simulations supporting this point.
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that are intended to be stopped. In other words, AS has a “global” character [as reviewed in 

(54)]. This observation is in line with the recent proposal that AS is not merely proactive, but 

also reactive to the surprising nature of the stop signal [(55, 56) see also (57)]. In line with 

this hypothesis, it is well known that slower response times or even non-voluntary stopping 

of ongoing actions can follow abrupt unexpected events, i.e. in a fully reactive mode. This 

has been shown in psychophysical studies testing unexpected events such as action errors, 

unexpected action outcomes, or unexpected perceptual events (54, 58–62), using distinct 

sensory modalities such as audition (63), vision (64) and somatosensation (65). Notably, 

some of the above classes of stimuli are extremely similar to those optimally eliciting the 

previously discussed RABs. For instance, OMC are elicited by stimuli that entail unexpected 

action outcomes or action errors, while the SLR and the CMR are elicited by unexpected 

perceptual events.

The neural origin of AS has mostly been explored using EEG. Here, another interesting 

similarity with the other described RAB emerges: Just like the stimuli inducing the CMR, 

also the “stop” stimuli discussed here evoke a widespread negative-positive potential (Fig. 

4D). Moreover, and again in line with the CMR, the latency of the evoked positive wave 

robustly predicts the stop signal reaction time (50, 54, 66–68).

Concluding Remarks and Future Perspectives

The take-home message of this work is that a number of eye-opening similarities appear 

when the CMR, SLR, OMC and AS are critically compared. We have coined a unifying 

label for these phenomena – Reactive Adaptive Behaviour (RAB) – and defined four 

fundamental features that apply to all of them. These entail (i) the fast-rising nature of 

the RAB-evoking stimuli and, likewise, (ii) the fact that RAB occurs rapidly, within 150 ms 

following the stimuli. RAB is also (iii) adaptive, in that the behaviour is not stereotyped, but 

varies in response to the environmental context in a flexible manner that might ultimately 

enhance the efficiency of behaviour and, in the long term, survival. Finally, RAB is (iv) 

barely modulated by volition. A few additional similarities, albeit not yet conclusive, 

emerged. These are summarised in BOX 2, where we also suggest potentially fruitful 

pathways for future research.

These resemblances unavoidably trigger the question of whether all RABs have a common 

neural origin. Although we do not argue that all RABs rely on the very same neural 

structure, we do suggest that they likely share a common neural mechanism, perhaps 

working in synergy with RAB-specific cortical or subcortical structures. Such common 

mechanism is devoted to the rapid identification of important environmental events and the 

preparation of appropriate motor responses (10, 70–73). Note that several influential models 

of salience detection and orienting behaviour predict that salient events should have direct 

consequences on behaviour (74–77). Here we suggest that the RABs reviewed here (and 

possibly other similar behaviours) represent such consequences.

One particular neural system that could be responsible for RAB is the Salience Network 

(SN), comprising the insula, the anterior cingulate cortex, the thalamus, and a number of 

other subcortical structures (70, 75) (Fig. 5A). The SN is known to be activated by salient 
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events through rapid pathways that bypass primary sensory cortices (72), in order to swiftly 

guide and adjust behaviour, for instance via the anterior cingulate cortex that facilitates 

rapid access to the motor system. Remarkably, the functional properties of the SN are 

reminiscent of those characterizing RAB. For instance, the electrocortical SN activity (in 

particular the activity of the insula and the anterior cingulate cortex (10, 78–80)) manifests 

itself as a transient negative-positive wave, maximal at the scalp vertex and therefore called 

vertex potential (VP) (9, 10) (Fig. 5A). Alike RAB, the VP also occurs swiftly after abrupt 

or unexpected sensory stimuli, and, crucially, irrespectively of their sensory modality (an 

important aspect to consider given that the reviewed RABs are similarly elicited by stimuli 

belonging to distinct sensory modalities) (9, 10). Furthermore, the VP magnitude is not 

stereotyped, but very sensitive to contextual changes in the sensory scene (71, 81–83), a 

feature compatible with RAB’s adaptive character. Finally, the VP is a very robust and 

largely automatic response, poorly modulated by volition. For instance, the VP is elicited 

by salient stimuli also in unconscious individuals, e.g. during sleep (84), and its magnitude 

appears to be minimally affected by high-level cognitive expectations about the stimulus 

nature (81).

The contribution of a cortical network such as the SN might at a first glance appear difficult 

to reconcile with the rapidity of RAB. The reader might wonder whether short-latency motor 

responses like RAB are too fast to be integrated with sensory information processed at 

cortical level. However, decades of work in both physiology and psychology has recognized 

the existence of fast pathways allowing the human brain to quickly process and react to 

sudden and unexpected sensory information (76, 85). Abrupt salient stimuli – such as the 

ones triggering RAB – can activate the SN very rapidly (86), through extralemniscal, non­

modality-specific parallel thalamocortical connections that by-pass primary sensory regions 

(72, 87) (Fig. 5A). This comes at the cost of degrading the fidelity of stimulus coding and 

the resulting perceptual processing (76, 85). However, this rapidity permits the human brain 

to swiftly execute actions (31), in particular when certain sensory events call for urgent 

behaviour, with no need for fine-grained perceptual processing. Such a prioritised, extremely 

fast pathway appears to be a good candidate mediating RAB.

The cortical origin of RAB, and its putative relationship with the SN, should be 

investigated pairing behavioural or muscular recordings with simultaneous measurements of 

electrocortical activity. When this was done (e.g. using EEG in CMR and some AS studies), 

the effect of sensory stimulation was studied not only on muscular activity and kinematics, 

but also on brain activity, thereby leading to a more comprehensive characterization of 

how the nervous system responds to salient changes in the environment (5, 6, 66, 67). 

Notably, these studies show that the trial-by-trial variability in VP amplitude or latency 

predicts the trial-by-trial variability of the RAB of interest. This fruitful approach, once 

applied to the entire range of RABs, will establish their relationship with the cortical 

SN, and thereby identify a possible common mechanism. In fact, although a similar 

approach has not yet been attempted with SLR and OMC, there is indirect evidence for 

such common mechanism. For instance, an enhanced VP (i.e. increased in amplitude and 

decreased in latencies) is evoked by visual stimuli having strong visual contrast (higher 

luminance) (88), just like SLRs do (23). Along the same line, the well-known hierarchical 

organization of ERPs across time – with increasingly complex computations reflected 

Novembre and Iannetti Page 10

Prog Neurobiol. Author manuscript; available in PMC 2021 September 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



in longer-latency components (89) – is reminiscent of the progressively more complex 

mechanisms underlying OMC responses: while early R2 might reflect “how” to achieve the 

given goal, the late R3 might reflect “what” goal to achieve (3).

Having highlighted the remarkable similarities characterizing the above-reviewed RABs, we 

suggested to unify these phenomena proposing a common neural mechanism related to the 

detection and reaction of salient environmental events. We wishfully expect this effort to 

trigger curiosity and cross-field fertilization.
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BOX 1

Response latency and its sources of variability.

Several analogies across distinct RABs can be made on the basis of their response 

latency. Yet, caution must be exerted when doing so, considering some important 

physiological sources of latency variability. We discuss these below.

Measure types

The earliest indices of peripheral motor activity are electromyographic (EMG) responses 

reflecting the electrical activity produced by skeletal muscles. These EMG responses 

are followed by changes in force, either isometric or entailing actual movements (i.e. 

kinematics), both having a considerable electromechanical delay (30-60 ms) with respect 

to their underlying EMG activity (90, 91). Even longer latencies are observed when 

RABs are studied measuring response times (RTs; such as pressing a button), as their 

latency reflects the final stage of a movement (25, 92).

Sensory Modalities

The sensory modality of the stimuli used to elicit different RABs is another important 

factor to consider when comparing latencies across different studies. Cross-modal 

differences in both transduction and transmission times account for remarkable 

differences in response latency. It is difficult to precisely quantify these delays, as 

they also depend on the stimulus properties (see next point). Yet, using the peak 

latency of first negative wave of the supramodal and saliency-dependent EEG vertex 

potential as guidance (10), auditory stimuli yield the fastest responses, while responses 

to somatosensory stimuli delivered to the hand are slower by ~25 ms, and those to visual 

stimuli follow with an additional ~40 ms delay. This might contribute to some of the 

ostensive differences among RABs elicited by stimuli belonging to different sensory 

modalities.

Stimulus properties

Response latency also depends on the physical properties of the sensory stimulus, such 

as its magnitude and rise-time (93, 94). This generalizes well across different sensory 

modalities (93). In addition, when eliciting RAB using somatosensory stimuli, it is also 

imperative to consider what body part is stimulated and, most importantly, what type 

of stimuli are delivered. Indeed, different somatosensory stimuli can activate entirely 

different receptor classes, associated with different nerve fibres having different axon 

diameters, hence conduction velocities (95, 96).

Measured muscles

When measuring EMG (or related force/kinematic) activity, another factor causing 

differences in response latency is the proximity between the innervated muscle and the 

central nervous system. Considering the conduction velocity of both corticospinal tracts 

and motoneurons, the different travelling length can result in up to 20 ms in relatively 

extreme cases, e.g. when latencies of responses in the upper arm and the lower leg 

muscles are considered (97).
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Onset vs. Peak latency

Another factor significantly affecting latency comparison is whether the onset or the peak 

of a response is measured. While peak latency is relatively straightforward to calculate (at 

least when dealing with transient responses), onset latency is more difficult to measure, 

and it is often estimated computing the response’s first-order derivative. Although onset 

and peak latencies are clearly correlated with one another, they sometimes have different 

predictive power (69). For instance, onset latencies can give more reliable estimates of 

neurophysiological properties such as conduction velocities of peripheral afferents (98, 

99).

RAB-related neural measures

Just as the various measures of motor activity discussed above (EMG, force, RT), also 

the indices of stimulus-evoked neural activity can have different temporal profiles and 

considerable latency variability. Invasive recordings such as single and multi neuron 

activity sometimes yield earlier latencies compared to local field potentials (100). In turn, 

the EEG signal, which is recorded non-invasively from the skull, often depends on the 

simultaneous activity of multiple generators and therefore can display significant latency 

differences compared to local field potentials (80, 101). When examining the relationship 

between motor and neural measures these sources of latency variability should also be 

taken into account.
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BOX 2

Outstanding Questions

Having highlighted a number of features shared across all RABs, we outline some 

research directions that we consider important to identify a putative shared neural 

mechanism.

1. Latencies. All reviewed RABs entail a transient modulation of muscular 

activity at ~100 ms following the stimulus (Fig. 5B). Does this similarity 

speak in favour of a shared neural mechanism? To address this question 

appropriately, future research will need to control for the different 

physiological parameters that are known to impact upon the latency of a 

muscular response (BOX 1). Should different RABs be subserved by a shared 

neural mechanism, then controlling for these sources of variability will permit 

to observe quasi-identical response latencies in each of them.

2. Multiple phases. CMR, SLR and OMC are associated with muscular 

responses entailing multiple phases. Instead, the two studies characterizing 

EMG during AS have described only one (inhibitory) phase (50, 51). Yet, it 

should be noted that recent work on rodents has suggested that AS might be 

achieved by the combination of two consecutive neural inhibitory processes: 

an early one only pausing the action, and a later one potentially cancelling it 

(102, 103). Future work should investigate the hypothesis of a multi-phasic 

AS process examining humans’ muscular activity, particularly considering the 

interesting analogies between AS and other RABs (104).

3. Supramodality. CMR, OMC and AS can be elicited by stimuli belonging to 

more than one sensory modality. Whether this is also the case in SLR (so 

far elicited only by visual stimuli) has never been explicitly tested, although 

a recent study showed that by pairing the SLR-evoking visual stimulus with 

somatosensory or auditory stimuli facilitates the SLR (105). Demonstrating 

that SLRs can in fact be evoked by non-visual stimuli would provide 

additional evidence in favour of a shared neural mechanism responsible for all 

RABs.

4. Active cortico-spinal drive. All RABs are typically or preferentially observed 

when the cortico-spinal drive is tonically active, i.e. while a participant 

executes an action or exerts a constant isometric force. While this feature can 

potentially link all RABs within a unifying neural mechanism, demonstrating 

that only some (but not all) RABs could be evoked in the absence of an active 

cortico-spinal drive would instead speak against such hypothesis.

5. Relationship with EEG signals. CMR and AS, when recorded simultaneously 

to the EEG, reveal to be tightly coupled to both event related potentials (5, 

69) and neural oscillations (6, 106). Demonstrating a similar coupling in 

SLR or OMC would provide additional evidence in favour of a shared neural 

mechanism.

Novembre and Iannetti Page 18

Prog Neurobiol. Author manuscript; available in PMC 2021 September 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



6. Inter-individual variability. A promising avenue of research pointing towards 

a shared neural mechanism could be comparing inter-individual variability 

in response magnitude across different RABs. Should the same neural 

mechanism be responsible for all RABs, then inter-individual variability 

should be similar across RABs (notably, this approach would require careful 

control of several parameters such as e.g. stimulus saliency or activity of the 

corticospinal drive).
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Highlights

• Reactive Adaptive Behaviour (RAB) consists of short-latency motor 

responses to sudden sensory stimuli.

• RAB is flexible and largely independent of volition.

• We review four independent research fields, progressing in parallel and each 

characterizing a putatively distinct RAB.

• We highlight remarkable similarities across the reviewed RABs.

• We suggest that the reviewed RABs could be subserved by the same 

fundamental neural mechanism.
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Figure 1. Cortico-Muscular Resonance (CMR).
(A) Participants exert a weak and constant isometric force holding a transducer between 

the right index finger and thumb (~1 N). Both force and EMG (from the First Dorsal 

Interosseous, FDI) are simultaneously recorded. Somatosensory stimuli are delivered 

through electrical stimulation of the left median nerve or auditory stimuli are delivered 

through a loudspeaker placed nearby the left hand. (B) These fast-rising stimuli, regardless 

of sensory modality, elicit a multiphasic modulation of the exerted force, consisting of an 

initial decrease (d1, peaking ~100 ms post-stimulus), followed by a first transient increase 

(i1, peaking ~250 ms post-stimulus) and a second more tonic increase (i2, starting ~350 

ms post-stimulus). (C) Simultaneous measurements of EMG activity (from FDI), Force, and 

EEG (at Cz): Signal modulations that co-vary across measurements are highlighted – see (5) 

for details. Time 0 indicates stimulus onset (S). Note that Force recordings lag behind EMG 

due to the well-known electromechanical delay of motion with respect to muscular activity 

(Box 1). (D) Trial-by-trial correlations between all timepoints of simultaneously collected 

EEG and Force modulations in response to the same somatosensory stimulation. Both i1 and 

i2 correlate with a widespread EEG positivity contralateral to the hand exerting the force 

(yellow, top scalpmap). Additionally, i2 correlates with an EEG negativity contralateral to 

the stimulated hand (blue, bottom scalpmap). Adapted with permission from (5).
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Figure 2. Stimulus Locked Response (SLR).
(A) Paradigm used to study SLR in monkeys: The animals are trained to look at a central 

fixation point (FP). After a variable amount of time, the FP disappears, and the monkeys 

have to look to a new suddenly appearing peripheral target (PT). Intramuscular EMG 

activity is measured from several neck muscles including the obliquus capitis inferior (OCI), 

which subserves the rotation of the head towards the target. (B) The PT evokes in OCI a 

first transient burst of muscular activity (pink area), followed by a second period of tonic 

activity lasting until the saccade onset (light blue area). The magnitude of the transient 

burst predicted the latency of the following saccade. Adapted from (13). (C) Even when the 

animals do not need to produce a saccade (i.e. after the cue), the stimulus evokes the same 

pattern comprising two distinct phases. Adapted from (18). (D) Paradigm used to study SLR 

in humans: Participants move their arm under a non-transparent screen (shown in opaque 

in the figure for illustrative purposes), while only the visual feedback of the hand position 
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is provided as a coloured dot. They are instructed to reach for the PT when this appears. 

Intramuscular EMG is recorded from a number of shoulder and arm muscles, including the 

deltoid posterior (DP) and the pectoralis major (PM). (E) PT appearance elicits a transient 

EMG burst (pink area), followed by the EMG activity consequent to the actual voluntary 

movement (light blue area). The magnitude of the first burst predicted the latency of the 

subsequent voluntary movement. Adapted from (12). (F) SLR implies a force useful for 

reaching the PT, even if participants are instructed to reach a location diametrically opposite 

to the PT. Adapted from (25).
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Figure 3. Online Motor Correction (OMC).
(A) Participants are instructed to make an arm movement to reach a target with their hand 

(on a bi-dimensional plane) while a force was applied to activate their elbow extensor 

(lateral triceps, LT), which was recorded using EMG. Either a mechanical perturbation 

(P; panel b) or a visual displacement (VD; panel c) of the hand is used to trigger an 

OMC of the ongoing arm trajectory. (B) Participants receive a mechanical perturbation 

displacing their hand (black arrow). Top: If the correction implies a change of route in 

order to reach the goal (‘how’ change), an R2 is observed in LT ~60 ms post-perturbation. 

Bottom: If the correction implies a change of target to be reached (‘what’ change; note that 

after the perturbation the subject is allowed to choose whether hitting target A or B), an 

R3 is observed ~90 ms post-perturbation (displayed signals are obtained after subtracting 

the activity of unperturbed trials). Adapted from (39). (C) If participants are instructed to 

perform a voluntary movement in the same direction of a visual perturbation (VD in the 

right graph indicates the displacement onset at time = 0), an OMC identical to that observed 

without instruction (i.e. in the direction opposite to the perturbation) is observed, followed 

by the voluntary response in the same direction of the perturbation. Adapted from (43).
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Figure 4. Action Stopping (AS).
(A-B) On “go” trials, in response to visual cues, participants have to press two buttons, one 

with each thumb. On “stop” trials, an additional sudden visual stimulus prompts participants 

to stop the movement of one thumb but to continue the movement of the other thumb. 

Surface EMG is measured from the abductor pollicis brevis (APB) of both hands, i.e. 

a muscle subserving the thumb response. (C) The “stop” signal evokes a short-latency 

inhibition in the APB associated with the interruption of the thumb movement, starting ~150 

ms following the “stop” signal (green shaded area). Notably, a transient inhibition at the 

same latency is also observed in the APB of the thumb completing the task without stopping. 

Adapted from (50). (D) The sudden “stop” signal also evokes a negative-positive potential in 

the scalp EEG. The latency of the EEG positivity correlates (between participants) with the 

stop signal reaction time (SSRT). Adapted from (69).
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Figure 5. 
(A) Neural correlates of the Saliency Network (SN). Middle: the SN comprises the 

thalamus, the insula, and the anterior and middle cingulate cortex. Left: The SN activity 

manifests itself as a transient negative-positive electrocortical wave, maximal at the scalp 

vertex and therefore called vertex potential (VP). Right: Functional connectivity between 

the thalamus, the primary sensory cortices, and the cortical components of the SN (insular 

and cingulate cortex). The thickness of black lines line represents the strength of intrinsic 

connectivity. The size of colored dots/circles represents the strength of the modulatory effect 

exerted by external stimuli on each connection (colors represent stimulus modalities, plus 

(+) and minus (-) symbols represent enhancement and inhibition, respectively). Adapted 

from (72).(B) Illustration of all reviewed RABs, as characterized across four distinct studies 

(citations are embedded in the figure). Despite being elicited using clearly different tasks, 

all RABs entail an early, transient modulation of muscular activity at ~100 ms post-stimulus 

(purple arrow): the i1 of the CMR, the early burst of the SLRs, the R3 of the OMC and the 

inhibition of the AS. While we do not conclusively claim that these specific modulations 

are functionally equivalent, we stress that their slight differences in peak latencies can be 

explained by the sources of variability discussed in BOX 1. For instance, the longest latency 

of the AS response (discussed also in footnote 2) is consistent with the fact that it is evoked 

by visual stimuli (which are notoriously processed more slowly than somatosensory ones, 

see BOX 1) and measured in a distal muscle (the abductor pollicis brevis). Likewise, the 
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shortest latency of the OMC response (in this example R3, but we could also consider R2) is 

compatible with the use of somatosensory stimuli eliciting it in a relatively proximal muscle 

(the lateral triceps).
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