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Abstract

In this work, we address the optimal water management strategies and fair cost distribution among

various shale gas companies placed in the same play. A mixed integer non-linear programming

(MINLP) formulation with the objective of maximizing the Nash product is presented including the

analysis of different policies to determine the most appropriate transportation cost distribution. As a

result of Nash product maximization and transfer cost designation formulation, the problem includes

non-linearities in the objective function which hinders its resolution. Therefore, to solve the model

effectively, we apply logarithmic operation and separable programming approach to reformulate the

Nash product and Glover’s linearization to reformulate the bilinear terms appearing in the transfer

cost designation. Finally, the applicability of the proposed approach is illustrated in a case study

comprising 4 companies. Then, an example comprising 10 shale gas companies is performed to analyse

the behaviour of the proposed formulation considering a larger problem.

Keywords: Shale Gas, Water Management, Fair Planning, Game Theory, Nash Product

1. Introduction

Change in total primary energy demand will continue increasing over the coming 25 years (U.S.

Energy Information Administration, 2019). Although renewable energy will undergo the major

growth, natural gas consumption will rise by nearly 50% being shale gas the major contributor.

For instance, in the U.S., it is expected that shale gas will account for around 75% of the total

natural gas production by 2050.

The extraction techniques applied (horizontal drilling and hydraulic fracturing) to release the

gas trapped in the shale formation constitute the major drawback of this energy resource (Gao
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and You, 2017(b)). Large amount of water, around 7500-3800 m3 per well, is injected under

high pressure to fracture the rock (United States Environmental Protection Agency (EPA),

2016; Rahm & Riha, 2012 ). Then, part of the water, highly contaminated, is recovered.

Currently, the reuse of this wastewater to fracture other wells is essential to reduce the water

footprint (Caballero et al., 2020). Many papers have been published optimizing shale gas water

management strategies, minimizing the water consumption and total operational cost (Gao &

You, 2015; Lira-Barragán et al., 2016(a), 2016(b); Yang et al., 2014, 2015; Drouven et al.,

2017; Carrero-Parreño et al., 2018; Guerra et al., 2019, Oke et al., 2020). However, to minimize

the total water consumption, shale gas companies working in the same area need to agree on

a water management strategy. Note that fracturing a well using the wastewater that comes

from another well, usually placed nearby, means important saving for the company which is

extracting the gas. This implies an inevitable competition among these companies to achieve

the lowest water management cost and, consequently, the best sales price at the energy market.

However, shale gas play can be contemplated as collaborative network where members can have

better economic outcome working together than being isolated with only self-interest.

Game theory is a powerful area for studying strategic interaction among reasonable decision

makers, which has been applied to a number of planning schemes in different applications

(Stadler, 2009). The benefit of the players would not only depend on their own choices but

also on the choices of the other players. The main concern arises on the obtaining a fair

cost allocation where all members receive a reasonable or acceptable portion of costs. Mainly,

there are two approaches to analyse the strategies of individual companies, called coalitional

or cooperative game theory and non-cooperative game theory.

The first one is base on the work of von Neumann and Morgensterm (1944), which analyses the

formation of various coalitions by the players of the game. Their approach, in which players

are treated as a team with a common purpose, predicts the joint actions that groups take

and the resulting collective pay-off. The most popular solution method to determine a set of

possible cost or profit allocation is the core, especially in economic theory. As this method

provides a set of solutions, one needs to decide is which solution is fair enough to be chosen.

Drechsel and Kimms (2010) introduced some reformulations to obtain a fair element in the core.
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These concepts have been applied by Carrero-Parreño et al. (2019) to determine fair profit,

cost and environmental allocation in the framework of shale gas water management. However,

the solution provided is not fair enough for all the members. Additionally, the main challenge

arises when the number of companies increase. This is because the number of coalitions rises

exponentially with an increasing number of members and the analysis of each coalition should

be made.

The second one is initiated by Nash (1950, 1951), which is based on the absence of coalitions and

assumes that each participant acts independently. This approach analyses players’ individual

strategies and bargaining pay-off finding the Nash equilibrium. To obtain fair solutions, Nash

suggested a concept called Nash bargaining solution (Nash product), in which the bargaining

among players may result in cooperative actions. This concept assumes that the utility allocation

depends on the utility expected if the negotiation fail and the feasible utility when companies

work together. This method has been broadly applied in different areas of the process system

field, such as fair profit (or cost) sharing between corporations and resources allocation problems

(Gjerdrum et al., 2001, 2002; Yaiche et al., 2000; Zhang et al., 2013, 2017).

Regarding game theory in shale gas framework, apart from the above-mentioned work developed

by Carrero-Parreño et al. (2019) where cooperative approach is used to distribute water-related

costs, Gao and You (2017(a), 2019) applied a particular class of games called leader-follower

Stackelberg game structure for the complete shale gas supply chain. Chen et al. (2020)

developed a multi-level model with a set of leader-follower-interactive objectives with emphases

of water consumption, economic performance, and pollutant discharge.

In this paper, we develop a mathematical formulation to fair cost distribution applying Nash

bargaining principle for shale gas water management. We consider that all companies have the

same bargaining power; however, the formulation includes the possibility of power allocation.

Additionally, wastewater transportation cost assignation is added as new decision variable

compared with the typical shale water management models. Specifically, several policies are

analysed regarding this transportation cost assignation to provide different solutions to the

decision makers.

Consequently to the Nash bargaining objective function and transfer cost designation, the
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problem is formulated as mixed-integer non-linear programming (MINLP) model first. Then,

it is reformulated as a MILP by applying a logarithmic operation and a separable programming

approach in the objective function and a Glover’s linearization in the bilinear terms appearing

in the tranfer cost allocation.

The rest of the paper is organized as follows. Section 2 details the problem statement and

assumptions. Section 3 describes the Nash bargaining approach and the problem linearization.

In section 4, the proposed formulation is applied to a small example with 4 shale gas companies.

Then, to analyse the behaviour of the formulation considering a higher number of companies,

an example with 10 companies is performed. Finally, the conclusions are provided in Section

5.

2. Problem description

A shale gas play is comprised by several wellpads, and, in turn, one wellpad is formed by several

wells. In this paper, we contemplate that each wellpad is owned by one company as shown in

Figure 1 (a) and, at the same time, one company can own one or more wellpads. These

companies placed in the same area can interact with each other to reduce water management

costs; however, they will be willing to do it if a fair cost is allocated to each company relative

to the cost allocated to the others.

To address water management decisions and interaction between companies, the shale gas water

management superstructure displayed is Figure 1 (b) is considered in this work. To satisfy

the water requirements to fracture each well, companies can withdraw water from a freshwater

source, or use the wastewater that comes out after fracturing operations that belong to any

company. If the wastewater is not used as a fracturing fluid, companies have the possibility to

send it to a disposal site, a centralized water treatment plant or to treat it onsite. Moreover,

they can place an onsite treatment on their own well pad or use the treatment that belongs

to another company. If one company is using the treatment that belongs to another company,

this company will pay the latter extra costs to the company that has installed the portable

treatment. In case of wastewater recycling, the wastewater transportation aiming its reuse to

fracture other wells can be paid by the issuer, receiver or share between them depending on the
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policy selected. Hence, companies can interact with each other recycling water among different

wellpads or sharing onsite water treatment technologies.

The problem can be stated as follows: Given (a) a set of wellpads, companies, disposal wells,

CWT plants and freshwater sources, (b) distance between different locations, (c) water demand

per well, (d) capacity of freshwater and production tanks, and (e) cost coefficients of storage,

transportation, treatment and disposal, determine (a) when and how much water each company

recycles inside its wellpads, sends to another wellpad, treats or sends to a Class II disposal well,

(b) quantity of water withdrawal from a specific natural source, (c) optimal location of the

onsite treatments, (d) total number of freshwater and fracturing tanks leased, (e) payer of

wastewater transportation among companies, (f) water management cost allocated to each

company, in order to (a) find the companies’ strategies which result in an optimal fair cost

distribution maximizing the Nash product and (b) satisfy the water demand.

As only water management strategies are analysed in this study, we assume that each company

fix its fracturing schedule in advance that maximizes its revenue in advance and the water

treatment, including pretreatment and desalination, provides the adequate water quality for

the next operations. Moreover, we consider a fixed time horizon (discretised weekly as time

intervals) and water transportation via trucks.

3. Nash bargaining approach

In this section, the Nash bargaining formulation and the breakdown cost are detailed. Specifically,

we describe the non-linear objective function and the approach used to reformulate the resulting

Mixed Integer Nonlinear Programming (MINLP) model into Mixed Integer Linear Programming

(MILP). The rest of the constraint that defines the water management planning model and

nomenclature used can be found in Appendix A. Note that the water management planning

model is a simplified version based on previous work presented by Carrero-Parreño et al. (2018).

3.1 Non-linear objective function

The objective is to minimize the water management operational cost while distributing the cost

fairly among each company. An approach of optimizing the shale gas water management is to

minimize the sum of the total cost per company. However, this solution could lead to an unfair
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Figure 1: a) Representative shale gas extraction play belonging to different companies; b)
Wellpad water management strategies.

distribution among the members being unattractive to some companies.

For that reason, we apply game theory Nash Bargaining solution to achieve a fair cost distribution

among them. The objective function maximizes the product of the deviations of the given

maximum cost of each company, i.e. each company yields minimum cost while maximizing the

following objective function.

Φ = max
∏
i

(TCUP
i − tci)αi (1)

TCUP
i is the operational cost of company i working without interacting with the others and

tci is the water management cost for company i when companies are interacting. The previous

objective function takes into account the bargaining powers (αi) of the members. If all companies

have the same power, αi can be removed from Eq.(1) and the power will be distributed equally

among them.

3.2 Breakdown costs

For each company i, the total cost consists of the following disaggregated costs: storage

(csi ), freshwater withdrawal (cfi ), offsite treatment (cci), disposal (cdi ), pretreatment (cpi ), onsite
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treatment (coi ), transportation (cti) and inter-company transportation cost (ctri ).

tci = csi + cfi + cci + cdi + cpi + coi + cti + ctri ∀ i ∈ I (2)

The storage cost includes the leasing cost (αs) per tank installed and the mobilizing, demobilizing

and cleaning cost (βs).

csi =
∑
t∈T

∑
p∈Gip

∑
s∈S

[
αs · ntps + βs · nintps

]
∀ i ∈ I (3)

ntps refers to the tank type s placed in wellpad p in time period t and nintps are the tank type s

intalled in wellpad p in time period t.

Freshwater withdrawal, centralized water treatment and disposal cost depend on the water

withdrawal cost from diverse sources f (αfreshf ), the cost imposed by the CWT plant k (αoffk )

and the disposal cost d (αdisd ).

cfi + cci + cdi =
∑
t∈T

∑
p∈Gip

[∑
f∈F

αfreshf · f stpf +
∑
k∈K

αoffk · f ctpk +
∑
d∈D

αdisd · fdtpd
]
∀ i ∈ I (4)

f stpf , f
c
tpk and fdtpd are the flowrate withdrawal from natural source and the flowrate sent to a

CWT plant or disposal site, respectively.

Pretreatment cost varies depending on the final destination of the water (Carrero-Parreño et

al., 2017). If the water is used as a fracturing fluid, the pretreatment is less restrictive than if

it is sent to a desalination treatment since the presence of scaling compounds can damage the

equipment. Note that, before sending the water to another location the wellpad has to deal

with the water pretreatment.

cpi =
∑
t∈T

∑
p∈Gip

[
αpre1 · (f itp +

∑
p′∈P

gitpp′) + αpre2 · (f ttp +
∑
p′∈P

gttpp′)
]
∀ i ∈ I (5)

f itp is the water used as a fracturing fluid in the same wellpad, gitpp′ is the wastewater used as a

fracturing fluid in another wellpad, f ttp refers the water sent to an onsite treatment in the same

wellpad, gttpp′ is the wastewater sent to a onsite treatment placed in another wellpad, αpre1 is
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the cost aiming its recycling and αpre2 aiming its treatment.

Onsite desalination cost includes the desalination cost (αonp ) from treating the water that comes

from the same company and the installation cost (βonp ). Additionally, if the water is sent to an

onsite treatment that belongs to another company i’, the company i has additional charge ξ

compared if the portable treatment is installed in its own wellpad. Hence, that increment ξ is

discounted for the company that has installed the onsite treatment.

coi =
∑
t∈T

∑
p∈Gip

[
αonp ·f ttp+βonp ·yonp +

∑
p′∈Gip′

αonp′ ·gttpp′+
∑

p′∈Gi′p′

αonp′ ·(1+ξ)·gttpp′−
∑

p′∈Gi′p′

αonp ·ξ·gttp′p
]
∀ i ∈ I

(6)

yonp is a binary variable that indicates where the onsite treatment must be installed.

Transportation cost via trucks includes the transportation of wastewater from wellpad p to p’

aiming to be desalinated in an onsite treatment and aiming to be used as a fracturing fluid in

a wellpad that belongs to the same company; from wellpad p to CWT plant k or, disposal site

d ; and from natural source f to wellpad p.

cti =
∑
t∈T

∑
p∈Gip

αtruck ·
[
DWpp′ ·

[∑
p′∈P

gttpp′ +
∑

p′∈Gip′

gitpp′
]

+
∑
k∈K

DOpk · f ctpk

+DDpd · fdtpd +
∑
f∈F

DSpf · f stpf
]
∀ i ∈ I (7)

DWpp′ , DOpk, DDpd and DSpf refer to the distances between different locations.

Wastewater transportation cost from company i to company i’ is calculated as follows:

cintii′ = αtruck ·
∑
t∈T

∑
p∈Gip

∑
p′∈Gi′p′

gitpp′ ·DWpp′ ∀ ii′ ∈ I (8)

The question that arises is: Who pays wastewater transportation cost from company i to

company i’? Should it be paid by the issuer, receiver or should be shared between them? This

decision depends on the agreement made among the companies. Throughout this paper, we

distinguish between three different policies depending on the answer of the previous question. In

policy 1 the decision of transportation cost assignation is determined by the model. Therefore,

in our mathematical formulation, we introduce a decision variable γtrii′ to determine the portion
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of the cost assigned to each company.

ctri =
∑
i′∈I

cintii′ · γtrii′ + cinti′i · (1− γtri′i) ∀ i ∈ I (9)

0 ≤ γtrii′ ≤ 1 ∀ ii′ ∈ I (10)

If γtrii′ is equal to 1 means that company i pays the transportation cost. However, this cost can

be distributed between company i and i’ in case of γtri′i takes a value different to 0 or 1. Let

us illustrate the behaviour of these equations with a small example of two companies where

the transportation cost from company 1 to company 2 is equal to 10 and from company 2 to

company 1 equal to 8. The transportation cost from 1 to 2 is paid for company 1; therefore,

γtr12 = 1. From company 2 to 1, the cost being shared between them is γtr21 = 0.6. Thus, the

wastewater transportation cost for company 1 is ctr1 = 10 · 1 + 8 · (1 − 0.6) = 13.2 and for

company 2 equal to ctr2 = 8 · 0.6 + 10 · (1− 1) = 4.8.

In policy 2, company i pays the transportation cost to send wastewater to company i’. In this

case, the model is simplified because γtrii′ is fixed to 1; therefore, the bilinear term cintii′ · γtrii′

which includes difficulties in the resolution disappears. The same applies to policy 3 where the

receiver pays for transportation (company i’ pays the transportation cost to receive the water

that comes from company i). Finally, policy 4 enforces to assign the same cost portion between

companies sharing wastewater by adding the following equality: γtrii′ = γtri′i.

3.3 Objective function linearization

The model introduces non-linearities in the objective function (Eq.(1)) and in the calculation of

wastewater transportation cost between companies considering policy 1 (Eq.(9)) which makes

the problem intractable with a high number of wellpads and companies. These non-linear

equations can be linearized using the following techniques.

Logarithmic operation and separable programming approach are used to linearize the non-linear

objective function. In the separable programming approach a continuous convex function is

approximated in intervals as a piecewise linear function using q grid points. Eq.(1) is replaced
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by the following equations:

Φ = max
∑
i∈I

∑
q∈Q

λiq · αi · ln(TCUP
i − ˆTCiq) (11)

tci =
∑
q∈Q

ˆTCiq · λiq ∀ i ∈ I (12)

∑
q∈Q

λiq = 1 ∀ i ∈ I (13)

λiq ≥ 0 ∀ i ∈ I, q ∈ Q (14)

where λiq is a SOS2 variable and ˆTCiq is the cost of member i at grid point q. A detailed

description of separable programming approach can be found in Gjerdrum et al.(2001).

The bilinear non-linear term displayed in Eq.(9) is reformulated using piecewise function. To

do that, the variable that assigns the portion paid of wastewater transportation between two

companies is discretized in j values (γ̂j
tran). The binary variable xii′j reflects the selection of

the parameter γ̂j
tran. Then, the bilinear term formed by the multiplication of two continuous

variables has been converted to a bilinear term composed by a continuous and binary variable.

This non-linearity can be reformulated using Glover’s linearization where the bilinear term

is replaced by a new continuous variable zii′j and enforces Eq.(15) by adding four linear

inequalities Eq.(16) - Eq.(19). CLO and CUP are the lower and upper bound of inter-company

cost.

zii′j = cintii′ · xii′j ∀ j ∈ J, ii′ ∈ I, i 6= i′ (15)

zii′j ≥ CLO · xii′j ∀ j ∈ J, ii′ ∈ I, i 6= i′ (16)

zii′j ≥ CUP · xii′j + cintii′ − CUP ∀ j ∈ J, ii′ ∈ I, i 6= i′ (17)

zii′j ≤ CUP · xii′j ∀ j ∈ J, ii′ ∈ I, i 6= i′ (18)
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zii′j ≤ CLO · xii′j + cintii′ − CLO ∀ j ∈ J, ii′ ∈ I, i 6= i′ (19)

∑
j∈J

xii′j = 1 ∀ ii′ ∈ I, i 6= i′ (20)

Finally, using this new variable zii′j, Eq.(9) is reformulated as follows:

ctri =
∑
i′∈I
i 6=i′

[∑
j∈J

γ̂trj · zii′j + cinti′i −
∑
j∈J

γ̂trj · zi′ij
]
∀ i ∈ I (21)

4. Ilustrative Examples

First, a small numerical example composed of 30 wells distributed among 4 wellpads (each

wellpad is owned for one company) is computed to analyse the performance of the proposed

approach. Then, a higher example composed of 10 shale gas companies where each company

owns 2-4 wellpads is solved. A total of 150 wells distributed into 30 wellpads are considered.

Both examples are implemented in GAMS 25.1.3 (Rosenthal, 2016) and solved using a computer

with 3GHz Intel Zeon Processor and 32 GB RAM running on Windows 10.

The upper bound costs (TCUP
i ) are determined by considering only the water management

strategies of each company minimizing the total water management cost (Eq(2)) subject to

Eq(3) - Eq(10) and Eq(A.1) - Eq(A.11). That is the model is solved for each of the

previously defined companies, i.e. in case of four-shale gas companies example the model is

solved four times. Then, knowing the upper bounds, both the MINLP and MILP formulation

are solved. For the MINLP formulation, we maximize Eq(1) subject to Eq(2) - Eq(10) and

Eq(A.1) - Eq(A.11). In case of MILP formulation, Eq(11) is maximized subject to Eq(12)

- Eq(20), Eq(2) - Eq(8) and Eq(A.1) - Eq(A.11).
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4.1 A Four-Shale Gas Companies Example

The four-shale gas companies example includes one interruptible water source, one disposal well

and one centralized water treatment plant. To analyse which transportation policy brings the

better outcome, the wastewater transportation cost between companies is calculated considering

the four policies described before. Additionally, the problem is solved without considering the

fairness criteria, namely
∑

i∈I tci is minimized subject to Eq(2) - Eq(10) and Eq(A.1) -

Eq(A.11).

First, for policy 1, the model is solved using both the MINLP and MILP formulation. Table

1 shows the computational statistics, where the number of continuous and binary variables,

equations, the solver used, the gap, the solution time and the objective function obtained is

presented. The MINLP model is solved using global (Baron)(Kılınç and Sahinidis, 2019) and

local solver (Dicopt)(Duran and Grossmann, 1986). The local solver Dicopt provides a solution

in a CPU time of 20s; but, the solution reported is lower than the one reported using Baron

with 6% optimality gap in 3600s. The solution time decreases significantly using the MILP

formulation compared with the MINLP formulation. Moreover, the same objective function is

achieved when 100 grids points are considered for the discretisation of the individual total cost

and, small differences are found using 20 and 10 grid points. Note that in the MILP problem,

the objective function displayed in brackets in Table 1 is a post-processing objective function,

i.e. Eq.(1) is calculated using the results obtained from the MILP formulation.

The previous results highlight the efficiency of the proposed MILP formulation to maximizes

Nash product considering policy 1. Following a comparison of the solution obtained applying

policy 1, 2, 3 and 4 and without considering the fairness criteria is made.

Inter-companies transportation cost policies analysis

Table 2 displays results of the Nash product (Eq.(1)), lineal Nash product (Eq.(11)) and

the sum of the water management cost of each company (
∑

i∈I tci) obtained for each policy.

Note that the values shown in column three of Table 2 are post-processed values since for

policy 1, 2, 3 and 4 we maximize the Nash product (Eq.(1)) and the lineal Nash product

(Eq.(11)). However, for policy 1 without considering the fairness criteria, we minimize the
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Table 1: Computational performance for the Four-Shale Companies Example

Problem # of # of # of Solver Gap Solution Objective

Type continuous binary equations (%) time function

variables variables (s)

MINLP 24,409 2,500 17,109

Baron 6 3600 9.793

Dicopt 0 20 9.499

MILP (q=5)* 24,677 2,632 17,657
Cplex 0 50 2.2543 (9.707**)

Gurobi 0 12 2.2543 (9.707**)

MILP (q=10)* 24,697 2,632 17,657
Cplex 0 42 2.2723 (9.773**)

Gurobi 0 12 2.2723 (9.773**)

MILP (q=20)* 24,727 2,632 17,657
Cplex 0 27 2.2775 (9.784**)

Gurobi 0 13 2.2775 (9.784**)

MILP (q=100)* 25,057 2,632 17,657
Cplex 0 76 2.2815 (9.792**)

Gurobi 0 13 2.2815 (9.792**)

*q refers to the number of grid points for the discretisation of the total individual
cost.
**MILP Post-processing objective function calculated using Eq.(1).

sum of the water management cost; hence, the results displayed for Eq.(1) and Eq.(11) are

post-processing values. The highest Nash product is obtained using policy 1, which allows

flexibility to assign wastewater transportation to the receiver or the issuer company. However,

if the decision makers agree that companies interacting have to pay the same cost portion

(policy 4), no significant differences are observed in the objective function.

There is a trade-off between obtaining the fairness saving ratio (defined as company cost working

joinly compared to the upper cost) among companies and lowest companies joint cost. As can

be seen in Figure 2, policy 1 is the most appropriate choice if the target of the companies

agreement is to work jointly obtaining the fairest cost distribution among them. If companies

interest is to minimize companies joint cost, no fairness criteria objective function has to be

chosen. Note that choosing this option, savings for company 1 is only 13% compared with the

upper bound (see Figure 2) being the Nash product significantly lower compared with the

other cases. On the other hand, it is clear that policy 2 does not bring any benefit compare

with policy 1 where the Nash product is lower and the total joint cost is higher. Instead, using
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Table 2: Four-Shale Companies Example: Comparison of Nash product, lineal Nash product
and sum of the water management cost for each company obtained with each policy.

Policy Eq.(1) Eq.(11)
∑

i∈I tci

1 9.79** 2.28 (9.79***) 9843

2 9.11** 2.21 (9.12***) 9897

3 9.47** 2.25 (9.51***) 9816

4 9.60** 2.27 (9.65***) 9879

1* 6.48 0.69 9366

*Objective function without fairness criteria.
**Optimal solution obtained using the solver Baron and
solution time limit 3600s.
***MILP Post-processing objective function calculated
using Eq.(1).

policy 3 the Nash product is slightly lower, but the total joint cost decreases by $27k. Figure

3 displays the water management company cost applying the before-mentioned policies. Note

that the solution obtained using the MINLP and MILP formulation is displayed for policy 1.

As can be seen, there are also minimum differences in water management cost between both

formulations investigated.

Water management strategy analysis

Water management differences among the different policies can be shown in Table 3 where the

total water withdrawal, total water recycled and onsite treatment ubication is displayed.

Figure 4 shows the disaggregated company cost distribution of the upper cost and those

obtained maximizing the Nash product using policy 1 and without considering the fairness

criteria. High savings are observed in the treatment of wastewater and transportation comparing

the upper cost with the solution obtained with and without fairness criteria. When companies

are not working as a cooperative network, they cannot reuse as much as wastewater for

fracturing operations. Consequently, they have to withdraw more natural water increasing

the transportation costs. The wastewater has to be managed by treating it or sending it to

a disposal site, which increase the costs significantly. The optimal strategy maximizing Nash
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Figure 2: Four-Shale Companies Example: Saving ratio (defined company cost working
jointly compared to the upper cost) obtained with each policy for each company

Figure 3: Four-Shale Companies Example: Optimal fair cost selected by different policies for
each company c.
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Figure 4: Four-Shale Companies Example: Breakdown cost per company of the upper cost
and the ones obtained with policy 1 and 4.

product using policy 1 reveals to install an onsite treatment in wellpad 2, which belongs to

company 2. For that reason, onsite treatment cost for company 2 is significantly higher than

for the other companies. However, this company has lower freshwater withdrawal and storage

costs. Note that without considering the fairness criteria, onsite treatment is installed in

company 1 which has the highest treatment cost.

Finally, the wastewater transportation cost assignation using policy 1 is detailed as follows.

Table 4 (a) shows the wastewater transportation cost for sending wastewater from company

Table 3: Water management solution per policy: total water recycled, total water withdrawal
and onsite treatment ubication

Policy 1 Policy 2 Policy 3 Policy 4 No fairness cirteria

Total water withdrawal (m3) 2458 2440 2465 2245 2390

Total water recycled (m3) 779356 774616 782215 780563 807955

Onsite treatment Ubication wellpad 2 wellpad 2 wellpad 2 wellpad 2 wellpad 1
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i to company i’. The mathematical model assigns if the transportation cost has to be shared

between each company, or it has to be paid by the issuer or the receiver company. Table

4 (b) displays the cost assignation for each shipment. For example, the transportation cost

from company 1 to companies 2, 3 and 4 is paid by these receiving companies. Therefore,

variable γtri1i2 equal to zero means that the company that owns wellpad i2 pays for the water

transportation. On the contrary, variable γtrani4i1 equal to 1 means that company 4 pays for the

wastewater transportation to company 1. Note that the formulation developed allows to obtain

shared transportation costs, that means that γtrii′ can take any value from 0 to 1.

Table 4: Four-Shale Companies Example: (a) Transportation cost to transfer wastewater
between companies (Ci

ii′); (b) Cost assignation to transport wastewater from company i to i’
(γtrii′) via MILP formulation.

(a)

company i1 i2 i3 i4

i1 - 127 8 76

i2 - - 141 7

i3 - - - 154

i4 48 48 5 -

(b)

company i1 i2 i3 i4

i1 - 0 0 0

i2 - - 0 0

i3 - - - 0

i4 1 1 1 -

4.2 A Ten-Shale Gas Companies Example

In a real case study, the number of wellpads owned by each company increases. Thus, the

formulation performance of ten-shale gas companies example which also includes one interruptible

water source, one disposal well and one centralized water treatment plant is analysed.

First, to demonstrate the efficiency of the proposed MILP formulation for a large case study,

both formulations are solved considering policy 1. The MILP formulation is solved for 10 and

100 grid points using Gurobi and Cplex with 1% optimality gap.

As might be expected from the solution reported from the previous example, the MINLP solvers

do not return any solution (Table 5). The larger is the problem size, greater difficulties has

the MINLP solvers to solve the model, gaining the reformulation proposed more importance.

Note that in this case Cplex gives a solution faster than Gurobi; nevertheless, Gurobi provides
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a better objective function.

Table 5: Computational performance for the Ten-Shale Companies Example

Problem # of # of # of Solver Gap Solution Objective

Type continuous binary equations (%) time function

variables variables (s)

MINLP 312,519 18,750 103,359

Baron 3600 No Solution Returned

Dicopt 3600 No Solution Returned

MILP (q=10)* 316,299 20,640 111,019
Cplex 1 616 11.6203 (112428**)

Gurobi 1 1451 11.6676 (117563**)

MILP (q=100)* 317,199 20,640 111,019
Cplex 1 3722 11.6769 (117822**)

Gurobi 1 5373 11.7010 (120697**)

*q refers to the number of grid points for the discretisation of the total individual
cost.
**MILP Post-processing objective function calculated using Eq.(19).

Individual company costs obtained under the different policies are shown in Figure 5. Note

that significant savings (∼56%) are obtained when companies work interacting with each other

instead of working separately. The mathematical model is also solved without considering the

fairness criteria. In this case, the total cost decreases 1% compared with the solution obtained

from policy 1, but the saving ratios are greatly distributed maximizing the Nash product instead

of minimizing the total cost.

No significant differences are found comparing policy 1, 2 and 3. Some companies have the

same cost with the three policies (as company 6), others (as company 2) a difference of $508k

can be found depending of the policy selected. Note that the solution obtained using policy

1 provides the higher Nash product and the lowest total cost (Table 6). Therefore, better

outcome is obtained with policy 1 given the flexibility of the problem to assign wastewater

transportation cost to the issuer or receiver.

Finally, Table 7 displays the cost assignation of each company using policy 1. In this case

study, the optimal solution takes values different from 1 and 0. For example, the transportation

cost assignation from company 2 to company 3 is 0.4; therefore, company 2 should pay 40% of

the transportation cost and company 3 the remaining 60%.
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Figure 5: Ten-Shale Companies Example: Optimal fair cost selected by different policies for
each company c.

Table 6: Ten-Shale Companies Example: Comparison of Nash product, lineal Nash product
and sum of the water management cost for each company obtained with each policy.

Policy Eq.(1) Eq.(11)
∑

i∈I tci

1 11.70 120697 25.55

2 11.61 111196 25.72

3 11.60 109910 25.73

5. Conclusions

An MINLP model is proposed to address shale gas water planning decisions and provide

in turn fair water management cost distribution amongst shale gas companies participants

using game theory Nash product. The main interaction between companies is reflected in

the wastewater exchange among them to use it as a fracturing fluid. The cost assignation

of the water sent from one company to another is analysed under four different policies: the

payer can be the issuer or the receiver (policy 1), only the issuer (policy 2), only the receiver

(policy 3), or the issuer or receiver but paying the same portion (policy 4). However, it

is well-known the high computational efforts required to solve real-world case studies using

MINLP formulations. Therefore, a separable programming approach and Glover’s linearization
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Table 7: Ten-Shale Companies Example: Cost assignation to transport wastewater from
company i to i’ (γtrii′) via MILP formualtion.

company i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

i1 - 0 0 0 0 0.15 0 0 0.25 0

i2 1 - 0.4 1 1 0 0.15 0 0.5 0

i3 1 1 - 0.25 1 0 0 0 1 0.2

i4 1 0.3 0 - 0.4 0 0 0 1 0

i5 1 0.4 0 0.7 - 0 0 0 0 0

i6 1 1 1 1 1 - 1 1 1 1

i7 1 0.9 1 1 0.8 0 - 0 1 0

i8 1 1 1 1 1 0 1 - 1 1

i9 0.9 1 0 0 0.70 0 0 0 - 1

i10 1 1 1 1 1 0 1 0 0.95 -

is applied to reformulate the model as an MILP.

Two different case studies are analysed to demonstrate the efficiency of the proposed approach.

First, its efficiency is demonstrated by solving a small numerical example comprising of 30 well

belonging to 4 different companies. Then, a bigger size problem comprising 10 companies and

150 wells highlighted the favourable behaviour of the formulation since it is not possible to find

an initial point using MINLP formulation.

Fair water management cost distribution is obtained with both examples achieving saving

around 35-50 for each company when they are working as a collaborative network. Note the

highest Nash product is obtained by applying policy 1; however, not large differences are

found when the other policies are applied. Moreover, a comparison of the solution without

considering the fairness criteria is done. Although lower total water management cost is

obtained, the savings are distributed unfairly for one of the companies. This solution can

result in no-interaction of that company with the others, that would cause an increase in total

water management cost, decreasing individual company savings.

As a future research direction, uncertainty aspects in water demand and wastewater generation

can be considered and included in the optimisation framework.



21

Acknowledgments

The authors would like to thank the financial support received from the UK Engineering and

Physical Sciences Research Council (under the project EP/M028240/1).

Appendix A. Mathematical model

The model presented is an simplified version based on previous work presented by Carrero-Parreño

et al. (2018).

Set definition

P = {p|p is a wellpad}
W = {w|w is a well}
T = {t|t is a time period}
K = {k|k is a CWT}
F = {f|f is a freshwater source}
D = {d|d is a disposal well}
I = {i|i is a shale gas company}
S = {s|s is a storage tank}
Q = {q|q interval in TC linearization}
Rpw = {well w belongs to wellpad p}
Gip = {company i owns wellpad p }

Parameters

Cs Capacity of storage tank s

CTUPk Maximum flow in offsite treatment

DOpk Distance from wellpad p to CWT plant k

DSpf Distance from wellpad p to natural source f

DDpd Distance from wellpad p to disposal place d

DWpp′ Distance from wellpad p to wellpad p’

DUP
d Maximum flow in offsite treatment

FWtpw Flowback water forecast for well w on wellpad p in time period t

FStpw Fracturing schedule

GLO Glover’s linearization lower bound

GUP Glover’s linearization upper bound

NUP
s Upper bound of tanks s installed

NLO
s Lower bound of tanks s installed

OTUPp Maximum flow in onsite treatment in wellpad p

OTLOp Minimum flow in onsite treatment in wellpad p
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TCUP
i Individual upper total cost for company i

ˆTCiQ Linearised individual total cost for company i at interval q

WDw Water demand to complete well w

βonp Onsite facility fixed cost in wellpad p

αtruck Truking cost

αonp Desalination cost in wellpad p

αdis Disposal cost

αfreshf Fresh water cost for withdrawing water from natural source f

αpre1 Pretreatment cost aiming to reuse the water

αpre2 Pretreatment cost aiming to desalinate the water

αcwtk Desalination cost in CWT plant k

αs Storage cost

βs Capital cost for mobilize, demobilize and clean out

γpre Percentage of water recovery in the pretreatment technology

γon Percentage of water recovery in the onsite desalination treatment

γoffk Percentage of water recovery in the CWT plant k

ξ Extra cost agreement to treat the water in a do not own onsite treatment

Continuous Variables

csi Storage cost for company i

cfi Freshwater withdrawal cost for company i

cci CWT desalination cost for company i

cdi Disposal cost for company i

cpi Pretreatment cost for company i

coi Onsite treatment cost for company i

cti Transportation cost for company i

ctri Inter-company transport cost for company i

dtpw Water demand in well w on wellpad p on time period t

f itp Flowrate of impaired water on wellpad p on time period t

f otp Flowrate of wastewater on wellpad p to onsite pretreatment on time period t

f ttp Flowrate of wastewater on wellpad p to onsite desalination on time period t

fdtpd Flowrate of wastewater from wellpad p to disposal well d on time period t

f ctpk Flowrate of wastewater from wellpad p to centralized treatment k on time period t

f stpf Flowrate of fresh water from natural source f to wellpad p on time period t

gitpp′ Flowrate of impaired water from wellpad p to wellpad p’ on time period t

gttpp′ Flowrate of wastewater from wellpad p to treatment placed on wellpad p’ on time period t

ltps Level of water in tank type s on wellpad p in time period t

tci Total cost for company i
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αi Bargaining power for company i

γtrii′ Transportation cost assignation from company i to company i’

λiq SOS2 special ordered variable

Binary Variables

yonp Indicates where the onsite treatment is installed

nstps Number of tanks s on wellpad p on time period t

nintps Number of tanks s installed on wellpad p on time period t

nunp Number of tanks s unistalled on wellpad p on time period t

A.1 Water Demand

An specific amount of water is required to be available when the well is going to be fractured.

The water demand per well on time period t (dtpw) must be greater than or equal than the

total water required per well (WDw) multiplied by the fracturing schedule (FStpw).

dtpw ≥ WDw · FStpw ∀ t ∈ T, p ∈ P,w ∈ W (A.1)

The water required per well can be achieved withdrawing natural water from freshwater tanks

(f s
′
tp), using wastewater from the same wellpad (f itp) or provided by another wellpad (gitpp′). The

water provided by another wellpad can belong to the same company or not.

∑
w∈Rpw

dtpw = f s
′

tp +
∑
p′∈P

gitpp′ + f itp ∀ t ∈ T, p ∈ P (A.2)

A.2 Storage Tanks

Part of the injected water return to the wellhead after a well is drilled. The water is recovered

typically from 1 to 5 weeks from which the well begins to be drilled. This water is sent to

fracturing tanks placed in the same wellpad. After that, the water has to be managed since

it is highly contaminated. It can be sent to an onsite pretreatment (f otp), disposal site (fdtp)

or centralized water treatment plant (f ctp). Hence, the level of the tank in each time period

depends on the water recovered in each producing well, the level of the tank in the previous time
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period and the water sent to the pretreatment technology, disposal or centralized treatment.

ltps = lt−1ps +

t′≤t−1∑
t′=0

FWt−t′pw · FSt+τw+1pw − f otp − fdtp − f ctp ∀ t > 1, p ∈ P, s ∈ {ft} (A.3)

Water sent to a disposal site and CWT plant are bounded by their upper bounds DUP
d and

CTUPk , respectively.

The level of water in freshwater tanks depends on the inlet water that comes from freshwater

sources (f stpf ), the water accumulated from the previous time period (lt−1ps), and the outlet

water sent to use it in fracturing operations (f s
′

tpf ).

ltps = lt−1ps +
∑
f∈F

f stpw − f s
′

tp ∀ t > 1, p ∈ P, s ∈ {fw} (A.4)

Typically, the shale gas industry stores the freshwater and wastewater in portable tanks.

Therefore, this model determines the number of tanks needed to be leased in each time period

by the following equation.

ntps = nt−1ps + nintps − nuntps ∀ t ∈ T, p ∈ P, s ∈ S (A.5)

where ntps refers to the number of tank type s in time period t, nt−1ps is the number of tanks

leased in previous time period, nintps and nuntps are the number of tanks installed and uninstalled

in time period t.

The level of the tank (ltps) has to be lower o equal than the number of the tanks installed (ntps)

multiply by the capacity of one tank (TCs). We consider that tanks have to handle water that

comes from one day. Therefore, the variable θtps is equal to the inlet freshwater or wastewater

divided by the number of days into a week.

ltps + θtps ≤ Cs · ntps ∀ t ∈ T, p ∈ P, s ∈ S (A.6)

The number of tanks installed in each time period t has to be lower or equal than the maximum

number of tanks (NUP
s ).

ntps ≤ NUP
s ∀ t ∈ T, p ∈ P, s ∈ S (A.7)
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A.3 Onsite treatment

The water recovery after pretreatment is modelled using a recovery factor (γpre).

f o
′

tp = γpre · f otp ∀ t ∈ T, p ∈ P (A.8)

The outlet pretreated water can be treated in an onsite treatment placed in the same (f ttp) or

another wellpad (gttpp′), or can be also used as a fracturing fluid also in the same (f itp) or another

wellpad (gitpp′).

f o
′

tp =
∑
p′∈P

gttpp′ +
∑
p′∈P

gitpp′ + f itp + f ttp ∀ t ∈ T, p ∈ P (A.9)

The water recovered in onsite treatment is also modelled using a recovery factor (γon). If the

onsite treatment is placed in a specific wellpad, it can treat the water that comes from the same

wellpad on the neighbouring one.

f t
′

tp = γon · (f ttp +
∑
p′∈P

gttp′p) ∀ t ∈ T, p ∈ P (A.10)

If onsite treatment is installed in wellpad p, the binary variable (yp) takes the value of 1 and

the inlet flow is bounded by the upper (OTUPp ) and lower bound (OTLOp ).

OTLOp · yp ≤ f ttp +
∑
p′∈P

gttp′p ≥ OTUPp · yp ∀ t ∈ T, p ∈ P (A.11)
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