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Abstract 

Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentra-
tions of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our 
analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have 
utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression 
strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solu-
bility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinfor-
matics, modelling, and ‘omics’ based systems-level analysis techniques to provide a structured, holistic approach. Our 
analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the 
reproducibility and growth of the research in this field.
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Background
Enzymes serve a wide range of biocatalytic purposes 
across multiple key industrial sectors; our observation 
shows the food and beverage, pharmaceutical/health-
care, chemical, starch and paper processing, detergent, 
bioremediation, textile, agriculture, biosensor, and waste 
management industries have the highest usage (Fig. 1A). 
The total biocatalysis market is a rapidly growing sec-
tor of industrial biotechnology with an estimated global 
market value projected to reach $10 billion by 2024 [1]. A 
review of the literature demonstrates a growing amount 
of research dedicated to discovering, isolating, and 

characterizing novel enzymes; this research is driven by 
a demand for enzymes that can replace current catalysts 
that show limited functional stability at specific opera-
tional conditions such as increased temperature or pH. 
Enzymes furthermore serve as tools to lessen the envi-
ronmental impact of chemical processes traditionally 
driven by inorganic catalysts leading to ‘greener’ manu-
facturing [2].

Heterologous expression of a recombinant product is 
the preferred strategy when sufficient quantities of an 
enzyme of interest cannot be achieved in the native host 
organism. This method provides an efficient and eco-
nomically favorable method to produce high quantities 
of recombinant protein in a relatively short amount of 
time. The industrial manufacturing sectors often adopt 
E. coli as a heterologous host for protein expression to 
facilitate rapid product. A common, challenging caveat to 
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this expression method is the high likelihood of generat-
ing inclusion bodies due to protein misfolding. Inclusion 
bodies are aggregated masses of misfolded or partially 
folded peptide chains that can result from a variety of 
factors including but not limited to: when the rate of 
protein synthesis in vivo surpasses the capabilities of the 
cell, lack of eukaryotic chaperones for specific proteins, 
reduced cytosol environment, and limited post-transla-
tional machinery [3]; this is often the case when overex-
pressing a protein product in a recombinant expression 
system [4]; this misfolded state can be inhibitory to the 
biocatalytic capability of the enzyme and as a result, sol-
ubility is a property highly valued in the manufacturing 
supply chain. Over the past few decades, protocols have 
been modified by introducing different experimental 
design strategies to instigate the production of soluble 
products. These strategies explore variations in regula-
tory sequences (promoters), plasmid backbones, strains 
of E. coli, fusion partners employed, incubation temper-
atures, medium components, chaperone proteins, and 
inducer concentrations to name a few common variables.

In the event that these strategies prove unsuccessful, 
an extra refolding/renaturation and purification step is 
often necessary to generate a soluble, functional enzyme 

[5]. However, stepwise protocol of producing inclusion 
bodies and subsequent solubilization has proven to be a 
viable strategy to generate a higher volume of product. 
Recombinant protein within inclusion bodies has been 
found to occupy 30–40% of the total cellular proteins [6]; 
furthermore, inclusion bodies can be comprised of up to 
90% pure recombinant protein [7].

A caveat to the solubilization methodology is that it is 
not a one size fit’s all strategy and often requires case-
by-case protocols to be developed that cannot be widely 
applied all protein types. For instance, multi-copper lac-
cases from four distinct organisms: Bacillus sp. HR03 [8], 
Geobacillus sp. JS12 [9], strains of Yersinia enterocolitica 
[10], and Bacillus subtilis strain R5 [11], though simi-
lar, prove to have unique purification protocols in each 
respective study. Furthermore, a loss in the secondary 
structure after exposure to strong denaturants can lead 
to a reduction in the overall bioactivity of the nascent 
protein [12]. The case-by-case specific nature of solubi-
lization does not guarantee a final protocol fit for indus-
trial use. Solubilization was shown to result in a reduced 
final recovery, from 50% or less of bioactive product in 
some cases [13] to no biologically active product in other 
examples [14]. At bench-scale, this is a small price to pay 

Fig. 1 Trends in the selection of experimental design parameters for the literature surveyed in recombinant production of difficult to express (DtE) 
enzymes and industrially relevant enzymes in E. coli (year coverage: 2010–2020). A Breakdown of the industries in which DtE enzymes were most 
commonly employed or demanded. B Breakdown of the most common enzyme classes that DtE enzymes are affiliated to. C Breakdown of the 
most utilized commercial E. coli expression strains and their modified versions. D Frequency of plasmids (vector) used in different experimental 
designs. E Breakdown of the most utilized fusion tags in recombinant vector designs



Page 3 of 20Mital et al. Microb Cell Fact          (2021) 20:208  

to generate protein that is appropriate for structural and 
or functional characterization. However, at industrial 
scales, the overarching costs associated with capacity 
underuse combined with operational costs including but 
not limited to consumables, utilities, and personnel time 
in addition to extensive protein quality control often ren-
der this option infeasible.

Current economic analysis associated with industrial 
scale manufacturing and downstream processing is lim-
ited in this field; there is a need for an updated techno-
economic analysis of the processes discussed previously 
to reflect their current costs for the industrial biotech-
nology sector. Depending on the method utilized and 
the scale of operation; in 2011, the direct fixed costs 
and labor associated with this additional treatment was 
reported to add up to $8.2  million to implement and 
operate inclusion body solubilization equipment for 
individual companies [15], however these costs may be 
higher today. As a result, it is highly desirable to produce 
an enzyme of interest in a soluble state from the start to 
achieve cost-effective production.

Scope of this review
A survey of the literature in this field from the past dec-
ade has revealed no standardized method developed 
to promote solubility for enzymes expressed through 
recombinant technology. This review identifies trends 
in the experimental design for recombinant expression 
studies, in the industrial biotechnology sector, that ulti-
mately generated inclusion bodies in E. coli. Our analysis 
identified which methods or tools, if any, were employed 
in designing the recombinant expression system and the 
impact on the mitigation of inclusion bodies. Our goal 
was to highlight the factors/strategies researchers tend 
to prioritize and provide a measure for their popularity 
implicated by the frequency of their use. Our analysis 
was focused on work published in the field of industrial 
biotechnology since 2010. Manufacturing of numerous 
recombinant protein products, including those of biop-
harmaceutical use such as growth factors, antibodies, or 
cytokines had historically been in the remit of recom-
binant protein production by E. coli. Several well-cited 
reviews exist on the subject, which address the challenges 
associated with using E. coli for these purposes [16–18]. 
Over the past decade, Chinese Hamster Ovary (CHO) 
cells have increasingly dominated the manufacturing 
process as hosts for expressing protein-based biolog-
ics, therapeutics, and other relevant eukaryotic proteins. 
CHO cell-based systems are currently used to manufac-
ture up to 84% [19] of approved biopharmaceuticals as 
opposed to 30% in E. coli [16]. This was primarily follow-
ing the efforts towards the sequencing the CHO genome 
and its subsequent publication in 2011 [20]. Nevertheless 

E. coli has remained the standard workhorse for indus-
trial biotechnology applications. Our analysis, there-
fore, focused on enzymes of prokaryotic origin and their 
plasmid-based expression in E. coli. These enzymes are 
industrially valuable due to their sustained performance 
in non-conventional niche environments owing to the 
wide distribution prokaryotes in adverse or unique habi-
tats [21]. This reallocation of dominant sector prefer-
ence for specific hosts in the manufacturing of different 
types of proteins has necessitated that even more atten-
tion needed to be paid to the improvement of host strains 
and expression systems of E. coli tailored to specialized 
applications. However, we still fail to see any systematic 
effort to streamline the development of efficient expres-
sion systems that overcome the insolubility of enzy-
matic proteins. The analysis conducted in this systematic 
review can serve this purpose and act as a starting point 
for future experimentation in the field.

Identification of studies and selection
Databases such as NCBI PubMed and Clarivate Web 
of Science (WoS) provide a vast number of examples of 
scholarly literature that demonstrate the widespread 
prevalence of inclusion body formation. When used 
together for both databases, the search terms ‘recom-
binant’, ‘enzyme’, ‘inclusion bodies’, ‘E. coli’ and ‘Escheri-
chia coli’ yielded 1891 publications, of which 659 were 
from the past decade (access June 2021). The omission 
of ‘Escherichia coli’ from these key words adds only 678 
additional results indicating that E. coli continues to 
serve as the standard production workhorse and is dis-
cussed in 64% of recent recombinant enzyme expression 
work in this field.

Publications for this review were sourced from NCBI 
PubMed and WoS databases, in addition to Google 
Scholar. Relevant articles were published between 1 Janu-
ary 2010 and 31 June 2021. Search terms included those 
for Escherichia coli (including the terms ‘Escherichia 
coli’ and ‘E. coli’), ‘recombinant’, ‘enzyme’, and ‘inclusion 
bodies’, generating a total of 501 results in PubMed, 193 
result in WoS and 39.6 K search results in Google Scholar 
(Fig.  2). The difference in the number of search results 
generated between PubMed/WoS versus Google Scholar 
is due to the algorithm employed. A large proportion of 
the search results on Google Scholar have been found to 
be ‘grey literature’—a term that encompasses books, book 
chapters, patents, theses, non-peer reviewed research, 
and/or ambiguous citations that do not fall within a spe-
cific category, in addition to duplicate search results [22]. 
This volume of grey literature accounts for the discrep-
ancy of search results generated.

These papers were manually curated within the search 
results for PubMed and WoS. Logical operators were 
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used to remove irrelevant search results from the large 
number of results returned in Google Scholar specifically 
leaving 730 results; this curation process is highlighted in 
Fig. 2. The metadata reported by a given study is required 
for future reproducibility. Therefore, our literature search 
for this review was limited to those studies that explic-
itly reported: (i) the native source of the enzyme of inter-
est, (ii) gene sequence, (iii) the E. coli expression strain, 
(iv) the expression vector backbone, and (v) expres-
sion conditions (i.e. expression temperature, inducer 

concentration, cell density). These details are deemed 
essential for reproducibility in this field. 21% of the publi-
cations, which were initially thought to be relevant to the 
scope of this review, were omitted from further investiga-
tion due to the lack of at least one of the aforementioned 
details (Fig.  2). In total 133 publications that expressed 
140 enzymes were selected between 2010 and 2021; some 
publications highlighted multiple enzymes leading to a 
higher number of enzymes compared to publications. A 
full list of this literature can be found in Additional file 1. 

Fig. 2 Study selection process. A Identification of total search results on NCBI PubMed, Clarivate Web of Science, and Google Scholar for key search 
terms. B Screening of total search results to narrow focus to publications with a focus on prokaryotic enzymes and plasmid-based expression 
methods. C Further screening based on metadata parameters
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Interestingly, all enzymes were identified to be relevant 
within industry or for direct commercial sale, although 
this aspect was not explicitly mentioned in their respec-
tive publications.

We observe that the food and beverage, pharmaceuti-
cal, and chemical industries showed the largest demand 
for bulk biocatalyst manufacturing and had the greatest 
variety of enzymes employed in their processes during 
the period of investigation (Fig.  1A). Hydrolases (41%) 
and oxidoreductases (32%) were the most prevalent 
classes of enzymes studied in the publications investi-
gated within the scope of this review, followed by trans-
ferases (15%), lyases (9%), and isomerases (3%); none of 
the enzymes recombinantly expressed in these studies 
belonged to the class of ligases (Fig. 1B). This breakdown 
suggests that hydrolases and oxidoreductases are of sub-
stantial industrial interest, however it is difficult to inter-
pret from this data whether these classes have a higher 
propensity to form inclusion bodies in comparison to 
other enzyme classes.

Data reporting and limitations
The narrative of published research targets a selective 
audience in its cognate field of work, for whom each 
detail regarding the experimental design may not neces-
sarily be of interest. Our analysis identified an absence of 
methodical organization, or a system to report experi-
mental design details. The aforementioned details were 
reported in all 133 studies, however the curation process 
for this review required a comprehensive search of the 
introduction, methods, and supplementary text of each 
publication. This method of reporting metadata is inef-
ficient, limiting reproducibility by the scientific commu-
nity post-publication. Research narratives are centered 
around their principal objective; this objective guides the 
details emphasized and their priority within the text. For 
example, in characterization studies, where the primary 
goal was to report on enzyme structure, less emphasis 
may be placed on the expression conditions used to pro-
duce of the enzyme of interest. This bias was observed 
in the past in The Protein Data Bank (PDB), the major 
repository for protein structural datasets. Zhou et  al. 
reported that expression host information for recom-
binant studies were omitted from 62 (12%) of the PDB 
study examples they selected for their analysis [23]. In 
another case, Magnan et al. identified that the PDB and 
the SwissProt databases were observed to report on the 
solubility of recombinant proteins but neglect to include 
the experimental conditions that were used; this was cri-
tiqued as the information provided by the retrieved data-
sets retained inconsistencies rendering it ineffective for 
modeling purposes [24]. The omission of such details can 
often hamper follow-up work by scientists in other fields.

One other aspect of this work worth noting was only 
one out of the 133 studies shortlisted was conducted 
through a collaborative partnership with industry [25]. 
The remaining studies were led by either academic insti-
tutions or government agencies. This underrepresenta-
tion of industrial contribution does not truly reflect the 
economic challenges inclusion body formation poses on 
commercial manufacturing [26]. However, this contrib-
utes a bias to the information currently available in the 
public domain. The issues highlighted above demonstrate 
that a degree of implicit bias currently limits our under-
standing to facilitate reproducible research. The evalu-
ation discussed below should be considered in light of 
these limitations.

Enzyme discovery and in vitro expression
Recently, the process of enzyme discovery has been led 
by metagenomics and genome mining from environmen-
tal microbiome samples [27–29]. Screening a range of 
habitats with varying physical environmental conditions 
have led researchers to uncover organisms with evolu-
tionarily adapted tolerance to these conditions. Higher 
temperatures, for example, in the case of Thermus ther-
mophilus HB9 [30], cold temperatures, in the case of 
Shewanella arctica [31], or elevated salt concentrations 
in the case of Halobacterium salinarum [32] are exam-
ples of adapted bacteria. Researchers have observed that 
enzymes isolated from these unique prokaryotic hosts 
share a similar tolerance to environmental conditions 
in vitro and therefore have use in industrial manufactur-
ing conditions that are typically harsh in comparison to 
the growth environment of many organisms. In other 
instances, in  vitro directed evolution through mutagen-
esis or computationally driven protein engineering can 
serve as alternative methods to develop stable or func-
tionally novel enzymes within a laboratory setting [33]. 
Directed evolution, for example, was used to expand the 
substrate range of Rhodococcus phenylalanine dehydro-
genase for the highly enantioselective reductive amina-
tion of ketones to amines [34].

While the enzymes from extremophiles are of indus-
trial interest, extremophilic bacteria, for example, are 
often difficult to culture in a laboratory setting due to 
challenges associated with providing culture conditions 
that adequately mimic their native environment [35–43]. 
These additional considerations create a non-standard set 
of culture conditions. Moreover, enzymes isolated from 
organisms found in complex environmental samples 
pose additional challenges as optimal culture conditions 
for many organisms are typically not well-understood. 
Such a challenge was reported for a strain of Aero-
monas hydrophila isolated from sludge samples collected 
from textile wastewater treatment plants; the complex 
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chemical composition of this sludge rendered it difficult 
to determine a suitable, replicable medium formulation 
to support growth of the organism in a laboratory setting 
[44]. Therefore, the process of generating suitable high 
quantities of active enzyme from a novel isolated prokar-
yotic source is not always a straightforward task.

In other cases, certain enzymes have been identified 
as being toxic to host cells when overexpressed at high 
levels. Microbial transglutaminase (MTGase) monomers 
from Streptoverticillium mobaraensis, for example, were 
shown to have a high tendency to cross-link and oli-
gomerize during intracellular expression [25]. MTGase 
was also observed to be expressed at low abundance in 
S. mobaraensis—at concentrations inadequate for subse-
quent experimental work—which is an issue frequently 
observed in similar studies [45–49]. Additionally, enzyme 
purification methods from native host sources often 
require a combination of methods such as salt precipita-
tion and/or a series of chromatographic separations to 
deliver a product with sufficient purity. However, these 
methods are often difficult and economically challenging 
at scale, particularly when purifying enzymes expressed 
in limited quantities [50, 51].

Current experimental design practices
Expression strains—K12 and B strains
A majority of the available E. coli expression hosts in use 
for recombinant protein expression typically fall under 
two categories: K12 or B derivative strains. BL21 (DE3) is 
one of the most common B strains preferred for recom-
binant expression; often, it is preferentially selected over 
its K12 counterparts as an ideal recombinant expression 
host due to several key advantages. BL21 (DE3) is defi-
cient in Lon and OmpT proteases, thus providing a layer 
of protection to misfolded proteins that would normally 
be targets for degradation [52]. A short doubling time of 
approximately 20 min coupled with rapid protein synthe-
sis via the T7 expression system generates a stable pro-
tein product at high titers [53]. K12’s longer growth times 
and predisposition to produce acetate generates lower 
biomass in comparison to BL21 (DE3) [54].

Our analysis observed B strains were the most widely 
employed for enzyme expression in 88% of the total cases. 
Among those, BL21 (DE3) was selected as the primary 
expression host in 65% of our reference cases (Fig. 1C). 
The remaining 12% utilized K12 derivates. Commercially 
available K12 strains used include JM109 [25, 51, 55], 
DH5α [30, 56], NovaBlue [57], XL1 Blue [58], M15 [31, 
59, 60], and Top10 [61, 62]; alternatively non-commercial 
K12 strains W3110 [63] and MG1655 [62, 64] were used 
in a limited number of cases. K12 strains serve as useful 
tools when plasmid instability is encountered resulting in 
plasmid loss from the host [54]; this may explain its use 

in limited cases for expression. Beyond protein expres-
sion, K12 strains are also mentioned as tools plasmid 
propagation and cloning. For example, Vadala et al. [65] 
propagated their pET21a vector in DH5α however their 
eventual expression host was BL21 (DE3). A breakdown 
of commercial strains used, and their applications can be 
found in Table 1; a full list of expression strains used can 
be found in Additional file 1: Table S1.

Specialized E. coli strains—emerging tools for protein 
expression
The challenging nature of DtE enzymes has led to the 
adoption of alternative hosts to improve performance, 
with several companies developing strains that research-
ers are opting for in favor of traditional strains. These 
BL21 (DE3) variants were the strains of choice in 30% 
of the selected expression studies. Industrial manu-
facturers have evolved the efficiency of their strains by 
producing variants capable of reducing the common 
causes of aggregation that manifest during overexpres-
sion (Table 1). These strains are marketed to have supe-
rior performance that are well-suited to mitigating issues 
concerning:

 i. High disulfide bond formation—BL21 Origami B 
[66]

 ii. Codon Bias BL21 CodonPlus [67]; BL21 Rosetta
 iii. Temperature instability—BL21 ArcticExpress [14, 

31]
 iv. Toxic proteins—BL21 AI [68, 69], BL21 Tuner [70–

72].
 v. Low expression yield—BL21 pLysS [14, 73] and 

BL21 Star [74, 75].

The reason behind the selection of a specific strain is 
not overtly mentioned in the text in a majority of the 
cases investigated, but rather it may be inferred from the 
broader context of the study. The researchers’ selection 
could also be led by previous experience or through jus-
tification using structural bioinformatics to gain insight 
as to how a protein of interest may behave in vivo. Many 
options exist for specific expression issues, and therefore 
these strains are adopted on a case-by-case basis. BL21 
Origami (DE3), for example, was identified to be an ideal 
starting strain for the expression of maltooligosyl treha-
lose trehalohydrolase (MTHase) as the protein’s structure 
and, in turn, enzyme function was impacted by disulfide 
linkages [66]. Likewise, pLysS strains of BL21 showed 
promise to produce soluble levels of toxic proteins such 
as certain metalloproteins [76]. In other instances, the 
use of strains such as ArcticExpress are motivated by 
promoting solubility through facilitating expression at 
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low temperatures, which is a widely accepted strategy 
that is implemented to control the rate of synthesis.

In addition to the strains mentioned above, Rosetta, 
which has many variants available (Table  1), has a 
growing popularity as an E. coli host for DtE bacterial 

enzymes, engineered to have an increased tRNA supply 
for such codons as AUA, AGG, AGA, CUA, CCC, GGA, 
which are less abundant in E. coli [77–80]. Originally 
this strain was utilized for the expression of complex 
eukaryotic proteins [81]. However, it is often thought that 

Table 1 Commercial E. coli expression strains employed for the production of DtE enzymes (2010–2021)

Expressed industrial enzyme 
example

E. coli expression strain Commercial supplier Benefit References

Bis-γ-glutamylcystine ArcticExpress (DE3)
(B)

Agilent Technologies, Inc Expression at low temperatures 
with active molecular chaperones. 
Promotes ideal folding under low 
temperature conditions, increasing 
solubility

[183]

Malto-oligosyltrehalose trehalohy-
drolase

Origami™ B (DE3)
(B)

Merck KGaA Expression of proteins rich in in 
disulphide bonds. Promotes cyto-
plasmic disulphide bond formation

[66]

Phenol hydroxylase component 2 BL21-CodonPlus (DE3)
(B)

Agilent Technologies, Inc Expression of proteins rich in AGA/
AGG, AUA, and CUA. Promote 
correct synthesis and folding for 
proteins with rare codons in E. coli

[184]

Flavin reductase BL21(DE3)pLysS
(B)

Various Suppliers (Thermo 
Fisher Scientific, Promega 
Corporation, Merck KGaA)

Lower background expression, use-
ful for toxic proteins. Allows greater 
control over expression

[73]

Arylamine N-acetyltransferase [14]

Beta-glucosidase One Shot™ BL21 Star™ (DE3)
(B)

Thermo Fisher Scientific High expression of non-toxic pro-
teins. Promotes high expression of 
protein product

[74]

N-Acyl-d-glucosamine 2-epimerase Tuner™(DE3)
(B)

Merck KGaA Allows slower protein synthesis to 
promote solubility using adjustable 
inducer concentrations

[71]

Sphingomyelinase Rosetta/Rosetta 2 (DE3)
(B)

Merck KGaA Promote correct synthesis and 
folding for proteins (i.e. eukaryotic 
proteins) with rare codons (AGA, 
AGG, AUA, CUA, GGA, CCC, and 
CGG) in E. coli

[79]

Lysine 6-Dehydrogenase Rosetta-gami™ (DE3)
(B)

Merck KGaA Alleviates codon bias and enhances 
disulphide bond formation

[83]

2-hydroxyethyl-phosphonate meth-
yltransferase

Rosetta™ 2 (DE3)pLysS
(B)

Merck KGaA Alleviates codon bias and lowers 
background expression, useful for 
toxic proteins

[84]

Tryptophan-2-C-methyltransferase RosettaBlue™(DE3) pLysS
(B)

Merck KGaA Alleviates codon bias and lowers 
background expression, useful for 
toxic proteins. High transformation 
efficiency

[78]

Fructose-1,6-bisphosphate aldolase DH5α
(K12)

Various Suppliers (Thermo 
Fisher Scientific, New England 
Biolabs, Gold Biotechnology 
Ltd.)

Generally, a strain used for cloning 
and blue/white screening. (recA) 
mutation allows for better insert 
stability

[30]

Chitobiase M15
(K12)

Qiagen Generally used in conjunction 
with plasmid (pQE) found within a 
expression kit from Qiagen

[59]

Cellobiose phosphorylase JM109
(K12)

Promega Corporation Generally, a strain used for cloning 
and blue/white screening

[55]

Quinoprotein glucose dehydroge-
nase B

NovaBlue (DE3)
(K12)

Merck KGaA Generally, a strain used for cloning 
and blue/white screening

[57]

Fuculose-1-phosphate aldolase XL-1 Blue
(K12)

Promega Corporation Generally, a strain used for cloning 
and blue/white screening

[58]

Trehalose transferase TOP10
(K12)

Thermo Fisher Scientific Generally, a strain used for cloning 
and plasmid propagation

[61]
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tRNA limitations can factor into the formation of inclu-
sion bodies [82]. Other studies utilized modified strains 
of Rosetta such as Rosetta-gami-pLysS [83] and Rosetta 
pLysS [84], which bring additional benefits of the Ori-
gami and pLysS systems together with the enhanced 
tRNA supply of Rosetta (Table  1). Other enhanced 
expression strains, include BL21 Lemo21 [85] for pro-
teins potentially displaying toxicity effects such as mem-
brane proteins, currently exist in the market but are not 
included in Table  1 since these tools were not used as 
expression hosts for the studies selected within the scope 
of this review.

Specialized BL21 (DE3) E. coli strains were utilized 
in only 30% of the studied surveyed here and in a large 
majority of cases, these specialized strains had little effect 
in the context of their respective studies. It often appears 
that the success of such strains varies on a case-by-case 
basis based on the properties of the protein and the addi-
tional expression parameters used. Soluble expression of 
MTHase from Sulfolobus acidocaldarius was improved 
by 40% when this protein was expressed in E. coli Ori-
gami (DE3) as opposed to BL21 (DE3); this enzyme’s 
structure is dependent on disulfide linkages for proper 
folding. This study noticed the combination of E. coli 
Origami (DE3) in addition to using thioredoxin (Trx) as a 
fusion partner on pET32a improved the folding propen-
sity of MTHase [66]. Likewise, the use of maltose binding 
protein (MBP) coupled with rare tRNAs found in E. coli 
Rosetta (DE3) improved the expression of prenyltrans-
ferase (NovQ) by up to 50% [86].

In each of the cases described above, solubility was 
improved in combination with another experimental fac-
tor. It is therefore difficult to discern what the true impact 
of the specialized strains on the final recombinant prod-
uct. It is possible that a combination of such strain and 
experimental design parameter combinations impact the 
final end-product. BL21 CodonPlus (DE3)-RIL on its own 
demonstrated no improvement for Bacillus subtilis strain 
R5 laccase, however a 30% improvement was observed 
when the expression temperature was lowered from 37 
to 17  °C [11]. We require larger amounts of aggregated 
metadata to draw such accurate conclusions.

Despite their success in previous studies, topoisomer-
ase I from Mycobacterium tuberculosis when expressed 
in BL21 Arctic Express [87] or DAHP synthase from M. 
tuberculosis when expressed in BL21 Rosettagami [88], 
specialized strains remain an underutilized potential 
solution to address difficulties around the formation of 
inclusion bodies during heterologous expression of DtE 
enzymes (Fig.  1C). We observe that no specific special-
ized strain was preferred over the others; the variants of 
Rosetta, when treated as group, were the second most 
prevalent strain after BL21 (DE3) accounting for 13%.

It is possible that specialized strains have found lim-
ited use to date as they are a relatively recent develop-
ment in comparison to the first reports of BL21 (DE3); 
Studier and Moffatt introduced BL21 (DE3) in 1986 [89], 
whereas the specialized strains were developed years 
later; BL21 Origami in 2001 [90], BL21 Star in 2002 [91], 
and Rosetta-gami B in 2005 [92], offering a possible 
explanation for their current underutilization. One other 
possible reason could be that although modified strains 
have been designed to alleviate the impact of specific 
challenges persistently faced in the expression of DtE 
enzymes, they may have limited application areas out-
side the scope of their tailored use. This coupled with the 
additional costs to purchase each individual strain make 
this process economically unviable for many laborato-
ries. For these reasons, it is likely that long-established 
research environments prefer to opt for the tools (i.e. 
expression strains) that are readily available within their 
existing practice.

In 58% of the papers we reviewed, the research narra-
tive did not overtly mention experimental factors taken 
into consideration to promote solubility and rather 
focused on their downstream solubilization methodol-
ogy. From our observation, only the approaches that 
led to the final protein of interest were detailed in each 
paper, while other unsuccessful attempts may have been 
omitted.

Plasmid considerations for DtE enzyme expression
Whereas the previous section focused on different strains 
available for expression experiments there are actually 
far more variants of plasmid vectors employed in the 
past decade for the expression of difficult and problem-
atic enzymes in E. coli. We observed a large demographic 
of vectors utilized throughout. pET vectors were by far 
the most commonly employed (in 66% of cases), and they 
were primarily utilized in conjunction with DE3 strains 
since the T7 RNA polymerase gene of DE3 is required for 
efficient synthesis of sequences downstream of T7/Lac 
hybrid promoters present in many pET plasmids [93]. 
pET28 was the most popular choice of vector, featuring 
in approximately 31% of the studies that utilized pET 
derivatives, followed by pET21 [8, 29, 36, 94–96], pET32 
[97, 98], pET24 [99, 100], and pET15 [48, 77] (Fig. 1D).

The remaining 34% of plasmids did not fall into a sin-
gular group with high use and were uniquely employed 
in the study reporting them in varying frequencies. We 
observe that certain plasmids were used for specific pur-
poses; a similar observation to that of the specialized 
strains discussed previously. The pCold(I–III) plasmid set 
was used for expression at cold temperatures i.e., whereby 
expression is induced by the cold-shock response [83, 
101, 102]; this plasmid was used in conjunction with 
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ArcticExpress (DE3) for suitable expression at tempera-
tures below 13 °C. pACYC-Duet-1, with its two multiple 
cloning site locations, was utilized for the co-expression 
of native chaperones proteins from Pyrococcus furiosus 
as a strategy to promote proper folding of an α-amylase 
[103]. A full list of expression vectors used can be found 
in Additional file 1: Table S1.

Tight basal expression control of proteins appeared to 
be a key factor that was prevalent among the literature. 
In most instances, this control was managed through 
lower concentrations of inducer compounds such as 0.1–
0.5 mM IPTG for inducible promoters such as T7/lac [6, 
59, 65, 72, 104–106]. Soluble expression of Bacillus aci-
dopullulyticus pullulanase was highly dependent on the 
control of basal gene expression that was only achieved in 
pET22b/pET28a harboring an inducible T7/lac promoter 
as opposed to pET20b that contained a constitutive T7 
promoter region [104]. Tighter regulatory control was 
observed when a PHsh vector was used to moderately 
enhance the solubility of Thermus thermophilus HB27 
pullulanase. PHsh contains a synthetic heat-shock pro-
moter (Hsp); proteins synthesized on this vector system 
are regulated by the heat-shock transcription factor σ32. 
It was observed that E. coli JM10 reached a higher cell 
density and displayed a lower stress response in compar-
ison to expression using T7/lac in BL21 (DE3). To con-
trast, however, solubility of Mesorhizobium loti carbonic 
anhydrase was enhanced using the J23100 constitutive 
promoter in combination with a N-terminal TrxA fusion 
on a pSUM backbone and co-expression of GroEL/
ES; this improvement was in comparison with a similar 
experimental design with pET28a and pET32a using an 
inducible promoter system [107].

These examples represent a small fraction of the 
options available for expression plasmids, with variants 
available from different manufacturers. The vast num-
ber of vector-expression strain combinations allow for a 
range of different possibilities for researchers to custom-
ize their experimental designs. Customarily, commercial 
suppliers offer plasmids with different combinations of 
promotors, selection markers, multiple cloning sites, 
and fusion tags adding further to the myriad of combina-
tions a researcher can ultimately choose to utilize in their 
designs. Discussion of factors contributing to the final 
design were extremely limited; this further contributes to 
the challenge of facilitating rational decision making for 
designing protein expression studies.

Use of fusion tags in construct designs
77% of publications discussed the use of at least one 
fusion tag within their design; polyhistidine tags (His-
tag) comprised 83% of all tags used. Fusion tags are 
essential tools for protein recovery as well as for the 

analytical quantification of products. Commercial plas-
mids often contain peptide sequences encoding tags 
that can be used for purification, act as reporter genes, 
or promote solubility. pSUMO/Champion™ pET SUMO 
Expression System are examples of plasmids engineered 
to contain a native SUMO tag to enhance the solubility 
of fused proteins [78, 108, 109]. A majority of pET vec-
tors such as pET28, pET15, and pET21 contain incorpo-
rated His-tags, adjacent to multiple cloning sites, that can 
be used for downstream purification using immobilized 
metal affinity chromatography columns (see manufac-
turer’s manual, Novagen, accessed June 2021). This could 
explain why we observe a larger use of pET expression 
vectors and His-tags in these enzyme characterization 
studies. However, it is important to note that His-tags 
can be incorporated independently of features encoded 
on plasmids using specific primers encoding the His-tag 
sequence.

Apart from facilitating affinity purification [110–112], 
fusion tags can serve essential roles to enhance and pro-
mote the solubility of difficult to express enzyme con-
structs. In a small fraction of the studies reviewed here 
(16%) peptide tags such as thioredoxin (Trx) [66, 98, 113], 
glutathione S-transferase (GST) [114], small ubiquitin-
related modifier (SUMO) [108], and maltose binding pro-
tein (MBP) [70] were used to promote solubility (Fig. 1E). 
These values were calculated based on whether the text 
mentioned the tag in their narrative. As mentioned pre-
viously pET32a, for example, contains a TrxA tag, how-
ever the number publications mentioning both pET32a 
and TrxA is not equally proportional. Therefore, the fre-
quency of use for these fusion partner proteins may be 
higher in reality; it is difficult to interpret based on cur-
rent metadata reporting practices.

The widespread use of the His-tag system suggested 
that bench-scale enzyme characterization studies pri-
oritized producing an enzyme product regardless of its 
physicochemical state; we observe these publications 
mention protocols for refolding inclusion bodies back 
to their native state following downstream purification. 
However, the preventative steps considered to avoid the 
formation of inclusion bodies in the first place were not 
explicitly mentioned. Furthermore, in some cases pro-
duction of inclusion bodies was a preferred strategy for 
ease of purification or as the only means to achieve large 
amounts of protein for characterization. However, as 
mentioned previously, this approach is not economically 
feasible for industrial scale manufacturing.

Suppliers such as Novagen provide tags within a major-
ity of their constructs for fusion at the N-terminal (see 
manufacturer’s manual, Novagen, accessed June 2021). 
We observed a twofold stronger preference for N-ter-
minal allocation of the His-tag than for C-terminal 
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allocation in the reviewed literature [58, 104, 114–116]. 
C-terminal fusions were found in a limited number of 
cases [35, 40, 42, 51, 57, 117–119]. However, the discus-
sion on the factors contributing to this predilection was 
limited; our analysis of the reviewed literature did not 
indicate a strong benefit received from either choice in 
terms of the physical condition of the final product. The 
choice of tag location is typically guided by an enzyme’s 
structure, as to not interfere with the active site during 
catalysis. Fusion partners attach additional peptide resi-
dues to the construct. This could, in some cases, increase 
the possibility of misfolding due to the increased size of 
the construct, although this was not explicitly acknowl-
edged or studied in detail. Primarily, studies using His-
tags did not mention downstream removal of the tag 
from the protein of interest; generally larger fusion 
partners such as MBP [86], TrxA [120], or SUMO [109] 
were removed via protease cleavage sites following 
purification.

Our analysis suggests that the adoption of fusion part-
ners is mainly for purification and is not a widely utilized 
technique to promote solubility of DtE enzymes despite 
past successes [121, 122]. The few instances, mentioned 
previously, showed MBP and TrxA promoting solubility 
in conjunction with other experimental parameters like 
temperature, inducer concentration, and/or expression 
strain. However, it is difficult to discern whether these 
fusion partners have merit for a wider range of proteins. 
A full list of fusion tags used can be found in Additional 
file 1: Table S1.

Role of systems biology in addressing 
the challenges around the formation of inclusion 
bodies
The physiological effects of expressing a recombinant 
enzyme in E. coli was infrequently considered in the lit-
erature that we have discussed until now. Heterologous 
protein expression in prokaryotic recombinant systems 
is not always a straightforward task following a clear and 
well-defined recipe. Biological processes are optimised 
for supporting the organism’s survival; overexpression of 
foreign enzyme products causes system-level responses 
in the transcriptome, metabolome, and proteome of 
E. coli as observed by dynamic changes introduced to 
gene expression [123]. Recombinant protein expres-
sion and the overproduction of a heterologous protein 
was reported to potentially create a large burden on the 
cell, consequently leading to stress [4]. Although E. coli 
cells are agile, they can only adapt to stress conditions, 
such as increased protein synthesis, to a certain limit. In 
such instances, metabolic resources normally dedicated 
to cell propagation would then need to be committed 
to the synthesis of a non-endogenous protein product. 

Additionally, the production of misfolded aggregates 
would lead to the accumulation of low-quality products 
that the cell would not be able to breakdown or fully 
refold back to their native state [123].

Within our analysis, the discussion of changes at the 
metabolomic or the proteomic level in response to over-
expression was very limited. Understandably, this was 
not the intent nor the purpose of the research narrative 
in the evaluated studies. Research appears to take advan-
tage of inclusion bodies; these act as sources of relatively 
pure, stable, and large protein deposits that can be easily 
isolated for refolding, as a means to end to generate the 
enzyme of interest [124]. However, it does beg the ques-
tion whether this experimental design can be improved 
with a holistic, systems perspective to optimize protein 
synthesis, promote solubility and in turn reduce the need 
for additional downstream processing steps. Within this 
field of research, we find a growing number of alterna-
tive outlooks, led by omics-based techniques and bioin-
formatics, which could potentially be used to modify or 
evaluate experimental parameters to improve the expres-
sion of DtE enzymes. We will discuss these approaches 
in addition to the use of computational tools within our 
selected review papers in the subsequent sections.

Role of bioinformatics and modelling within our literature 
survey
Among the selected literature, the use of bioinformat-
ics and modelling tools for structural and functional 
characterization was discussed in 19% of cases. Primar-
ily, computational methods we found to be used in the 
context of identifying uncharacterized gene clusters 
encoding enzymes from environmental samples such as 
a cold-active esterase from Rhodococcus sp. AW25M09 
found in arctic ocean water [125] or a halotolerant lipase 
from Marinobacter lipolyticus found in the hypersaline 
regions of southern Spain [42]. Adaptation traits provide 
molecular biologists and industrial manufacturers addi-
tional tools capable of withstanding adverse conditions 
of temperature, pH, chemicals (i.e. co-solvents), or salin-
ity for example [126]. In other instances, genome mining 
of sequenced organisms or related species highlighted 
uncharacterized variants of well-known enzymes such as 
sarcosine oxidase [127], or β-agarase [108].

Homologous sequence alignment tools, such as BLAST 
[128] were used to assess and compare the similarity of 
novel enzymes to known sequences found within the 
GenBank online database [129]. The conserved regions 
for a given enzyme were compared across species using 
alignment programs such as EMBL-EBI’s Clustal Omega 
[130–133] or other algorithms such as Needleman–Wun-
sch Global Align Nucleotide Sequence [68, 134]; these 
conserved domains, such as active site residues, assisted 
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researchers to interpret and predict an enzyme’s func-
tion [135]. Beyond these methods, we observed the use 
of SWISS-MODEL [127, 135–137] and PyMOL [42, 138] 
for comparative 3D modelling of the evolutionary rela-
tionship between target proteins and the prediction of 
substrate-enzyme docking interactions. It is expected 
that this methodology for predictive structural modelling 
of new DtE enzymes will be highly influenced by inno-
vations incorporating novel neural network architectures 
such as AlphaFold [139]. In a limited number of cases 
(5%) SignalP prediction server [140] was used to detect 
putative signal sequence motifs in the gene sequence of 
the novel enzyme and extrapolate the native subcellular 
localization the enzyme when expressed [108, 132, 141, 
142].

Peptide sequence‑driven computational methods 
to predict solubility of DtE enzymes
Sequence-based analyses can highlight the folding pat-
terns of proteins such as how surface residue patches can 
interact with their surrounding environment. Protein 
engineering research has observed that larger patches 
of positively charged residues and hydrophobic surface 
residues impact aggregation within proteins. A mutation 
in a single residue can tremendously impact the charge 
distribution of recombinant proteins and in turn increase 
solubility [143]. Furthermore, restricting the exposure 
of hydrophobic patches on a protein’s surface has been 
shown to increase the likelihood of producing a soluble 
protein in aqueous environments, depending on the ratio 
of hydrophobic to polar amino acids on its surface [144].

Sequence-based modelling tools, derived from the sta-
tistical solubility model of Wilkinson and Harrison [145, 
146], such as PROSO II and SOLpro can help predict 
the solubility of a protein by its amino acid composition. 
These tools take sequence-specific factors including fold-
ing propensity, residue charge, cysteine fractions, and 
hydrophilicity, into consideration in their algorithms 
[24, 147]; often, these programs can be a preliminary 
resource to predict the folding patterns of a protein of 
interest. In the past, similar sequence-based prediction 
methods were used to evaluate plasmid design by rank-
ing the choice of expression constructs with fusion car-
rier proteins such as NusA, GrpE, and thioredoxin bound 
to insoluble protein human interleukin-3 (hIL-3) in E. 
coli [148]. It was found that this method was success-
ful in predicting the effectiveness of a given tag in pro-
moting solubility when fused to hIL-3. In another study, 
Chan et  al. applied a model-based approach to assess 
the cloning regions of six vector designs for the effect of 
varying the location of solubility fusion tags (Trx, MBP, 
NusA) and affinity tags such as the His-tag on the solu-
bility of their product; their methodology presented a 

model to evaluate the design of plasmids for recombinant 
expression—validated by machine-learning based pre-
diction tools [149]. Often, despite their potential, such 
modelling-based tools are still criticized for disregard-
ing sequence-independent features such as growth tem-
peratures, media conditions, inducer concentration, etc. 
that also play a role in the formation of inclusion bodies 
[150]. Furthermore, there is a need to validate such mod-
els through experimental methods. The sequence-based 
protein design algorithm—PROSS has already been vali-
dated by community-motivated efforts against a range of 
DtE proteins; it was found that 9 out of 14 target proteins 
showed improvement in heterologous expression under 
the experimental conditions designed by the prediction 
tool [151].

However, recent efforts on the recombinant expres-
sion of DtE enzymes in E. coli did not indicate bioinfor-
matics were involved with experimental or amino acid 
sequence evaluation—despite the open-access to such 
tools. For example, our analysis did not observe a sys-
tematic consideration when selecting fusion partners in 
the design of an experiment, but the process was rather 
ad hoc, with decisions likely being made based on prior 
experience. Contrary to existing practices, computational 
sequence-based modelling tools may be useful to predict 
how a protein may be expressed based on the design of 
an expression vector in addition to guiding protein engi-
neering. Design modifications can be made based on 
these predictive models on the road to promoting the 
solubility of a DtE enzyme. The use of these advanced 
technologies can expand our capabilities to systemati-
cally investigate aspects of protein biology and streamline 
our decisions for future experimentation.

Codon bias and peptide sequence as modulators of correct 
folding
Recombinant expression was reported as arguably one of 
the most metabolically taxing activities that an organism 
could undergo [4]. It requires an abundance of resources 
in the form of energy and raw materials, and therefore 
there is a limit to the extent of resources each organism 
could allocate to such a task. When the resource demand 
surpassed an organism’s capacity, a stress response was 
observed, accompanied by a decrease in biomass pro-
duction and growth rate due to the rewiring of metabolic 
fluxes in the cell [152]. Beyond energy and metabolite 
shortages, this stress response could also manifest itself 
in the form of cellular component shortages through 
changes in global gene expression [153].

Beyond folding patterns, the amino acid sequences of 
a protein can drastically impact the metabolic stress that 
E. coli may undergo during overexpression of exogenous 
proteins. The change of even a single amino acid residue 
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was reported to impact the metabolic burden of E. coli 
during recombinant expression; these minor changes 
were shown to negatively impact cellular respiration 
activity and heterologous protein production levels [154]. 
Studies also revealed that silent exchanges in specific 
synonymous codons could impact growth, protein pro-
duction levels, and respiration activity—demonstrating 
the growth sensitivity of E. coli to amino acid sequences 
[155]. Understanding codon biases and optimizing pep-
tide sequences in accordance with the genetic makeup 
of the expression host was reported to be elemental in 
achieving a high-performing expression system [156].

Codon optimization was considered in only 16% of the 
work addressing issues around improving the recom-
binant protein expression performance of DtE enzymes 
in E. coli. It is possible that a conscious choice has been 
made not to codon optimize, as an expression strategy. 
The placement of rare codons with an mRNA region can 
promote stability in addition to ribosomal stalling allow-
ing extra time for folding of problematic peptide regions 
[157]. These studies purchased synthetic genes from 
commercial manufacturers including GenScript USA Inc. 
[132, 158, 159], Invitrogen [96, 160], Sloning BioTechnol-
ogy GmbH, and Synbio Technologies [47] that carry out 
codon optimisation on their products as a default ser-
vice. The Graphical Codon Usage Analyser [41] and the 
Genescript Rare Codon Analysis Tool [72] were used 
for in-house codon analysis [6, 40]. This, however, does 
not rule out the possibility that codon optimization 
was carried out more extensively, but was not explicitly 
acknowledged in each respective publication. This ambi-
guity obscures the evidence about whether inclusion 
bodies were formed despite codon optimization or not 
and may limit the reproducibility of these experiments in 
the future. In select cases, DtE enzymes were expressed 
in commercial E. coli strains such as Rosetta, which were 
specifically recommended for alleviating codon bias in E. 
coli [27, 77–79] in addition to CodonPlus [67, 82, 161]; 
this may be a potential initial strategy to express a non-
codon optimized gene.

Cellular quality control mechanisms and the role 
of molecular chaperones
Molecular chaperones play an essential role in facilitating 
the recovery of misfolded protein aggregates. This in vivo 
quality control naturally exists within E. coli as its natu-
ral metabolism relies on cellular proteins that depend on 
appropriate folding patterns for proper function [162]. 
Recent research has found that chaperone systems such 
as GroEL/ES interact with a specific, smaller subset of 
the total proteome; this suggested that individual pro-
teins in E. coli’s proteome were predetermined to be 
under the direct quality control management of a specific 

chaperone system such as GroEL/ES, Trigger factor (TF), 
or DnaKJE rather than this process being a random event 
[162, 163]. The challenge has been in determining which 
proteins would be assigned as substrates for specific 
molecular chaperones, and what attributes determine 
this distinction. Microarray studies showed that inclusion 
body formation led to the upregulation of genes associ-
ated with protein refolding and the heat shock genes, 
in addition to those associated with proteolysis [123]. 
Furthermore, molecular chaperones were reported to 
directly interact with aggregated recombinant protein 
products [164, 165].

Understanding the underlying factors that determine 
protein-chaperone interactions would be useful in ensur-
ing that the correct chaperone would be favourably 
upregulated during protein expression. Chaperone-sub-
strate interaction models were explored using metabolic 
network analysis techniques to understand the distribu-
tion of chaperone substrate enzymes in the metabolic 
network of E. coli; Takemoto et  al. observed that meta-
bolic enzymes that act as chaperone substrates became 
extensively distributed in the metabolic network as the 
chaperone requirements increased [163]. Although only 
limited amount of work has been reported in this field, 
detailed bioinformatics and metabolic network analy-
ses could improve our understanding of the interaction 
patterns of molecular chaperones with recombinant 
proteins.

Analysis of sequence homology may prove useful to 
gain detailed insight into chaperone-substrate interaction 
patterns. Raineri et al. found closely related proteins from 
the E. coli and Salmonella typhimurium proteome, which 
were likely to show similar behavior and interact with the 
same or related chaperones in the GroEL system [166]. 
Therefore, sequence homology affects a recombinant 
enzyme’s interactions with molecular chaperones and 
has an indirect effect on the amount of product recov-
ered from a misfolded state, and consequently on prod-
uct titre. Mutations or changes introduced to the amino 
acid sequence of the peptide to be folded was reported to 
hinder the correct operation of the chaperone-mediated 
folding pathway [165]. This would be a risk to consider 
even in the case of beneficial mutations such as those 
introduced by site-directed mutagenesis to improve the 
catalytic activity of enzymes [158, 167–169].

Understanding these chaperone-substrate interac-
tion patterns could be useful to selectively target and 
upregulate specific chaperone genes compatible with 
the DtE enzymes of interest to assist in folding. Co-
expression of specific chaperones such as DnaK, DnaJ, 
GrpE, GroEL, GroES, or tig using commercial molecular 
chaperone plasmid sets from Takara Bio was observed 
in 12% of cases surveyed. This strategy proved useful 
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in every case, with a varying degree of success depend-
ing on the study. However, this method is not as simple 
as expressing all chaperones at once. Soluble expression 
of Psychrobacter sp. lipase (Lip-498) 15  °C using pColdI 
plasmid was hindered by the individual co-expression 
of tig (pTf16) and GroEL/ES (pGro7) with the enzyme 
comprising 0.9% of total soluble proteins [170]. Lip-498 
comprised 11.8% soluble protein when tig and GroEL/ES 
were co-expressed simultaneously. This value increased 
to 19.8% of total soluble protein when DnaK/DnaJ/GrpE 
and GroEL/ES (pG-KJE8) were co-expressed simultane-
ously. pGro7 and pG-KJE8 had the highest frequency of 
use among all commercial chaperone sets. Alternatively, 
a study by Peng et al. [103] showcased that native chap-
erones (Hsp60 and small heat-shock protein) of Pyro-
coccus furiosus can improve the soluble expression of its 
α-amylase in E. coli BL21 (DE3). It is unclear whether the 
co-expression of chaperones will always provide ben-
efit, however, there is scope to investigate this hypothesis 
further.

‘Omics’‑based investigation to improve experimental 
design and host genetic background
In the past, recombinant protein expression and its 
associated stress responses have been investigated at 
the ‘omic’-level in E. coli with the aim of improving het-
erologous expression performance. E. coli cells have 
demonstrated transcriptional changes at the global 
level in response inclusion bodies within the cytoplasm 
[123]. Genes taking an active role in protein folding (i.e. 
molecular chaperone genes), protein synthesis (i.e. ami-
noacyl-tRNA synthetases and ribosomal genes), and 
genes responsible for energy metabolism (e.g. ATP syn-
thase) were observed to have a dynamic upregulation in 
response to the formation of inclusion bodies of recom-
binant protein fusions tagged with green fluorescent 
protein (GFP) [123]. Sharma et al. [171] provided a com-
parative analysis of how metabolic networks in E. coli 
BL21 (DE3) were reorganized in response to the physical 
state of the end protein product being soluble or being 
confined to inclusion bodies. Their study employed fed-
batch cultures, mimicking industrial conditions, to over-
express rhIFN-b, xylanase and GFP; the transcription of 
amino acid biosynthesis and uptake genes was reported 
to be upregulated during inclusion body formation 
whereas the expression of these genes was downregu-
lated during soluble expression, indicating that the solu-
bility of the recombinantly expressed protein had a global 
impact on the transcription of the metabolic genes in E. 
coli [171].

The endometabolome of a cell is often thought to 
provide a physiological snapshot of a cell at a specific 
point in time. Chae et  al. used two-dimensional NMR 

spectroscopy to evaluate the effect of stressors on the 
endometabolome of E. coli. They assessed the effects 
of elevated NaCl concentration as a stressor for E. coli 
expressing recombinant proteins; at high NaCl concen-
trations, the cells accumulated maltose and 2-hydroxy-
3-methylbutanoic acid, which, in turn, promoted the 
solubility of two of the eleven aggregation prone proteins 
that were investigated in the study [172]. The names of 
these proteins were not explicitly mentioned in the text. 
Recombinant protein expression is a source of cellular 
stress on its own, therefore these fingerprinting studies 
can assist with pinpointing differences in the metabolite 
profiles of expression systems based on changes in the 
experimental conditions that the cells are exposed to dur-
ing recombinant expression. The information gained at 
the metabolomic level could assist designing an experi-
ment to redirect metabolic flux towards the intracellular 
accumulation of specific metabolites to overcome or alle-
viate inclusion body formation. Furthermore, inferences 
from this type of analysis can guide the choice of media. 
It was observed that factors including maintaining a pH 
6 medium [45], the addition of betaine as an osmolyte 
[106], and the addition l-arginine [173] could improve 
the solubility of the final product in three studies, how-
ever ad hoc methods led to this discovery.

Supporting the design of expression studies with 
‘omics’-based analyses could prove to be a useful strategy 
to improve solubility in addition to improving cellular 
biomass. The transcriptomic, metabolomic, and prot-
eomic profiles of the E. coli expression hosts were under 
consideration in only one study within the scope of this 
review. This study discussed the use of metabolic engi-
neering for the active production of xanthine dehydro-
genase; their work demonstrated that the combinatorial 
overexpression of three global regulator and chaper-
one/helper proteins could improve the specific activity 
and solubility of their enzyme by up to 129% [174]. We 
proposed that ‘omic’-level information in combination 
with sequence-based modelling, codon optimization, or 
molecular chaperone studies could help us better under-
stand E. coli as a production organism. Heterologous 
overexpression of proteins by E. coli can be considered to 
mimic the operation of a cell factory; ‘omics’-based tech-
nologies provide a level of process management over the 
operation by identifying the underlying bottlenecks in 
the manufacturing process in order to improve efficiency.

Outlook: need for a systematic roadmap to address 
the demands of an expanding field
Our review of literature since 2010 showed that although 
the field of recombinant protein expression is associ-
ated with a plethora of knowledge, a systematic road-
map to help guide researchers to express problematic 
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enzymes does not yet exist. We observe a variety of dis-
parate practices and approaches adopted in the interest 
of promoting solubility, and the process is often led by 
ad hoc decisions. There is no standardized guideline for 
how enzyme expression is approached. Through experi-
ence researchers choose to adopt at least one method to 
preemptively reduce the possibility of their expression 
system to form inclusion bodies. Strategies could include 
inducing protein synthesis at low temperatures to reduce 
the rate of protein synthesis, and consequently promote 
correct folding, and to provide sufficient time for intra-
cellular molecular chaperones to act [94, 156, 160]. This 
was a successful strategy in 14% of examples, with tem-
peratures ranging from 10 to 25 °C as opposed to 37 °C, 
however even this strategy does not always lead to suc-
cess solubility [175]. Reducing the inducer concentration, 
using plasmids with low copy numbers, or alternative 
promoters [176] are additional strategies employed.

The bulk of literature surveyed in this review focused 
on functional and structural characterization of enzymes. 
It appears that if the initial design led to soluble product, 
the follow-up experiments were conducted as planned. 
However, in the event that the heterologous protein 
product was not soluble, a trial-and-error approach 
was employed to achieve the correct combination of 
parameter settings to promote solubility. This approach 
was observed to be successful on individual cases but 
does not provide any guarantee of success. Each study 
employed quality control parameters in the form of cata-
lytic activity assays to assess the final product; each qual-
ity control measure varied based on the specific enzyme 
evaluated. Expression system design may be dictated by 
previous experience or limited by the availability of the 
tools and materials in the individual lab in which the 
experiments were carried out. This may explain the lim-
ited use of specialized expression strains or alternative 
plasmid backbones, for example, that would provide an 
additional cost without a guarantee of success.

Our analysis has found no consensus in reporting 
basic aspects of the experimental protocol as indicated 
by these studies. The details on the gene of interest (i.e. 
its native host, amino acid sequence), how it was modi-
fied prior to expression (i.e. codon optimization carried 
out or not), and in certain cases the rationale behind 
how the vector was designed, or the choice of host, can 
all play an important role in shaping future work related 
to that expression system, as well as providing guidance 
for future studies. A lack of these details can lead to low 
reproducibility for research in this field. We believe that 
this necessitates the development of a minimum infor-
mation standard scheme to systematize work in this field 
as a community effort, similar to existing efforts such as 
MIAPE or MIPFE for proteomics studies to standardize 

the reporting practices of experimental metadata rel-
evant to structural and/or functional quality attributes 
of recombinant protein expression experiments [177, 
178]. This information is required to facilitate repro-
ducibility to build upon. A systematic collection of this 
standard metadata in database repositories in standalone 
format or accompanying any relevant experimental data 
is required. This metadata can also serve as foundation 
for modelling and bioinformatics in the field.

Amalgamated metadata detailing attempts to improve 
recombinant product solubility can potentially lead to 
the rapid discovery of broadly applicable rules for solu-
ble enzyme expression in E. coli. While this review itself 
does not attempt to derive such rules, nor is there suf-
ficient information available to derive these rules at this 
time, it is important to highlight this relevance. One 
effort that could assist the development of such a road-
map for recombinant enzymes would be to investigate 
the literature in which solubility of the enzyme product 
was successfully achieved from the start. Certain strate-
gies used successfully for non-enzymatic protein includ-
ing the use of inteins [179], reduced genome E. coli 
strains [180], or chromosomal integration [181, 182], 
though not discussed in this review, can provide further 
insights to support the efforts discussed above; however, 
the transferability of such techniques between protein 
types needs to be further understood. Furthermore, this 
volume of aggregated metadata highlighting all success-
ful, partially successful, or unsuccessful experimental 
expression conditions can assist us to develop a strate-
gic, evidence-based workflow for soluble recombinant 
enzyme production.

The availability of a wide range of non-dominating 
options for the strains, vectors, and the design tools 
indicates a strong drive among researchers to have 
increased control over their experimental design to 
overcome the challenges that are associated with DtE 
enzymes. However, the current literature reveals a dif-
ferent landscape where these techniques were often 
underutilized or overlooked. This presents an opportu-
nity to approach the challenge systematically. An under-
standing of the most frequently utilized tools—the 
expression strains, vectors, and the experimental con-
ditions, can serve as a baseline for researchers to opti-
mize their expression models from the start. In cases 
where this proves ineffective, the use of an integrated 
systems biology approach based on bioinformatics, 
modelling, and/or ‘omics’ technologies can highlight 
problematic pitfalls in the experimental design and 
provide additional information on the system of inter-
est (Fig.  3). In other instances, these approaches can 
be adopted as a preliminary investigation before labo-
ratory applications are made. The combination of all 
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these approaches will assist in determining successful 
experimental conditions to recombinantly express a 
challenging candidate enzyme—promoting solubility.
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