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Future in situ space plasma investigations will likely involve spatially distributed
observatories comprised of multiple spacecraft, beyond the four and five spacecraft
configurations currently in operation. Inferring the magnetic field structure across the
observatory, and not simply at the observation points, is a necessary step towards
characterizing fundamental plasma processes using these unique multi-point, multi-scale
data sets. We propose improvements upon the classic first-order reconstruction method,
as well as a second-order method, utilizing magnetometer measurements from a realistic
nine-spacecraft observatory. The improved first-order method, which averages over select
ensembles of four spacecraft, reconstructs the magnetic field associated with simple
current sheets and numerical simulations of turbulence accurately over larger volumes
compared to second-order methods or first-order methods using a single regular
tetrahedron. Using this averaging method on data sets with fewer than nine
measurement points, the volume of accurate reconstruction compared to a known
magnetic vector field improves approximately linearly with the number of measurement
points.

Keywords: plasma physics, magnetic fields, spacecraft, vector field reconstruction, space physics, curlometer,
space mission analysis, multi-spacecraft analysis

1 INTRODUCTION

Plasmas, which are ubiquitous throughout the Universe, are readily available for study in the natural
laboratory of space. Electromagnetic fields play a fundamental role in the transport, heating, and
acceleration of charged particles that compose plasmas. In order to characterize fundamental
processes governing heliospheric plasmas, the space plasma community has utilized in-situ
spacecraft measurements of electromagnetic fields and charged particles. These in-situ
measurements include the characterization of the vector magnetic field B at a spacecraft via
magnetometers; see §2.4 of Verscharen et al. (2019).

Knowledge of B from a single magnetometer is limited; single-point measurements can not
construct the full three-dimensional structure characteristic of processes such as magnetic
reconnection and plasma turbulence. To avoid this shortcoming, ESA’s CLUSTER (Escoubet
et al., 2001), NASA’s THEMIS (Angelopoulos, 2008) and MMS (Burch et al., 2016) missions
have employed four- and five-spacecraft configurations, where each spacecraft is equipped with an
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instrument suite that includes a magnetometer. These missions
study the boundaries of the Earth’s magnetosphere, including
how magnetic reconnection transfers magnetic energy into
kinetic energy of plasma particles.

Analysis techniques have been created for multi-spacecraft
missions, such as CLUSTER, which search for specific types of
plasma waves (Constantinescu et al., 2006) and which analyze
current sheet structure (Narita et al., 2013) for a four spacecraft
configuration. Knowledge of the direction of wave propagation
allows us to use multi-spacecraft filtering (Pinçon and
Motschmann. 1998) to determine the general polarisation
properties of any multi-point measurement of a wave field in
space plasmas. Measurements from exactly four spacecraft (e.g., a
tetrahedron of spacecraft) can be used to estimate current density
via the Curlometer technique (Robert et al., 1998).

The Cluster and MMS missions have also utilized the
Curlometer technique to interpolate the value of the magnetic
field over a region near the tetrahedron’s barycenter, regardless of
the field’s geometry. However, these interpolations are limited to
measuring fluctuations on a scale on the same order as that of
their inter-spacecraft distances (e.g., Robert et al., 1998; Forsyth
et al., 2011). To study multi-scale processes, such as plasma
turbulence, with structures on characteristic length scales that
cover many orders of magnitude, we must employ measurements
from more than four spacecraft. Therefore, we develop a method
which extends the magnetic field reconstruction technique
Curlometer to configurations of more than four spacecraft.

Many suchmulti-spacecraft missions have been proposed, e.g.,
Cross-scale (Schwartz et al., 2009), AME (Dai et al., 2020) and
HelioSwarm (Klein et al., 2019), but in order to optimize such
missions, it is urgent to robustly quantify the impact of particular
spacecraft configurations on multi-point analysis methods,
capturing the effects of the physical scales spanned by the
spacecraft in the observatory and the geometry of the
polyhedra that can be drawn from the constituent spacecraft.
Such quantification will help demonstrate that a proposed
mission will be able to usefully analyze a large number of
magnetometer measurements made in the pristine solar
wind,magnetosphere, and magnetosheath. It will also assist in
the optimization of spacecraft configurations and quantification
of errors derived from multi-point, multi-scale measurements. In
this paper, we focus on the fidelity of the reproduction of the
magnetic field using a sparsely sampled set of measurements
whose spatial configuration is based upon realistic configurations
of the proposed nine-spacecraft HelioSwarm observatory,
described for instance by Plice et al. (2020).

The reconstruction method is described in §2, the results are
applied to two magnetic field models, including a numerical
simulation of turbulence, in §3, with a concluding discussion
in §4.

2 METHODOLOGY

2.1 Geometrical Definitions
Given N spacecraft, we identify C(N, k) polyhedra with k vertices.
As spatial divergence analysis methods (e.g., Dunlop et al., 1988;

Paschmann and Daly, 1998, 2008) require at least four vertices to
resolve three-dimensional structure, we only consider polyhedra
with at least four vertices, known as tetrahedra. For N � 9, there
are 126 (i.e., 9 choose 4) tetrahedra, 126 polyhedra with five
vertices, 84 with six vertices, 36 with seven vertices, 9 with 8
vertices, and 1 with 9 vertices, for a total of 382 polyhedra with at
least four vertices.

Each polyhedron is characterized in terms of its size and shape.
Because measurements from all d spacecraft are weighted equally,
we define the barycenter of the qth polyhedron with set D of d
vertices drawn from the N ≥ d spacecraft positions xi as

xq,d0 � 1
d
∑
i∈D

xi. (1)

Given the barycenter, we then define the volumetric tensor of the
qth polyhedra with set D of d vertices as

Rq,d
jk � 1

d
∑
i∈D

xij − xq,d0j( ) xik − xq,d0k( ). (2)

Here xij represents the jth ∈ {x, y, z} component of the position
vector for the ith spacecraft. The eigenvectors of the tensor Rq,d

represent the three semi-axes of the polyhedra and are associated

with the eigenvalues aq,d �
����
Rq,d
1

√
(major axis), bq,d �

����
Rq,d
2

√
(middle axis), and cq,d �

����
Rq,d
3

√
(minor axis), where a ≥ b ≥ c

(a more detailed analysis of the eigenvalues can be found in Chapt
12 of Paschmann and Daly, 1998).

To provide a useful geometric interpretation of these shapes,
we define a characteristic size L, as well as an elongation E and a
planarity P (see chapter 16.3 of Paschmann and Daly, 1998)1:

L � 2a
E � 1 − b/a
P � 1 − c/b.

(3)

2.2 Reconstruction Techniques
2.2.1 First-Order Method
In a first-order Taylor series expansion, we use the values of the
magnetic field, B, measured at four spacecraft positions xi to
estimate the value of B (and its corresponding directional
derivatives) at any other point in space, ξ (Fu et al., 2015,
2020). The Taylor expansion is:

B̂
i

m � Bm + ∑
k∈{x,y,z}

zkBmr
i
k∀i ∈ {1, 2, 3, 4},m ∈ {x, y, z}. (4)

In this equation B̂
i
m is themeasuredmth component ofB at the ith

spacecraft, Bm is the computed mth component of B at ξ, zkBm is
the computed derivative of the mth component of B with respect
to the kth direction at ξ, and rik is the relative position of

1Note that there is some discrepancy in the community about pif the elongation
should be defined as E � 1 — b�a or E � 1 —1; (b�a)2, with a similarly subjective
choice for planarity. Both definitions span the same range, and we have opted for
the former definition.
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spacecraft i with respect to ξ. In other words, if xik is the kth
component of spacecraft i’s location, then rik dxik − ξk.

This is a system of 12 equations with 12 unknowns, where the
12 equations represent the x, y, and z components of B for each of
the four spacecraft. The 12 unknowns are the x, y, and z
components of B at ξ and the nine terms in the Jacobian of B
at ξ.

This system can be reformatted into linear (Ax � b) form and
solved with a common linear system solver. This 12-dimensional
linear system (shown in full detail in Supplementary Appendix
SA, Eq. A8) comprises the first-order reconstruction method.

This magnetic field reconstruction method is related to the
Curlometer method (Dunlop et al., 1988; Robert et al., 1998),
which utilizes Ampère’s law to calculate the current density J as
the curl of B. The Curlometer solves the same set of equations, but
uses the partial derivatives to estimate the current density at the
center of each tetrahedron. The Curlometer method has been
widely applied to four-spacecraft magnetic field measurements
made for instance by Cluster and MMS (c.f. Chapter 16.2 of
Paschmann and Daly, 1998). Future missions, such as the
proposed HelioSwarm Observatory (Klein et al., 2019), will
have more than four spacecraft. Therefore, for every
reconstructed point, ξ, we can apply this reconstruction
method for each of the C(N, 4) tetrahedra and average the
reconstructed values, yielding a statistically larger base of
estimates and improving the accuracy of the reconstruction.

2.2.2 Second-Order Method
Because the proposed HelioSwarm Observatory has nine
spacecraft, we can use measurements of B from all nine spatial
points simultaneously to apply a second-order reconstruction
method. This method, also based on a Taylor series expansion, is
more accurate for values located near the center of the expansion
(i.e., near the barycenter of the nine-spacecraft constellation) than
a single implementation of the first-order method. Following the
work of Torbert et al. (2020), we write:

B̂
i

m � Bm + ∑
k∈{x,y,z}

zkBmr
i
k +

1
2

∑
j,k∈{x,y,z}

zjzkBmr
i
kr

i
j ∀i ∈ {1, . . . , 9},m ∈ {x, y, z}.

(5)

These terms are the same as in the first-order method, with the
addition of zjzkBm, the second derivative of themth component of
B with respect to the kth and jth directions, at ξ.

This is a system of 31 equations with 30 unknowns. 27 of these
equations are associated with the x, y, and z components of B
from the nine spacecraft. There are four additional constraints,
imposed by the magnetic field having zero divergence, as well as
the divergence of the magnetic field having zero gradient. The 30
unknowns are the x, y, and z components B at ξ, the nine terms in
the Jacobian of B at ξ, and the 18 terms in the Hessian of B at ξ
(excluding the 9 redundant terms).

This system can be reformatted into linear (Ax � b) form
where A is a 31 × 30 matrix (shown in full detail in
Supplementary Appendix SB, Eq. B16). This system is over-
determined, therefore in general, an exact solution does not exist.
However, we can find an approximate solution via the method of

ordinary least squares. This method finds the solution to the
problem Ax � b which minimizes the two-norm of the error, i.e.

x � argmin
x

‖Ax − b‖2. (6)

This second-order reconstruction method is referred to as M2

throughout this paper.

2.2.3 Quantifying Error
We define the error at any point in space, ξ, as:

θ � 100
‖Bcalc(ξ) − Btrue(ξ)‖2

‖Btrue(ξ)‖2 (7)

where Btrue(ξ) is the magnetic field vector at point ξ and Bcalc(ξ) is
the reconstructed magnetic field vector at point ξ.

Given that we can determine the value of this error at all points
in a simulation or for a given analytic field, we also define ϵ(θ) as
the proportion of the volume that is reconstructed with less than
θ% error. For a sufficiently dense grid of Nx × Ny × Nz uniformly-
spaced points, ϵ(θ) can be estimated as

ϵ(θ) � #points with ≤ θ% error
NxNyNz

. (8)

To define the physical volume in which a given magnetic field
reconstruction is accurate, ϵ(θ) is translated into a dimensional
quantity by multiplying it by the total volume covered by the
Nx × Ny × Nz grid.

2.2.4 Error Minimization Techniques
As the first-order method (§2.2.1) only requires a single
tetrahedron of spacecraft to estimate B, in this paper we will
test four selection methods for using a subset of the 126
tetrahedra to improve the reconstruction. These methods
combine the statistically large set of tetrahedra with our
knowledge of the spacecraft positions relative to ξ and the
geometry of all 126 tetrahedra.

For the first method, M1.1, at each point in space we
reconstruct the magnetic field using all 126 tetrahedra to
produce 126 estimates for B(ξ). We then average over these
B(ξ) values component-wise to estimate B(ξ).

For the second method,M1.2, we perform the same averaging
as method one, but only include tetrahedra whose barycenter
are within a characteristic distance of ξ. i.e., for each
reconstructed point ξ, only include tetrahedra j in the
average which satisfy

‖(r0)j − ξ‖2 < Lj, (9)

where Lj is the characteristic size and (r0)j is the barycenter of the
jth tetrahedron.

For the third method, M1.3, we perform the same selection as
method two, but with the added restriction that the shape of
tetrahedron j must be quasi-regular. In terms of the geometric
quantities of the spacecraft configuration (defined in Eq. 3), this
translates to elongation E and planarity P being sufficiently small.
Because E and P are symmetric with respect to orientation, we
will define a composite geometric parameter χj
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χj �
������
E2
j + P2

j

√
. (10)

Small χj implies that both the elongation and planarity of
tetrahedron j are small. For method M1.3, we restrict our
averaging to only include tetrahedra where

χj ≤ 1
‖(r0)j − ξ‖2 < Lj.

(11)

For the fourth method,M1.4, we perform the same selection of
tetrahedra as method three, but require the tetrahedra included in
the averaging to be more regular. For methodM1.4, our shape and
position requirement is

χj ≤ 0.6
‖(r0)j − ξ‖2< Lj.

(12)

The value of 0.6 was selected because page 408 of Paschmann
and Daly (1998) shows it be a threshold value for elongation and
planarity which separates the well performing ‘pseudo-sphere
type’ and ‘potato type’ spacecraft configurations from the poorer
performing ‘knife blade type’, ‘cigar type’, and ‘pancake type’
configurations.

The first-order methods M1.1, M1.2, M1.3, M1.4 will be
compared to the second-order method M2 as well as the first-
order method applied to a single regular (i.e., χ � 0) tetrahedron
of spacecraft. This single regular tetrahedron will have the same
characteristic scale as the nine-spacecraft configuration it is
compared to.

2.3 Models
To validate and quantify the errors of our reconstruction, we
implement our reconstruction methods on two magnetic field
models, a simple current sheet and a numerical simulation of
turbulence.

2.3.1 Simple Current Sheet
For our first model, we define a magnetic field where B is
analytically defined at all spatial points. This field, which
represents a simple current sheet, can be described in
cylindrical coordinates as

B(r) � μ0J0σ σ/r − e−rσ(1 + σ/r)[ ]θ̂. (13)

The variable σ represents the current sheet characteristic width
and J0 represents the magnitude of the current at its center.

2.3.2 Turbulence Simulation
Physically realistic fields, such as those generated by turbulence in
the solar wind, are significantly more complex than the simple
current sheet model of Eq. 13. We therefore test our
reconstruction techniques on magnetic fields drawn from
numerical simulations of turbulence. In particular, we utilize
the magnetic fields from a fully developed turbulence
simulation performed with the five moment, multi-fluid solver
within the Gkeyll simulation framework (Hakim et al., 2006;

Wang et al., 2015, 2020). This turbulence simulation is designed
to represent plasma behavior in the pristine solar wind at 1AU.

We use the five moment (ns, us, ps), two fluid (s � p, e) plasma
model to evolve a proton-electron plasma. We note that the five
moment, two fluidmodel formally reduces to Hall MHD in the limit
me→ 0 and ϵ0→ 0 (Srinivasan and Shumlak, 2011), where ϵ0 is the
vacuum permittivity. We use a reduced (proton to electron) mass
ratio of mp/me � 100, a temperature ratio of Tp/Te � 1, Alfvén

velocity of vA/c � B/
��������
μ0npmpc2

√
� 0.02, plasma beta (ratio of

plasma thermal pressure to magnetic pressure) of βp � 2μ0npTp/

B2� 1, and adiabatic index c � 5/3.We employ an elongated domain

Lx � Ly � 0.2Lz � 100πρpwith resolution nx � ny � nz � 448. Lengths

are normalized to the proton gyroradius ρp � vtp/Ωp, the ratio of the

proton thermal speed vtp � ���
2Tp

√
mp and the proton cyclotron

frequency Ωp � qpB/mp. We choose a uniform background

density and magnetic field, B0 � B0ẑ, and initialize the simulation

with the three dimensional extension of the Orszag-Tang vortex

(Orszag and Tang, 1979) described in Li et al. (2016).

z+1
vA

� − 2z0
vA

sin(k⊥y − kzz)x̂, z
−
1

vA
� 0

z±2
vA

� z0
vA

sin(k⊥x ∓ kzz)ŷ
z±3
vA

� ± z0
vA

sin(2k⊥x ∓ kzz)ŷ, (14)

where z± � δu ± δB/
����
μ0ρ0

√
are the Elsasser variables

(Elsasser, 1950), kx,y � 2π/Lx,y, and kz � 2π/Lz. The initial
amplitude, z0 � 0.2, is chosen to satisfy the critical balance
condition, kxz0/kzvA � 1 (Goldreich and Sridhar, 1995).

The simulation is run for one Alfvén crossing time, tA � 1500/
Ωp, at which point the turbulence has fully developed and reached

FIGURE 1 | Trace magnetic field spectrum (solid black) from the Gkeyll
simulation computed at t � 1500/Ωp, with a k−5/3⊥ dashed line plotted for
reference. The characteristic scales associated with the three spacecraft
configurations, Hours 94, 144, and 205, drawn from the HelioSwarm
DRM are shown as vertical colored lines.
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a steady state. In Figure 1, we plot the trace magnetic energy

spectrum as a function of k⊥ �
������
k2x + k2y

√
, with a k−5/3⊥ dashed line

plotted for reference. The steep roll-over in the spectrum at
k⊥ρp ≃ 1 is due to numerical diffusion from the finite volume
scheme employed by Gkeyll.

To compare the simulation to the selected spacecraft
configurations with separations in physical units, we note that
the proton gyroradius can be written as

ρp �
���
mp

me

√ ��
βp

√ c
ωpe

. (15)

With the constants in the turbulence simulation of mp/me � 100,
βp � 1, ωpe � c

de
� 5.64 × 104

��
n

√
, we set ne � 0.2829 cm−3, so that

ρp � 100 km.
We extract from this simulation a 3-dimensional grid of values

representing the plasma’s physical parameters at different points
in space. From this grid, we use trilinear interpolation to estimate
the value of B at any point in the simulation volume.

2.3.3 Spacecraft Configurations

To illustrate our reconstruction methods for realistic
spacecraft configurations, we study these methods using
three different nine-spacecraft configurations. The
spacecraft configurations are selected from the phase A

design reference mission (DRM) of the proposed
HelioSwarm Observatory concept, corresponding to hours
94, 144, and 205 of the science phase. These hours are
selected because they represent a selection of spacecraft
tetrahedra that have significantly different distributions of
their elongation, planarity, and length. In Table 1 we note
the geometric characteristics of the overall nine-vertex
polyhedra for each of the three configurations. We also
calculate the size, elongation, and planarity of all 126
tetrahedron in each configuration and display them in
Figure 2, noting the minimum and maximum values of
these three parameters for each configuration in Table 1.
The wavelengths associated with the overall, minimum, and
maximum scales, kρp � 2πρp/L, are overlaid on Figure 1, using
a fiducial value of ρp � 100 km.

3 APPLICATION OF RECONSTRUCTION

To find the expected error at all points in space near a
particular spacecraft configuration, we take a Monte Carlo
approach and place the barycenter of each nine-spacecraft
configuration into a known magnetic field at random
locations. We then reconstruct the magnetic field on a grid
of points centered at the barycenter of the nine-spacecraft
configuration using the first- and second-order reconstruction
methods. The location of each point in the reconstructed grid
is constant with respect to the spacecraft configuration.
Therefore, we find the average of the errors, θ, at all
reconstructed grid points for all elements of the Monte
Carlo ensemble, allowing the calculation of the expected
value of error at each point on the grid.

Additionally, we compare the divergence found on a grid of
points sampled from the baseline current sheet and turbulence
simulation magnetic fields with that of the same points sampled
from the fields reconstructed using our first-order reconstruction
methods. This comparison yields divergence values of similar
magnitude in the baseline and reconstructed fields, which
indicates that our reconstruction methods do not introduce
nonphysical values of divergence.

TABLE 1 | Characteristic geometric parameters for the three nine-spacecraft
configurations under consideration and the minimum/maximum characteristic
geometric parameters created from choosing any four of the nine spacecraft of
each configuration.

Hour L (km) E P

94 Overall 1,245 0.48 0.60
Min 108 0.14 0.10
Max 1834 0.93 0.99

144 Overall 1,395 0.42 0.70
Min 108 0.06 0.23
Max 2030 0.95 0.99

205 Overall 1,401 0.45 0.75
Min 115 0.32 0.26
Max 2045 0.97 0.99

FIGURE 2 | Elongation and planarity of the 126 tetrahedron associated with the three nine-spacecraft configurations under consideration, with characteristic
lengths shown in color.
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3.1 Current Sheet
We present an example magnetic field reconstruction of the simple
current sheet model (§2.3.1) in Figure 3. Here, we use the first-
order method M1.3 to reconstruct the magnetic field in the z � 0
plane for the simple current sheet, Eq. 13 with σ � 2000 km using
the hour 94 spacecraft configuration. There is little difference
between the reconstructed and original fields near the center of
the spacecraft configuration, and the difference in vectors increases
with distance from the spacecraft configuration’s center.

We perform 200 Monte Carlo iterations of reconstruction
using each method, observing that 200 was sufficient to point-
wise converge in error. The characteristic width of the current
sheet is chosen as a uniform random variable σ ∼ U [500, 5000]
km, while the barycenter of the nine-spacecraft configuration is
selected as a 3D uniform random variable r0 ∼ U [−1000,1000]
3 km. We reconstruct a 30 × 30 × 30 grid of points ξ that extends
100 km past the furthest spacecraft in all directions.

The errors computed for the reconstruction of the simple
current sheet are displayed in Figures 4–6 for the hour 94, 144,
and 205 configurations respectively. These figures illustrate the
ensemble-averaged errors along a 2D plane orthogonal to the
current intersecting a given nine-spacecraft configuration’s
barycenter. The first four panels correspond to the four first-
order reconstruction methods,M1,1,M1,2,M1,3 andM1,4, the fifth
panel corresponds to the second-order method M2, and the final

FIGURE 3 | An example of the spacecraft configuration at hour 94,
pictured as the blue circles, reconstructing the magnetic field associated with
a simple current sheet using first-order methodM1.3. The true magnetic field is
shown as black arrows, and the reconstructed magnetic field is shown
as red arrows. This current sheet, centered at (−500, 500) km, has
characteristic width σ � 2000 km. Contour lines of the ẑ component of current
density J are shown in gray.

FIGURE 4 | Computation error (defined in Eq. 7) at all points on the z � 0 plane of the simple current sheet model, using the swarm configuration at hour 94 of the
HelioSwarm DRM using first-order methods M1,1, M1,2, M1,3 and M1,4, the second-order method, M2 and a single regular tetrahedron. The red points represent the
spacecraft locations. Areas in white either have a reconstruction error above 10%, or have no tetrahedron satisfying reconstruction method condition, resulting in no
reconstructed field values.
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FIGURE 5 | Computation error (defined in Eq. 7) at all points on the z � 0 plane of the simple current sheet model, using the swarm configuration at hour 144 of the
HelioSwarm DRM. The layout is identical to Figure 4.

FIGURE 6 | Computation error (defined in Eq. 7) at all points on the z � 0 plane of the simple current sheet model, using the swarm configuration at hour 205 of the
HelioSwarm DRM. The layout is identical to Figure 4.
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panel corresponds to the reconstruction obtained from the
standard first-order method applied to a single regular
tetrahedron, with E � P � 0. This single tetrahedron has the
same characteristic size L as the overall nine-spacecraft
configuration, calculated as twice the major axis of the
volumetric tensor, Eq. 2, evaluated using all nine points. With
four spacecraft, we cannot reconstruct the magnetic field with
the second-order method, nor can we select subsets of
tetrahedra with advantageous geometric characteristics, so
only the first-order reconstruction method from a single
tetrahedron is used.

We see that near the barycenter of each of the nine-spacecraft
configurations (located at the origin of Figures 4–6) the magnetic
field can be reconstructed to within 1% accuracy. By comparing
methodM1.1 with methodsM1.2 andM1.3 in these figures, we also
conclude that leveraging knowledge of the tetrahedral shapes and
positions expands the region of high-accuracy reconstruction.
Unfortunately, overly restrictive conditions limit the number of
tetrahedra available to average over, limiting the size of the
reconstructed region. In fact, the bottom left panel of Figure 6
is empty because none of the 126 tetrahedra in the hour 205
configuration satisfy the geometric requirement that χj ≤ 0.6
demanded by M1.4. Additionally, the second-order
reconstruction method M2 is accurate for only a small volume

FIGURE 7 | An example of the spacecraft configuration at hour 94,
pictured as blue circles, reconstructing the magnetic field associated with a
turbulence simulation using first-order method M1.3. The simulation’s
magnetic field is shown as black arrows, and the reconstructed
magnetic field is shown as red arrows. Contour lines of the ẑ component of
current density J are shown in gray.

FIGURE 8 | Computation error (defined in Eq. 7) at all points on the z � 0 plane of the turbulent magnetic field (from the Gkeyll Simulation), using the swarm
configuration at hour 94 of the HelioSwarm DRM. The layout is identical to Figure 4.
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when compared with the first-order methods M1.1, M1.2, M1.3,
and M1.4.

By comparing the bottom right panel to the other five in
Figures 7–10, we see that the behavior of methods M1.1, M1.2,
M1.3,M1.4, andM2 is distinct to that of the reconstruction using a
single regular tetrahedron. The single regular tetrahedron only
accurately reconstructs the magnetic field of the current sheet
near each of the four spacecraft. Due to the angular symmetry in
the current sheet and the fact that none of the four spacecraft are
positioned on the z � 0 plane, the area of most accurate
reconstruction appears to be a ring on the bottom right panel
of Figures 4–6.

3.2 Turbulence Simulation
We present an example magnetic field reconstruction of the
turbulence simulation (§2.3.2) in Figure 7. Here, we use the
first-order method M1.3 to reconstruct the magnetic field in the
z � 0 plane in the turbulence simulation. Mirroring the behavior
described in Figure 3, there is little difference between the
reconstructed and original fields near the center of the
spacecraft configuration.

We perform 50Monte Carlo iterations of reconstruction using
each method, observing that 50 was more than enough to point-
wise converge in error. The barycenter is chosen as a uniform
random variable so that all spacecraft remained in the 31415 ×

31415 × 157079 km simulation cube. We then construct a 30 ×
30 × 30 grid of points ξ. Each dimension of this grid is selected so
that the overall size of the grid extends 100 km past the furthest
spacecraft in all directions.

The errors computed from the turbulence simulation
reconstruction are displayed in Figures 8–10 for the
configurations at hours 94, 144, and 205 respectively. The
panels shown are organized in the same order as the simple
current sheet reconstruction. In Table 2 we show the volume (in
units of 106 km3) of the magnetic field that can be reconstructed
with errors less than 1, 5, and 10%. This is done for all three of the
investigated spacecraft configurations, and using all five of the
nine-spacecraft reconstruction methods, M1.1, M1.2, M1.3, M1.4,
and M2. In the bottom half of this table, we compare the volume
reconstructed using a single regular tetrahedron to that of our five
reconstruction methods.

Near the barycenter of each of the nine-spacecraft
configurations, located at the origin of Figures 8–10, the
magnetic field can be reconstructed to within 1% accuracy.
The second-order method, M2, can only reconstruct the
magnetic field to within 10% accuracy in a small region near
the barycenter of the configuration, while the first-order methods
can reconstruct the magnetic field within 10% over a much
greater area. This is the case because the second-order Taylor
series expansion diverges quadratically with distance away from

FIGURE 9 | Computation error (defined in Eq. 7) at all points on the z � 0 plane of the turbulent magnetic field (from the Gkeyll Simulation), using the swarm
configuration at hour 144 of the HelioSwarm DRM. The layout is identical to Figure 4.
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the barycenter of the spacecraft configuration, while the first-
order Taylor series only diverges linearly with distance. Since our
goal is to maximize the volume of accurate reconstruction, the
first-order methods are superior. However, the second-order
method may be more accurate at reconstructing the values of
the magnetic field very close to the barycenter of a spacecraft
configuration.

The largest disparity compared to the current sheet
simulations occurs for the single regular tetrahedron case, on
the bottom right panels of each figure. The magnetic field is again
only reconstructed accurately near each of the spacecraft, but
because the turbulence simulation lacks angular symmetry, these
regions manifest as spheres centered around each spacecraft.
These four spheres appear to be the same size on the bottom

TABLE 2 | Volumes (in units of 106 km3) with reconstructed magnetic field error less than 1, 5, or 10% for the three configurations using the four first-order methods and the
second-order method discussed in §2.2. These volumes are compared to the equivalent regions reconstructed from a single regular tetrahedron with the same
characteristic size as the overall nine-spacecraft configuration.

Hour 94 Hour 144 Hour 205

Volume ϵ(1) ϵ(5) ϵ(10) ϵ(1) ϵ(5) ϵ(10) ϵ(1) ϵ(5) ϵ(10)

M1.1 17.56 1,057 3,095 2.95 324.4 2021 1.325 145.7 1,231
M1.2 17.93 1,197 2,425 3.686 387.8 2,330 1.325 218.6 1,047
M1.3 21.30 1816 3,208 9.584 2,151 4,722 12.59 1,556 4,334
M1.4 30.26 1,189 1,679 17.69 1,169 2,281 0.0 0.0 0.0
M2 3.363 47.45 118.1 5.898 48.66 137.9 3.975 33.79 103.3

Vs Regular Tetrahedron (%) ϵ(1) ϵ(5) ϵ(10) ϵ(1) ϵ(5) ϵ(10) ϵ(1) ϵ(5) ϵ(10)

M1.1 137.20 54.31 38.70 24.58 23.75 25.26 13.80 10.77 15.39
M1.2 140.12 61.51 30.32 30.72 28.40 29.13 13.80 16.16 13.08
M1.3 166.39 93.33 40.12 79.87 157.54 59.04 131.12 115.03 54.18
M1.4 236.44 61.06 21.00 147.45 85.62 28.51 0.0 0.0 0.0
M2 26.27 2.44 1.48 49.15 3.56 1.72 41.41 2.50 1.29

FIGURE 10 | Computation error (defined in Eq. 7) at all points on the z � 0 plane of the turbulent magnetic field (from the Gkeyll Simulation), using the swarm
configuration at hour 205 of the HelioSwarm DRM. The layout is identical to Figure 4.
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right panel of each figure because the spacecraft are equidistant
from the z � 0 plane.

Shown in Table 2, the single regular tetrahedron
reconstructs the largest volume with less than 10% error,

however the first-order methods reconstruct larger volumes
with smaller errors. To maximize the volume reconstructed
with less than 1% error, it appears it is best to use the first-
order method M1.4, detailed in §2.2.4 (if a sufficient number
of quasi-regular tetrahedra can be formed from the nine
spacecraft configuration).

3.3 Sensitivity to Number of Spacecraft
We analyze how the volume reconstructed with less than 5% error
varies as a function of the number of spacecraft. This analysis was
completed using the Monte Carlo sampling of the turbulent
simulation as described in §3.

For N ∈ {4, 5, 6, 7, 8, 9} spacecraft, we reconstructed the value
of the magnetic field at all 30 × 30 × 30 points ξ using all C(N, 4)
tetrahedra. We then use the M1.3 first-order reconstruction
method of §2.2.4 to reconstruct B at all points ξ. The errors
everywhere are computed using Eq. 7, and the volume where the

FIGURE 11 | Computation error (defined in Eq. 7) at all points on the z � 0 plane of the turbulent magnetic field (from the Gkeyll Simulation), using the first-order
method M1,3 with a subset of the spacecraft from the hour 94 configuration of the HelioSwarm DRM.

FIGURE 12 |Mean values of volume which were reconstructed with less
than 5% error for the three nine-spacecraft configurations analyzed. The
dashes above/below themarkers represent one standard deviation away from
the mean volume for each configuration.

TABLE 3 | From the nine-spacecraft configurations of hours 94, 144, and 205, we
select a subset ofN ∈{4, 5, 6, 7, 8, 9} spacecraft. We determine the probability
that this N spacecraft configuration does not contain a tetrahedron which passes
the threshold shape requirements of first-order reconstruction method M1.3.

N 4 5 6 7 8 9

Hour 94 57.1 13.5 1.2 0 0 0
Hour 144 71.4 36.5 9.5 0 0 0
Hour 205 77.8 51.6 20.2 0 0 0
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error is less than 5% is computed using Eq. 8 multiplied by the
total reconstructed volume. We visualize the errors of this
method for the hour 94 configuration in Figure 11. In this
example, we find that as the number of spacecraft is increased,
the area which is reconstructed with a high accuracy also
increases. As this result depends on which particular subset of
spacecraft are chosen for a given N, we next investigate whether
this increase is holds for an arbitrary selection of spacecraft.

We start by choosing four out of the 9 spacecraft of the hour 94
configuration. These spacecraft measurements are used to
estimate the value of B everywhere via the first-order
reconstruction method M1.3. We find the volume over which
we can reconstruct B with an error less than 5%. This process is
repeated for all 126 possible choices of four spacecraft. We repeat
all of these volume calculations, initializing the spacecraft
configuration at 50 different locations within the simulated
turbulent B field. Finally, we take the mean of all 126 × 50
volume values and plot them in Figure 12. In these averages, we
omit the instances where no tetrahedra pass the selection criteria
of method M1.3. We repeat this process for N � 5, 6, 7, 8, and 9
spacecraft from the hour 94 configuration, as well as for the hour
144 and 205 configurations.

As shown in Figure 12, we see that increasing the number of
spacecraft measurements available increases the volume of the
magnetic field reconstructed with less than 5% error. The
variance of this reconstructed volume is smallest for the hour
94 configuration, which contains the most tetrahedra which are
quasi-regular (χj ≤ 1). However, it is not the case that the hour 94
configuration has the highest average volume which is
reconstructed with less than 5% error.

We also track the instances where zero of the available
tetrahedra in the set of N spacecraft meet the shape threshold
of χj ≤ 1 for the M1.3 method. The percentage of arrangements
where this occurs is shown in Table 3 as a function of spacecraft
configuration (hour) and number of spacecraft, N. We see from
this table that for the analyzed configurations, there must be at
least seven spacecraft measurements to guarantee that at least one
tetrahedron passes the previously stated shape criteria.

4 DISCUSSION

We have demonstrated that our reconstruction methods are an
effective way to leverage magnetometer measurements from a
configuration consisting of more than four spacecraft. We have
defined a shape metric, χ, for a tetrahedron of spacecraft which
can be used as a threshold criterion. Estimates of magnetic field
derived from tetrahedron which do meet the threshold value of χ
will be discarded, as they are misshapen and therefore more likely
to produce erroneous estimates. Finally, we have shown that
increasing the number of spacecraft in a configuration will
increase the volume over which the magnetic field can be
accurately reconstructed, as well as increase the likelihood that
some tetrahedra of spacecraft in the configuration are well shaped.

In Table 2 we demonstrated that our second-order
reconstruction method M2 does not reconstruct the magnetic
field with high accuracy over a large volume. However, we have

shown that methodsM1.3 andM1.4, which average over a subset of
the many available tetrahedra formed by nine spacecraft,
improves the field reconstruction. This work indicates that the
subset of tetrahedra which should be averaged over needs to
consider each tetrahedron’s spacial proximity to the
reconstructed point as well as its geometric properties. By
comparing results from spacecraft configurations with different
tetrahedral geometric configurations, we find that designing
spacecraft trajectories which maximize the number of
tetrahedra that are quasi-regular (i.e., χ ≤ 1) is essential to
improving the accuracy of the reconstructed magnetic field.

This work can help optimize future multi-spacecraft missions,
such as HelioSwarm. The selection of tetrahedra which are
included in the calculation of B can be tuned to maximize the
volume over which the field is reconstructed accurately, or it can
be tuned to recreate B as accurately as possible over a small
volume. The first-order methods discussed here can be applied to
reconstruct any vector field which is sparsely sampled by in-situ
measurements, as no assumptions are made about the physical
properties of the field.

The first-order reconstruction method applied to a single
tetrahedron reconstructs the magnetic field perfectly at each
spacecraft location. However, using any of our proposed
composite first-order reconstruction methods, which average
over many of these reconstructions, negates this behavior. In
future work, we plan to construct a weight function which, when
introduced into the tetrahedral averaging, returns this desired
limiting behavior. Additional future work could include
characterizing methods of predicting the surface inside-of-
which we have less than a prescribed error value for an
arbitrary configuration of spacecraft.
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