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Abstract

Background: Cardiorespiratory fitness (CRF) and physical activity (PA) are well-established predictors of morbidity
and all-cause mortality. However, CRF is not routinely measured and PA not routinely prescribed as part of standard
healthcare. The American Heart Association (AHA) recently presented a scientific case for the inclusion of CRF as a
clinical vital sign based on epidemiological and clinical observation. Here, we leverage genetic data in the UK
Biobank (UKB) to strengthen the case for CRF as a vital sign and make a case for the prescription of PA.

Methods: We derived two CRF measures from the heart rate data collected during a submaximal cycle ramp test:
CRF-vo2max, an estimate of the participants' maximum volume of oxygen uptake, per kilogram of body weight, per
minute; and CRF-slope, an estimate of the rate of increase of heart rate during exercise. Average PA over a 7-day
period was derived from a wrist-worn activity tracker. After quality control, 70,783 participants had data on the two
derived CRF measures, and 89,683 had PA data. We performed genome-wide association study (GWAS) analyses by
sex, and post-GWAS techniques to understand genetic architecture of the traits and prioritise functional genes for
follow-up.

Results: We found strong evidence that genetic variants associated with CRF and PA influenced genetic expression
in a relatively small set of genes in the heart, artery, lung, skeletal muscle and adipose tissue. These functionally
relevant genes were enriched among genes known to be associated with coronary artery disease (CAD), type 2
diabetes (T2D) and Alzheimer’s disease (three of the top 10 causes of death in high-income countries) as well as
Parkinson’s disease, pulmonary fibrosis, and blood pressure, heart rate, and respiratory phenotypes. Genetic variation
associated with lower CRF and PA was also correlated with several disease risk factors (including greater body mass
index, body fat and multiple obesity phenotypes); a typical T2D profile (including higher insulin resistance, higher
fasting glucose, impaired beta-cell function, hyperglycaemia, hypertriglyceridemia); increased risk for CAD and T2D;
and a shorter lifespan.
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Conclusions: Genetics supports three decades of evidence for the inclusion of CRF as a clinical vital sign. Given the
genetic, clinical and epidemiological evidence linking CRF and PA to increased morbidity and mortality, regular
measurement of CRF as a marker of health and routine prescription of PA could be a prudent strategy to support
public health.
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Background
Cardiorespiratory fitness (CRF) and physical activity
(PA) are well-established predictors of morbidity and
mortality [1, 2]. CRF is such a strong predictor of cardio-
vascular health, all-cause mortality and mortality attrib-
utable to various cancers, that in 2016 the American
Heart Association (AHA) put forward a scientific case
for measuring CRF as a clinical vital sign [3]. The AHA
recommended that ‘(at) a minimum, all adults should
have CRF estimated each year (…) during their annual
healthcare examination’. Non-exercise testing methods
for estimating CRF make this possible in a clinical set-
ting [4]. The AHA also noted that measurement of CRF
provides ‘clinicians the opportunity to counsel patients
regarding the importance of performing regular physical
activity’. That exercise is medicine, preventative and
curative, has been known from antiquity—Hippocrates
wrote the earliest known prescription for exercise about
2000 years ago [5]. Today however, we do not yet rou-
tinely prescribe PA, nor do we measure CRF as part of a
standard clinical assessment.
Sedentary lifestyles are a significant public health

problem. For example, physical inactivity and poor diet
were the second leading modifiable, behavioural cause of
death in the US in 2000 and are expected to overtake to-
bacco to become the leading cause [6]. Worldwide, phys-
ical inactivity was estimated to account for about 10% of
premature mortality in 2008, an effect size similar to
smoking and obesity [7]. In 2013, the economic burden
due to direct health-care costs, productivity losses and
disability-adjusted life-years attributable to physical in-
activity was estimated at US$53.8 billion [8]. This eco-
nomic burden is reflected in the prevalence of physical
inactivity worldwide: 28% in 2016 (23% for men, 32% for
women) [9]. Most people do not know what the recom-
mended activity guidelines to maintain good health are.
A UK British Heart Foundation (BHF) survey estimated
about 60% of adults in the UK do not know the recom-
mended minimum level of PA [10]. Modifiable physio-
logical characteristics like CRF and behaviours like
regular exercise are affected by both environmental and
genetic factors. Genetic factors, not addressed in the
AHA review, can influence CRF and PA through mul-
tiple mechanisms including appetite for leisure activity,
physiological response to exercise and CRF response to
PA. Critically, genetics can be leveraged to identify links

between CRF, PA and disease. Here we present the gen-
etic case for the measurement of CRF as a clinical vital
sign, and the routine prescription of PA.
CRF is typically measured with incremental exercise

(resistance or workload) on a treadmill or cycle ergom-
eter. In a sub-maximal test, CRF is estimated from ex-
trapolating the workload to the age-estimated maximum
heart rate. PA has most often been measured by self-
report. Previous research has shown that CRF and PA
are familial, with family and twin study estimates of their
heritability varying widely (CRF: h2=0.25–0.65 [11]; PA:
h2=0–0.78, and 0.48 in the only study that objectively
measured PA [12]). There has been some interest in
variation in CRF response to exercise. Several candidate
gene studies and one genome-wide association study
(GWAS) have reported genetic variants associated with
baseline CRF, or CRF change in response to exercise,
but none was genome-wide significant or reliably repli-
cated [13–15]. Two GWASs of PA in the UK Biobank
(UKB) reported three loci associated with accelerometer-
measured 7-day average PA (SNP heritability, h2SNP=
0.14), and none with self-reported PA [16, 17]. The gen-
etic contribution to CRF is poorly characterised, and our
current understanding of the genetics of PA has not ex-
amined differences by sex.
In this study, we performed the largest genome-wide as-

sociation analysis of CRF, a GWAS of PA, and related
their genetic risk profiles to the known genetic risk for an-
thropomorphic phenotypes, metabolic traits and chronic
diseases. CRF and PA were objectively measured in the
UKB [18]. Given the multitude of mechanisms by which
PA and CRF affect biology [3, 15, 19], the differences in
physiognomy (e.g. body fat distribution [20, 21]) and be-
havioural dynamics (e.g. motivators and context prefer-
ences [22]), we investigated sex-specific as well as sex-
combined CRF and PA phenotypes. Previous UKB ana-
lyses of PA have reported genetic correlations between the
sexes and included sex as a covariate in combined analyses
[17], which by design identifies only genetic factors com-
mon to both sexes. Here we also investigated the potential
functional effects of sex-specific associations. Our aim in
this study was to characterise the genetic contribution to
CRF and PA highlighting genetic links to disease and thus
to strengthen the case for the inclusion of CRF as a clin-
ical vital sign and make more cogent the argument for
routine prescription of regular PA in healthcare.
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Methods
Sample
UK Biobank
The UK Biobank (UKB) is a research study of over
500,000 individuals from across the UK. Participants
aged 40 to 69 were invited to attend one of 22 assess-
ment centres between 2006 and 2010. A comprehensive
range of health-related data has been collected at base-
line and follow up, including disease diagnoses and life-
style information, with blood samples taken for genome-
wide genotyping and a biomarker panel. Further data are
available in follow-up studies on different subsets of
UKB participants, including CRF and PA data. All par-
ticipants provided electronic signed consent [18, 23].
After selecting the European subsample (the largest

cluster from a 4-means clustering of the first 2 UKB-
derived principal components), and phenotype and
genotype QC described below, we had 70,783 (34,419
males, 36,364 females) participants with CRF data, and
89,683 (39,352 males, 50,331 females) participants with
PA data. Additional file 1: Table S1 shows details of the
derivation of the final GWAS sample.

Phenotypes
Cardiorespiratory fitness—submaximal cycle ramp test
CRF was assessed with a submaximal cycle ramp test
which used a stationary bicycle and 4-lead electrocardio-
graph (ECG) to record heartrate data during pre-test, ex-
ercise and rest phases (approximately 15 s, 6 min and 1
min, respectively). The cycle test procedure is described
in detail in the UKB Cardio Assessment document [24].
Cycle ramp test data were collected at two instances:
from August 2009 at the end of the initial assessment
visit 2006–2010 (instance 0), and the first repeat assess-
ment visit 2012–2013 (instance 1). Participants per-
formed an exercise protocol determined by their risk
level, Program Category (UKB field 6024): 'minimal',
'small', 'medium' or 'high'. The cycle ramp test included
a 'Pre-test', 'Exercise' and 'Recovery' phase. We used data
from the 'Exercise' phase only, within which, only 'min-
imal' and 'small' risk categories included a workload
ramp (increase in workload). We selected samples in the
'minimal', 'small' and 'medium' risk categories, with ECG
Bike Method for Fitness Test (6019) = 'Bicycle' (Add-
itional file 1: Table S2), modelling heart rate data from
the 4-min workload ramp for the 'small' and 'minimal'
risk groups, and the full 6-min constant work load for
the 'medium' risk group. We also included risk category
as a covariate in the genetic association analyses.
The raw heart rate data were noisy (Additional file 1:

Figure S1, panel A, shows raw heart rate data for 1000
random participants). Participants were instructed to
cycle at a cadence of 60 revolutions per minute (RPM),
and we selected workload and heart rate data where

participants cycled in the range 35–125 RPM (Add-
itional file 1: Figure S1, panel B), within the manufac-
turer guaranteed range for cycle ergometer workload
accuracy. Finally, we selected samples with a minimum
of 20 observations of heart rate, workload and cadence
within the 'Exercise' phase of the test and applied a But-
terworth filter to the heart rate data (Fig. 1). Full cycle
ramp test QC is described in the supplementary
Methods and listed in Additional file 1: Table S1.
From this data, we derived two measures: CRF-

vo2max, an estimate of the maximum volume of oxygen
uptake per kilogram of body weight per minute; and
CRF-slope, the rate of increase of heart rate. Specifically,
we fit a linear model to workload and heart rate and ex-
trapolated from the linear model to predict workload at
the age-estimated maximum heart rate (HR⋅age⋅max =
208–0.7 * age, where age is age when attended assess-
ment centre). Maximum workload relative to body
weight in kilograms, or relative power (watts/kg), was
then used as a proxy for CRF-vo2max:

CRF-vo2max ¼ WL �HR � max = weight

where WL⋅HR⋅max is extrapolated work load at age-
estimated maximum heart rate. The coefficients 208 and
0.7 for age-estimated maximum heart rate are com-
monly used constants and were used in previous studies
of CRF in the UKB [25–28].
For CRF slope, we fitted a linear model to the

Butterworth-filtered heart rate signal for each participant
and retained the slope, β1, as the rate of increase of heart
rate (Fig. 1):

HR � β0 þ β1�trend

where HR is heart rate and 'trend' refers to the time
points at which repeated measurements of heart rate,
workload and cadence were taken within each phase of
the submaximal cycle ramp test (Fig. 1). Samples with
negative slopes were excluded.

Physical activity—wrist-worn accelerometer
PA in the UKB was measured continuously over a period
of 7 days with a wrist-worn accelerometer in 103,712
participants, as an add-on measure after the initial as-
sessment between June 2013 and January 2016. We used
a wear-time adjusted 7-day average PA and filtered par-
ticipants on the following test-specific variables: Data
quality, good wear-time (90015)='Yes', Data quality, good
calibration (90016)='Yes' and no Data problem indica-
tors (90002). Finally, we excluded samples with PA (ac-
celerometer) > 100 milligravities (mg). General PA
quality control and calibration of raw accelerometer data
and calculation of derived activity level are described in
detail elsewhere [29].
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Disease frequency
The top 10 global causes of death in high-income coun-
tries in 2016, as reported by the World Health
Organization (WHO), are shown in Additional file 1:
Table S3, along with the relevant International Classifi-
cation of Diseases revision 10 (ICD-10) codes. Ischaemic
heart disease was the number 1 global cause of death
among high-income countries; lower respiratory tract in-
fections, ranked 6th, was the only communicable cause
of death on the list. We used UKB in-patient hospital
episode statistics (diagnoses recorded in ICD-10 codes)
to retrieve disease frequency for the top 10 global causes
of death, among the subsample with CRF or PA data
(Additional file 1: Table S3 includes ICD-10 codes). We
ranked participants by level of the phenotypes CRF-
vo2max, CRF-slope and PA after correcting for age and
socioeconomic status (SES, Townsend deprivation
index), divided the participants into ten approximately
equal-sized groups and calculated the proportion in each
group with a main or secondary diagnosis (made during
a hospital in-patient admission) for each of the 10 query
diseases. ICD-9 diagnoses were not included. Firstly, it is
not clear how to map ICD-9 codes onto the ICD-10
codes provided by the WHO. Secondly, ICD-9 codes
were observed at very low frequencies: 1 sample with
CRF data, and 40 with PA data, were diagnosed with is-
chaemic heart disease (ICD-9 codes starting with 41[0-
9]), the most prevalent of the top 10 global causes of
death. Diagnoses were potentially received both before

and after the cycle ramp test and the week in which par-
ticipants wore the physical activity tracker, and we made
no distinction between incident and prevalent disease.
This analysis was performed separately in males and fe-
males, since there are differences in both disease preva-
lence and in phenotype distribution by sex.

Genetic analyses
The full UKB sample was genotyped on one of two cus-
tom Applied Biosystems genotyping arrays: 49,950 on
the UK Biobank Lung Exome Variant Evaluation (UK
BiLEVE) Array, and 438,427 on the UK Biobank Axiom
Array. The genetic data underwent standard GWAS QC
and were imputed using IMPUTE4 to three reference
panels by the UKB: the Haplotype Reference Consortium
(HRC) and the merged UK10K and 1000 Genomes
phase 3 reference panels. General genotyping consider-
ations, raw genotype data QC and genetic imputation
procedures in the UKB are described in detail elsewhere
[18]. Details of available genetic data and associated
metadata are described in UKB Resource 664 [30].
From UKB-supplied sample QC information, we ex-

cluded gender mismatches, samples with putative sex
chromosome aneuploidy or excess relatives, and hetero-
zygosity and missingness outliers. We performed linear
mixed model association on the residual of each trait
regressed on the covariates age, age2, sex (for sex-
combined analyses), array, centre and the first 10 princi-
pal components calculated on subsamples with data on

Fig. 1 Heart rate signal processing for a single random sample. Trend = repeated measurements within the 'Exercise' phase of the submaximal
cycle ramp test; raw = unaltered heart rate data; Butterworth filtered = heart rate data after low-pass Butterworth filter (heart rate at the
beginning and end of the exercise period on this filtered signal used to calculate CRF-vo2max); linear model = fitted heart rate data values from
a linear model fitted to the Butterworth-filtered signal (CRF slope is the slope of this linear model)
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the trait of interest. Additionally, for CRF phenotypes,
we included the covariates risk category (corresponding
to CRF test protocol) and number of trend entries (num-
ber of observations). Full details of GWAS QC and asso-
ciation parameters, alternative models including BMI,
and alcohol and smoking as covariates, and post-GWAS
analyses including transcriptome-wide association
(TWAS) and colocalisation, gene-set enrichment and
genetic correlation, are included in the supplementary
methods. We used the standard p=5 × 10-8 as our
genome-wide significant threshold, a conservative
Bonferroni-corrected p value for TWAS significance cor-
recting for all genes tested in all tissues (p=0.05/75,486=
6.6 × 10-7), and a false-discovery rate (FDR) correction
for gene-set enrichment and genetic correlation accept-
ing FDR-adjusted p values<0.05 as significant.

Analysis tools
For data analysis and figure creation, we used both R
[31] and Python 3 [32], in conjunction with the bioinfor-
matic pipeline software Snakemake [33]. We used the R
package ukbtools [34] to parse all UKB data. Genetic
data analyses were performed using FlashPCA [35],
BOLT-LMM [36], PLINK 1.9 and 2.0 [37], LDSC [38],
FUSION [39] and the web-based tools FUMA [40], LD
Hub [41] and LDlink [42].

Results
Descriptive statistics and smoking and alcohol drinking
status
Descriptive statistics for the CRF and PA phenotypes
showed higher values for CRF-vo2max in males and
higher CRF-slope and PA in females (Additional file 1:
Table S4). Correlations between CRF and PA pheno-
types, and age and BMI were all modest and negative
(r=−0.02–−0.27), except for CRF-slope and age which
had a small positive correlation in females (r=0.13, p=1.2
× 10-144) (Additional file 1: Figure S2). Combined-sex
sample correlations between CRF-vo2max and CRF-
slope, and SES were not significant; the PA and SES, and
sex-specific correlations for all three traits were signifi-
cant but small (| r |<=0.03). In the combined-sex sam-
ple, phenotypic correlations between our three traits
were in the directions expected. CRF-vo2max and PA
had a modest positive correlation (r=0.25, p=1.5 ×
10-195, among the subsample who performed both the
submaximal cycle ramp test and participated in the 7-
day PA monitoring, N=13,561). CRF slope and PA were
not significantly correlated (r=−0.01, p=0.11, N=13,561).
The two fitness phenotypes, CRF-vo2max and CRF-
slope were negatively correlated (r=−0.39, p<0.001, N=
70,783).
As a proxy for true resting heart rate, heart rate at the

beginning of the exercise phase of the cycle ramp test

was negatively correlated with CRF-vo2max (r=−0.33, p<
0.001) and had a near zero correlation with CRF-slope
(r=−0.03, p=3.8 × 10-13).
Smoking and alcohol drinking status are sometimes

considered confounding factors in analyses of CRF and
PA. In our data, there were small differences in mean
CRF-vo2max, CRF-slope and PA by smoking and drink-
ing status (Additional file 1: Table S5), which contrib-
uted little to trait variance in linear regression models of
all three phenotypes (ΔR2<=0.005 compared to a base
model of age and sex, Additional file 1: Table S6). We
chose not to adjust for the effects of smoking and drink-
ing status in order to obtain unbiased estimates of the
genetic factors on CRF and PA. There is evidence that
correcting for heritable covariates can lead to biassed es-
timates of the influence of genetic factors [43].

Disease frequency
For the top 10 global causes of death in high-income
countries in 2016, as reported by the World Health
Organization (WHO), Fig. 2 shows the frequency at
which each disease was observed in the UKB by level of
CRF-vo2max, CRF-slope and PA (after correcting for
age and SES). Given the difference in the phenotype dis-
tributions of the male and female subsamples, and the
inherent difference in disease frequency by sex, disease
frequency has to be interpreted separately by sex.

Disease frequency by CRF
With increasing levels of CRF-vo2max, there were re-
ductions in diagnosis frequency for ischaemic heart dis-
ease (CAD) (male 12.0–6.1%, female 4.9–1.5%), stroke
(male 1.5–0.7%, female 0.6–0.4%), chronic obstructive
pulmonary (COPD) (male 1.5–0.3%, female 1.1–0.3%),
lower respiratory tract infection (LRTI) (male 2.5–1.0%,
female 2.0–1.2%), diabetes mellitus (male 5.0–1.8%, fe-
male 2.4–0.7%) and kidney diseases (male 1.4–0.8%, fe-
male 1.0–0.6%). The largest differences were observed
for CAD and diabetes, with the starkest reductions for
all diseases often seen within the lowest 4 deciles of
CRF-vo2max.
CRF-slope showed reduction in disease for CAD (male

9.2–5.6%, female 2.6–1.5%) and diabetes (male 4.5–2.4%,
female 1.5–0.6%). The relationships with other disease
diagnoses were noisier.

Disease frequency by PA
Disease diagnosis by level of PA showed similar patterns
to CRF-vo2max, with a continued decile-to-decile reduc-
tion in disease across the range of PA from least to most
physically active. With increasing PA we observed reduc-
tions in CAD (male 9.3–2.5% female 3.0–1.0%), stroke
(male 2.1–0.4%, female 1.0–0.2%), COPD (male 1.8–
0.2%, female 1.1–0.3%), LRTI (male 2.8–0.8%, female
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Fig. 2 ICD-10 diagnosis frequency by CRF and PA level. Frequency in the UKB for the top 10 global causes of death in high-income countries in
2016, as reported by the World Health Organization (WHO, Additional file 1: Table S3). The CRF and PA phenotypes above were controlled for
age and socioeconomic status (SES, the Townsend deprivation index)—they are the residuals from a regression on age and SES. For some
diseases, e.g. breast cancer, disease trends are only meaningful separated by sex. CAD = ischaemic heart disease; STR = stroke; ALZ = Alzheimer’s
disease and other dementias; LCX = trachea, bronchus and lung cancers; COPD = chronic obstructive pulmonary disease; LRTI = lower respiratory
tract infections; CCX = colon and rectum cancers; DIA = diabetes mellitus; KID = kidney diseases; BCX = breast cancers
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2.0–1.0%), diabetes mellitus (male 6.0–0.7%, female 3.7–
0.4%) and kidney diseases (male 2.4–0.9%, female 1.3–
0.5%). Like CRF-vo2max, the greatest reductions were
seen in CAD and diabetes mellitus.

Genetic associations
Genome-wide association studies were performed for
CRF-vo2max, CRF-slope and PA with results for male,
female, and the combined sample (Fig. 3). An annotated
list of the independent genome-wide significant variants,
determined by LD clumping of the association results, is
included in Table 1. Additional file 1: Figures S3–S37
are the regional plots for each sex-combined GWAS sig-
nal peak and sex-specific GWAS signal peaks where
there was evidence of heterogeneity.

Sex-combined results
We found twelve significant SNPs for CRF-vo2max and
eight independent SNPs for CRF-slope, in the combined
sample (Table 1). For PA, we found nine significant
SNPs. However, three of these were on chromosome 17,
two of which are situated within the large 17q21.31 in-
version polymorphism (43,624,578–44,525,051 MB, hu-
man genome build 37 coordinates) and may not reflect
independent causal variants [44, 45]. We replicated two
of the three previously reported PA GWAS significant
SNPs [17], rs2696625 (chr17) and rs59499656 (chr18)
and tagged the third rs564819152 (chr10) through LD
with rs34719019 (chr10), r2=0.78 in 1000 Genomes EUR
(Additional file 1: Table S7).

Sex-specific results
For CRF-vo2max, we found four male genome-wide sig-
nificant SNPs, three of which showed no evidence of
heterogeneity and were associated (directly or indirectly

through LD) in the combined sample: rs9809798 (r2=
0.79 with rs6801957, chr3), rs111299422 (chr5),
rs1006545 (r2=0.97 with rs11190709, chr10) and
rs41317306 (chr14), however showed no evidence for as-
sociation in females (p=5.1 × 10-1), or the combined
sample (p=1.6 × 10-4), and significant effect size hetero-
geneity (Q=22.13, p<0.001). However, the regional plot
for rs41317306 did not show support from correlated
SNPs (Additional file 1: Figure S11)
For CRF-slope, the one female signal rs111299422

(chr5) was significant in the combined sample, but
showed evidence of heterogeneity (Q=8.37, p=3.8 ×
10-3). There were two male-specific SNPs: rs1006545
(chr10) was indirectly associated in the combined
sample (r2=0.97 with 10:102554618_AT_A) and
showed no evidence of heterogeneity. rs1741294
(chr20) showed no evidence of association in females
(p=6.0 × 10-1) or the combined sample (p=4.2 ×
10-4), and significant effect size heterogeneity (Q=7.96,
p=4.8 × 10-3).
For PA, there were four SNPs associated in the female

sample, two of which were associated in the combined
sample, rs62055696 (chr17) and 17:44262581_A_C (r2=
0.70 with rs62055696, chr17), and showed no evidence
of heterogeneity. The two female signals on chromo-
some 16 signals rs75986475 and rs13329850 were uncor-
related (r2=0.0005), showed significant heterogeneity
(Q=8.51, p=3.5 × 10-3; Q=16.98, p<0.001, respectively),
and no evidence of association in males (p=3.3 × 10-1,
p=4.5 × 10-1, respectively) or the combined sample (p=
1.3 × 10-6, p=7.6 × 10-4, respectively). The male-specific
SNP identified in PA, rs78661713 (chr2), showed no evi-
dence for association in females (p=6.1 × 10-1) or the
combined sample (p=5.9 × 10-4), and significant hetero-
geneity (Q=20.63, p<0.001).

Fig. 3 Genome-wide association signal by sex for CRF-vo2max, CRF-slope and PA. The red line shows genome-wide significance, p=5×10-8
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Table 1 GWAS significant (p < 5 × 10-8) SNP associations

SEX CHR BP SNP LOCUS A1 A0 A1 FREQ BETA SE P P (other sex)

CRF-vo2max

Combined 1 112592672 rs269071 Intergenic1 A G 0.63 0.031 0.005 3.6 × 10-10

Combined 2 179747068 rs142556838 CCDC141 C T 0.91 0.049 0.008 2.9 × 10-9

Combined 2 179839888 rs10497529 CCDC141 G A 0.96 0.085 0.013 1.0 × 10-11

Combined 3 38767315 rs6801957 SCN10A T C 0.41 0.030 0.005 1.7 × 10-10

Combined 5 65264090 rs251295 ERBB2IP A G 0.59 −0.027 0.005 2.3 × 10-8

Combined 5 121868475 rs111299422 Intergenic2 T TA 0.69 −0.038 0.005 6.5 × 10-14

Combined 6 122089704 rs58730006 Intergenic3 A AT 0.90 0.047 0.008 2.7 × 10-9

Combined 10 102552663 rs11190709 PAX2 G A 0.11 −0.046 0.007 3.8 × 10-10

Combined 16 56803199 rs78291913 NUP93 C T 0.99 −0.143 0.024 1.4 × 10-9

Combined 17 43668512 rs527325496 Intergenic4 C CAAA 0.81 −0.036 0.006 4.2 × 10-9

Combined 17 44335579 rs139077859 LOC644172 G A 0.79 −0.033 0.006 1.7 × 10-8

Combined 20 36849088 rs4811602 KIAA1755 G A 0.53 −0.028 0.005 3.7 × 10-9

Malea 3 38773805 rs9809798 SCN10A A C 0.47 0.040 0.007 2.2 × 10-8 6.3 × 10-3

Maleb 5 121868475 rs111299422 Intergenic2 T TA 0.69 −0.050 0.008 2.6 × 10-10 3.3 × 10-5

Malec 10 102553647 rs1006545 PAX2 G T 0.11 −0.062 0.011 4.3 × 10-8 2.7 × 10-3

Maled 14 96864374 rs41317306 AK7 T G 0.98 −0.137 0.024 2.2 × 10-8 5.1 × 10-1

CRF-slope

Combined 5 121868475 rs111299422 Intergenic2 T TA 0.69 0.007 0.001 1.3 × 10-10

Combined 7 100546458 rs4582488 Integenic5 G T 0.74 0.007 0.001 3.6 × 10-9

Combined 8 8317817 rs2921060 Intergenic6 A C 0.55 0.006 0.001 1.6 × 10-8

Combined 8 10822431 rs35792458 XKR6 G C 0.56 −0.006 0.001 1.5 × 10-8

Combined 8 11423072 rs12541800 Intergenic7 A G 0.52 0.006 0.001 4.7 × 10-8

Combined 10 102554618 10:102554618_AT_A PAX2 AT A 0.11 0.012 0.002 1.5 × 10-13

Combined 12 24758480 rs4963772 Intergenic8 G A 0.85 −0.009 0.001 5.8 × 10-11

Combined 12 33633599 rs7303356 Intergenic9 G C 0.49 −0.006 0.001 1.5 × 10-10

Femalee 5 121868475 rs111299422 Intergenic2 T TA 0.69 0.010 0.002 2.5 × 10-8 1.1 × 10-3

Malef 10 102553647 rs1006545 PAX2 G T 0.11 0.012 0.002 6.0 × 10-12 2.0 × 10-5

Maleg 20 4131944 rs1741294 SMOX C G 0.96 0.016 0.003 6.0 × 10-9 6.0 × 10-1

PA

Combined 1 78450517 rs34517439 Intergenic10 C A 0.88 0.316 0.058 4.6 × 10-8

Combined 5 87942506 rs10067451 LINC00461 G A 0.89 0.333 0.060 3.0 × 10-8

Combined 5 152238114 5:152238114* LOC101927134 TTTTTTTTTTTTC T 0.71 0.230 0.042 4.1 × 10-8

Combined 9 128195657 rs1268539 Intergenic11 C A 0.58 −0.214 0.038 1.9 × 10-8

Combined 10 21885577 rs34719019 MLLT10 A T 0.73 0.242 0.042 9.7 × 10-9

Combined 17 43758125 rs62055696 CRHR1 A G 0.78 −0.309 0.046 1.3 × 10-11

Combined 17 44326864 rs2696625 Intergenic12 A G 0.77 −0.310 0.045 4.8 × 10-12

Combined 17 44828931 rs199533 NSF G A 0.79 −0.250 0.046 4.0 × 10-8

Combined 18 40768309 rs59499656 Intergenic13 A T 0.66 −0.215 0.039 5.0 × 10-8

Femaleh 16 71464058 rs75986475 Intergenic14 C G 0.88 −0.436 0.076 7.4 × 10-9 3.3 × 10-1

Femalei 16 80784797 rs13329850 CDYL2 C G 0.74 −0.308 0.055 2.8 × 10-8 4.5 × 10-1

Femalej 17 43758125 rs62055696 CRHR1 A G 0.78 −0.358 0.059 1.3 × 10-9 2.4 × 10-4

Femalek 17 44262581 17:44262581_A_C KANSL1 A C 0.83 −0.450 0.070 1.5 × 10-10 8.2 × 10-3

Malel 2 36592600 rs78661713 CRIM1 G A 0.94 −0.700 0.128 4.8 × 10-8 6.1 × 10-1
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Genes to prioritise for experimental follow-up
For each trait, we report genes identified as both func-
tional candidates by TWAS and colocalisation analysis,
and positional candidates (Table 1) or gene-based associ-
ation candidates (Additional file 1: Table S8). We then
report any additional noteworthy TWAS-significant
functional candidates. The functional candidates re-
ported below all passed the TWAS multiple testing
threshold (16 for CRF-vo2max, 10 for CRF-slope and 24
for PA) and are shown in Fig. 4. Where functional candi-
dates were also implicated in the gene-based association
test these are indicated in Fig. 4. The full list of signifi-
cant genes from the gene-based test of association is
shown in Additional file 1: Table S8.

CRF-vo2max
All functional candidates were located within cyto-
chrome band 17q21.31, within or near the chromosome
17 inversion. In particular, five functional candidates
were identified in the gene-based association and had a
high probability of a shared SNP driving both the CRF-
vo2max association and expression in the listed tissues
(PP4 range=0.94–0.99, Fig. 4): WNT3 (Wnt family mem-
ber 3) in the aorta, heart (atrial appendage), lung and
skeletal muscle; MAPT (microtubule-associated protein
tau) in the brain and lung; LRRC37A2 (leucine-rich
repeat-containing 37A2) in and LRRC37A (leucine-rich
repeat-containing 37A) in the adipose (subcutaneous
and visceral omentum), artery (aorta and tibial), heart
(atrial appendage and left ventricle), and skeletal muscle
and CRHR1 (corticotropin-releasing hormone receptor
1) in the adipose (subcutaneous and visceral omentum)
and skeletal muscle. Notable GWAS catalogue associa-
tions for this set of genes include disease (atrial fibrilla-
tion [46], diabetes mellitus, and coronary artery disease
[47], Parkinson’s [48], and Alzheimer’s disease [49]),
lung function (FEV1, FVC [50], peak expiratory flow
[51]), heart and electrocardiography measures (QRS

measures [52], cardiac arrhythmia [53]), and blood phe-
notypes (systolic blood pressure, eosinophil count [54],
haemoglobin level [55], haematocrit [56] and red blood
cell density [57]).

CRF-slope
Positional candidate ACHE (acetylcholinesterase), impli-
cated by rs4582488 (52.87kb upstream), was significantly
associated with expression in the adipose (subcutaneous,
visceral omentum), artery (aorta, coronary, and tibial),
and heart (atrial appendage) tissue. Each of these tissue
associations had a high probability of a shared SNP driv-
ing both the CRF-slope association and expression (PP4
range=0.79–0.84). ACHE has notable reported associa-
tions with resting heart rate [58], heart rate response to
exercise and recovery [59], electrocardiography [60], dia-
stolic blood pressure [61], and diabetes mellitus [62].
Three functional candidates were also significant in

the gene-based association: TRIP6 (thyroid hormone re-
ceptor interactor 6) with a high probability of a shared
SNP driving both CRF-slope association and expression
in the whole blood, and PINX1 (PIN2 (TERF1) interact-
ing telomerase inhibitor [1] and ERI1 (exoribonuclease
1) had significant expression in the lung, with strong evi-
dence the same variant drive expression and the CRF-
slope association (PP4 range=0.71–0.98). TRIP6, PINX1,
and ERI1 have notably been associated with blood pres-
sure [63], triglyceride levels [64], HDL cholesterol [65],
diabetes mellitus [66], and atherosclerosis [67].
Additional TWAS significant functional candidates

with a high probability of the GWAS variant driving ex-
pression included SRRT (serrate, RNA receptor mol-
ecule) in the lung and heart (atrial appendage) tissue,
RP11-62H7.2 in the heart (atrial appendage), FAM86B3P
(family with sequence similarity 86 member B3) in the
skeletal muscle, FAM85B (family with sequence similar-
ity 85 member B) in the lung and coronary artery, and
AF131215.2 in the artery (coronary and tibial) (PP4

Note: These are independent SNP associations determined by p value informed LD clumping (SNPs correlated 0.2 or greater in a 500 kb). 2 CRF-slope-associated
SNPs (rs587631263, chr7; rs10623635, chr10) and 16 PA-associated SNPs (rs10828247, chr10; 15 chr17 SNPs listed in supplementary material) not available in LD
reference data. LOCUS nearest gene, A1 effect allele, A0 reference allele, A1 FREQ effect allele frequency, BETA effect size (from BOLT-LMM approximation to
infinitesimal mixed model), SE standard error of the effect size
*5:152238114_TTTTTTTTTTTTC_T
1LOC643355 (+51.2kb), CTTNBP2NL (−346.1kb); 2MGC32805 (+53.7kb), LOC101927379 (−96.2kb); 3GJA1 (+318.8kb), HSF2 (−631kb); 4LOC644172 (−9.0kb), LRRC37A4P
(+70.62kb); 5MUC3A (−0.593kb), ACHE (+52.87kb); 6SGK223 (+78.47kb), CLDN23 (−241.8kb); 7BLK (+0.964kb), LINC00208 (−10.97kb); 8LINC00477 (+21.38kb), BCAT1
(−204.5kb); 9SYT10 (+40.84kb), ALG10 (−541.6kb); 10FUBP1 (+5.74kb), DNAJB4 (−20.12kb); 11MAPKAP1 (−4.015kb), GAPVD1 (+68.37kb); 12LOC644172 (+3.71kb),
LRRC37A (−45.63kb); 13RIT2 (+72.65kb), SYT4 (−79.55kb); 14ZNF23 (−17.44kb), CALB2 (+39.72kb)
aFemale BETA = 0.0163, SE = 0.0060: Q = 6.58, p = 1.0 × 10-2; I2 = 84.8%, 95% CI = 38.0% – 96.3% (nsCRF = not significant at 0.05/7, for 7 CRF SNPs tested)
bFemale BETA = −0.0271, SE = 0.0065: Q = 4.86, p = 2.8 × 10-2; I2 = 79.4%, 95% CI = 11.1–95.2% (nsCRF)
cFemale BETA = −0.0281, SE = 0.0094: Q = 5.34, p = 2.1 × 10-2; I2 = 81.3%, 95% CI = 20.3–95.6% (nsCRF)
dFemale BETA = 0.0136, SE = 0.0206: Q = 22.13, p < 0.001; I2 = 95.5%, 95% CI = 86.8–98.5%
emale BETA = 0.0038, SE = 0.0012: Q = 8.37, p = 3.8 × 10-3; I2 = 88.1%, 95% CI = 54.1–96.9%
fFemale BETA = 0.0111, SE = 0.0026: Q = 0.04, p = 8.3 × 10-1; I2 = 0.0% (nsCRF)
gFemale BETA = 0.0021, SE = 0.0040: Q = 7.96, p = 4.8 × 10-3; I2 = 87.4%, 95% CI = 51.1–96.8%
hMale BETA = −0.0893, SE = 0.0916: Q = 8.51, p = 3.5 × 10-3; I2 = 88.3%, 95% CI = 55.0–96.9%
iMale BETA = 0.0503, SE = 0.0670: Q = 16.98, p < 0.001; I2 = 94.1%, 95% CI = 81.4–98.1%
jMale BETA = -0.2636, SE = 0.0718: Q = 1.03, p = 3.1 × 10-1; I2 = 3.0% (nsPA = not significant at 0.05/5, for 5 PA SNPs tested)
kMale BETA = −0.2258, SE = 0.0855: Q = 4.09, p = 4.3 × 10-2; I2 = 75.6%, 95% CI = 0.0–94.5% (nsPA)
lFemale BETA = 0.0542, SE = 0.1057: Q = 20.63, p < 0.001; I2 = 95.2%, 95% CI = 85.5–98.4%
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range=0.74–0.92). SRRT and FAM86B3P are notably as-
sociated with heart rate response to exercise and recov-
ery [59], electrocardiography (RR interval) [68], diabetes
mellitus [66], and obesity [69].

PA
All PA functional candidates were on chromosome 17,
except L3MBTL2 on chromosome 22. The number of
loci and the best candidates should be interpreted with

caution as this is a gene-dense region with many copy
number variants, and all the chromosome 17 candidates
were within or near the large 17q21.3 inversion poly-
morphism [44, 45]. Nonetheless, the positional candi-
dates were supported by the functional analyses.
Ten significant genes from the gene-based association

analysis were identified as functional candidates: PLEK
HM1 (plekstrin homology domain containing M1) in the
lung, skeletal muscle and peripheral blood with low

Fig. 4 TWAS and colocalisation-identified genes. Genes listed on the y-axes are significant at the conservative Bonferroni-corrected TWAS p value.
On the x-axis is tissue type; the category of the tissue is represented by colour, colocalisation posterior probability 4 (COLOC PP4—the probability
of a shared causal SNP driving the association signal and expression in a reference tissue) represented by line angle (the vertical line is a
probability of 1.0 that the GWAS-identified SNP is an eQTL for the gene). The complementary TWAS and colocalisation approaches provide a
priority list of genes for further exploration. Genes in bold were significant in the gene-based test of association
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probability of the GWAS variant driving expression (PP4
range=0.30–0.33); NSF (N-ethylmaleimide-sensitive fac-
tor) in the coronary artery (PP4=0.54); MAPT in the
subcutaneous adipose (PP4=0.91), artery (aorta PP4=
0.96, tibial PP4=0.67), and brain, left ventricle, lung, adi-
pose (PP4 range=0.93–0.99); LRRC37A2 in the adipose
(visceral omentum and subcutaneous), artery (aorta, cor-
onary), heart (atrial appendage and left ventricle), lung
(all PP4=0.99); KANSL1 (KAT8 Regulatory NSL Com-
plex Subunit 1) in the skeletal muscle (PP4=0.92);
CRHR1 in adipose (visceral omentum and subcutaneous)
and skeletal muscle (PP4≥0.98); ARL17A (ADP ribosyla-
tion factor like GTPase 17A) with high probability of a
shared variant driving PA association and gene expres-
sion in left ventricle (PP4=0.88) and skeletal muscle
(PP4=0.97); ARHGAP27 (rho GTPase activating protein
27) in visceral omentum (PP4=0.92); and L3MBTL2
(L3MBTL histone methyl-lysine binding protein 2) in
subcutaneous adipose (PP4=0.67).
Previous notable associations with these ten functional

candidates include disease (Parkinson’s disease [70],
hypertrophic cardiomyopathy [71], ischaemic stroke, dia-
betes mellitus and coronary artery disease [72]) an-
thropometrics (BMI-adjusted waist-hip to ratio, BMI
[73]), blood phenotypes (haemoglobin measurement
[55], red blood cell density, haematocrit [57], eosinophil
count and systolic blood pressure [54]), lung function
(FVC [54], FEV1 [51]), and heart and electrocardiog-
raphy measures (QRS measures [52], and cardiac
arrhythmia [53]).
Figure 4 includes the full list of TWAS significant can-

didates, including those with lower posterior probabil-
ities of a shared variant driving both GWAS trait
association and expression.

Gene set enrichment
We also performed gene set enrichment analyses on the
TWAS significant genes for sex-combined CRF-vo2max
(16 genes), CRF-slope (10 genes) and PA (24 genes, 23
with recognised Ensembl ID), as well as female PA (22
genes: 21 with recognised Ensembl ID). TWAS analyses
of the other sex-specific traits did not yield sufficient
gene associations to perform enrichment analyses. En-
richment of TWAS-identified functional candidates in
gene sets defined by genes identified in previous
GWASs, reported in the GWAS catalogue, are shown in
Additional file 1: Figures S38–S40.
Functional candidates for CRF-vo2max were enriched

in GWAS gene sets for multiple diseases including mul-
tiple system atrophy, Alzheimer’s disease, Parkinson’s
disease, idiopathic pulmonary fibrosis and primary bil-
iary cirrhosis (FDR-adjusted p range=6.9 × 10-3–2.0 ×
10-5), as well as lung function (FEV1, FDR-adjusted p=)
and blood phenotypes (haematocrit FDR-adjusted p

values=2.8 × 10-2, haemoglobin concentration FDR-
adjusted p values= 4.0 × 10-2). Enrichment for genes im-
plicated in Alzheimer’s and Parkinson’s diseases is note-
worthy given there is some evidence of an underlying
insulin resistance pathology.
CRF-slope functional genes were enriched in GWAS

gene sets for the thrombosis and atherosclerosis risk fac-
tor PAI-1 (plasminogen activator inhibitor-1: FDR-
adjusted p=5.0 × 10-6), heart rate response to exercise
and recovery (FDR-adjusted p=1.2 × 10-5) and resting
heart rate (FDR-adjusted p=1.4 × 10-3).
GWAS gene sets enriched for PA functional candi-

dates included Parkinson’s disease, idiopathic pulmonary
fibrosis, Alzheimer’s disease, multiple system atrophy
and primary biliary cirrhosis (FDR-adjusted p range=2.7
× 10-2–2.0 × 10-8), and mental health traits (e.g. neuroti-
cism, mood instability and alcohol use disorder). Also
noteworthy was enrichment of female PA-associated
functional candidates in FEV1 (FDR-adjusted p=4.1 ×
10-4) and FVC (FDR-adjusted p=3.1 × 10-3) given their
use in the diagnosis of obstructive and restrictive pul-
monary diseases.

Genetic correlations within CRF-vo2max, CRF-slope and
PA
CRF-vo2max, CRF-slope and PA were all polygenic with
modest SNP heritabilities of between 0.08 and 0.14
(Table 2). There was no observed difference between
sexes.
For the sex-combined between-phenotype genetic cor-

relations, CRF-vo2max and CRF-slope were negatively
correlated (rg=−0.66, se=0.04, p=5.4 × 10-53), suggesting
genetic variants that contribute to greater fitness are also
associated with a lower rate of increase of heart rate dur-
ing exercise. PA had a moderate positive correlation
with CRF-vo2max (rg=0.37, se=0.04, p=1.9 × 10-16), and
a modest negative correlation with CRF slope (rg=−0.14,
se=0.06, p=1.0 × 10-2). These two genetic correlations
suggest that higher levels of activity have a shared gen-
etic contribution with greater fitness and with a lower
rate of increase of heart rate during exercise. The
within-sex between-phenotype genetic correlations were
similar to those for the sex-combined results (Additional

Table 2 Heritability of CRF and PA

CRF-vo2max CRF slope PA

Combined 0.10 (0.01) 0.08 (0.01) 0.14 (0.01)

Male 0.10 (0.01) 0.09 (0.02) 0.13 (0.01)

Female 0.11 (0.02) 0.10 (0.02) 0.15 (0.01)

Note: Values shown are SNP heritabilities and standard errors on the observed
scale. CRF-vo2max maximum volume of oxygen uptake per kg of bodyweight
per minute, estimated from workload and heart rate during the
cardiorespiratory fitness test, as well as age and weight; CRF slope the rate of
increase of heart rate during the exercise period of the cycle ramp test; PA 7-
day average physical activity
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file 1: Figure S41). Within-phenotype between-sex gen-
etic correlations were all near 1.0, reflecting that the
overall genomic signal is highly correlated despite a few
different loci between sexes (Additional file 1: Figure
S41).

Genetic correlations with multiple traits and diseases
A comprehensive analysis of genetic correlations of
CRF-vo2max, CRF-slope and PA with a wide array of
traits was performed using LD-HUB (Fig. 5 shows the
combined-sex result, Additional file 1: Figures S42–S44
show by-sex results). All genetic correlations described
below were FDR significant in the sex-combined sample.
Additional file 1: Table S9 includes the sex-combined,
male and female FDR-significant genetic correlations, as
well as heritabilities, associated standard errors and
GWAS study PubMed IDs for all FDR-significant traits
and diseases.

Shared genetic risk: lipids, glycaemic and cardiometabolic
traits
Genetic variation associated with lower CRF-vo2max
was correlated with features of the typical type-2 dia-
betes (T2D) profile: higher insulin resistance (HOMA-
IR: rg=−0.58, se=0.12) and higher fasting insulin (rg=
−0.45, se=0.09), impaired beta-cell function (HOMA-B:
rg=−0.40, se=0.09), hyperglycaemia (HbA1c: rg=−0.25,
se=0.08) and hypertriglyceridemia (rg=−0.17, se=0.04). In
the PA combined sample, as well as genetic correlations

with fasting insulin (rg=−0.31, se=0.07), insulin resistance
(rg=−0.29, se=0.07) and triglycerides (rg=−0.20, se=0.04),
we observed a positive correlation with HDL cholesterol
(rg=0.28, se=0.04) and a direct negative correlation with
T2D (rg=−0.23, se=0.05). Genetic variation associated
with lower levels of physical activity was associated with
increased risk of T2D.
Both CRF-vo2max and PA were negatively correlated

with coronary artery disease (CRF-vo2max rg=−0.15, se=
0.05; PA rg=−0.21, se=0.04). Like T2D, genetic variation
associated with lower CRF-vo2max and lower PA was
associated with increased risk for coronary artery dis-
ease. Additional file 1: Figure S45 highlights the FDR-
significant glycaemic, cardiometabolic and lipid traits in
the combined sample, as well as in males and females
separately.

Shared genetic risk: metabolites and hormones
CRF-vo2max was significantly genetically correlated with
glycoprotein acetyls, GlycA (rg=−029, se=0.10), such that
genetic variation associated with greater CRF-vo2max
was associated with lower levels of the GlycA biomarker.
Elevated blood concentrations of GlycA are a strong pre-
dictor for long-term risk of morbidity and mortality
from diverse diseases [74].
For PA, we observed positive FDR-significant genetic

correlations with several related HDL metabolites. The
largest HDL metabolite correlation with PA was total
cholesterol in medium HDL (rg=0.42, se=0.15). Genetic

Fig. 5 Genetic correlations for combined males and females. red = negative correlations; blue = positive correlations; size = relative size of the
genetic correlation; Bonferroni threshold shows p=0.05/total number of correlations per trait; false discovery rate threshold indicates the largest
FDR-adjusted p value < 0.05
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variation associated with greater CRF-vo2max and PA
was associated with higher levels of HDL. PA was also
significantly correlated with acetate (rg=0.36, se=0.13)
and apolipoprotein A-I (rg=0.35, se=0.12)—the major
protein component of HDL which enables fat efflux
from within cells for transport to the liver for excretion.
Additional file 1: Figure S50 shows the genetic correla-
tions with blood metabolites for the combined sample,
and males and females separately.
Circulating levels of the satiety hormone leptin were

negatively correlated with CRF-vo2max and PA (CRF-
vo2max rg=−0.41, se=0.08; PA rg=−0.37, se=0.07), and
for BMI-adjusted leptin (CRF-vo2max rg=−0.32, se=0.08;
PA rg=−0.21, se=0.07) (Additional file 1: Figure S45).
The genetic profile associated with greater levels of fit-
ness and activity is correlated with greater circulating
levels of leptin, which inhibits hunger and reduces fat
storage in adipocytes.

Shared genetic risk: body measures
CRF-vo2max was positively genetically correlated with
height (rg=0.13, se=0.04), birth weight (rg=0.14, se=0.05)
and own birth weight (rg=0.13, se=0.04). All other FDR-
significant anthropometric correlations were negative (rg
range=−0.23–−0.44, se range=0.04–0.07): body fat, waist
circumference, measures of obesity, BMI, waist-to-hip
ratio and hip circumference. CRF-slope had FDR-
significant negative genetic correlations with childhood
obesity (rg=−0.24, se=0.06) and childhood height (rg=
−0.26, se=0.07), BMI (rg=−0.18, se=0.05), birth weight
(rg=−0.15, se=0.05) and own birth weight (rg=−0.12, se=
0.04). For PA, all FDR-significant body measures includ-
ing height were negative (rg=−0.12–-0.37, se=0.03–0.06):
body fat, waist circumference, measures of obesity, BMI,
waist-to-hip ratio and hip circumference, and height.
Genetic variation associated with greater CRF-vo2max
and higher levels of PA was associated with lower body
fat, BMI, obesity, and waist and hip circumferences.
Additional file 1: Figures S46–S48 shows FDR-
significant genetic correlations with anthropometric
measures for the combined sample and males and fe-
males separately.

Shared genetic risk: lung function and heart rate
CRF-vo2max was positively associated with lung func-
tion: forced vital capacity (FVC: rg=0.22–0.26, se=0.03–
0.06), forced expiratory volume in 1 s (FEV1: rg=0.18–
0.24, se=0.03–0.07) and peak expiratory flow (rg=0.12,
se=0.03). CRF-slope was negatively correlated with FVC
(rg=−0.13, se=0.04) and peak expiratory flow (rg=−0.14,
se=0.04). For PA, we found modest positive genetic cor-
relations with FVC (rg=0.13–0.15, se=0.03–0.04) and
FEV1 (rg=0.10, se=0.02). Genetic variation associated

with both fitness and activity is associated with improved
lung function.
Only CRF slope was genetically correlated with resting

heart rate (rg=−0.31, se=0.07). Genetic correlation associ-
ated with greater acceleration of heart rate during exer-
cise was associated a lower resting heart rate. Additional
file 1: Figure S49 shows genetic correlations with lung
function and heart rate, for the combined sample and
males and females separately.

Shared genetic risk: smoking behaviour and longevity
We observed a positive genetic correlation between PA
and former vs current smoking status (rg=0.27, se=0.07).
A genotype associated with greater levels of activity as-
sociated with smoking cessation.
Finally, we found that genetic variation associated with

greater CRF-vo2max and PA was also significantly asso-
ciated with longevity, as measured by father’s age at
death (CRF-vo2max rg=0.37, se=0.09; PA rg=0.30, se=
0.07) and parents’ ages at death (PA rg=0.28, se=0.08).
FDR-significant genetic correlations with smoking be-
haviour, cancer and longevity reported above are
highlighted in Additional file 1: Figure S51.

Shared genetic risk: demographics
CRF-vo2max and PA were positively correlated with
years of schooling (CRF-vo2max rg=0.28–0.32, se=0.04–
0.05; PA rg=0.11–0.14, se=0.03–0.04) and age at birth of
first child (CRF-vo2max rg=0.22, se=0.05; PA rg=0.13,
se=0.04). CRF-slope had a corresponding negative gen-
etic correlation with years of schooling (rg=−0.15–−0.17,
se=0.05). FDR-significant genetic correlations with edu-
cation and reproductive phenotypes are highlighted in
Additional file 1: Figure S52.

Discussion
Genetic variation explains a modest but significant pro-
portion of the variation in vo2max, rate of increase of
heart rate during exercise and average weekly activity
level, for both sexes. Genetic association signals were
highly correlated between sexes, with only six SNPs that
showed evidence for a sex-specific association (CRF-
vo2max: rs1741294 male; CRF-slope: rs111299422 fe-
male, rs1741294 male; PA rs75986475, rs13329850 fe-
male, rs78661713 male). The two derived fitness traits,
CRF-vo2max (vo2max) and CRF-slope (rate of increase
of heart rate during exercise), were negatively correlated,
phenotypically and genetically. Greater levels of fitness
corresponded to a slower rate of increase of heart rate
during exercise. CRF-vo2max was positively correlated
with PA; greater fitness was associated with higher levels
of physical activity.
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Lower CAD and T2D among most fit and active
We found that higher levels of CRF-vo2max and PA
were associated with better health outcomes in a dose-
dependent way. The frequency of CAD and diabetes
mellitus diagnosis was substantially lower among indi-
viduals with higher levels of CRF-vo2max and PA, even
after controlling for BMI and SES. In this large UK
population-based sample, we find the same associations
between PA and CRF-vo2max observed in epidemio-
logical and clinical studies of coronary heart disease and
cardiovascular events [75] and T2D [76]. As has been
previously observed [3], there was a noteworthy steeper
drop-off in disease occurrence with increased PA and
CRF-vo2max among the least fit and active third of the
sample. The fitness and activity associations with disease
observed in the combined sample were most stark
among males. For CRF-vo2max and CRF-slope, disease
diagnosis frequency was generally lower as we only in-
cluded individuals with no contraindications for the
standard cycle ramp test protocol. Disease diagnosis as-
sociation with CRF-slope was noisy, with no clear pat-
tern of association except for a small reduction in CAD
and diabetes mellitus. It is not clear why there would be
a reduction in disease diagnoses with increasing CRF-
slope, given the negative correlation with CRF-vo2max.
One possible factor is that among the participants with
high CRF-slope levels, there is a mix of the least fit sam-
ples whose heart rates increased by a larger amount dur-
ing exercise, participants with lower resting heart rates
due to medical conditions and medication (expected to
be low given risk category exclusions) and the most fit
samples who would have lower resting heart rates.

Disease-associated genes implicated in CRF and PA
Our functional genetic analyses identified genes associ-
ated with CRF and PA, with known associations in dis-
ease and clinical vital sign-related phenotypes. For CRF-
vo2max, we found functional candidates associated with
expression in the heart, artery, lung, brain, adipose and
skeletal muscle. All functional candidates were within
17q21.31, with five genes also identified in the gene-
based association analysis (WNT3, MAPT, LRRC37A2,
LRRC37A, CRHR1). These five genes have previously
been associated with GWASs for atrial fibrillation [46],
diabetes mellitus and coronary artery disease [47], Par-
kinson’s [48], and Alzheimer’s disease [49], lung function
(FEV1, FVC [50], peak expiratory flow [51]), heart and
electrocardiography measures [52], cardiac arrhythmia
[53] and blood phenotypes (systolic blood pressure, eo-
sinophil count [54], haemoglobin level [55], haematocrit
[56] and red blood cell density [57]). Subsets of CRF-
vo2max functional candidates were enriched in the
GWAS catalogue for multiple system atrophy, Alzhei-
mer’s disease, Parkinson’s disease, idiopathic pulmonary

fibrosis, primary biliary cirrhosis, FEV1, haematocrit and
haemoglobin concentration.
For CRF slope, functional candidates fell within one of

two cytogenic regions, 7q21.1 and 8p23.1. ACHE within
7q21.1, also identified as a positional candidate 52.87kb
upstream of rs4582488, was significantly associated with
expression in adipose, artery and heart tissue and has
previously been associated with resting heart rate [58],
heart rate response to exercise and recovery [59], elec-
trocardiography [60], diastolic blood pressure [61] and
diabetes mellitus [62]. The gene-based association iden-
tified genes (TRIP6, PINX1 and ERI1) were significantly
associated with expression change in the whole blood
and lung and have previously been associated with blood
pressure [63], triglyceride levels [64], HDL cholesterol
[65], diabetes mellitus [66] and atherosclerosis [67].
Other promising functional candidates (SRRT, RP11-
62H7.2, FAM86B3P, FAM85B and AF131215.2) were as-
sociated with expression in the lung, heart, skeletal
muscle and coronary and tibial artery and have been as-
sociated in previous GWASs with heart rate response to
exercise and recovery [59], electrocardiography [68], dia-
betes mellitus [66] and obesity [69]. We found subsets of
the CRF-slope functional candidates were enriched in
GWAS gene sets for the thrombosis and atherosclerosis
risk factor PAI-1, heart rate response to exercise and re-
covery, and resting heart rate.
For PA, the functional candidates on 17q21.31 (MAPT,

LRRC37A2, LRRC37A, KANSL1, CRHR1, ARL17A and
ARHGAP27) and 22q13.2 (L3MBTL2) with a high prob-
ability of the same variant driving PA association and ex-
pression in the adipose, brain, heart, lung and muscle;
have previously been associated with disease (Parkinson’s
disease [70], hypertrophic cardio myopathy [71], ischae-
mic stroke, diabetes mellitus and coronary artery disease
[72]) anthropometrics (BMI-adjusted waist hip to ratio,
BMI [73]), blood phenotypes (haemoglobin measure-
ment [55], red blood cell density, haematocrit [57], eo-
sinophil count and systolic blood pressure [54]), lung
function (FVC [54], FEV1 [51]), and heart and electro-
cardiography measures (QRS measures [52], cardiac
arrhythmia [53]). We found PA functional candidates
enriched in Parkinson’s and Alzheimer’s disease, note-
worthy given their underlying insulin resistance path-
ology (although the insulin resistance link is
controversial for Alzheimer’s disease), idiopathic pul-
monary fibrosis, multiple system atrophy and primary
biliary cirrhosis. Functional candidates from the female
PA GWAS were also enriched in the lung function phe-
notypes FEV1 and FVC.

Genetic correlations link CRF and PA with disease
Genetic correlations complement epidemiological and
clinical observations. Because inherited genetic risk
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cannot be due to confounding, genetic correlations limit
the number of potential confounders linked through
genotype. The shared genetic architecture of both CRF-
vo2max and PA clearly implicated the lifestyle-related
chronic diseases obesity, T2D and CAD, and their body
composition and metabolic risk factors. CRF-vo2max
and PA were negatively genetically correlated with obes-
ity, body fat, body mass index and waist-to-hip circum-
ference, triglycerides, the satiety hormone leptin, fasting
insulin, insulin resistance, and T2D (significant only for
PA), and CAD. These negative genetic correlations cor-
roborate the epidemiological associations, previous re-
search findings and clinical observations of CRF and PA
and body composition [77, 78], lipid profile [79, 80], adi-
pocytokines [81], fasting insulin and insulin resistance
[82–86] and leptin [76], T2D [87–89] and CAD [90].
Likewise, the positive genetic correlations are consistent
with previous observations of positive relationships be-
tween CRF and PA, and HDL cholesterol [80, 91] and
longevity [92–94].
CRF-vo2max was negatively genetically correlated with

blood levels of glycoprotein acetyls (GlycA). GlycA is as-
sociated with both acute and chronic inflammation and
is a strong predictor for long-term risk of morbidity and
mortality from a wide range of diseases [74].
Additionally, CRF-vo2max and PA had positive genetic

correlations with age at birth of first child and level of
education, respectively. a correlate and component of
SES. CRF slope showed a corresponding negative correl-
ation with years of education. This is consistent with
population-based observations of a socioeconomic gradi-
ent in PA and CRF: people living in higher socioeco-
nomic status areas tend to be more active and more fit
and from a public health perspective particularly import-
ant as ‘reduced PA and fitness levels may contribute to
social inequalities in health’ [95].
We note several limitations. The gold standard for

CRF measurement involves exercise to volitional exhaus-
tion with measurement of gas exchange (uptake of oxy-
gen, elimination of carbon dioxide). A submaximal CRF
test with extrapolation of VO2max scores is however a
much more practical solution, especially for the collec-
tion of a large sample in the age ranges studied. The ob-
jective PA monitoring only captured a 7-day window,
effectively a snapshot of participant behaviour, and we
do not know if this reflects their habitual behaviour. We
also used raw acceleration and did not attempt to tease
apart PA intensity, recognised as important for health
outcomes. All genetic associations, especially the sex-
specific SNPs identified, will require replication in an in-
dependent sample. In our genetic correlation analyses,
some of the largest correlations were observed with
blood metabolites but these were based on relatively
small GWAS reference samples (metabolites N=24,925

compared to body fat N=100,716), and many metabolite
correlations failed to pass the multiple testing threshold.
As well as this sample size (or power of each discovery
GWAS) limitation, genetic correlations cannot resolve
reverse causation. Another limitation is correlated life-
style risk factors not considered, in particular eating be-
haviours and nutrition. Eating habits, diet and exercise
behaviours tend to go hand in hand, in large part influ-
enced by the environment, e.g. sedentary time spent
watching television and eating high-fat foods [96, 97]. A
holistic approach to health—addressing eating habits
and including an effective dietary intervention [98],
alongside prescription PA and monitoring of CRF—may
be the most effective practical approach, especially in
already overweight individuals given the possibility that
there exists a bi-directional relationship between adipos-
ity and PA [99]. Despite the complex interplay of eating
habits, nutrition, environment and PA, CRF as a regu-
larly measured vital sign is an objective and easily mea-
sured sentinel for health.

Conclusions
In summary, we found strong evidence that genetic vari-
ants associated with CRF and PA also influenced genetic
expression in a small set of genes in the heart, artery,
brain, lung, muscle and adipose tissue. These function-
ally relevant genes were enriched among genes known
to be associated with CAD, T2D and Alzheimer’s dis-
ease—three of the top 10 causes of death in high-income
countries—as well as Parkinson’s, pulmonary fibrosis,
and blood pressure, heart rate, and respiratory pheno-
types. Finally, genetic correlation-related lower fitness
and activity with several disease risk factors including
greater waist-to-hip ratio, BMI and obesity; with a typ-
ical T2D profile including higher insulin resistance,
higher fasting glucose, impaired beta-cell function,
hyperglycaemia, hypertriglyceridemia; increased risk for
CAD and T2D; and shorter lifespan. Genetics sup-
ports three decades of evidence for the inclusion of
CRF as a clinical vital sign [3]. CRF is a window onto
general health and wellbeing, and physical activity is
the primary means of improving CRF. In fact, to meet
the WHO policy of reduction in sedentary lifestyles
that carry a heavy cost to personal and public health,
‘policies to increase population levels of physical ac-
tivity need to be prioritised and scaled up urgently’
[9]. PA too is ‘vital’; we think both measures provide
important information and ideally should be collected
in tandem if feasible. Given the global health burden
of non-communicable disease-related to lifestyle
choices, as well as dietary advice, regular measure-
ment of CRF as a marker of health and routine pre-
scription of PA is imperative.
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