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Abstract

Gaussian processes are machine learning models capable of learning unknown
functions in a way that represents uncertainty, thereby facilitating construction
of optimal decision-making systems. Motivated by a desire to deploy Gaussian
processes in novel areas of science, a rapidly-growing line of research has focused
on constructively extending these models to handle non-Euclidean domains, in-
cluding Riemannian manifolds, such as spheres and tori. We propose techniques
that generalize this class to model vector fields on Riemannian manifolds, which
are important in a number of application areas in the physical sciences. To do
so, we present a general recipe for constructing gauge equivariant kernels, which
induce Gaussian vector fields, i.e. vector-valued Gaussian processes coherent with
geometry, from scalar-valued Riemannian kernels. We extend standard Gaussian
process training methods, such as variational inference, to this setting. This enables
vector-valued Gaussian processes on Riemannian manifolds to be trained using
standard methods and makes them accessible to machine learning practitioners.

1 Introduction

Gaussian processes are an effective model class for learning unknown functions. They are particularly
attractive for use within data-efficient decision systems, including Bayesian optimization [3, 32, 39],
model-based reinforcement learning [34, 7], and active learning [21]. In these settings, Gaussian
processes can represent and propagate uncertainty, as well as encode inductive biases as prior
information in order to drive data efficiency. A key aspect of prior information is the geometry of
the domain on which the Gaussian process is defined, which often encodes key properties, such as
symmetry. Following the growing deployment of Gaussian processes, a number of recent works have
focused on how to define Gaussian processes on non-Euclidean domains in ways that reflect their
geometric structure [2, 1].

In many applications, such as climate science, quantities of interest are vector-valued. For example,
global wind velocity modeling must take into account both speed and direction, and is represented by a
vector field. On geometric domains, the mathematical properties of vector fields can differ noticeably
from their Euclidean counterparts: for instance, one can prove that every smooth vector field on a
sphere must vanish in at least one point [26]. Behavior such as this simultaneously highlights the
need to represent geometry correctly when modeling vector-valued data, and presents a number of
non-trivial technical challenges in constructing models that are mathematically sound.

*Equal contribution. Code at https://github.com/MJHutchinson/ExtrinsicGaugeEquivariantVectorGPs.
For a general implementation, see https://github.com/GPflow/GeometricKernels/.
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In particular, even the classical definition of a vector-valued Gaussian process—that is, a random
function with multivariate Gaussian marginals at any finite set of points—already fails to be a fully
satisfactory notion when considering smooth vector fields on a sphere. This is because tangent
vectors at distinct points live within different tangent spaces, and it is not clear how to construct
a cross-covariance between them that does not depend on a completely arbitrary choice of basis
vectors within each space. Constructions that are independent of this choice of basis are called gauge
equivariant, and a large body of recent work [5, 15] in geometric machine learning has focused on
satisfying this key property for convolutional neural networks that deal with non-Euclidean data.

Our contributions include the following. We (a) present a differential-geometric formalism for
defining Gaussian vector fields on manifolds in a coordinate-free way, suitable for Gaussian process
practitioners with minimal familiarity with differential geometry, (b) present a universal and fully
constructive technique for defining prior Gaussian vector fields on Riemannian manifolds, which
we term the projected kernel construction, and (c) discuss how to adapt key components in the
computational Gaussian process toolkit, such as inducing point methods, to the vector field setting.

The structure of the paper is as follows. In Section 2, we define vector-valued Gaussian processes on
smooth manifolds. We start by reviewing the multi-output Gaussian process set-up, which is typically
used in machine learning. We then detail a differential-geometric formalism for defining vector-
valued Gaussian processes on smooth manifolds. In Section 3, we provide a concrete construction
for these Gaussian processes on Riemannian manifolds and discuss how they can be trained using
variational sparse approximations. Section 4 showcases Gaussian vector fields on two tasks, namely
weather imputation from satellite observations and learning the dynamics of a mechanical system.

2 Vector-valued Gaussian Processes on Smooth Manifolds

A vector-valued Gaussian process (GP) is a random function f : X → Rd such that, for any
finite set of points x ∈ Xn, the random variable f(x) ∈ Rn×d is jointly Gaussian. Every such
GP is characterized by its mean function µ : X → Rd and matrix-valued covariance kernel
k : X ×X → Rd×d, which is a positive-definite function in the matrix sense. These functions satisfy
E(f(x)) = µ(x) and Cov(f(x),f(x′)) = k(x,x′) for any x,x′ ∈ X . Here, dependence between
function values is encoded in the kernel’s variability along its input domain, and correlations between
different dimensions of the vector-valued output are encoded in the matrix that the kernel outputs.

Consider a function f with y = f(x) + ε, where ε ∼ N(0, σ2I) and training data (x,y). Placing
a GP prior f ∼ GP(0, k) on the unknown function results in a GP posterior, whose mean and
covariance are given by

E(f | y) = K(·)x(Kxx + σ2I)−1y Cov(f | y) = K(·,·) −K(·)x(Kxx + σ2I)−1Kx(·). (1)

Here, (·) denotes an arbitrary set of test locations, Kxx = k(x,x) is the kernel matrix, and
K(·)x = k(x, ·) is the cross-covariance matrix between function values evaluated at the training and
test inputs. The GP posterior can also be written as

(f | y)(·) = f(·) + K(·)x(Kxx + σ2I)−1(y − f(x)− ε), ε ∼ N(0, σ2I) (2)

where f(·) is the prior GP, and equality holds in distribution [46, 47]. These expressions form the
foundation upon which Gaussian-process-based methods in machine learning are built.

Recent works have studied techniques for working with the expressions (1) and (2) when the input
domain X is a Riemannian manifold, focusing both on defining general classes of kernels [2], and on
efficient computational techniques [46, 47]. In this setting, namely for f : X → R, defining kernels
already presents technical challenges: the seemingly-obvious first choice one might consider, namely
the geodesic squared exponential kernel, is ill-defined in general [13]. We build on these recent
developments to model vector fields on manifolds using GPs. We do not consider manifold-valued
generalizations of Gaussian processes, for instance f : R→ X: various constructions in this setting
are instead studied by Stroock [40], Émery [12], Mallasto and Feragen [29], and Mallasto et al. [30].
To begin, we review what a vector field on a manifold actually is.

2.1 Vector Fields on Manifolds

Let X be a d-dimensional smooth manifold with TxX denoting its tangent space at x. Let
TX = {(x, v) |x ∈ X, v ∈ TxX} be its tangent bundle, and let T ∗X = {(x, φ) |x ∈ X,φ ∈ T ∗xX}
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Figure 1: Illustration on S2. Here we illustrate two possible bases (also called frames), consisting of
green and orange basis vectors (center), that can be chosen locally on the manifold S2. The vector
field on S2 (right) can be produced by taking two scalar fields (left) in each respective color, and
combining them with the basis vectors (center) to form the vector field.

be its cotangent bundle—endow both spaces with the structure of smooth manifolds. Define the pro-
jection map projX : TX → X by projX(x, v) = x. A vector field on X is a map that assigns each
point in X to a tangent vector attached to that point. More formally, a vector field is a cross-section,
or simply a section, of the tangent bundle, which is a map f : X → TX , such that projX f(x) = x
for all x.1 A vector field is called smooth if this map f is smooth.

To represent a vector field on a manifold numerically, one must choose a basis in each tangent
space, which serves as a coordinate system for vectors in the tangent space. On many manifolds
it is impossible to choose these basis vectors in a way that they vary smoothly in space.2 This can
be handled by working with local coordinates, or with bases that are non-smooth. Any chosen set
of basis vectors is arbitrary, so objects constructed using them should not depend on this choice.
Constructions that satisfy this property are called gauge equivariant. This notion is illustrated in
Figure 1, and will play a key role in the sequel.

2.2 Gaussian Vector Fields

Upon reflecting on the above considerations in the context of GPs, the first issue one encounters is
that, for a random vector field f : X → TX , it is not clear what it means for finite-dimensional
marginal distributions to be multivariate Gaussian given that f takes its values in a bundle rather
than a vector space. The first step towards constructing Gaussian vector fields, therefore, involves
adapting the notion of finite-dimensional marginal distributions appropriately.

Definition 1. Let X be a smooth manifold. We say that a random vector field f is Gaussian if for any
finite set of locations x1, . . . , xn ∈ X , the random vector (f(x1), . . . , f(xn)) ∈ Tx1X⊕ . . .⊕TxnX
is Gaussian (either in the sense of duality or in any basis: see Appendix A for details).

This definition is near-identical to the Euclidean case: the only difference is that finite-dimensional
marginals are now supported in a direct sum of tangent spaces, instead of Rn×d. With this definition,
the standard multi-output GP properties, such as conditioning, carry over, virtually unmodified.
Definition 1 is a natural choice: if we embed our manifold into Euclidean space, the induced GP is a
vector-valued GP as defined in the beginning of Section 2.

1A vector field is not the same as a map f̃ : X → Rd: an output value f(x) ∈ TX formally consists of both
a copy of the input point x, and vector within the tangent space TxX at this point. This encodes the geometric
structure of the underlying manifold. The algebraic requirement projX f(x) = x for all x ensures that the
tangent vector chosen correctly corresponds to the point at which it is attached.

2If a smooth choice of basis vectors existed, it would define a smooth non-vanishing vector field. On the
sphere, by the hairy ball theorem, all smooth vector fields vanish in at least one point, so no such bases exist.
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Proposition 2. Let X be a manifold and emb : X → Rp be a smooth embedding. Let f be a
Gaussian vector field (as defined in Definition 1), and let femb : emb(X)→ Rp be its pushforward
along the embedding. Then femb is a vector-valued Gaussian process in the Euclidean sense.

All proofs in this work can be found in Appendix A. Having established the notion of a vector-valued
Gaussian process on a smooth manifold, we proceed to deduce what mathematical objects play the
role of a mean function and kernel, so that it is clear what ingredients are needed to construct and
determine such a process.

The former is clear: the mean of a Gaussian vector field should be an ordinary vector field, and will
determine the mean vector at all finite-dimensional marginals. The kernel, on the other hand, is less
obvious: because distinct tangent vectors live in different tanget spaces, it is unclear whether or not
a Gaussian vector field is characterized by an appropriate notion of a matrix-valued kernel, or by
something else. Now, we define the right notion for kernel in this setting.
Definition 3. We call a symmetric function k : T ∗X × T ∗X → R fiberwise bilinear if for all pairs
of points x, x′ ∈ X

k(λαx + µβx, γx′) = λk(αx, γx′) + µk(βx, γx′) (3)

holds for any αx, βx ∈ T ∗xX , γx′ ∈ T ∗x′X and λ, µ ∈ R, and positive semi-definite if for any set
of covectors αx1 , . . . , αxn ∈ T ∗X , we have

∑n
i=1

∑n
j=1 k(αxi , αxj ) ≥ 0. We call a symmetric

fiberwise bilinear positive semi-definite function a cross-covariance kernel.

This coordinate-free function should be viewed as analogous to ((x,v), (x′,v′)) 7→ vTKx,x′v
′ in

the Euclidean setting, where v,v′ multiply the matrix-valued kernel from both sides. Its coordinate
representation, which more closely matches the Euclidean case, will be explored in the sequel. To
show that this is indeed the right notion, we prove the following result.
Theorem 4. The system of marginal distributions of a Gaussian vector field on a smooth manifold
X is uniquely determined by a mean vector field µ : X → TX and a cross-covariance kernel
k : T ∗X × T ∗X → R. Moreover, this correspondence is one-to-one.

By virtue of defining and characterizing all Gaussian vector fields, Theorem 4 assures us the definition
of a kernel introduced is the correct mathematical notion. The constructions presented here are all
intrinsic or, in other words, coordinate-free, and do not involve the use of bases. To understand
how to perform numerical calculations with these kernels we proceed to study their coordinate
representations with respect to a specific choice of basis.

2.3 Gauge Equivariant Kernels

In Section 2.2, we defined what a Gaussian vector field on a manifold is. However, by nature of the
manifold setting, the resulting objects are more abstract than usual and do not describe how it can be
represented numerically. We now develop a point of view suitable for this task.

To this end, we introduce a frame F on X , also known as a gauge in physical literature, which
is a collection of (not necessarily smooth) vector fields e1, . . . , ed on X such that at each point
x ∈ X , the set of vectors e1(x), . . . , ed(x) forms a basis of TxX . The frame allows us to express
a vector field f on X as simply a vector-valued function f = (f1, . . . , fd) : X → Rd, such that
f(x) =

∑d
i=1 f

i(x)ei(x) for all x ∈ X . The corresponding coframe F ∗ is defined as a collection
e1, . . . , ed of covector fields (one-forms) on X such that

〈
ei(x)|ej(x)

〉
= δij for all x ∈ X , where

δij is the Kronecker delta. In the following proposition, we show that if f is a Gaussian vector field
on X (in the sense of Definition 1), then the corresponding vector representation f expressed in a
given frame is a vector-valued GP in the standard sense.
Proposition 5. Let f be a Gaussian vector field defined on X with cross-covariance kernel
k : T ∗X × T ∗X → R. Given a frame F = (e1, . . . , ed) on X , define f : X → Rd as above.
Then f is a vector-valued GP in the usual sense with kernel KF : X ×X → Rd×d given by

KF (x, x′) =

k(e1(x), e1(x′)) . . . k(e1(x), ed(x′))
...

. . .
...

k(ed(x), e1(x′)) . . . k(ed(x), ed(x′))

 , (4)
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where (ei), with raised indices, is the coframe corresponding to (ei). Conversely, given a vector-
valued GP f = (f1, . . . , fd) : X → Rd and a frame F = (e1, . . . , ed) on X , f(·) :=∑d
i=1 f

i(·)ei(·) defines a Gaussian vector field on X .

This result shows precisely how numerical representations of a Gaussian vector field depends on
the choice of frame. While this representation is not invariant under this choice, it is equivariant,
meaning that a transformation in the frame results in an appropriate transformation of the kernel. To
make this notion precise, we introduce a matrix subgroup G = GL(d,R), called the gauge group,
that acts on Rd by a standard matrix-vector multiplication. Given two frames F, F ′ on X , an abstract
vector fx ∈ TxX has two vector representations fx,f

′
x in the respective frames. We say that F ′ is

obtained from F by a gauge transformation with respect to a matrix field A : X → G ⊆ Rd×d, if

f ′x = A(x)fx (5)

holds for all x ∈ X , and we write F ′ = AF . Note that A(x) need not be smooth in x. We see that
the gauge transformation is therefore just a linear change of basis of the frame F at each point for
which one can identify vectors in TxX as elements in Rd. The corresponding matrix-valued kernels
must also respect this transformation rule, which is the statement of gauge equivariance.
Corollary 6. Let F be a frame on X and KF : X × X → Rd×d be the corresponding matrix
representation (4) of a cross-covariance kernel k : T ∗X × T ∗X → R. This satisfies the gauge
equivariance condition

KAF (x, x′) = A(x)KF (x, x′)A(x′)T , (6)
where A : X → G ⊆ Rd×d is a gauge transformation. All cross-covariance kernels in the sense of
Proposition 4 arise this way.

Hence, one way to define a Gaussian vector field on a manifold is to find a gauge equivariant kernel.
In summary, we have described Gaussian vector fields in a coordinate-free differential-geometric
language, and deduced enough properties to confirm the objects defined truly deserve to be called
GPs. In doing so, we have both introduced the necessary formalism to the GP community, and
obtained a recipe for defining kernels, through a simple gauge equivariance condition atop standard
matrix-valued kernels. To proceed towards practical machine learning methods, we therefore study
techniques for constructing such kernels explicitly.

3 Model Construction and Bayesian Learning for Riemannian Manifolds

In Section 2, we introduced a notion of a Gaussian vector field. We now study how to use vector
fields for machine learning purposes. This entails two primary issues: (a) how to construct practically
useful kernels, and (b) once a kernel is constructed, how to train Gaussian processes.

To construct a Gaussian vector field prior, the preceding theory tells us that we need to specify a mean
vector field and a cross-covariance kernel. From the definition, it is not at all obvious how to specify
a natural kernel, and experience with the scalar-valued case—where the innocuous-looking geodesic
squared exponential kernel is generally not positive semi-definite on most Riemannian manifolds
[13]—suggests that the problem is delicate, i.e., simply guessing the kernel’s form is unlikely to
succeed. Our goal, therefore, is to introduce a general construction for building wide classes of
kernels from simple building blocks.

The same issues are present if we consider variational approximations to posterior GPs, such as
the inducing point framework of Titsias [43]: these are formulated using matrix-vector expressions
involving kernel matrices, and it is important for the approximate posterior covariance to be gauge
equivariant in order to lead to a valid approximate process. We proceed to address these issues.

3.1 Gauge Equivariant Projected Kernels

Here, we introduce a general technique for defining cross-covariance kernels k : T ∗X × T ∗X → R
and for working with such functions numerically. Section 2 gives us a promising strategy to construct
a suitable kernel—namely, it suffices to find a gauge equivariant matrix-valued kernel. At first
glance, it is not obvious how to construct such a kernel in the manifold setting. On many manifolds,
such as the sphere, owing to the hairy ball theorem, every frame must be discontinuous: therefore,
constructing a continuous kernel in such a choice of frame appears difficult.

5



Scalar processes Embedded process Projected process

Figure 2: Illustration of the construction process of the projected process. The manifold S2 is
embedded into R3. Three identical scalar GPs (left) are placed on the manifold. These three scalar
GPs are combined to construct a vector-valued GP in the ambient Euclidean space (center). This GP
is then projected onto the tangent space of S2 as a subspace of the tangent space of R3 (right).

To both get around these obstacles, and aid numerical implementation, we propose to isometrically
embed the manifold into Euclidean space.3 Doing so greatly simplifies these issues by virtue of
making it possible to represent the manifold using a single global coordinate system. On the other
hand, the main trade-off from this choice is that by its extrinsic nature, the construction can make
theoretical analysis more difficult. To proceed, we need two ingredients.

1. An isometric embedding emb : X → Rd′ of the manifold.

2. A vector-valued Gaussian process f ′ : X → Rd′ in the standard sense.4

A simple choice which reflects the geometry of the manifold is to take f ′ to be d′ independent
scalar-valued GPs on X .

By standard results in differential geometry, any smooth map φ : X → X ′ between two manifolds
induces a corresponding linear map on the tangent spaces dxφ : TxX → Tφ(x)X

′, which can
loosely be thought of as mapping φ to its first-order Taylor expansion at x. Thus, an embedding
emb : X → Rd′ , induces a map dxemb : TxX → Temb(x)Rd

′
. Now fixing a frame F on X , each

tangent space TxX can be identified with Rd, so without loss of generality, the map dxemb can
be expressed simply as a position-dependent matrix PT

x ∈ Rd′×d. Taking the transpose, we obtain
Px ∈ Rd×d′ , which we call the projection matrix. The desired Gaussian vector field on X , with
respect to F , is then constructed as f(x) = Pxf

′(x). This procedure is illustrated in Figure 2: there
we see that to get a vector field on an R3-embedded sphere, we may take a vector-valued function on
it and project its values to make vectors tangential to this sphere, thus obtaining a valid vector field.
Since the projection operator preserves smoothness and since we can take a smooth vector-valued GP
to begin with, it is clear that this approach may be used to build smooth vector fields.

We prove that (a) the resulting expression is, indeed, a kernel, and that (b) no expressivity is lost via
the construction because all cross-covariance kernels arise this way.

Proposition 7. Let (X, g) be a Riemannian manifold, emb : X → Rd′ be an isometric embedding
and F be a frame on X . We denote by P(·) : X → Rd×d′ the associated projection matrix
under F , and let f ′ : X → Rd′ be any vector-valued Gaussian process with matrix-valued kernel
κ : X × X → Rd′×d′ . Then, the vector-valued function f = Pf ′ defines a Gaussian vector
field f on X using the construction in Proposition 5, whose kernel under the frame F has matrix
representation

KF (x, x′) = Pxκ(x, x′)PT
x′ . (7)

3An embedding emb : X → Rd′ is called isometric if it preserves the metric tensor. By Nash’s Theorem
[26], such embeddings exist for any d-dimensional manifold, with an embedded dimension d′ ≤ 2d+ 1.

4We emphasize again that f ′ is not a Gaussian vector field because it is not a random section. In particular,
note that d′ > d for most embeddings.
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Figure 3: Random samples from Gaussian processes with gauge equivariant projected kernels, on the
torus and Klein bottle, respectively. The latter is a non-orientable manifold: the ability to handle such
cases highlights the generality of projected kernels.

Moreover, all cross-covariance kernels k : T ∗X×T ∗X → R arise this way. We call a kernel defined
this way a projected kernel.

To construct these kernels we require scalar-valued kernels on manifolds to use as a basic building
block. These are studied in the general Riemannian setting by Lindgren et al. [28] and Borovitskiy
et al. [2]: relying on these kernels is the only reason we require the Riemannian structure. It is also
possible to obtain such kernels using embeddings, following Lin et al. [27]. Similar techniques to
those we consider are used by Freeden and Schreiner [14] to construct vector-valued zonal kernels
on the sphere: in contrast, we work with arbitrary manifolds. The projection kernel idea is a very
general way to build kernels for vector fields by combining scalar kernels, but effective scalar kernels,
naturally, rely on Riemannian structure.5 Figure 3 shows random samples from Gaussian processes
constructed with the described kernels.

The projected kernel construction both makes it easy to define cross-covariance kernels on general
manifolds, and describes a straightforward way to implement them numerically by representing
the embedded manifold in coordinates and calculating the resulting matrix-vector expressions. The
constructed kernel depends on the embedding, but can be transformed appropriately if switching to
a different embedding. Embeddings, in turn, are available for most manifolds of practical interest,
and are obtained automatically for manifolds approximated numerically as meshes. Everything
described is constructive and fully compatible with the modern automatic-differentiation-based
machine learning toolkit, and most operations for constructing and/or sampling from specialized
priors [44, 22, 23], including on spaces such as the sphere where specific analytic tools are available
[6, 8, 11, 10]. With these kernels in hand, we thus proceed to study training methods.

3.2 Gauge Equivariant Variational Approximations

We now discuss variational inference for training GPs in the Riemannian vector field setting. Approx-
imations, such as the inducing-point framework by Titsias [43] and Hensman et al. [17], approximate
the posterior GP with another GP, termed the variational approximation. The latter is typically
constructed by specifying a multivariate Gaussian at a set of test locations with a parameterized mean
and kernel matrix. For example, Opper and Archambeau [31] consider N(m,S), where

m = K(·)z(Kzz + Σ)−1µ S = K(·,·) −K(·)z(Kzz + Σ)−1Kzz(Kzz + Σ)−1Kz(·). (8)

The variational parameters include a set of inducing locations z, a mean vector µ, and a block-
diagonal cross-covariance matrix Σ. Training proceeds by optimizing these parameters to minimize
the Kullback–Leibler divergence of the variational distribution from the true posterior, typically using
mini-batch stochastic gradient descent.

In the last decade, a wide and diverse range of inducing point approximations suited for many different
settings have been proposed [43, 31, 25, 44, 48]. The vast majority of them employ coordinate-

5The structure of a smooth manifold is not rigid enough to define natural kernels. For instance, smooth
structure of the sphere is indistinguishable from the smooth structure of an ellipsoid or even of the dragon
manifold from Borovitskiy et al. [2], but their Riemannian structures differ considerably.
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Figure 4: Upper left: Pendulum with friction state space. Lower left: Two rollouts used to train
the GP. Upper middle: State space plot of rollouts from a standard Euclidean GP condtioned on the
training data. Upper right: Temporal plot of rollouts from a standard Euclidean vector GP. Solid line
is the true rollout, dashed line and shade is the mean and ± 1 std of the GP rollouts. Lower middle
and right: same for a geometric manifold vector field kernel on S1 × R.

dependent matrix-vector expressions. This raises the question, which of these constructions can be
adapted to define valid variational approximations in the vector field setting?

To proceed, one can choose a frame and formulate a given variational approximation using matrices
defined with respect to this frame. To ensure well-definedness, one must ensure that all these matrices,
such as the kernel matrix and the variational parameter Σ in (8), are gauge equivariant. These
considerations can be simplified adopting the pathwise view of GPs, and examining the random
variables directly. For example, the variational approximation of Opper and Archambeau [31] shown
previously in (8) can be reinterpreted pathwise as the GP

(f | y)(·) ≈ f(·) + K(·)z(Kzz + Σ)−1(µ− f(z)− ε) ε ∼ N(0,Σ) (9)

where we view the matrices K(·)z,Kzz,Σ as linear operators between direct sums of tangent spaces:
K(·)z : Tz1X ⊕ . . .⊕ TzmX → T(·)X and Kzz,Σ : Tz1X ⊕ . . .⊕ TzmX → Tz1X ⊕ . . .⊕ TzmX .
By virtue of being defined at the level of vector fields using components that are all intrinsically valid,
the posterior covariance of the resulting variational approximation is automatically gauge equivariant.
Hence, checking gauge equivariance is then equivalent to deducing the domains and ranges of these
operators from their coordinate representations, and checking if they are compatible. This applies to
any variational family that can be constructed in the given manner.

The vast majority of inducing point constructions can be interpreted in this manner and thus extend
readily to the Riemannian vector field setting by simply representing the necessary matrices in a
chosen frame. In particular, the classical approach of Titsias [43] is gauge equivariant.

4 Illustrated Examples

Here, we showcase a number of examples that illustrate potential use cases of the models developed.

4.1 Dynamical Systems Modeling

Here, we show how Gaussian vector fields can be used to learn the equations of motion of a physical
system—an important task in imitation learning, model-based reinforcement learning, and robotics.
GPs are an attractive model class in this area owing to their ability to represent and propagate
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uncertainty, which enables them to separate what is known about an environment from what is not,
thereby driving data-efficient exploration.

For a prototype physical system, we consider an ideal pendulum, whose configuration space is the
circle S1, representing the angle of the pendulum, with zero being at the bottom of the loop, and
whose position-momentum state-space is the cylinder S1 × R. We consider conservative dynamics
with additional friction applied at the pivot. Since this system is non-conservative, we cannot just
learn the Hamiltonian of the system, but must learn the vector field over the state space that defines
the dynamics of the system. The true dynamics of the system are given by the differential equations

H =
p2

2ml2
+mgl(1− cos(q))

dq

dt
=
∂H
∂p

dp

dt
= −∂H

∂q
− b

m
p, (10)

whereH is the Hamiltonian of the system defining the conservative part of the dynamics, q and p are
the position and momentum of the pendulum, m is the mass, l is the length, g is the gravitational
field strength and b is a friction parameter. Experimental details can be found in Appendix B.

To learn this model, we initialise the system at two start points, and evolve the system using leapfrog
integration. From these observations of position, we backward Euler integrate the momentum of the
system, and from these position-momentum trajectories we estimate observations of the dynamics
field. Using these observations, we condition a sparse GP. The result is an estimate of the system
dynamics with suitable uncertainty estimates. In order to compute rollouts of these dynamics, we use
pathwise sampling of this sparse GP [46, 47] for speed together with leapfrog integration.

Results can be seen in Figure 4. While the Euclidean GP performs reasonably well at the start of the
rollouts, once the trajectory crosses the discontinuity caused by looping the angle back around to
zero, the system starts to make incoherent predictions: this is due to the discontinuity arising from
wrap-around condition of the angle. The manifold vector-valued GP does not have this issue as the
learned and sampled dynamics fields are continuous throughout the state-space.

4.2 Weather Modeling

In this experiment, we show how vector-valued GPs on manifolds can be used in the context of
meteorology, where geometric information often plays an important role in accurately modeling
global weather fields [45, 38, 19]. Data assimilation in numerical weather forecasting refers to the
practice of using observed data to update predictions of the atmosphere closer to the truth. Uncertainty
plays a critical role here: it is not usually possible to observe the weather at all locations on the
globe simultaneously, and taking into account observation uncertainty is crucial in numerical weather
forecasting during the data assimilation step [24, 36]. In this section, we explore Gaussian processes
as a tool for carrying out global interpolation of wind fields, while simultaneously performing
uncertainty quantification, mirroring optimal interpolation techniques in data assimilation [20].

We consider a simplified setting, where the goal is to interpolate the wind velocity observed by the
Aeolus satellite [37], which uses LiDAR sensors to measure wind velocity directly. To mimic this
setting, we use an hour of the Aeolus satellite track during the period 2019/01/01 09:00-10:00 for the
input locations and the wind velocity data (10m above ground) from the ERA5 atmospheric reanalysis
data [18] interpolated at these locations, to simulate measurements taken from the Aeolus satellite.
We subtract the weekly historical average wind velocity from the observations, before training the GP
models, where the historical mean is computed from the hourly wind data (10 m above ground) from
the WeatherBench dataset [35], available from 1979–2018. Further details can be found in Appendix
B. We compare the results of a Matérn-3/2 manifold vector-valued GP regression model fitted on the
wind anomaly observations along the Aeolus trajectory, with the results from a Euclidean Matérn-3/2
multi-output GP trained on the same data, except projected onto a latitude-longitude map.

Results are shown in Figure 5, where the benefits of using a manifold vector-valued GP become
clear. When the satellite crosses the left/right boundary in the lat/lon projection, the outputs from the
Euclidean vector-valued GP give rise to a spurious discontinuity in the uncertainty along the solid
pink line. In addition, predictions become less certain in the Euclidean case as the satellite approaches
the poles, which is simply an artifact of the distortion caused by projecting the spherical data onto the
plane. By construction, the manifold vector-valued GP is able to avoid both of these issues, resulting
in a more realistic prediction with much more uniform uncertainty along the satellite trajectory from
pole to pole. In addition, the predictions from the manifold GP are more certain overall, due to the
useful structural bias embedded in the kernel.

9



Figure 5: Top row: Euclidean GP trained on wind measurements along the chosen Aeolus satellite
trajectory, viewed as deviation from normal with respect to the historical average vector field. White
arrows are the satellite measurements, black arrows and ellipsoids are the posterior mean and cross-
covariance of the vector field, colors indicate the posterior standard deviation norm, and the solid red
line indicates the latitudinal boundary when the sphere is projected onto the plane using the lat/lon
projection. Bottom row: Same as above except using a manifold kernel on S2.

5 Conclusion

In this paper, we propose techniques that generalize Gaussian processes to model vector fields on
Riemannian manifolds. This is done by first providing a well-defined notion of such processes
on manifolds and then introducing an explicit method to construct them in a way that respects the
underlying geometry. By virtue of satisfying the key condition of gauge equivariance, our construction
is coordinate-free and thus meaningful on manifolds. In addition to this, we extend standard Gaussian
process training methods, such as variational inference, to this setting, and verify that such methods
are also compatible with gauge equivariance. This theoretical work gives practitioners additional
tools for stochastic modeling of vector fields on manifolds. As such, its societal impact will be
mainly determined by the applications that belong to the domain of future work. We demonstrate our
techniques on a series of examples in modeling dynamical systems and weather science, and show
that incorporating geometric structural bias into probabilistic modeling is beneficial in these settings
to obtain coherent predictions and uncertainties.
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A Theory

Preliminaries on Gaussian measures

Since we are working in a setting beyond Rd, we need a suitable notion of a multivariate Gaussian
that can be employed in a coordinate-free manner. We employ the notion of a Gaussian in the sense
of duality, given below. These notions are standard and classical, but since they are not well-known
in machine learning, and for completeness, we prove the necessary properties ourselves.
Definition 8. Let (Ω,F ,P) be a probability space. Let V by a finite-dimensional real topological
vector space, equipped with the standard topology, Borel σ-algebra, and the canonical pairing
〈· | ·〉 : V ∗ × V → R with its topological dual V ∗. A random vector v : Ω→ V is called Gaussian
if, for all φ ∈ V ∗, the random variable 〈φ | v〉 : Ω→ R is univariate Gaussian.

Remark. It is not hard to show that in the setting of the definition above, the random vari-
ables 〈φ1 | v〉, . . . , 〈φk | v〉 are jointly Gaussian for any finite collection φ1, . . . , φk ∈ V ∗. Indeed,
this is equivalent to the Gaussianity of every linear combination α1〈φ1 | v〉 + . . . + αk〈φk | v〉 =
〈α1φ1 + . . .+ αkφk | v〉, which is also ensured by the definition since α1φ1 + . . .+ αkφk ∈ V ∗.
We begin by showing that a Gaussian random vector in the sense of duality is characterized by a
mean and a covariance, just like Gaussians in the standard, coordinate-dependent sense, starting with
defining appropriate analogs of both notions in this setting.
Lemma 9. For every Gaussian random vector v, there is a unique vector µ ∈ V and unique
symmetric positive semi-definite bilinear form k : V ∗ × V ∗ → R such that for all φ ∈ V ∗, we
have E〈φ | v〉 = 〈φ | µ〉 and k(φ, ψ) = Cov(〈φ | v〉, 〈ψ | v〉). We say that µ is its mean and k is its
covariance form, and write v ∼ N(µ, k).

Proof. Consider the map E〈· | v〉 : V ∗ → R. This map is a linear functional on the space V ∗. Since
V is finite-dimensional, V is reflexive, so there is exactly one vector µ ∈ V such that

〈φ | µ〉 = E〈φ | v〉 (11)

for all φ ∈ V ∗. Next, define k as

k(φ, ψ) = Cov(〈φ | v〉, 〈ψ | v〉) (12)

for all φ, ψ ∈ V ∗. Clearly, k is bilinear and positive semi-definite, that is k(φ, φ) ≥ 0 for all φ ∈ V ∗.
Thus the claim follows.

This tells us that every Gaussian random vector admits a mean and covariance: we now show that
such Gaussians exist and are uniquely determined by this pair. Recall that for a measure π, and a
measurable function φ, the pushfoward measure φ∗π is defined as (φ∗π)(A) = π(φ−1(A)) for all
measurable sets A.
Lemma 10. For any vector µ ∈ V and any positive semi-definite bilinear form k : V ∗ × V ∗ → R,
there exists a random vector v ∼ N(µ, k). Moreover, if w : Ω → V is another Gaussian random
vector in the sense of Definition 8 with w ∼ N(µ, k), then v and w are identically distributed.

Proof. Choose a basis (ei) on V , and let (ei) be the dual basis. Define the vector µ ∈ Rd and matrix
K ∈ Rd×d by

µ =


〈
e1
∣∣ µ〉
...〈

ed
∣∣ µ〉

 K =

k(e1, e1) . . . k(e1, ed)
...

. . .
...

k(ed, e1) . . . k(ed, ed)

 . (13)

By positive semi-definiteness of k, the matrix K is a positive semi-definite matrix, so there exists a
random vector v ∼ N(µ,K) in the classical Euclidean sense. Let E : V → Rn be the continuous
linear isomorphism induced by the basis and define

v = E−1v. (14)

We claim that (a) v is Gaussian, that is, if we test it against any covector, we obtain a univariate
Gaussian, (b) the mean vector of v is µ, and (c) the covariance form of v is k. To show (a), let vi
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denote the components of v (scalar Gaussian random variables) so that v =
∑d
i=1 v

iei and for any
φ ∈ V ∗, write φ =

∑d
i=1 φie

i, where φi =
〈
φ
∣∣ ei〉. Then we have

〈
φ
∣∣ v〉 =

〈
d∑
i=1

φie
i

∣∣∣∣∣∣
d∑
j=1

vjej

〉
=

d∑
i=1

d∑
j=1

φiv
j
〈
ei
∣∣ ej〉
δij

=

d∑
i=1

φiv
i. (15)

Since each vi is a univariate Gaussian, the linear combination on the right hand side is also a univariate
Gaussian, which proves (a). To prove (b) and (c), we see that for any φ ∈ V ∗,

E
〈
φ
∣∣ v〉 = E

〈
φ
∣∣ d∑
i=1

viei
〉

= E
d∑
i=1

vi〈φ | ei〉 (16)

=

d∑
i=1

(
E vi

)
〈ei | µ〉

〈φ | ei〉 =
〈
φ
∣∣ d∑
i=1

〈ei | µ〉ei
〉

= 〈φ | µ〉. (17)

Thus v has the right mean. Now take an additional ψ ∈ V ∗ and write

Cov
(〈
φ
∣∣ v〉, 〈ψ ∣∣ v〉) = E

((〈
φ
∣∣ v〉− 〈φ ∣∣ µ〉)(〈ψ ∣∣ v〉− 〈ψ ∣∣ µ〉)) (18)

= E

(
d∑
i=1

(
vi −

〈
ei
∣∣ µ〉)〈φ | ei〉)( d∑

j=1

(
vj −

〈
ej
∣∣ µ〉)〈ψ | ej〉) (19)

=

d∑
i=1

d∑
j=1

〈φ | ei〉E
((
vi − 〈ei | µ〉

)(
vj − 〈ej | µ〉

))
k(ei,ej)

〈ψ | ej〉 (20)

= k

(
d∑
i=1

〈φ | ei〉ei,
d∑
j=1

〈ψ | ej〉ej
)

= k(φ, ψ), (21)

hence v has the right covariance form.

Now let w : Ω → V be another Gaussian random vector with w ∼ N(µ, k), and let πw be its
pushforward measure. Similarly, let πv be the pushforward measure of v. Reversing the above
argument, we see that pushforwards of measures πv and πw through E , which we denote by πv
and πw, are both Gaussian distributions (in the classical sense) in Rd with the same mean vectors
µ and covariance matrices K. Hence πv = πw in distribution, but since E is a measurable space
isomorphism,6 we have πv = πw, which proves the claim.

Lemmas 9 and 10 show that a pair µ, k defines a unique probability distribution on V which we
call the Gaussian distribution with mean vector µ and covariance form k on the vector space V and
denote by N(µ, k). This establishes a notion of Gaussianity that is suitable and natural for describing
finite-dimensional marginals in a coordinate-free manner.

Existence and uniqueness (Proof of Theorem 4)

Here, we prove that Gaussian vector fields exist and are uniquely determined by their mean vector
field and cross-covariance kernel. Our goal now is, from a cross-covariance kernel, to construct a
projective family of finite-dimensional marginals.
Definition 11 (Preliminaries). Let X be a smooth manifold. Let

Γnns(TX) = {f : X → TX : projX ◦f = idX} (22)

be the vector space of not necessarily smooth sections.
Definition 12 (Cross-covariance kernel). A symmetric function k : T ∗X × T ∗X → R is called
fiberwise bilinear if at any pair of points x, x′ ∈ X , we have

k(λαx + µβx, γx′) = λk(αx, γx′) + µk(βx, γx′) (23)

6A measurable space isomorphism is a measurable bijection with a measurable inverse.
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for any αx, βx ∈ T ∗xX , γx′ ∈ T ∗x′X and λ, µ ∈ R, where we note by symmetry that the same
requirement applies to its second argument. A fiberwise bilinear function k is called positive
semi-definite if for any set of covectors αx1 , . . . , αxn ∈ T ∗X , we have

n∑
i=1

n∑
j=1

k(αxi , αxj ) ≥ 0. (24)

We call a symmetric fiberwise bilinear positive semi-definite function a cross-covariance kernel.

We show in the following example that this definition of the cross-covariance kernel is compatible
with the notion of matrix-valued kernels used in classical vector-valued GPs and extends it naturally.
Example 13 (Euclidean case). Consider X = Rd with a fixed inner product and an orthonormal
basis, under which Rd is identified with

(
Rd
)∗

. Consider a matrix-valued kernel κ : Rd×Rd → Rd×d
in the standard sense. Let k((x, v), (x′, v′)) = vTκ(x, x′)v′. Then k : T ∗Rd × T ∗Rd → R is a
cross-covariance kernel in the above sense.

Indeed, k is symmetric and fiberwise bilinear. Moreover, since κ is positive semi-definite in the
regular sense, we have that for arbitrary x1, . . . , xn ∈ Rd, the nd× nd matrix

Γ(x1, . . . , xn) =

κ(x1, x1) . . . κ(x1, xn)
...

. . .
...

κ(xn, x1) . . . κ(xn, xn)

 (25)

is positive semi-definite, meaning that for an arbitrary collection v1, . . . , vn ∈ Rd, we have

0 ≤
[
vT1 . . . vTn

] κ(x1, x1) . . . κ(x1, xn)
...

. . .
...

κ(xn, x1) . . . κ(xn, xn)


v1

...
vn

 =

n∑
i=1

n∑
j=1

vTi κ(xi, xj)vj

k((xi,vi),(xj ,vj))

. (26)

Condition (24) thus follows, proving that this is a valid cross-covariance kernel.

We proceed to introduce the system of coordinate-free finite-dimensional marginals that will be used
to construct the vector-valued GP.
Definition 14. Let µ ∈ Γnns(TX) and k : T ∗X ×T ∗X → R be a cross-covariance kernel. For any
x1, . . . , xn ∈ X , let Vx1,...,xn

= Tx1
X ⊕ . . .⊕ Txn

X and V ∗x1,...,xn
= T ∗x1

X ⊕ . . .⊕ T ∗xn
X . Define

µx1,...,xn
∈ Vx1,...,xn

and kx1,...,xn
: V ∗x1,...,xn

× V ∗x1,...,xn
→ R by

µx1,...,xn
= (µ(x1), . . . , µ(xn)) kx1,...,xn

(α, β) =

n∑
i=1

n∑
j=1

k(αxi
, βxj

) (27)

for any α = (αx1
, . . . , αxn

), β = (βx1
, . . . , βxn

) ∈ V ∗x1,...,xn
. We denote πx1,...,xn

=
N(µx1,...,xn

, kx1,...,xn
) the system of marginals induced by k.

We now prove existence and uniqueness of a measure on Γnns(TX) from the Gaussian measures
defined on Vx1,...,xn for any {x1, . . . , xn} ⊆ X . We do this by means of the general form of
the Kolmogorov extension theorem formulated below. Recall again that for a measure π, and a
measurable function φ, the pushfoward measure φ∗π is defined as (φ∗π)(A) = π(φ−1(A)) for all
measurable sets A.
Result 15 (Kolmogorov Extension Theorem). Let (Xα,Bα,Oα)α∈A be a family of measurable
spaces, each equipped with a topology. For each finite B ⊆ A, let µB be an inner regular probability
measure on XB =

∏
α∈B Xα with σ-algebra BB and with the product topology OB obeying

(projC)∗µB = µC (28)

whenever C ⊆ B ⊆ A are two nested finite subsets of A. Here projections projC : XB → XC are
defined by projC({xα}α∈B) = {xα}α∈C and (projC)∗ denotes the pushforward by projC . Then
there exists a unique probability measure µA on BA with the property that (projB)∗µA = µB for all
finite B ⊆ A.

Proof. Tao [42], Theorem 2.4.3.
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By showing the existence of a probability measure on the space Γnns(TX), one can start speaking
about random variables f : Ω → Γnns(TX) with said measure as their distribution: these are the
Gaussian vector fields we seek. However, in order to apply the above result, we first need to verify
condition (28). This is done in the following.
Proposition 16. The family of measures (πx1,...,xn){x1,...,xn}⊆X is a projective family in the sense
that for any {x1, . . . , xm} ⊆ {x1, . . . , xn} ⊆ X , we have

(projx1,...,xm
)∗πx1,...,xn

= πx1,...,xm
(29)

where projx1,...,xm
: Vx1,...,xn → Vx1,...,xm is the canonical projection induced by the direct sum.

Proof. Take two random variables vx1,...,xn : Ω → Vx1,...,xn and vx1,...,xm : Ω → Vx1,...,xm with
vx1,...,xn ∼ πx1,...,xn and vx1,...,xm ∼ πx1,...,xm . It suffices to show that for the random variable
vx1,...,xn : Ω→ Vx1,...,xm we have

vx1,...,xm

d
= projx1,...,xm

vx1,...,xn
(30)

where d
= denotes the equality of distributions. We first show that projx1,...,xm

vx1,...,xn is Gaussian.
Let φ ∈ V ∗x1,...,xm

and write〈
φ
∣∣ projx1,...,xm

vx1,...,xn

〉
= 〈(φ, 0) | vx1,...,xn

〉 (31)

where (φ, 0) ∈ V ∗x1,...,xn
is the natural inclusion of φ ∈ V ∗x1,...,xm

in the space V ∗x1,...,xn
by padding

with the zero vector over all components of the direct sum whose indices are not x1, . . . , xm. This
identity holds for all vectors, hence it holds for random vectors, and projx1,...,xm

vx1,...,xn
is Gaussian.

Now, we compute its moments: write

E
〈
φ
∣∣ projx1,...,xm

vx1,...,xn

〉
= E〈(φ, 0) | vx1,...,xn〉 (32)

= 〈(φ, 0) | µx1,...,xn
〉 (33)

=
〈
φ
∣∣ projx1,...,xm

µx1,...,xn

〉
(34)

= 〈φ | µx1,...,xm
〉 (35)

where the last line follows by definition of µx1,...,xm
, and

Cov(
〈
φ
∣∣ projx1,...,xm

vx1,...,xn

〉
,
〈
ψ
∣∣ projx1,...,xm

vx1,...,xn

〉
) (36)

= Cov (〈(φ, 0) | vx1,...,xn
〉, 〈(ψ, 0) | vx1,...,xn

〉) (37)
= kx1,...,xn

((φ, 0), (ψ, 0)) (38)
= kx1,...,xm

(φ, ψ) (39)

where the last line follows by bilinearity and the definition of kx1,...,xm
.

So far we have shown that projx1,...,xm
vx1,...,xn

is Gaussian over Vx1,...,xm
and its mean vector and

covariance form coincide with those of vx1,...,xm . Hence, by the uniqueness part of Lemma 10 we

have vx1,...,xm

d
= projx1,...,xm

vx1,...,xn
. This finishes the proof.

We are now ready to apply the Kolmogorov extension theorem to show existence of the desired
distribution.
Proposition 17. There exists a unique measure π∞ on the infinite product space

∏
x∈X TxX .7

Proof. We apply the prior result 15. Let X be the index set, and take (TxX)x∈X , equipped with the
standard topology and Borel σ-algebra as our measurable spaces. For each finite {x1, . . . , xn} ⊆ X ,
take πx1,...,xn as our probability measure, and note that since each πx1,...,xn is a finite measure on a
finite-dimensional real vector space Vx1,...,xn , it is automatically inner regular. Moreover, the family
of measures (πx1,...,xn){x1,...,xn}⊆X is projective by Proposition 16. The claim follows.

This gives our GP as a measure on an infinite Cartesian space: we now map this measure into the
space of sections.

7Note that this is the Tychonoff product of topological spaces rather than a direct product of linear spaces.
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Corollary 18. There exists a unique measure πΓnns(TX) on Γnns(TX) equipped with the pushforward
σ-algebra.

Proof. Define the operator I :
∏
x∈X TxX → Γnns(TX) by

(Is)(x) = (x,projx s) (40)

for all x ∈ X and s ∈
∏
x∈X TxX . Take πΓnns(TX) = I∗π∞.

This is the probability distribution of our Gaussian process. We are now ready to define Gaussian
vector fields, and show that each Gaussian vector field in turn possesses a mean vector field and
cross-covariance kernel.

Definition 19. Let X be a manifold. We say that a random vector field f : Ω → Γnns(TX) is
Gaussian if for any finite set of locations (x1, . . . , xn) ∈ Xn, the random vector f(x1), . . . , f(xn) ∈
Tx1

X ⊕ . . .⊕ Txn
X is Gaussian in the sense of Definition 8.

Definition 20. Let f : Ω→ Γnns(TX) be a Gaussian vector field. Define µ to be the unique vector
field for which, for any x ∈ X and any φ ∈ T ∗x , we have that

〈φ | µ(x)〉 = E〈φ | f(x)〉. (41)

Next taking an additional x′ ∈ X and ψ ∈ T ∗x′ , define the cross-covariance kernel k by

k(φ, ψ) = Cov(〈φ | f(x)〉, 〈ψ | f(x′)〉). (42)

Summarizing, we obtain the following claim.

Theorem 21. Every pair consisting of a mean vector field and symmetric fiberwise bilinear positive
definite function k : T ∗X × T ∗X → R, which we call a cross-covariance kernel, defines a unique
(distribution-wise) Gaussian vector field in the sense of Definition 19. Conversely, every Gaussian
vector field admits and is characterized uniquely by this pair.

Proof. Corollary 18, Definition 19, and Definition 20.

Embeddings (Proof of Proposition 2)

Proposition 22. Let emb : X → Rp be an embedding, let f be a Gaussian vector field on X , and
denote by f emb : emb(X)→ Rp its pushforward along the embedding, that is, for any x ∈ X ,

f emb(emb(x)) = dxemb(f(x)), (43)

where dxemb : TxX → Temb(x)Rp is the differential of emb. Then f emb is a vector-valued Gaussian
process in the standard sense.

Proof. Let x1, . . . , xn ∈ Xn be a finite set of arbitrary locations. In what follows, we use a slight
abuse of notation by letting xi denote both xi and emb(xi) for simplicity. We claim that the random
vector (f emb(x1), . . . ,f emb(xn)) ∈ Rnp is multivariate Gaussian, which is sufficient to prove our
result. Since f is a Gaussian vector field, we have that

(f(x1), . . . , f(xn)) ∼ N(µx1,...,xn
, kx1,...,xn

) (44)

is a Gaussian random vector on Tx1X ⊕ . . . ⊕ TxnX . Now consider the map φx1,...,xn : Tx1X ⊕
. . .⊕ TxnX → Temb(x1)Rp ⊕ . . .⊕ Temb(xn)Rp ∼= Rnp defined as

φx1,...,xn(fx1 , . . . , fxn) = (dx1emb(fx1), . . . ,dxnemb(fxn)), (45)

for all (fx1 , . . . , fxn) ∈ Tx1X ⊕ . . . ⊕ TxnX , which is linear, owing to the linearity of dxemb.
Since linear maps preserve Gaussianity, it follows that the vector φx1,...,xn

(f(x1), . . . , f(xn)) =
(f emb(x1), . . . ,f emb(xn)) ∈ Rnp is multivariate Gaussian and the claim follows.
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Coordinate Expressions (Proof of Proposition 5)

We recall the definition of a frame on X and its dual object, namely, the coframe.
Definition 23. A frame F on X is defined as a collection (ei)

d
i=1 of not necessarily smooth sections

of TX such that at each point x ∈ X , the vectors (ei(x))di=1 form a basis of TxX . The corresponding
coframe F ∗ is defined as a collection (ei)di=1 of not necessarily smooth sections of T ∗X such that〈
ei(x)|ej(x)

〉
= δij for all x ∈ X .

Proposition 24. Let f : Ω → Γnns(TX) be a Gaussian vector field on X with cross-covariance
kernel k : T ∗X × T ∗X → R. Given a frame F = (e1, . . . , ed) on X and F ∗ = (e1, . . . , ed) be its
coframe, define f i =

〈
ei
∣∣ f〉 for all i = 1, . . . , d. Then f = (f1, . . . , fd) : Ω × X → Rd is a

vector-valued GP in the usual sense with matrix-valued kernel KF : X ×X → Rd×d given by

KF (x, x′) =

k(e1(x), e1(x′)) . . . k(e1(x), ed(x′))
...

. . .
...

k(ed(x), e1(x′)) . . . k(ed(x), ed(x′))

 . (46)

Conversely, given a vector-valued GP f = (f1, . . . , fd) : Ω×X → Rd and a frameF = (e1, . . . , ed)

on X , f(·) :=
∑d
i=1 f

i(·)ei(·) defines a Gaussian vector field on X .

Proof. First, we note that f i(x) =
〈
ei(x)

∣∣ f(x)
〉

are jointly Gaussian for all i = 1, . . . , d and
all x ∈ X . Thus for any x1, . . . , xn ∈ X , the vector (f(x1), . . . ,f(xn)) ∈ Rn×d is multivariate
Gaussian and therefore f is a vector-valued GP in the usual sense. Now for any x, x′ ∈ X , the kernel
of f evaluated at these points reads

KF (x, x′) =

Cov(f1(x), f1(x′)) . . . Cov(f1(x), fd(x′))
...

. . .
...

Cov(fd(x), f1(x′)) . . . Cov(fd(x), fd(x′))

 (47)

=

k(e1(x), e1(x′)) . . . k(e1(x), ed(x′))
...

. . .
...

k(ed(x), e1(x′)) . . . k(ed(x), ed(x′))

 , (48)

which follows from Definition 20. This concludes the first part of the proof.

To prove the converse direction, for any collection of points x1, . . . , xn ∈ X , define the random
vector vx1,...,xn

= (f(x1), . . . , f(xn)), where f is given by f(x) =
∑d
i=1 f

i(x)ei(x). Now for any
φx1,...,xn = (φx1 , . . . , φxn) ∈ V ∗x1,...,xn

, we have〈
φx1,...,xn

∣∣ vx1,...,xn

〉
=

n∑
i=1

〈
φxi

∣∣ f(xi)
〉

(49)

=

n∑
i=1

〈
φxi

∣∣ d∑
j=1

f j(xi)ej(xi)
〉

(50)

=

n∑
i=1

d∑
j=1

f j(xi)
〈
φxi

∣∣ ej(xi)〉. (51)

Since f j(xi) is univariate Gaussian for all i = 1, . . . , n and j = 1, . . . , d, the above linear combi-
nation is univariate Gaussian and therefore vx1,...,xn is Gaussian in the sense of Definition 8. Since
x1, . . . , xn were chosen arbitrarily, f is a Gaussian vector field.

Gauge Equivariance (Proof of Corollary 6)

Given two frames F, F ′ on X , an abstract vector fx ∈ TxX has two vector representations fx,f
′
x in

the respective frames. Recall that F ′ is said to be obtained from F by a gauge transformation with
respect to a matrix field A : X → GL(d,R), if

f ′x = A(x)fx (52)
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holds for all x ∈ X , and we write F ′ = AF . In the following, we compute an explicit expression for
the gauge-transformed frame AF and its coframe.
Lemma 25. Let F = (e1, . . . , ed) be a frame on X , A : X → GL(d,R) be a matrix field
of gauge transformations, AF = (ε1, . . . , εd) be the gauge transformed frame as above and let
(AF )∗ = (ε1, . . . , εd) be the corresponding coframe. Then we have the following explicit expressions

εi(x) =

d∑
j=1

ej(x)[A−1(x)]ji, εi(x) =

d∑
j=1

[A(x)]ije
j(x). (53)

Proof. For any x ∈ X , let fx ∈ TxX be an abstract vector, which has the vector representations fx
and A(x)fx in the frames F and AF respectively. Letting fx = (f1

x , . . . , f
d
x ), we have

fx =

d∑
i=1

f ixei(x) =

d∑
i=1

d∑
j=1

([A(x)]jif
i
x)εj(x) =

d∑
i=1

f ix

 d∑
j=1

εj(x)[A(x)]ji

. (54)

Thus, ei(x) =
∑d
j=1 εj(x)[A(x)]ji, or identically, εi(x) =

∑d
j=1 ej(x)[A−1(x)]ji. We now

claim that εi(x) =
∑d
j=1[A(x)]ije

j(x), which we prove by showing that it satisfies the relation〈
εi(x)

∣∣ εj(x)
〉

= δij as follows:

〈
εi(x)

∣∣ εj(x)
〉

=

〈
d∑
k=1

[A(x)]ike
k(x)

∣∣∣∣∣
d∑
l=1

el(x)[A−1(x)]lj

〉
(55)

=

d∑
k=1

d∑
l=1

[A(x)]ik
〈
ek(x)

∣∣ el(x)
〉

δkl

[A−1(x)]lj (56)

=

d∑
k=1

[A(x)]ik[A−1(x)]kj (57)

= [A(x)A−1(x)]ij

δij

. (58)

This concludes the proof.

The following is, then, straightforward to show.
Corollary 26. Let F be a frame on X and KF : X × X → Rd×d be the corresponding matrix
representation of a cross-covariance kernel k : T ∗X × T ∗X → R. This satisfies the gauge
equivariance condition

KAF (x, x′) = A(x)KF (x, x′)A(x′)T , (59)
where A : X → GL(d,R) is a gauge transformation applied to each point on X . All cross-
covariance kernels in the sense of Proposition 4 arise this way.

Proof. Let F = (e1, . . . , ed) and AF = (ε1, . . . , εd). Then by the previous lemma, we have

[KAF (x, x′)]ij = k(εi(x), εj(x′)) (60)

=

d∑
k=1

d∑
l=1

k
(
[A(x)]ik e

k(x), [A(x′)]jl e
l(x′)

)
(61)

=

d∑
k=1

d∑
l=1

[A(x)]ik [KF (x, x′)]kl [A(x′)]jl, (62)

which proves the identity (59).

The second claim is obvious: take some cross-covariance kernel in the sense of Proposition 4 and some
frame—this induces a gauge equivariant matrix-valued kernel that correspond to the cross-covariance
kernel in the sense of Proposition 4 from which it was constructed in the first place.
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Projected Kernels (Proof of Proposition 7)

Here we formally describe the projected kernel construction. We start by noting some properties of
the projection matrices associated with differentials of isometric embeddings.
Lemma 27. Let (X, g) be a Riemannian manifold and emb : X → Rd′ be an isometric embedding.
Given a frame F = (e1, . . . , ed) on X , denote by P(·) : X → Rd×d′ its associated projection
matrix, defined for every x as the matrix representation of dxemb within F , and Γ : X → Rd×d, the
matrix field representation of the Riemannian metric g, that is, [Γ(x)]ij = gx(ei(x), ej(x)) for all
i, j = 1, . . . , d and x ∈ X . Then we have

PxP
T
x = Γ(x). (63)

Proof. Since the embedding is isometric, for any v, v′ ∈ TxX , we have
gx(u, v) = 〈dxemb(v),dxemb(v′)〉, (64)

which, in the corresponding vector representation with respect to a frame F , reads
vTΓ(x)v′ =

〈
PT
x v,P

T
x v
′〉 = vT (PxP

T
x )v′. (65)

for any v,v′. This implies that Γ(x) = PxP
T
x for all x and proves the claim.

We proceed to describe the projected kernel construction, which lets us transform a matrix-valued
kernel on an ambient space into a cross-covariance kernel on the manifold.
Proposition 28. Let (X, g) be a Riemannian manifold, emb : X → Rd′ be an isometric embedding
and F be a frame on X . We denote by P(·) : X → Rd×d′ the associated projection matrix
under F , and let f ′ : X → Rd′ be any vector-valued Gaussian process with matrix-valued kernel
κ : X ×X → Rd′×d′ . Then, the vector-valued function f = Pf ′ : X → Rd defines a Gaussian
vector field f on X using the construction in Proposition 24, whose kernel under the frame F has
matrix representation

KF (x, x′) = Pxκ(x, x′)PT
x′ . (66)

Moreover, all cross-covariance kernels k : T ∗X × T ∗X → R arise this way.

Proof. We demonstrate the first part by computing the covariance of f . For any x, x′ ∈ X , we have
KF (x, x′)ij = Cov(f i(x), f j(x′)) (67)

= Cov([Pxf
′(x)]i, [Px′f

′(x′)]j) (68)

=

d∑
k=1

d∑
l=1

Cov([Px]ik f
′
k(x), [Px′ ]jl f

′
l (x
′)) (69)

=

d∑
k=1

d∑
l=1

[Px]ik Cov(f ′k(x), f ′l (x
′)) [Px′ ]jl (70)

=

d∑
k=1

d∑
l=1

[Px]ik κ(x, x′)kl [Px′ ]jl, (71)

which proves the identity (66).

Conversely, let k : T ∗X×T ∗X → R be a cross-covariance kernel. We first construct a matrix-valued
kernel KF as in Proposition 24. Define

κ(x, x′) = PT
xKΓ−1F (x, x′)Px′ , (72)

where Γ : X → Rd×d is the matrix field representation of the metric g as given in the statement of
Lemma 27. Then by the same lemma, we have

Pxκ(x, x′)PT
x′ = (PxP

T
x )KΓ−1F (x, x′)(Px′P

T
x′) (73)

= Γ(x)KΓ−1F (x, x′)Γ(x′) (74)

= KF (x, x′), (75)
where we used that Γ(x)T = Γ(x) and Corollary 26 to deduce the last equality. Thus, any cross-
covariance kernel k can be obtained from a matrix-valued kernel κ on the ambient space and therefore
we do not lose any generality by working with the latter.
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B Experimental details

Here, we include further details about the experiments conducted in Section 4. All experiments were
conducted on a single workstation with 64GB RAM, using CPU-based computation.

Fourier features for product kernels

Throughout this paper we use the sparse GP formulation of Wilson et al. [46, 47] to work with GPs.
In order to apply this method we need to be able to sample a Fourier feature approximation of the
kernel. For stationary kernels supported on Euclidean space one typically uses a random Fourier
feature (RFF) approximation [33]

f̃(·) =
1√
l

l∑
i=1

wiφi(x), wi ∼ N(0, 1), (76)

where the φi are Fourier basis functions sampled from the spectral density of the kernel—see
Sutherland and Schneider [41] for details. The resulting random function f̃(·) is then a Gaussian
process with zero mean and kernel l−1Φ(·)TΦ(·), where Φ is a vector of the l basis functions. This
approximates the true GP with a dimension-free error of the order l−1/2.

For kernels supported on compact spaces we use a Karhunen–Loéve (KL) expansion. If we have a
Gaussian process f(·) on a compact space, then we can optimally approximate this function (in terms
of L2-norm) by truncating its KL expansion

f(·) =

∞∑
i=1

wiψi(x) wi ∼ N(0, λi) (77)

where φi, λi are the ith eigenfunctions and values of the kernel,
∫
X
ψ(x)k(x, ·) dx = λiψi(·), sorted

in descending order of the eingenvalues. For the squared exponential and Matérn kernels on compact
manifolds, these eigenfunctions are the eigenfunctions of the Laplacian of the manifold, and the
eigenvalues are given by a transformation of the Laplacian eigenvalues [2].

The question then arises of what to do in the case of a product of kernels, each taking as input some
different space, where some are suited to RFF approximation, and some to a KL approximation. We
propose the following approach.

1. All the RFF-appropriate kernels can be combined into one approximation by sampling the
basis functions from the product measure of their Fourier transforms.

2. All of the KL-appropriate kernels can be combined into one approximation by computing
the k largest eigenvalues of the product manifold the kernels are defined on. If we have two
compact manifolds with eigenvalue-function pairs (αi, fi(·))∞i=1 and (βj , gj(·))∞j=1, then
the eigenvalue-function pairs on the product manifold are (αi + βj , fi(·)gj(·))∞,∞i,j=1 [4]. We
can repeatedly apply this to find the approximation for the kernel on arbitrary products of
compact manifolds.

3. Define the Fourier feature approximation of the combination of this RFF and KL approxi-
mations as

f(e,m) =
1√
l

l∑
i=1

k∑
j=1

wi,jφi(e)ψj(m) wi,j ∼ N (0, λj) (78)

where e,m are the inputs to the RFF and KL appropriate kernels respectively, φi are the
basis functions of the Euclidean kernels sampled from the product measure, and λj , ψj , are
the product eigenpairs on the product manifold. In the limit of infinite basis functions in
both l and k this will give the correct kernel, and therefore the true prior.

Dynamics experiment

In this experiment, the base manifold is the state space of the single pendulum system. The position
of the pendulum is represented by a single angle in [0, 2π), which corresponds to the circle S1. The
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momentum lies then in its respective cotangent space. The phase space is the product of these,
S1 × R1.

This product manifold naturally embeds into R3 by embedding the circle into R2 in the canonical
way, and leaving R1 unchanged. The embedding is then

emb(q, p) = (cos q, sin q, p), (79)

where q is the position and p is the angular momentum. The global projection matrix given by

Pq,p =

[
− sin q cos q 0

0 0 1

]
. (80)

The Euclidean vector kernel we use is a separable kernel, produced by taking the product of an
intrinsic squared exponential manifold kernel with the identity matrix to give a matrix valued kernel,
κ = kS1×R1I3×3. The intrinsic manifold kernel is produced by the product of a typical Euclidean
squared exponential kernel with a squared exponential kernel defined on S1 by Borovitskiy et al. [2],
so that kS1×R1 = kS1kR1 . The length scales of these kernels are set to 0.3 and 1.2 respectively, and
the amplitude set to give k(x, x) = 1.

To learn the dynamics, we initialise the system at two start points, and evolve the system using leapfrog
integration. From these observations of position, we backward Euler integrate the momentum of
the system, pi = 1

2ml(qi+1 − qi), and from these position-momentum trajectories we estimate
observations of the dynamics field

∇t(q, p)i =

(
qi+1 − qi

h
,
pi+1 − pi

h

)
(81)

where h = 0.01 is the step size. Using these observations, we condition a sparse GP using all the
data using the analytic expression for the sparse posterior kernel matrix. The result is an estimate
of the system dynamics with suitable uncertainty estimates. In order to compute rollouts of these
dynamics, we follow Wilson et al. [46, 47] and employ linear-time pathwise sampling of this sparse
GP together with leapfrog integration [16].

Wind interpolation experiment

In this experiment, the base manifold is the sphere S2, which we embed naturally in R3 as

emb(φ, θ) = (cos θ sinφ, sin θ sinφ, cosφ), (82)

where we used spherical coordinates φ ∈ (0, π), θ ∈ [0, 2π) to parametrise the sphere

(φ, θ) ∈ {(0, 0)} ∪ {(π, 0)} ∪ (0, π)× [0, 2π) (83)

We choose a frame F = (e1, e2), where e1(φ, θ) = φ̂ and e2(φ, θ) = θ̂ are the unit vectors in the φ, θ
directions respectively for all φ ∈ (0, π), θ ∈ (0, 2π). The choice of points on the North and South
poles determines the choice of gauge at these points. The corresponding orthonormal projection
matrix reads

Pφ,θ =

[
cos θ cosφ sin θ cosφ − sinφ
− sin θ cos θ 0

]
, (84)

for all points, with the choice of θ = 0 giving the choice of frame at the poles.

For the data, we used the following publicly available data sets.

• The ERA5 atmospheric reanalysis data. In particular, the variables 10M-U-COMPONENT-OF-
WIND and 10M-V-COMPONENT-OF-WIND from the REANALYSIS-ERA5-SINGLE-LEVELS
dataset for the date 01/01/2019 09:00-10:00, regridded from 0.25◦ to 5.625◦ resolution
using python’s XESMF package.

• The WeatherBench dataset [35], which can be found at https://github.com/pangeo-data/
WeatherBench. In particular the variables 10M-U-COMPONENT-OF-WIND and 10M-V-
COMPONENT-OF-WIND at 5.625◦ resolution for the entire available period 1979/01/01 -
2018/12/31.
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• The Aeolus trajectory data, which can be read using Python’s SKYFIELD API from Aeolus’
two-line element set given below.
1 43600U 18066A 21153.73585495 .00031128 00000-0 12124-3 0 9990
2 43600 96.7150 160.8035 0006915 90.4181 269.7884 15.87015039160910

Instead of using actual observations from the Aeolus satellite, we generated our own by interpolating
the ERA5 data along the satellite track, whose locations are available minutely. This is so that we
can compare the predictions against the ground truth to assess the performance. We use one hour of
data, and hence 60 data points, to perform a spatial interpolation instead of a space-time interpolation,
which is reasonable as the atmosphere hardly moves during that time period at the spatial scale of
interest. Moreover, we include the weekly climatology as prior information (computed by taking
the temporal average of historical global wind patterns for each of the 52 calendar weeks during
the period 1979-2018 in WeatherBench), which captures general circulation patterns such as trade
winds in the poles and the equator. This is equivalent to training the GP on the difference of the wind
velocity from the weekly climatology.

For the kernel, we used Matérn-3/2 on the sphere and the Euclidean space (see Borovitskiy et al. [2]
for the construction of Matérn kernels on the sphere), where the prior amplitude parameter was set to
a fixed value (11.5 in the spherical case and 2.2 in the Euclidean case) and the length scale parameter
was learnt from data. We have tried to learn the length scale initially by fitting the GP on the satellite
observations and maximizing the marginal likelihood. However, this gave an unrealistically small
value, likely due to the observations being too sparse: so, instead, we first trained a sparse GP on
150 randomly chosen time slices of the weatherbench historical wind reanalysis data and minimizing
the Kullback–Leibler divergence of the variational distribution from the posterior (using the Adam
optimizer with learning rate 1e-2). The mean of the learnt length scales of the 150 samples was
then used as the final length scale. Denoting by kS2 the scalar Matérn-3/2 kernel on the sphere, we
construct a matrix-valued kernel on the ambient space R3 by taking κ = kS2I3×3 as in the dynamics
experiment, which is then used to construct the projected kernel with the projection given by (84).
Finally, we note that when fitting the GP on the satellite observations, we use an observation error of
1.7m/s, which reflects the sum of the random and systematic error in the Aeolus satellite, as detailed
by its technical specifications [9].
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