
ar
X

iv
:1

80
6.

09
03

1v
2

 [
cs

.L
O

]
 2

7
Ju

n
20

18

Relating Structure and Power: Comonadic Semantics for

Computational Resources

Samson Abramsky∗ and Nihil Shah†

Department of Computer Science, University of Oxford

Abstract

Combinatorial games are widely used in finite model theory, constraint satisfaction,
modal logic and concurrency theory to characterize logical equivalences between struc-
tures. In particular, Ehrenfeucht-Fräıssé games, pebble games, and bisimulation games
play a central role. We show how each of these types of games can be described in terms
of an indexed family of comonads on the category of relational structures and homomor-
phisms. The index k is a resource parameter which bounds the degree of access to the
underlying structure. The coKleisli categories for these comonads can be used to give
syntax-free characterizations of a wide range of important logical equivalences. Moreover,
the coalgebras for these indexed comonads can be used to characterize key combinatorial
parameters: tree-depth for the Ehrenfeucht-Fräıssé comonad, tree-width for the pebbling
comonad, and synchronization-tree depth for the modal unfolding comonad. These results
pave the way for systematic connections between two major branches of the field of logic
in computer science which hitherto have been almost disjoint: categorical semantics, and
finite and algorithmic model theory.

1 Introduction

There is a remarkable divide in the field of logic in Computer Science, between two distinct
strands: one focussing on semantics and compositionality (“Structure”), the other on expres-
siveness and complexity (“Power”). It is remarkable because these two fundamental aspects
of our field are studied using almost disjoint technical languages and methods, by almost dis-
joint research communities. We believe that bridging this divide is a major issue in Computer
Science, and may hold the key to fundamental advances in the field.

In this paper, we develop a novel approach to relating categorical semantics, which ex-
emplifies the first strand, to finite model theory, which exemplifies the second. It builds on
the ideas introduced in [2], but goes much further, showing clearly that there is a strong and
robust connection, which can serve as a basis for many further developments.

The setting

Relational structures and the homomorphisms between them play a fundamental rôle in finite
model theory, constraint satisfaction and database theory. The existence of a homomorphism

∗samson.abramsky@cs.ox.ac.uk
†nihil@berkeley.edu

1

http://arxiv.org/abs/1806.09031v2

A → B is an equivalent formulation of constraint satisfaction, and also equivalent to the
preservation of existential positive sentences [7]. This setting also generalizes what has become
a central perspective in graph theory [15].

Model theory and deception

In a sense, the purpose of model theory is “deception”. It allows us to see structures not “as
they really are”, i.e. up to isomorphism, but only up to definable properties, where definability
is relative to a logical language L. The key notion is logical equivalence ≡L. Given structures
A, B over the same vocabulary:

A ≡L
B

∆
⇐⇒ ∀ϕ ∈ L. A |= ϕ ⇐⇒ B |= ϕ.

If a class of structures K is definable in L, then it must be saturated under ≡L. Moreover,
for a wide class of cases of interest in finite model theory, the converse holds [20].

The idea of syntax-independent characterizations of logical equivalence is quite a classical
one in model theory, exemplified by the Keisler-Shelah theorem [30]. It acquires additional
significance in finite model theory, where model comparison games such as Ehrenfeucht-
Fräıssé games, pebble games and bisimulation games play a central role [21].

We offer a new perspective on these ideas. We shall study these games, not as external
artefacts, but as semantic constructions in their own right. Each model-theoretic comparison
game encodes “deception” in terms of limited access to the structure. These limitations
are indexed by a parameter which quantifies the resources which control this access. For
Ehrenfeucht-Fräıssé games and bisimulation games, this is the number of rounds; for pebble
games, the number of pebbles.

Main Results

We now give a conceptual overview of our main results. Technical details will be provided in
the following sections.

We shall consider three forms of model comparison game: Ehrenfeucht-Fräıssé games,
pebble games and bisimulation games [21]. For each of these notions of game G, and value
of the resource parameter k, we shall define a corresponding comonad Ck on the category of
relational structures and homomorphisms over some relational vocabulary. For each struc-
ture A, CkA is another structure over the same vocabulary, which encodes the limited access
to A afforded by playing the game on A with k resources. There is always an associated
homomorphism εA : CkA → A (the counit of the comonad), so that CkA “covers” A. More-
over, given a homomorphism h : CkA → B, there is a Kleisli coextension homomorphism
h∗ : CkA → CkB. This allows us to form the coKleisli category Kl(Ck) for the comonad.
The objects are relational structures, while the morphisms from A to B in Kl(Ck) are exactly
the homomorphisms of the form CkA → B. Composition of these morphisms uses the Kleisli
coextension. The connection between this construction and the corresponding form of game
G is expressed by the following result:

Theorem 1. The following are equivalent:

1. There is a coKleisli morphism CkA → B

2. Duplicator has a winning strategy for the existential G-game with k resources, played
from A to B.

2

The existential form of the game has only a “forth” aspect, without the “back”. This
means that Spoiler can only play in A, while Duplicator only plays in B. This corresponds to
the asymmetric form of the coKleisli morphisms CkA → B. Intuitively, Spoiler plays in CkA,
which gives them limited access to A, while Duplicator plays in B. The Kleisli coextension
guarantees that Duplicator’s strategies can always be lifted to CkB; while we can always
compose a strategy CkA → CkB with the counit on B to obtain a coKleisli morphism.

This asymmetric form may seem to limit the scope of this approach, but in fact this is
not the case. For each of these comonads Ck, we have the following equivalences:

• A ⇄k B iff there are coKleisli morphisms CkA → B and CkB → A. Note that there
need be no relationship between these morphisms.

• A ∼=Kl(Ck) B iff A and B are isomorphic in the coKleisli category Kl(Ck). This means
that there are morphisms CkA → B and CkB → A which are inverses of each other in
Kl(Ck).

Clearly, ∼=Kl(Ck) strictly implies ⇄k. We can also define an intermediate “back-and-forth”
equivalence ↔k, parameterized by a winning condition WA,B ⊆ CkA× CkB.

For each of our three types of game, there are corresponding fragments Lk of first-order
logic:

• For Ehrenfeucht-Fräıssé games, Lk is the fragment of quantifier-rank ≤ k.

• For pebble games, Lk is the k-variable fragment.

• For bismulation games over relational vocabularies with symbols of arity at most 2, Lk

is the modal fragment [4] with modal depth ≤ k.

In each case, we write ∃Lk for the existential positive fragment of Lk, and Lk(#) for the
extension of Lk with counting quantifiers [21].

We can now state our first main result, in a suitably generic form.

Theorem 2. For finite structures A and B:
(1) A ≡∃Lk B ⇐⇒ A ⇄k B.
(2) A ≡Lk B ⇐⇒ A ↔k B.

(3) A ≡Lk(#) B ⇐⇒ A ∼=Kl(Ck) B.

Note that this is really a family of three theorems, one for each type of game G. Thus in
each case, we capture the salient logical equivalences in syntax-free, categorical form.

We now turn to the significance of indexing by the resource parameter k. When k ≤ l, we
have a natural inclusion morphism CkA → ClA, since playing with k resources is a special
case of playing with l ≥ k resources. This tells us that the smaller k is, the easier it is to
find a morphism CkA → B. Intuitively, the more we restrict Spoiler’s abilities to access the
structure of A, the easier it is for Duplicator to win the game.

The contrary analysis applies to morphisms A → CkB. The smaller k is, the harder it
is find such a morphism. Note, however, that if A is a finite structure of cardinality k, then
A ⇄k CkA. In this case, with k resources we can access the whole of A. What can we say
when k is strictly smaller than the cardinality of A?

It turns out that there is a beautiful connection between these indexed comonads and
combinatorial invariants of structures. This is mediated by the notion of coalgebra, another

3

fundamental (and completely general) aspect of comonads. A coalgebra for a comonad Ck on
a structure A is a morphism A → CkA satisfying certain properties. We define the coalgebra
number of a structure A, with respect to the indexed family of comonads Ck, to be the least
k such that there is a Ck-coalgebra on A.

We now come to our second main result.

Theorem 3. • For the pebbling comonad, the coalgebra number of A corresponds precisely
to the tree-width of A.

• For the Ehrenfeucht-Fräıssé comonad, the coalgebra number of A corresponds precisely
to the tree-depth of A [27].

• For the modal comonad, the coalgebra number of A corresponds precisely to the modal
unfolding depth of A.

The main idea behind these results is that coalgebras on A are in bijective correspondence
with decompositions of A of the appropriate form. We thus obtain categorical characteriza-
tions of these key combinatorial parameters.

2 Game Comonads

In this section we will define the comonads corresponding to each of the forms of model
comparison game we consider.

Firstly, a few notational preliminaries. A relational vocabulary σ is a set of relation
symbols R, each with a specified positive integer arity. A σ-structure A is given by a set
A, the universe of the structure, and for each R in σ with arity k, a relation RA ⊆ Ak. A
homomorphism h : A → B is a function h : A → B such that, for each relation symbol R of
arity k in σ, for all a1, . . . , ak in A: RA(a1, . . . , ak) ⇒ RB(h(a1), . . . , h(ak)). We write R(σ)
for the category of σ-structures and homomorphisms.

We shall write A≤k for the set of non-empty sequences of length ≤ k on a set A. We use
list notation [a1, . . . , aj] for such sequences, and indicate concatenation by juxtaposition. We
write s ⊑ t for the prefix ordering on sequences. If s ⊑ t, there is a unique s′ such that ss′ = t,
which we refer to as the suffix of s in t. For each positive integer n, we define n := {1, . . . , n}.

We shall need a few notions on posets. The comparability relation on a poset (P,≤) is
x↑y iff x ≤ y or y ≤ x. A chain in a poset (P,≤) is a subset C ⊆ P such that, for all
x, y ∈ C, x↑y. A forest is a poset (F,≤) such that, for all x ∈ F , the set of predecessors
↓(x) := {y ∈ F | y ≤ x} is a finite chain. The height ht(F) of a forest F is maxC |C|, where
C ranges over chains in F .

We recall that a comonad (G, ε, δ) on a category C is given by a functor G : C → C,
and natural transformations ε : G ⇒ I (the counit), and δ : G ⇒ G2 (the comultiplication),
subject to the conditions that the following diagrams commute, for all objects A of C:

GA GGA

GGA GGGA

δA

δA GδA

δGA

GA GGA

GGA GA

δA

δA GεA

εGA

An equivalent formulation is comonad in Kleisli form [23]. This is given by an object map
G, arrows εA : GA → A for every object A of C, and a Kleisli coextension operation which

4

takes f : GA→ B to f∗ : GA→ GB. These must satisfy the following equations:

ε∗A = idGA, ε ◦ f∗ = f, (g ◦ f∗)∗ = g∗ ◦ f∗.

We can then extend G to a functor by Gf = (f ◦ ε)∗; and if we define the comultiplication
δ : G ⇒ G2 by δA = id∗GA, then (G, ε, δ) is a comonad in the standard sense. Conversely,
given a comonad (G, ε, δ), we can define the coextension by f∗ = Gf ◦ δA. This allows us to
define the coKleisli category Kl(G), with objects the same as those of C, and morphisms from
A to B given by the morphisms in C of the form GA→ B. Kleisli composition of f : GA→ B

with g : GB → C is given by g • f := g ◦ f∗.

2.1 The Ehrenfeucht-Fräıssé Comonad

We shall define a comonad Ek on R(σ) for each positive integer k. It will be convenient to
define Ek in Kleisli form. For each structure A, we define a new structure EkA, with universe
EkA := A≤k. We define the map εA : EkA → A by εA[a1, . . . , aj] = aj. For each relation
symbol R of arity n, we define REkA to be the set of n-tuples (s1, . . . , sn) of sequences which
are pairwise comparable in the prefix ordering, and such that RA(εAs1, . . . , εAsn). Finally,
we define the coextension. Given a homomorphism f : EkA → B, we define f∗ : A≤k → B≤k

by f∗[a1, . . . , aj] = [b1, . . . , bj], where bi = f [a1, . . . , ai], 1 ≤ i ≤ j.

Proposition 4. The triple (Ek, ε, (·)
∗) is a comonad in Kleisli form.

Intuitively, an element of A≤k represents a play in A of length ≤ k. A coKleisli morphism
EkA → B represents a Duplicator strategy for the existential Ehrenfeucht-Fräıssé game with k
rounds, where Spoiler plays only in A, and bi = f [a1, . . . , ai] represents Duplicator’s response
in B to the i’th move by Spoiler. The winning condition for Duplicator in this game is that,
after k rounds have been played, the induced relation {(ai, bi) | 1 ≤ i ≤ k} is a partial
homomorphism from A to B.

These intuitions are confirmed by the following result.

Theorem 5. The following are equivalent:

1. There is a homomorphism EkA → B.

2. Duplicator has a winning strategy for the existential Ehrenfeucht-Fräıssé game with k
rounds, played from A to B.

2.2 The Pebbling Comonad

We now turn to the case of pebble games. The following construction appeared in [2]. Given
a structure A, we define PkA, which will represent plays of the k-pebble game on A.1 The
universe is (k × A)+, the set of finite non-empty sequences of moves (p, a), where p ∈ k is
a pebble index, and a ∈ A. We shall use the notation s = [(p1, a1), . . . , (pn, an)] for these
sequences, which may be of arbitrary length. Thus the universe of PkA is always infinite, even
if A is a finite structure. This is unavoidable, by [2, Theorem 7]. We define εA : PkA→ A to
send a play [(p1, a1), . . . , (pn, an)] to an, the A-component of its last move.

1In [2] we used the notation Tk for this comonad.

5

Given an n-ary relation R ∈ σ, we define RPkA(s1, . . . , sn) iff (1) the si are pairwise
comparable in the prefix ordering; (2) the pebble index of the last move in each si does not
appear in the suffix of si in sj for any sj ⊒ si; and (3) RA(εA(s1), . . . , εA(sn)).

Finally, given a homomorphism f : PkA → B, we define f∗ : PkA→ PkB by
f∗[(p1, a1), . . . , (pj , aj)] = [(p1, b1), . . . , (pj , bj)], where bi = f [(p1, a1), . . . , (pi, ai)], 1 ≤ i ≤ j.

Proposition 6. The triple (Pk, ε, (·)
∗) is a comonad in Kleisli form.

The following is [2, Theorem 13].

Theorem 7. The following are equivalent:

1. There is a homomorphism PkA → B.

2. There is a winning strategy for Duplicator in the existential k-pebble game from A to
B.

2.3 The Modal Comonad

For the modal case, we assume that the relational vocabulary σ contains only symbols of
arity at most 2. We can thus regard a σ-structure as a Kripke structure for a multi-modal
logic, where the universe is thought of as a set of worlds, each binary relation symbol Rα

gives the accessibility relation for one of the modalities, and each unary relation symbol P
give the valuation for a corresponding propositional variable. If there are no unary symbols,
such structures are exactly the labelled transition systems widely studied in concurrency [25].

Modal logic localizes its notion of satisfaction in a structure to a world. We shall reflect
this by using the category of pointed relational structures R⋆(σ). Objects of this category
are pairs (A, a) where A is a σ-structure and a ∈ A. Morphisms h : (A, a) → (B, b) are
homomorphisms h : A → B such that h(a) = b. Of course, the same effect could be achieved
by expanding the vocabulary σ with a constant, but pointed categories appear in many
mathematical contexts.

For each k > 0, we shall define a comonad Mk, where Mk(A, a) corresponds to unravelling
the structure A, starting from a, to depth k. The universe of Mk(A, a) comprises the unit
sequence [a], which is the distinguished element, together with all sequences of the form
[a0, α1, a1, . . . , αj , aj], where a = a0, 1 ≤ j ≤ k, and RA

αi
(ai, ai+1), 0 ≤ i < j. The map

εA : Mk(A, a) → (A, a) sends a sequence to its last element. Unary relation symbols P
are interpreted by PMk(A,a)(s) iff PA(εAs). For binary relations Rα, the interpretation is

R
Mk(A,a)
α (s, t) iff for some a′ ∈ A, t = s[α, a′]. Given a morphism f : Mk(A, a) → (B, b), we

define f∗ : Mk(A, a) → Mk(B, b) recursively by f∗[a] = [b], f∗(s[α, a′]) = f∗(s)[α, b′] where
b′ = f(s[α, a′]). This is well-defined since f is a morphism by assumption.

Proposition 8. The triple (Mk, ε, (·)
∗) is a comonad in Kleisli form on R⋆(σ).

We recall the notion of simulation between Kripke structures [5]. Given structures A, B,
we define relations �k ⊆ A × B, k ≥ 0, by induction on k: �0 = A × B, and a �k+1 b iff
(1) for all unary P , PA(a) implies PB(b), and (2) for all Rα, if R

A
α (a, a

′), then for some b′,
RB

α(b, b
′) and a′ �k b

′. It is standard that these relations are equivalently formulated in terms
of a modified existential Ehrenfeucht-Fräıssé game [5, 14].

Theorem 9. Let A, B be Kripke structures, with a ∈ A and b ∈ B, and k > 0. The following
are equivalent:

6

1. There is a homomorphism f : Mk(A, a) → (B, b).

2. a �k b.

3. There is a winning strategy for Duplicator in the k-round simulation game from (A, a)
to (B, b).

3 Logical Equivalences

We now show how our game comonads can be used to give syntax-free characterizations of a
range of logical equivalences, which play a central rôle in finite model theory and modal logic.

We shall be considering logics L which arise as fragments of L∞,ω, the extension of first-
order logic with infinitary conjunctions and disjunctions, but where formulas contain only
finitely many variables. In particular, we will consider the fragments Lk, of formulas with
quantifier rank ≤ k, and Lk, the k-variable fragment. These play a fundamental rôle in finite
model theory.

We shall also consider two variants for each of these fragments L. One is the existential
positive fragment ∃L, which contains only those formulas of L built using existential quan-
tifiers, conjunction and disjunction. The other is L(#), the extension of L with counting
quantifiers. These have the form ∃≤n, ∃≥n, where the semantics of A |= ∃≥nx. ψ is that there
exist at least n distinct elements of A satisying ψ.

Each of these logics L induces an equivalence on structures in R(σ):

A ≡L
B

∆
⇐⇒ ∀ϕ ∈ L. A |= ϕ ⇐⇒ B |= ϕ.

Our aim is to characterize these equivalences in terms of our game comonads, and more
specifically, to use morphisms in the coKleisli categories as witnesses for these equivalences.

Two equivalences can be defined uniformly for any indexed family of comonads Ck:

• A ⇄C

k B iff there are coKleisli morphisms CkA → B and CkB → A. Note that
there need be no relationship between these morphisms. This is simply the equivalence
induced by the preorder collapse of the coKleisli category.

• A ∼=C

k B iff A and B are isomorphic in the coKleisli category Kl(Ck). This means that
there are morphisms CkA → B and CkB → A which are inverses of each other in
Kl(Ck).

Clearly, ∼=C

k strictly implies ⇄C

k .
We shall also define an intermediate, “back-and-forth” equivalence ↔C

k . This will be more
specific to “game comonads” defined on a concrete category such as R(σ), but it will still be
defined and shown to have the appropriate properties in considerable generality. We assume
that for each structure A, the universe CkA has a forest order ⊑, as seen in our concrete
constructions using the prefix ordering on sequences. We add a root ⊥ for convenience. We
write the covering relation for this order as ≺; thus s ≺ t iff s ⊑ t, s 6= t, and for all u, s ⊑ u ⊑ t

implies u = s or u = t. We shall also assume that, for any coKleisli morphism f : CkA → B,
the Kleisli coextension preserves the covering relation: s ≺ s′ implies f∗(s) ≺ f∗(s′).

The definition will be parameterized on a set WA,B ⊆ CkA×CkB of “winning positions”
for each pair of structures A, B. We assume that a function f : CkA → B such that, for all
s ∈ CkA, (s, f

∗(s)) ∈ WA,B, is a coKleisli morphism.

7

We define the back-and-forth Ck game between A and B as follows.
At the start of each round of the game, the position is specified by (s, t) ∈ CkA × CkB.

The initial position is (⊥,⊥). The round proceeds as follows. Either Spoiler chooses some
s′ ≻ s, and Duplicator responds with t′ ≻ t, resulting in a new position (s′, t′); or Spoiler
chooses some t′′ ≻ t and Duplicator responds with s′′ ≻ s, resulting in (s′′, t′′). Duplicator
wins the round if the new position is in WA,B.

We can then define S(A,B) to be the set of all functions f : CkA → B such that, for all
s ∈ CkA, (s, f

∗(s)) ∈ WA,B.
We define a locally invertible pair (F,G) from A to B to be a pair of sets F ⊆ S(A,B),

G ⊆ S(B,A), satisfying the following conditions:

1. For all f ∈ F , s ∈ CkA, for some g ∈ G, g∗f∗(s) = s.

2. For all g ∈ G, t ∈ CkB, for some f ∈ F , f∗g∗(t) = t.

We define A ↔C
k B iff there is a non-empty locally invertible pair from A to B.

Proposition 10. The following are equivalent:

1. A ↔C
k B.

2. There is a winning strategy for Duplicator in the Ck game between A and B.

Proof. Assuming (1), with a locally invertible pair (F,G), we define a strategy for Duplicator
inductively, such that after each round, the play is within the set

{(s, f∗(s)) | s ∈ CkA, f ∈ F} = {(g∗(t), t) | t ∈ CkB, g ∈ G}.

Assume (s, t) has been played. If Spoiler now plays s′ ≻ s in CkA, then there is f ∈ F such
that f∗(s) = t, and we respond with t′ = f∗(s′) ≻ f∗(s). Since f ∈ S(A,B), (s′, t′) ∈ WA,B.
The case when Spoiler plays in CkB is symmetric.

Assuming (2), let Φ be the set of all plays (s, t) following the Duplicator strategy. Define

F := {f : CkA→ B | ∀s ∈ CkA. (s, f
∗(s)) ∈ Φ},

G := {g : CkB → A | ∀t ∈ CkB. (g
∗(t), t) ∈ Φ}.

Since the strategy is winning, Φ ⊆ WA,B, and F ⊆ S(A,B), G ⊆ S(B,A). We claim that for
all (s, t) ∈ Φ: (A) ∃f ∈ F. f∗(s) = t, and (B) ∃g ∈ G. g∗(t) = s. (A) follows by extending
(s, t) to a morphism f : CkA → B. For any s′ ⊑ s, we assign the corresponding predecessor
of t. For any s′ which is not a predecessor of s, let s1 = s ⊓ s′, the meet of s and s′. We
write t1 for the corresponding predecessor of t. We define f on s′ by assigning t1 in response
to s1, and then following Duplicator’s responses as Spoiler plays according to s′ in CkA. (B)
follows by a symmetric argument.

Now for any f ∈ F and s ∈ CkA, (s, f
∗(s)) ∈ Φ, and hence by (B) we can find g ∈ G to

witness local invertibility; the case for g ∈ G and t ∈ CkB is symmetric.

The local invertibility condition on a pair of sets (F,G) has a fixpoint characterization,
which may be of some interest. We define set functions Γ : P(S(A,B)) → P(S(B,A)),
∆ : P(S(B,A)) → P(S(A,B)):

Γ(F) = {g ∈ T | ∀t ∈ CkB.∃f ∈ F. f∗g∗t = t},

∆(G) = {f ∈ S | ∀s ∈ CkA.∃g ∈ G. g∗f∗s = s}.

8

These functions are monotone. Moreover, a pair of sets (F,G) is locally invertible iff F ⊆ ∆(G)
and G ⊆ Γ(F). These conditions in turn imply that F ⊆ ∆Γ(F), and if this holds, then we
can set G := Γ(F) to obtain a locally invertible pair (F,G). Thus existence of a locally
invertible pair is equivalent to the existence of non-empty F such that F ⊆ Θ(F), where
Θ = ∆Γ. Since Θ is monotone, by Knaster-Tarski this is equivalent to the greatest fixpoint
of Θ being non-empty. (Note that Θ(∅) = ∅).

If A and B are finite, so is S, and we can construct the greatest fixpoint by a finite
descending sequence S ⊇ Θ(S) ⊇ Θ2(S) ⊇ · · · . This fixpoint is non-empty iff A ↔E

k B.
We shall now turn to a detailed study of each of our comonads in turn.

3.1 The Ehrenfecht-Fräıssé comonad

A coKelisli morphism f : EkA → B is an I-morphism if s ⊑ t and εA(s) = εA(t) implies that
f(s) = f(t). An equivalent statement is that, if we add a binary relation symbol I to the
vocabulary, and set IA to be the identity relation on A, and IB to be the identity relation on
B, then f is also a homomorphism with respect to I. The significance of this condition is that,
if f : EkA → B and g : EkB → A are I-morphisms, then f∗(s) = t, g∗(t) = s imply that (s, t)
defines a partial isomorphism from A to B. We refine the definition of the equivalence ∼=E

k

accordingly. We say that A ∼=E

k B iff there are I-morphisms f : EkA → B and g : EkB → A

with f∗−1 = g∗.
Note that, for any coKleisli morphism f : EkA → B, there is an I-morphism fI : EkA → B,

obtained by firstly restricting f to non-repeating sequences, then extending it by applying the
I-morphism condition for repetitions. It is easy to verify that fI is a homomorphism. Thus
there is no need to modify the equivalence ⇄E

k .

We define W
Ek

A,B to be the set of pairs (s, t) ∈ EkA × EkB such that s = [a1, . . . , aj],
t = [b1, . . . , bj], and {(ai, bi) | 1 ≤ i ≤ j} defines a partial isomorphism from A to B. This
specifies the back-and-forth equivalence ↔E

k .
We now recall the bijection game [16]. In this variant of the Ehrenfeuch-Fräıssé game,

Spoiler wins if the two structures have different cardinality. Otherwise, at round i, Duplicator
chooses a bijection ψi between A and B, and Spoiler chooses an element ai of A. This
determines the choice by Duplicator of bi = ψi(ai). Duplicator wins after k rounds if the
relation {(ai, bi) | 1 ≤ i ≤ k} is a partial isomorphism.

Proposition 11. The following are equivalent, for finite structures A and B:

1. A ∼=E

k B.

2. There is a winning strategy for Duplicator in the k-round bijection game.

Proof. Assuming (1), we have I-morphisms f : EkA → B and g : EkB → A with g∗ = f∗−1.
For each s ∈ {[]} ∪ A<k, we can define a map ψs : A → B, by ψs(a) = f(s[a]). This is
a bijection, with inverse defined similarly from g. These bijections provide a strategy for
Duplicator. Since each (s, f∗(s)) is a partial isomorphism, this is a winning strategy.

Conversely, a winning strategy provides bjiections ψs, which we can use to define f by
f(s[a]) = ψs(a). The winning conditions imply that this is an I-isomorphism in the coKleisli
category.

We can now state our main result on logical equivalences for the Ehrenfeucht-Fräıssé comonad.

9

Theorem 12. 1. For all structures A and B: A ≡∃Lk B ⇐⇒ A ⇄E
k B.

2. For all structures A and B: A ≡Lk B ⇐⇒ A ↔E

k B.

3. For all finite structures A and B: A ≡Lk(#) B ⇐⇒ A ∼=E

k B.

Proof. (1) follows from Theorem 5 and standard results [19]. (2) follows from Proposition 10
and the Ehrenfeucht-Fräıssé theorem [11]. (3) follows from Proposition 11 and results origi-
nating in [16] and expounded in [21].

If we modify W
Ek

A,B, and hence ↔E

k , by asking for partial correspondences rather than
partial isomorphisms, we obtain a characterization of elementary equivalence for equality-free
logic [6].

3.2 The Pebbling Comonad

A similar notion of I-morphism applies to the pebbling comonad as we saw previously with
the Ehrenfeucht-Fräıssé comonad [2].

Given s = [(p1, a1), . . . , (pn, an)] ∈ PkA and t = [(p1, b1), . . . , (pn, bn)] ∈ PkB, we define
φs,t = {(ap, bp) | p ∈ k, p occurs in s}, where the last occurrence of p in s is on ap, and the

corresponding last occurrence in t is on bp. We define WPk

A,B to be the set of all such (s, t) for

which φs,t is a partial isomorphism. This specifies the back-and-forth equivalence ↔P

k.
We now state the following result, characterizing the equivalences induced by finite-

variable logics Lk.

Theorem 13. 1. For all structures A and B: A ≡∃Lk

B ⇐⇒ A ⇄P

k B.

2. For all finite structures A and B: A ≡Lk

B ⇐⇒ A ↔P
k B.

3. For all finite structures A and B: A ≡Lk(#) B ⇐⇒ A ∼=P
k B.

Proof. This follows from Theorems 14, 18 and 20 of [2].

3.3 The Modal Comonad

The key notion of equivalence in modal logic is bisimulation [5, 29]. We shall define the finite
approximants to bisimulation [17].2 Given Kripke structures A and B, we define a family of
relations ∼k ⊆ A×B: ∼0= A×B; a ∼k+1 b iff (1) for all unary P , PA(a) iff PB(b); and (2)
for all binary Rα, R

A
α (a, a

′) implies for some b′, RB
α (b, b

′) and a′ ∼k b
′, and RB

α(b, b
′) implies

for some a′, RA
α (a, a

′) and a′ ∼k b
′.

We define W
Mk

A,B to be the set of all (s, t) ∈ Mk(A, a) ×Mk(B, b) such that

s = [a0, α1, a1, . . . , αj , aj], t = [b0, α1, b1, . . . , αj , bj],

and for all i and all unary P , PA(ai) iff P
B(bi). This specifies the back-and-forth equivalence

↔M
k .

Theorem 14. For pointed Kripke structures (A, a) and (B, b): a ∼k b iff (A, a) ↔M

k (B, b).

2Our focus on finite approximants in this paper is for uniformity, and because they are relevant in resource
terms. We can extend the comonadic semantics beyond the finite levels. We shall return to this point in the
final section.

10

Turning to logic, we will consider Mk, the modal fragment of modal depth ≤ k. This
arises from the standard translation of (multi)modal logic into L∞,ω [5]. Let us fix a rela-
tional vocabulary σ with symbols of arity ≤ 2. For each unary symbol P , there will be a
corresponding propositional variable p. Formulas are built from these propositional variables
by propositional connectives, and modalities �α, ♦α corresponding to the binary relation
symbols Rα in σ. Modal formulas ϕ then admit a translation into formulas JϕK = ψ(x) in
one free variable. The translation sends propositional variables p to P (x), commutes with
the propositional connectives, and sends ♦αϕ to ∃y.Rα(x, y) ∧ ψ(y), where ψ(x) = JϕK.
This translation is semantics-preserving: given a σ-structure A and a ∈ A, then A, a |= ϕ

in the sense of Kripke semantics iff A |= ψ(a) in the standard model-theoretic sense, where
ψ(x) = JϕK.

We define the modal depth of a modal formula ϕ as the maximum nesting depth of
modalities occurring in ϕ. Mk is then the image of the translation of modal formulas of
modal depth ≤ k. The existential positive fragment ∃Mk arises from the modal sublanguage
in which formulas are built from propositional variables using only conjunction, disjunction
and the diamond modalities ♦α.

Extensions of the modal language with counting capabilities have been studied in the form
of graded modalities [10]. These have the form ♦n

α, �
n
α, where A, a |= ♦n

αϕ if there are at least
n Rα-successors of a which satisfy ϕ. We define Mk(#) to be the extension of the modal
fragment with graded modalities.

A corresponding notion of graded bisimulation is given in [10]. This is in turn related
to resource bismulation [8], which has been introduced in the concurrency setting. The two
notions are shown to coincide for image-finite Kripke structures in [3], who also show that
they can be presented in a simplified form. We recall that a Kripke structure A is image-finite
if for all a ∈ A and Rα, Rα(a) := {a′ | RA(a, a′)} is finite.

Adapting the results in [3], we define approximants ∼g
k for graded bisimulation: ∼g

0 =
A × B, and a ∼g

k+1 b if for all P , PA(a) iff PB(b), and for all Rα, there is a bijection

θ : RA(a) ∼= RB(b) such that, for all a′ ∈ RA(a), a′ ∼g
k θ(a

′).
We can also define a corresponding graded bisimulation game between (A, a) and (B, b).

At round 0, the elements a0 = a and b0 = b are chosen. Duplicator wins if for all P , PA(a)
iff PB(b), otherwise Spoiler wins. At round i + 1, Spoiler chooses some Rα, and Duplicator
chooses a bijection θi : R

A
α (ai)

∼= RB
α(bi). If there is no such bijection, Spoiler wins. Otherwise,

Spoiler then chooses ai+1 ∈ RA(ai), and bi+1 := θi(ai+1). Duplicator wins this round if for
all P , PA(ai+1) iff P

B(bi+1), otherwise Spoiler wins.
This game is evidently analogous to the bijection game we encountered previously.

Proposition 15. The following are equivalent:

1. There is a winning strategy for Duplicator in the k-round graded bisimulation game
between (A, a) and (B, b).

2. a ∼g
k b.

3. (A, a) ∼=M

k (B, b).

Theorem 16. 1. For all Kripke structures A and B: A ≡∃Mk B ⇐⇒ A ⇄M
k B.

2. For all Kripke structures A and B: A ≡Mk B ⇐⇒ A ↔M

k B.

11

3. For all image-finite Kripke structures A and B: A ≡Mk(#) B ⇐⇒ A ∼=M
k B.

Proof. (1) follows from Proposition 9 and standard results on preservation of existential posi-
tive modal formulas by simulations [5]. (2) follows from Theorem 14 and the Hennesy-Milner
Theorem [17, 5]. (3) follows from Proposition 15 and the results in [10, 3].

4 Coalgebras and combinatorial parameters

Another fundamental aspect of comonads is that they have an associated notion of coalgebra.
A coalgebra for a comonad (G, ε, δ) is a morphism α : A → GA such that the following
diagrams commute:

A GA

GA G2A

α

α δA

Gα

A GA

A

α

idA

εA

Our use of indexed comonads Ck opens up a new kind of question for coalgebras. Given
a structure A, we can ask: what is the least value of k such that a Ck-coalgebra exists on
A? We call this the coalgebra number of A. We shall find that for each of our comonads, the
coalgebra number is a significant combinatorial parameter of the structure.

4.1 The Ehrenfeucht-Fräıssé comonad and tree-depth

A graph is G = (V,⌢), where V is the set of vertices, and ⌢ is the adjacency relation, which
is symmetric and irreflexive. A forest cover for G is a forest (F,≤) such that V ⊆ F , and
if v ⌢ v′, then v↑v′. The tree-depth td(G) is defined to be minF ht(F), where F ranges
over forest covers of G.3 It is clear that we can restrict to forest covers of the form (V,≤),
since given a forest cover (F,≤) of G = (V,⌢), (V, ≤ ∩ V 2) is also a forest cover of G, and
ht(V) ≤ ht(F). Henceforth, by forest covers of G we shall mean those with universe V .

Given a σ-structure A, the Gaifman graph G(A) is (A,⌢), where a ⌢ a′ iff for some
relation R ∈ σ, for some (a1, . . . , an) ∈ RA, a = ai, a

′ = aj, a 6= a′. The tree-depth of A is
td(G(A)).

Theorem 17. Let A be a finite σ-structure, and k > 0. There is a bijective correspondence
between

1. Ek-coalgebras α : A → EkA.

2. Forest covers of G(A) of height ≤ k.

Proof. Suppose that α : A → EkA is a coalgebra. For a ∈ A, let α(a) = [a1, . . . , aj]. The first
coalgebra equation says that α(ai) = [a1, . . . , ai], 1 ≤ i ≤ j. The second says that aj = a.
Thus α : A→ A≤k is an injective map whose image is a prefix-closed subset of A≤k. Defining
a ≤ a′ iff α(a) ⊑ α(a′) yields a forest order on A, of height ≤ k. If a ⌢ a′ in G(A), for some
a1, . . . , an with a = ai, a

′ = aj , we have R
A(a1, . . . , an). Since α is a homomorphism, we must

have REkA(α(a1), . . . , α(an)), hence α(ai)↑α(aj), and so ai↑aj . Thus (A,≤) is a forest cover
of A, of height ≤ k.

3We formulate this notion in order-theoretic rather than graph-theoretic language, but it is equivalent to
the definition in [27].

12

Conversely, given such a forest cover (A,≤), for each a ∈ A, its predecessors form a chain
a1 < · · · < aj , with aj = a, and j ≤ k. We define α(a) = [a1, . . . , aj], which yields a map
α : A→ A≤k, which evidently satisfies the coalgebra equations. If RA(a1, . . . , an), then since
(A,≤) is a forest cover, we must have ai↑aj for all i, j, and hence α(ai)↑α(aj). Thus α is a
homomorphism.

We write κE(A) for the coalgebra number of A with respect to the the Ehrenfeucht-Fräıssé comonad.

Theorem 18. For all finite structures A: td(A) = κE(A).

4.2 The pebbling comonad and tree-width

We review the notions of tree decompositions and tree-width. A tree (T,≤) is a forest with
a least element (the root). A tree is easily seen to be a meet-semilattice: every pair of
elements x, x′ has a greatest lower bound x ∧ x′ (the greatest common ancestor). The path
from x to x′ is the set path(x, x′) := [x ∧ x′, x] ∪ [x ∧ x′, x′], where we use interval notation:
[y, y′] := {z ∈ T | y ≤ z ≤ y′}.

A tree-decomposition of a graph G = (V,⌢) is a tree (T,≤) together with a labelling
function λ : T → P(V) satisfying the following conditions:

• (TD1) for all v ∈ V , for some x ∈ T , v ∈ λ(x);

• (TD2) if v ⌢ v′, then for some x ∈ T , {v, v′} ⊆ λ(x);

• (TD3) if v ∈ λ(x) ∩ λ(x′), then for all y ∈ path(x, x′), v ∈ λ(y).

The width of a tree decomposition is given by maxx∈T |λ(x)| − 1. We define the tree-width
tw(G) of a graph G as minT width(T), where T ranges over tree decompositions of G.

We shall now give an alternative formulation of tree-width which will provide a useful
bridge to the coalgebraic characterization. It is also interesting in its own right: it clarifies
the relationship between tree-width and tree-depth, and shows how pebbling arises naturally
in connection with tree-width.

A k-pebble forest cover for a graph G = (V,⌢) is a forest cover (V,≤) together with
a pebbling function p : V → k such that, if v ⌢ v′ with v ≤ v′, then for all w ∈ (v, v′],
p(v) 6= p(w).

The following result is implicit in [2], but it seems worthwhile to set it out more clearly.

Theorem 19. Let G be a finite graph. The following are equivalent:

1. G has a tree decomposition of width < k.

2. G has a k-pebble forest cover.

Proof. (1) ⇒ (2). Assume that G = (V,⌢) has a tree decomposition (T,≤, λ) of width < k.
We say that a tree decomposition is orderly if it has the following property: for all x ∈ T ,
there is at most one v ∈ λ(x) such that for all x′ < x, v 6∈ λ(x′). Nice tree decompositions
are orderly [18]; hence by standard results, without loss of generality we can assume that the
given tree decomposition is orderly.

For any v ∈ V , the set of x ∈ T such that v ∈ λ(x) is non-empty by (TD1), and closed
under meets by (TD3). Since T is a tree, this implies that this set has a least element τ(v).
This defines a function τ : V → T . The fact that tree decomposition is orderly implies that

13

τ is injective. We can define an order on V by v ≤ v′ iff τ(v) ≤ τ(v′). This is isomorphic to
a sub-poset of T , and hence is a forest order.

We define p : V → k by induction on this order. Assuming p(v′) is defined for all v′ < v,
we consider τ(v). Since the tree decomposition is orderly, this means in particular that p(v′)
is defined for all v′ ∈ S := λ(τ(v)) \ {v}. Since the decomposition is of width < k, we must
have |S| < k. We set p(v) := min(k \ {p(v′) | v′ ∈ S}).

To verify that (V,≤) is a forest cover, suppose that v ⌢ v′. By (TD2), for some x ∈ T ,
{v, v′} ⊆ λ(x). We have τ(v) ≤ x ≥ τ(v′), and since T is a tree, we must have τ(v) ↑ τ(v′),
whence v ↑ v′.

Finally, we must verify the condition on the pebbling function p. Suppose that v ⌢ v′,
and v < w ≤ v′. Since v ⌢ v′, for some x, {v, v′} ⊆ λ(x). But then τ(v) < τ(w) ≤ τ(v′) ≤ x.
Since v ∈ λ(τ(v)) ∩ λ(x), by (TD3), v ∈ λ(τ(w)). By construction of the pebbling function,
this implies p(v) 6= p(w).

(2) ⇒ (1). Suppose that (V,≤, p) is a k-pebble forest cover of G. We define a tree T = V⊥
by adjoining a least element ⊥ to V . We say that v is an active predecessor of v′ if v ≤ v′,
and for all w ∈ (v, v′], p(v) 6= p(w). We define the labelling function by setting λ(v) to be the
set of active predecessors of v; λ(⊥) := ∅. Since p|λ(v) is injective, |λ(v)| ≤ k.

We verify the tree decomposition conditions. (TD1) holds, since v ∈ λ(v). (TD2) If
v ⌢ v′, then v↑v′. Suppose v ≤ v′. Then v is an active predecessor of v′, and {v, v′} ⊆ λ(v′).
(TD3) Suppose v ∈ λ(v1) ∩ λ(v2). Then v is an active predecessor of both v1 and v2. This
implies that for all w ∈ path(v1, v2), v is an active predecessor of w, and hence v ∈ λ(w).

Theorem 20. Let A be a finite σ-structure. There is a bijective correspondence between:

1. Pk-coalgebras α : A → PkA

2. k-pebble forest covers of G(A).

Proof. See [2, Theorem 6].

We write κP(A) for the coalgebra number of A with respect to the the pebbling comonad.

Theorem 21. For all finite structures A: tw(A) = κP(A)− 1.

4.3 The modal comonad and synchronization tree depth

.
Let A be a Kripke structure. It will be convenient to write labelled transitions a

α
→ a′ for

Rα(a, a
′). Given a ∈ A, the submodel generated by a is obtained by restricting the universe

to the set of a′ such that there is a path a
α1→ · · ·

αk→ a′. This submodel forms a synchronization
tree [24] if for all a′, there is a unique such path. The height of such a tree is the maximum
length of any path from the root a.

Proposition 22. Let A be a Kripke structure, with a ∈ A. The following are equivalent:

1. There is a coalgebra α : (A, a) → Mk(A, a).

2. The submodel generated by a is a synchronization tree of height ≤ k.

We define the modal depth md(A, a) = k if the submodel generated by a is a synchronization
tree of height k.

14

Theorem 23. Let A be a Kripke structure, and a ∈ A be such that the submodel generated
by a is a synchronization tree of finite height. Then md(A, a) = κM(A, a).

Note the conditional nature of this result, which contrasts with those for the other comon-
ads. The modal comonad is defined in such a way that the universe Mk(A, a) reflects infor-
mation about the possible transitions. Thus having a coalgebra at all, regardless of the value
of the resource parameter, is a strong constraint on the structure of the transition system.

5 Further Directions

From the categorical perspective, there is considerable additional structure which we have
not needed for the results in this paper, but which may be useful for further investigations.

Coequaliser requirements In Moggi’s work on computational monads, there is an
“equaliser requirement” [26]. The dual version for a comonad (G, ε, δ) is that for every
object A, the following diagram is a coequaliser:

G2A GA A

GεA

εGA

εA

This says in particular that the counit is a regular epi, and hence GA “covers” A in a strong
sense.

This coequaliser requirement holds for all our comonads. For Ek, this is basically the
observation that, given a sequence of sequences [s1, . . . , sj], we have ε[εs1, . . . , εsj] = εsj .
The other cases are similar.

Indexed and graded structure Our comonads Ek, Pk, Mk are not merely discretely
indexed by the resource parameter. In each case, there is a functor (Z+,≤) → Comon(R(σ))
from the poset category of the positive integers to the category of comonads on R(σ). Thus

if k ≤ l there is a natural transformation with components ik,lA : EkA → ElA, which preserves
the counit and comultiplication; and similarly for the other comonads. Concretely, this is just
including the plays of up to k rounds in the plays of up to l rounds, k ≤ l.

Another way of parameterizing comonads by resource information is grading [12]. Recall
that comonads on C are exactly the comonoids in the strict monoidal category ([C, C], ◦, I) of
endofunctors on C [22]. Generalizing this description, a graded comonad is an oplax monoidal
functor G : (M, ·, 1) → ([C, C], ◦, I) from a monoid of grades into this endofunctor category.
This means that for each m ∈ M , there is an endofunctor Gm, there is a graded counit
natural transformation ε : G1 ⇒ I, and for all m,m′ ∈M , there is a graded comultiplication
δm,m′

: Gm·m′ ⇒ GmGm′ .
The two notions can obviously be combined. We can see our comonads as (trivially)

graded, by viewing them as oplax monoidal functors (Z+,≤,min, 1) → ([C, C], ◦, I). Given k ≤
l, we have e.g. Ek ⇒ EkEk ⇒ EkEl. The question is whether there are more interesting graded
structures which arise naturally in considering richer logical and computational settings.

Colimits and infinite behaviour In this paper, we have dealt exclusively with finite
resource levels. However, there is an elegant means of passing to infinite levels. We shall
illustrate this with the modal comonad. Using the inclusion morphisms described in the
previous discussion of indexed structure, for each structure A we have a diagram

M1A → M2A → · · · → MkA → · · ·

15

By taking the colimits of these diagrams, we obtain a comonad Mω, which corresponds to the
usual unfolding of a Kripke structure to all finite levels. This will correspond to the bisimula-
tion approximant ∼ω, which coincides with bisimulation itself on image-finite structures [17].
Transfinite extensions are also possible. Similar constructions can be applied to the other
comonads. This provides a basis for lifting the comonadic analysis to the level of infinite
models.

Relations between fragments and parameters We can define morphisms between
the different comonads we have discussed, which yield proofs about the relationships between
the logical fragments they characterize. This categorical perspective avoids the cumbersome
syntactic translations in the standard proofs of these results. For illustration, there is a
comonad morphism t : Ek ⇒ Pk with components tA : EkA → PkA given by [a1, . . . , aj] 7→
[(1, a1), . . . , (j, aj)]. Together with theorems 13 and 12, this shows that ∃Lk ⊆ ∃Lk and
Lk(#) ⊆ Lk(#). Moreover, composing t with a coalgebra A → EkA yields a coalgebra
A → PkA, demonstrating that tw(A) + 1 ≤ td(A). Another morphism Mω ⇒ P2 shows that
modal logic can be embedded into 2-variable logic.

Concluding remarks

Our comonadic constructions for the three major forms of model comparison games show a
striking unity, on the one hand, but also some very interesting differences. For the latter, we
note the different forms of logical “deception” associated with each comonad, the different
forms of back-and-forth equivalences, and the different combinatorial parameters which arise
in each case.

One clear direction for future work is to gain a deeper understanding of what makes these
constructions work. Another is to understand how widely the comonadic analysis of resources
can be applied. We are currently investigating the guarded fragment [4, 14]; other natural
candidates include existential second-order logic, and branching quantifiers and dependence
logic [32].

Since comonads arise naturally in type theory and functional programming [31, 28], can
we connect the study of finite model theory made here with a suitable type theory? Can this
lead, via the Curry-Howard correspondence, to the systematic derivation of some significant
meta-algorithms, such as decision procedures for guarded logics based on the tree model
property [13], or algorithmic metatheorems such as Courcelle’s theorem [9]?

Another intriguing direction is to connect these ideas with the graded quantum monad
studied in [1], which provides a basis for the study of quantum advantage in R(σ). This may
lead to a form of quantum finite model theory.

References

[1] Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, and Octavio Zapata. The
quantum monad on relational structures. To appear in proceedings of MFCS 2017, 2018.

[2] Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite
model theory. In Logic in Computer Science (LICS), 2017 32nd Annual ACM/IEEE
Symposium on, pages 1–12. IEEE, 2017.

[3] Luca Aceto, Anna Ingolfsdottir, and Joshua Sack. Resource bisimilarity and graded
bisimilarity coincide. Information Processing Letters, 111(2):68–76, 2010.

16

[4] Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.

[5] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal Logic, volume 53. Cam-
bridge University Press, 2002.

[6] E. Casanovas, P. Dellunde, and R. Jansana. On Elementary Equivalence for Equality-
free Logic. Notre Dame Journal of Formal Logic, 37(3):506–522, 1996. URL:
http://projecteuclid.org:80/Dienst/getRecord?id=euclid.ndjfl/1039886524/,
doi:10.1305/ndjfl/1039886524.

[7] Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proceedings of the Ninth Annual ACM Symposium on Theory
of Computing, pages 77–90. ACM, 1977.

[8] Flavio Corradini, Rocco De Nicola, and Anna Labella. Graded modalities and resource
bisimulation. In International Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 381–393. Springer, 1999.

[9] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Information and computation, 85(1):12–75, 1990.

[10] M. de Rijke. A Note on Graded Modal Logic. Studia Logica, 64(2):271–283, 2000.

[11] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Springer Science & Busi-
ness Media, 2005.

[12] Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo
Uustalu. Combining effects and coeffects via grading. ACM SIGPLAN Notices,
51(9):476–489, 2016.

[13] Erich Grädel. Decision procedures for guarded logics. In International Conference on
Automated Deduction, pages 31–51. Springer, 1999.

[14] Erich Grädel and Martin Otto. The freedoms of (guarded) bisimulation. In Johan van
Benthem on Logic and Information Dynamics, pages 3–31. Springer, 2014.

[15] Pavol Hell and Jaroslav Něsetřil. Graphs and homomorphisms. Oxford University Press,
2004.

[16] L. Hella. Logical hierarchies in PTIME. Information and Computation, 121:1–19, 1996.

[17] Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency.
In International Colloquium on Automata, Languages, and Programming, pages 299–309.
Springer, 1980.

[18] Ton Kloks. Treewidth: computations and approximations, volume 842. Springer Science
& Business Media, 1994.

[19] Phokion G Kolaitis and Moshe Y Vardi. On the expressive power of Datalog: tools and
a case study. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, pages 61–71. ACM, 1990.

17

http://projecteuclid.org:80/Dienst/getRecord?id=euclid.ndjfl/1039886524/
http://dx.doi.org/10.1305/ndjfl/1039886524

[20] Phokion G Kolaitis and Moshe Y Vardi. Infinitary logics and 0–1 laws. Information and
Computation, 98(2):258–294, 1992.

[21] Leonid Libkin. Elements of Finite Model Theory (Texts in Theoretical Computer Science.
An EATCS Series). Springer, 2004.

[22] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer
Science & Business Media, 2013.

[23] Ernest G Manes. Algebraic Theories, volume 26. Springer Science & Business Media,
2012.

[24] Robin Milner. A calculus of communicating systems. Number 92 in Lecture Notes in
Comput. Science. Springer-Verlag, 1980.

[25] Robin Milner. Communication and concurrency, volume 84. Prentice Hall New York
etc., 1989.

[26] Eugenio Moggi. Notions of computation and monads. Information and computation,
93(1):55–92, 1991.

[27] Jaroslav Nešetřil and Patrice Ossona De Mendez. Tree-depth, subgraph coloring and
homomorphism bounds. European Journal of Combinatorics, 27(6):1022–1041, 2006.

[28] Dominic Orchard. Programming contextual computations. Technical Report UCAM-
CL-TR-854, University of Cambridge, 2014.

[29] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Transactions
on Programming Languages and Systems (TOPLAS), 31(4):15, 2009.

[30] Saharon Shelah. Every two elementarily equivalent models have isomorphic ultrapowers.
Israel Journal of Mathematics, 10(2):224–233, 1971.

[31] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Electronic Notes
in Theoretical Computer Science, 203(5):263–284, 2008.

[32] Jouko Väänänen. Dependence logic: A new approach to independence friendly logic,
volume 70. Cambridge University Press, 2007.

18

	1 Introduction
	2 Game Comonads
	2.1 The Ehrenfeucht-Fraïssé Comonad
	2.2 The Pebbling Comonad
	2.3 The Modal Comonad

	3 Logical Equivalences
	3.1 The Ehrenfecht-Fraïssé comonad
	3.2 The Pebbling Comonad
	3.3 The Modal Comonad

	4 Coalgebras and combinatorial parameters
	4.1 The Ehrenfeucht-Fraïssé comonad and tree-depth
	4.2 The pebbling comonad and tree-width
	4.3 The modal comonad and synchronization tree depth

	5 Further Directions

