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Transfer of Learned Opponent Models in Zero Sum Games
Ismail Guennouni (i.guennouni.17@ucl.ac.uk)

Maarten Speekenbrink (m.speekenbrink@ucl.ac.uk)
Department of Experimental Psychology, University College London

Abstract

Human learning transfer takes advantage of important cogni-
tive building blocks such as an abstract representation of con-
cepts underlying tasks and causal models of the environment.
One way to build abstract representations of the environment
when the task involves interactions with others is to build a
model of the opponent that may inform what actions they are
likely to take next. In this study, we explore opponent mod-
elling and its role in learning transfer by letting human partic-
ipants play different games against the same computer agent,
who possesses human-like theory of mind abilities with a lim-
ited degree of iterated reasoning. We find that participants de-
viate from Nash equilibrium play and learn to adapt to the op-
ponent’s strategy to exploit it. Moreover, we show that partic-
ipants transfer their learning to new games and that this trans-
fer is moderated by the level of sophistication of the opponent.
Computational modelling shows that it is likely that players
start each game using a model-based learning strategy that fa-
cilitates generalisation and opponent model transfer, but then
switch to behaviour that is consistent with a model-free learn-
ing strategy in the later stages of the interaction.

Keywords: Opponent modelling; Zero-sum games, Learning
transfer; Hidden Markov models

Introduction
Being able to transfer previously acquired knowledge to a
new domain is one of the hallmarks of human intelligence.
This ability relies on important cognitive building blocks,
such as an abstract representation of concepts underlying
tasks (Lake, Ullman, Tenenbaum, & Gershman, 2017). One
way to form these representations when the task involves in-
teractions with others, is to build a model of the person we are
interacting with that offers predictions of the actions they are
likely to take next. There is evidence that people learn such
models of their opponents when playing repeated economic
games (Stahl & Wilson, 1995).

In this paper, we are specifically interested in the way in
which people build and use models of their opponent to facil-
itate learning transfer, when engaged in situations involving
an interaction with strategic considerations. Repeated games,
in which players interact repeatedly with the same opponent
and have the ability to learn about the opponent’s strategies
and preferences (Mertens, 1990) are particularly adapted to
this task. The early literature on learning transfer in repeated
games has mostly focused on measuring the proportion of
people who play normatively optimal (Nash Equilibria) or
salient actions (e.g Risk Dominance) in later games, having
had experience with a similar game environment previously
(Ho, Camerer, & Weigelt, 1998; Camerer & Knez, 2000).

This doesn’t allow for the possibility of learning about the
opponent’s strategy and potentially exploiting it.

When studies have specifically explored this aspect, they
have used computer opponents that were generally pro-
grammed not to change their strategies over the course of
the task, allowing better experimental control. However, they
have mostly looked at the ability of players to detect and ex-
ploit action-based learning rules (Spiliopoulos, 2013; Shachat
& Swarthout, 2004). The strategies implemented by the com-
puter opponents had a style of play that was not ”human-like”
in the sense that humans are not very good at playing spe-
cific mixed strategies with precision, or at detecting patterns
from long sequences of past play. Thus, in this study, we
aim to explore opponent modelling and its transfer with the
use of computer agents endowed with human-like limited de-
grees of iterated reasoning. The agents are either a level-1 or
level-2 player, mimicking “I know that you know that I know”
type reasoning, and the limited recursion depth they exhibit
(Goodie, Doshi, & Young, 2012). A level 1 player adapts
their play to what they believe their opponent will play, with-
out considering what their opponent might believe they will
play. A level 2 player, on the other hand, takes their oppo-
nent’s belief about their actions into account, assuming they
face a level 1 player, and choosing actions to beat the ac-
tions of that player. The choice of this type of strategy is
also motivated by evidence that humans strategically use in-
formation from last round play of their opponents in zero sum
games (Batzilis, Jaffe, Levitt, List, & Picel, 2016; Wang, Xu,
& Zhou, 2014).

We measure transfer of learning about the opponent’s strat-
egy between games with varying degrees of similarity. The
first two games we use are structurally identical, except for
action labels. The third game is strategically similar to the
first two, but descriptively different. Participants face the
same opponent throughout the three games, and the oppo-
nents are randomised to be either level-1 or level-2 players.

Method
Participants and design
A total of 52 (28 female, 24 male) participants were recruited
on the Prolific Academic platform. The mean age of par-
ticipants was 31.2 years. Participants were paid a fixed fee
of £2.5 plus a bonus dependent on their performance which
averaged £1.06. The experiment used a 2 (computer oppo-
nent: level 1 or level 2) by 3 (games: rock-paper-scissors,
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fire-water-grass, numbers) design, with repeated measures on
the second factor. Participants were randomly assigned to one
of the two levels of the first factor.

Task
Participants played the three games against their computer
opponent. These games were rock-paper-scissors, fire-water-
grass, and the numbers game. A typical rock-paper-scissors
game (hereafter RPS) is a 3x3 zero sum game, with a cyclical
hierarchy between the two player’s actions: rock blunts scis-
sors, paper wraps rock, and scissors cut paper. If one player
chooses an action which dominates their opponent’s action,
the player wins (receives a reward of 1) and the other player
loses (receives a reward of -1). Otherwise it is a draw and
both players receive a reward of 0. RPS has a unique mixed-
strategy Nash equilibrium, which consists of each player in
each round randomly selecting from the three options with
uniform probability. The Fire-Water-Grass (FWG) game is
identical to RPS in all but action labels: Fire burns grass, wa-
ter extinguishes fire, and grass absorbs water. We use this
game as we are interested whether learning is transferred in
a fundamentally similar game where the only difference is
in the description of the possible actions. This should make
it relatively easy to generalize knowledge of the opponent’s
strategy, provided this knowledge is on a sufficiently abstract
level, such as knowing the opponent is a level 1 or 2 player.
Crucially, learning simple contingencies such as “If I played
Rock on the previous round, playing Scissors next will likely
result in a win”, as might be learned by a simple reinforce-
ment learning algorithm, will not be able to generalize to such
a game, as these contingencies are tied to the labels of the ac-
tions. The numbers game is a generalization of RPS. In the
variant we use, 2 participants concurrently pick a number be-
tween 1 and 5. To win in this game, a participant needs to
pick a number exactly 1 higher than the number chosen by
their opponent. For example, if a participant thinks their op-
ponent will pick 3, they ought to choose 4 to win the round.
To make the strategies cyclical as in RPS, the game stipulates
that the lowest number (1) beats the highest number (5), so if
the participant thinks the opponent will play 5, then the win-
ning choice is to pick 1. This game has a structure similar to
RPS in which every action is dominated by exactly one other
action. All other possible combinations of choices are consid-
ered ties. Similar to RPS and FWG, the mixed-strategy Nash
equilibrium is to play each action with equal probability in a
random way.

The computer opponent was programmed to use either a
level-1 or level-2 strategy in all the games. A level 1 player
is defined as a player who best responds to a level 0 player.
A level 0 player plays in a non-strategic way and does not
consider their opponent’s actions. Here, we assume a level 0
player simply repeats their previous action. There are other
ways to define a level 0 player. For instance, as repeating
their action if it resulted in a win, and choosing randomly
from the remaining actions otherwise. As a best response to
a random action is itself a random action, defining a level 0

player in such a way would make a level 1 opponent’s strat-
egy much harder to discern. Because we are mainly interested
in generalization of knowledge of an opponent’s strategy to
other games, which rests on good knowledge of this strategy,
we opted for this more deterministic formulation of a level 0
player (whilst also introducing some randomness in the com-
puter opponent’s play). A level-2 computer opponent, will as-
sume in turn that the participant is a level-1 opponent, playing
according to the strategy just described. We also introduced
some noise over the actions of computer opponents making
them play randomly in 10% of all trials. Table 1 shows the
way level-1 and level-2 computer agents would play the RPS
game, based on last round play.

Procedure

Participants were informed they would play three different
games against the same computer opponent. Participants
were told that the opponent cannot cheat and will choose
its actions simultaneously without knowledge of the partic-
ipant’s choice. After providing informed consent and reading
the instructions, participants answered a number of compre-
hension questions. They then played the three games against
their opponent in the order RPS, FGW, and NUMBERS. A
total of 50 rounds of each game was played with the player’s
score displayed at the end of each game. The score was calcu-
lated as the number of wins minus the number of losses. Ties
did not affect the score. In order to incentivise the participants
to maximise the number of wins against the opponents, play-
ers were paid a bonus at the end of the experiment that was
proportional to their final score. Each point is worth £0.02.
An example of the interface for the RPS game is provided
in Figure 1. After playing all the games, participants were
asked questions about their beliefs about the computer op-
ponent, related to whether they think they have learned their
strategy and how hard they found playing against that particu-
lar opponent. They were then debriefed and thanked for their
participation.

Figure 1: Screenshot of the Rock-Paper-Scissors game
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Human last Agent last level-1 Agent level-2 Agent

Paper Rock Scissors Scissors
Scissors Scissors Rock Paper

Rock Paper Paper Rock
... ... ... ...

Table 1: Example of how a level-1 and level-2 computer agent
plays in response to actions taken in the previous round.

Results
On average, participants obtained the lowest score in the
RPS game (M = 0.289, SD = 0.348), followed by NUM-
BERS (M = 0.31, SD = 0.347). Participants’ performance
was highest in the FWG game (M = 0.454, SD = 0.354).
Scores in each game were significantly different from 0, the
expected score of random play (RPS: t(51) = 7.26, p < .001;
FWG: t(51) = 10.04 , p < .001; NUMBERS: t(51) = 7.17,
p < .001). To assess learning within and between games, we
used a 2 (condition: level-1, level-2) by 3 (game: RPS, FWG,
NUMBERS) by 2 (block: first half, second half) repeated-
measures ANOVA, with the first factor varying between par-
ticipants. This showed a main effect of Game (F(2,100) =
8.54, η2 = 0.05, p< .001), indicating that average scores var-
ied significantly over the games. Post-hoc pairwise compar-
isons showed that performance in the FWG game was signifi-
cantly higher than in the RPS game (t(100) = 3.78, p < .001)
and the NUMBERS game (t(100) = 3.32 , p = .002). The
score in RPS was not significantly different from the score in
NUMBERS (t(100) = 0.45 , p = .65). The main effect of
Block (F(1,50) = 22.51 , η2 = 0.03, p < .001) shows that
the score in the first half of each game (M = 0.29) was sig-
nificantly lower than in the second half (M = 0.40), which
indicates within-game learning. The main effect of Condition
(F(1,50) = 5.44, η2 = 0.05, p = .024) indicates that scores
were higher against the level-1 player (M = 0.43) than against
the level-2 player (M = 0.27). Thus, it appears that is was
harder for participants to exploit the strategy of the more so-
phisticated level-2 opponent than the comparatively less so-
phisticated level-1 opponent.

Learning Transfer
As a measure for learning transfer, we focus on participants’
scores in the initial 5 rounds after the first round (rounds
2-6) of each game (see Figure 2). We exclude the very
first round as the computer opponent plays randomly here
and there is no opportunity yet for the human player to ex-
ploit their opponent’s strategy. Players with no knowledge of
their opponent’s strategy are expected to perform at chance
level in these early rounds. Positive scores in rounds 2-6
reflect generalization of prior experience. The FWG early
score score is significantly higher than 0 (t(148.85) = 4.584,
p < .001). This is also the case for the NUMBERS game
(t(148.85) = 3.00, p = .009). We did not expect positive
scores for the RPS game, as it was the first game played and

Figure 2: Average scores in rounds 2-6 by game and type of
opponent. Error bars reflect 95% confidence intervals for the
mean.

there was no opportunity for learning about the opponent’s
strategy. Scores in this game was indeed not significantly dif-
ferent from 0 (t(148.85) = 1.04 , p = .89).

Next, we explore whether learning transfer is moderated by
the type of opponent and game similarity. We expected bet-
ter transfer between more similar games (i.e. better transfer
from RPS to FWG than from RPS/FWG to NUMBERS), and
worse transfer for the more sophisticated level 2 agent. Fig-
ure 2 indicates that the pattern over the games is indeed dis-
similar between level-1 and level-2 players. To explore this,
we used a 2 (condition: level-1, level-2) by 3 (game: RPS,
FWG, NUMBERS) repeated measures ANOVA with the first
factor varying between participants. There was a main ef-
fect of Game (F(2,92) = 3.35, η2 = 0.04, p < .04). We then
run statistical tests on early round scores by game and oppo-
nent against the null hypothesis of 0 (no transfer). For level-
1 facing players, there is evidence of learning transfer from
RPS to both FWG ( t(150) = 3.96, p< .001) and NUMBERS
(t(150) = 3.74, p < .001). For level-2 facing players, there
is evidence for transfer from RPS to the similar game FWG,
albeit scores are lower than for level-1 player (t(150) = 2.48,
p = .01) but not to the dissimilar game of NUMBERS.

These results indicate that learning transfer to the more dis-
similar game (NUMBERS) we found earlier is exclusively
driven by level-1 facing players, as average early round scores
in the NUMBERS game of level-2 facing players are close
to 0. Therefore, both participants facing level-1 and level-2
agents can transfer learning to the similar FWG game, but
only those facing the less sophisticated opponent are able to
generalise to the less similar NUMBERS game.

Computational Modelling
To gain more insight into participants’ strategies against their
computer opponents, we constructed and tested several com-
putational models of strategy learning. The baseline model
assumes play is random, and each potential action is chosen
with equal probability. Note that this corresponds to the Nash
equilibrium strategy. The other models adapted their play to
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the opponent, either by reinforcing successful actions in each
game (reinforcement learning), or by determining the type
of opponent through Bayesian learning (Bayesian Cognitive
Hierarchy models). We also include the Expected Weighted
Attraction (EWA), which is a popular model in behavioral
economics.

We use the following notation. In each game g ∈
{RPS,FWG,NUMBERS}, on each trial t, the participant
chooses an action at ∈ Ag, and the opponent chooses action
ot ∈ Ag, where Ag is the set of allowed actions in game g,
e.g. ARPS = {R,P,S}. The participant then receives reward
rt ∈ {1,0,−1}, and the opponent receives −rt . We use the
state variable st = {at−1,ot−1} to denote the actions taken in
the previous round t−1 by the participant and opponent.

In the following, we will describe the models in more de-
tail, and provide some intuition into how they they learn about
the game and/or the opponent.

Reinforcement learning (RL) model
We first consider a model-free reinforcement learning algo-
rithm, where actions that have led to positive rewards are re-
inforced, and the likelihood of actions that led to a negative
reward is lowered. Since the computer players in this exper-
iment based their play on the actions in the previous round,
a suitable RL model for this situation is one which learns the
value of actions contingent on plays in the previous round,
i.e. by defining the state st as above. The resulting RL model
learns a Q value (Watkins & Dayan, 1992) for each state-
action pair:

Qt+1(st ,at) = Qt(st ,at)+α(rt −Q(st ,at))

where Q(st ,at) is the value of taking action a when in
state s at time t, α ∈ [0,1] the learning rate. For instance,
Qt({R,S},P) denotes the value of taking action “Paper” this
round if the player’s last action was “Rock” and the opponent
played “Scissors”. Actions are taken according to a softmax
rule:

Pt(a|st) =
exp{λQt(a,st)}

∑a′∈Ag exp{λQt(a′,st)}

While this RL model allows the players to compute the values
of actions conditional on past play, crucially, it will not be
able to transfer learning between games, as each game has a
different action space Ag, and there is no simple way to map
actions between games.

The RL model has two free parameters: the learning rate
(α) and the inverse temperature parameter of the softmax de-
cision rule (λ).

Experience-weighted attraction (EWA) model
The self-tuning Experience Weighted Attraction (EWA)
model (Ho, Camerer, & Chong, 2004) combines two seem-
ingly different approaches, namely reinforcement learning
and belief learning. Belief learning models are based on the
assumption that players keep track of the frequency of past
actions and best respond to that. By contrast, reinforcement

learning does not explicitly take into account beliefs about
other players, but simply increases the probability of repeat-
ing a more rewarding action. The self-tuning EWA model has
been shown to perform better than either RL or belief learn-
ing alone in various repeated games and has the advantage
of having only one free parameter, the inverse temperature of
the softmax choice function. The EWA model is based on up-
dating “Attractions” for each action over time. The attraction
of action a time t is written At(a) and is updated as

At+1(a) =
φ N(t) At(a)+ [δ+(1−δ) I(at = a)] R(a,ot)

φ N(t)+1

where I(x) is an indicator function which takes the value 1
is its argument is true, and 0 otherwise, and R(a,ot) is the
reward that would be obtained from playing action a against
opponent action ot , which equals the actual obtained reward
when a = at , and otherwise is a counterfactual reward that
would have been obtained if a different action were taken.
Unlike reinforcement learning, this uses knowledge of the
rules of the game to allow reinforcing actions that were not
taken. We can see that setting δ = 0 leads to reinforcement of
past actions, while positive and high delta parameters make
the update rule take into account foregone pay-offs, which
is similar to weighted fictitious play (Cheung & Friedman,
1994). While the assumption in expanding the update rule
above is that φ and δ are free parameters (Camerer, Ho, &
Others, 1997), the self-tuning aspect of the model comes from
the fact that these are now self-tuned using the formulas ex-
panded in Ho et al. (2004). N(t) represents an experience
weights and can be interpreted as the number of ”observation-
equivalents” of past experience. We initialise it to 1 so ini-
tial attractions and reinforcement from payoffs are weighted
equally.

As in the models above, actions are chosen based on a soft-
max decision rule:

Pt(a) =
exp{λAt(a)}

∑a′∈At exp{λAt(a′)}
The self-tuning EWA has one free parameter: the inverse

temperature of the softmax decision rule (λ).

Bayesian Cognitive Hierarchy (BCH) model
In what we call the Bayesian Cognitive Hierarchy (BCH)
model, the participant attempts to learn the type of opponent
they are facing through Bayesian learning. We assume the
participant considers the opponent could be either a level 0,
level 1, or level 2 player, and starts with a prior belief that
each of these types is equally likely. They then use observa-
tions of the opponents actions to infer a posterior probability
of each type:

P(level = k|Dt) ∝ P(Dt |level = k)×P(level = k)

where Dt = {a1,o1, . . . ,at ,ot} is the data available at time t.
The likelihood is defined as

P(Dt |level = k) =
t

∏
j=1

(
θ

1
|Ag|

+(1−θ) fk(o j|a j−1,o j−1)

)
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Figure 3: Histogram of best fitting computational models by
condition

where fk(ot |at−1,ot−1) = 1 if ot is the action taken by a level
k player when the previous round play was at−1 and ot−1,
and 0 otherwise. Note that the likelihood assumes (correctly)
that there is a probability θ ∈ [0,1] that the opponent takes
a random action. The posterior at time t− 1 forms the prior
at time t. We assume a participant chooses an action by us-
ing the softmax function over the best response to predicted
actions:

Bt(a) =
2

∑
k=0

∑
o∈Ag

b(a,o)Pk(o|at−1,ot−1)P(level = k|Dt−1)

Pt(a) =
expλBt(a)

∑a′∈Ag expλBt(a′)

where b(a,o) = 1 if action a is a best response to opponent’s
action o (i.e. it leads to a win), and Pk(o|at−1,ot−1) = θ

1
|Ag| +

(1− θ) fk(o|at−1,ot−1) is the probability that a level k agent
takes action o, as also used in the likelihood above.

Unlike the models above, the BCH model allows for
between-game transfer, as knowledge of the level of the op-
ponent can be used to generate predictions in games that have
not been played before. However, the participant might also
assume that the level of reasoning of their opponent does not
generalize over games. We hence distinguish between two
versions of the BCH model. In the No-Between-Transfer
(BCH NBT) variant, participants assume a uniform probabil-
ity of the different levels at the start of each game (and hence
do not transfer knowledge of their opponent between games).
In the Between-Transfer model (BCH BT), participants use
the posterior probability over the levels of their opponent as
the prior at the start of a new game (i.e. complete transfer of
the knowledge of their opponent). Both versions of the BCH
model have two free parameters: the assumed probability that
the opponent chooses a random action (θ), and the tempera-
ture parameter of the softmax function (λ).

Estimation and model comparison
We fitted all models to the data of each individual participant,
across all three games, estimating the model parameters by

Figure 4: Likelihood by trial by game and opponent faced

maximum likelihood. We used the Bayesian Information Cri-
terion (BIC) to determine the best fitting model for each par-
ticipant. Figure 3 shows the number of participants best fit by
each model. We can see that the RL model clearly described
most participants’ behaviour best, followed by the random
(Nash) model. Only a few participants were best described
by one of the BCH models, or the EWA model.

Using Hidden Markov Model to explore strategy
switching
The computational modelling indicates that most players are
best fit by an RL type model which reinforces successful ac-
tions within each game. As this model does not allow for
between-game transfer, this finding is at odds with the behav-
ioral results of learning transfer. To gain more insight into
this discrepancy, Figure 4 plots the average likelihood by trial
and game, according to the Nash, RL, and BCH BT model.
In the FWG and NUMBERS game, we see that in the initial
rounds of these games, the likelihood of actions is highest ac-
cording to the BCH BT model (which incorporates between-
game transfer), but that over time, the RL model exceeds the
predictive quality of the BCH model. The fact that the like-
lihoods of these strategies cross over is consistent with par-
ticipants switching between strategies as each game progress.

In order to more formally assess evidence for such strategy
switching by participants, we fitted hidden Markov models
in which the latent states are the 3 strategies (Nash, RL, and
BCH BT). Hidden Markov models are a useful framework to
model switches between latent strategies. We used the three
models fitted to the individual participant data above to define
the likelihood of actions according to each latent state (strat-
egy). The model then contains free parameters for the ini-
tial probability of each state 1,2,3 at the start of each game,
and the transition probabilities for switching from state i to
state j during the games. These parameters were estimated by
maximum likelihood with the depmixS4 R package (Visser &
Speekenbrink, 2010).

As a test of strategy switching, we also fitted a restricted
version of the hidden Markov model, which only allows
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Figure 5: Posterior probability of strategies by game and op-
ponent faced

self-transitions between the states (i.e., no switches between
strategies during each game). An approximate likelihood-
ratio test shows that the full HMM, which allows for strat-
egy switches during the games, fitted significantly better than
the restricted model (χ2(6) = 167, p < .001). This is further
statistical evidence in favour of the hypothesis that partici-
pants switch between strategies during the games. In order
to understand at which stage of the games the switching oc-
curs, and whether there are any differences between games
and type of opponents faced, Figure 5 shows the posterior
probability of each strategy (state) at each trial of a game,
averaged over participants. This figure shows a similar pat-
tern for all games and opponents, in that in the initial rounds,
the probability of the BCH model is highest, while in later
rounds, the RL model takes over.

The HMM model thus shows clear evidence in favour of
strategy switching by participants, from a Bayesian Cogni-
tive Hierarchy strategy at the initial stages of each game, to a
model-free RL model.

Discussion
The results of our experiment show that the majority of par-
ticipants learn to adapt their play to their opponent’s strat-
egy, and generalise knowledge of their opponent’s strategy
to other games. Transfer to the more dissimilar NUMBERS
game was moderated by the degree of sophistication of the
agent, with evidence for transfer when players face the less
sophisticated Level-1 agent but not the more sophisticated
Level-2 player.

Initial computational modelling of observations using all
available data seems to indicate that the most likely model
was a reinforcement learning model, which learns rewarding
actions based on the previous round’s play. However, as this
model is unable to generalize to new games, this finding is
inconsistent with the behavioural evidence for learning trans-
fer. Using a hidden Markov model, we showed that this dis-
crepancy appears to be due to participants switching between
strategies during the games. They start the early rounds of a
new game acting in a way consistent with a Bayesian Cog-

nitive Hierarchy learning strategy, which determines the op-
ponent’s level of iterative reasoning, and best responds to the
action predicted from this opponent model. While accurate
and generalisable, working through the required steps of iter-
ative reasoning (“I think that you think that I think...”) may be
cognitively expensive. Model-free RL, to which participants
switch in later rounds, is consistent with a more habitual type
of learning and may be cognitively less taxing. Switching
between these strategies then shows flexibility in the use of
learning strategies. As the games progress, more and more
information is acquired about rewarding actions in the current
game, which provides efficient training data to a model-free
RL learning algorithm, allowing participants to successfully
rely on a this cognitively less taxing strategy. The prefer-
ence for less computationally demanding strategies is well
established (Kool, McGuire, Rosen, & Botvinick, 2010), and
the ability to flexibly switch between different learning strate-
gies is consistent with evidence of switching between model-
based and model-free RL strategies according to environmen-
tal demands (Simon & Daw, 2011).

It can be argued that participants are learning simple be-
havioral rules (Brockbank & Vul, 2020), rather than a model
of the opponent’s strategy or the value of particular actions
as in the RL framework. The best response to a level-1 op-
ponent would be to choose the action that beats the oppo-
nent’s previous action, and for a level-2 strategy, a winning
rule would be to choose the action that would be beaten by
the agent’s own previous action. Such rules can mimic the
predictions of our iterative reasoning and Bayesian Cognitive
Hierarchy account, without seemingly requiring the cognitive
effort needed to reason through what another player knows
about what you know about them. On the other hand, the
number of possible behavioural rules is much larger than the
set of contingent actions predicted by a cognitive hierarchy
model. If the generation of a constrained set of plausible be-
havioural rules rests upon a form of iterative reasoning as we
have proposed here, then those rules could be reinforced af-
terwards, much like successful actions can be reinforced in
a model-free RL strategy. Such an account would then be
mostly equivalent to ours.

In conclusion, the results of our experiment are consistent
with work in behavioural game theory showing that human
players can deviate from Nash equilibrium play when their
opponent does so also. In these cases, it may be possible to
adapt to the opponent’s strategy and exploit their deviations
from equilibrium play. There is however a high degree of het-
erogeneity amongst players. As such, some players may have
a higher ability to detect patterns in their opponent’s play and
learn how to exploit them. We plan to run a future exper-
iment to address this individual heterogeneity by designing
tasks where the participants face different types of opponents
sequentially. This will allow for more opportunities to mea-
sure and model learning transfer as well as explore its deter-
minants in a within-subject design.
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