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Neurofilaments can differentiate 
ALS subgroups and ALS 
from common diagnostic mimics
Arvin Behzadi 1,7, Fani Pujol‑Calderón 2,7, Anton E. Tjust 1, Anna Wuolikainen 3,  
Kina Höglund 2,4, Karin Forsberg 1, Erik Portelius 2,4, Kaj Blennow 2,4, 
Henrik Zetterberg 2,4,5,6 & Peter Munch Andersen 1*

Delayed diagnosis and misdiagnosis are frequent in people with amyotrophic lateral sclerosis 
(ALS), the most common form of motor neuron disease (MND). Neurofilament light chain (NFL) and 
phosphorylated neurofilament heavy chain (pNFH) are elevated in ALS patients. We retrospectively 
quantified cerebrospinal fluid (CSF) NFL, CSF pNFH and plasma NFL in stored samples that were 
collected at the diagnostic work‑up of ALS patients (n = 234), ALS mimics (n = 44) and controls (n = 9). 
We assessed the diagnostic performance, prognostication value and relationship to the site of onset 
and genotype. CSF NFL, CSF pNFH and plasma NFL levels were significantly increased in ALS patients 
compared to patients with neuropathies & myelopathies, patients with myopathies and controls. 
Furthermore, CSF pNFH and plasma NFL levels were significantly higher in ALS patients than in 
patients with other MNDs. Bulbar onset ALS patients had significantly higher plasma NFL levels 
than spinal onset ALS patients. ALS patients with C9orf72HRE mutations had significantly higher 
plasma NFL levels than patients with SOD1 mutations. Survival was negatively correlated with all 
three biomarkers. Receiver operating characteristics showed the highest area under the curve for CSF 
pNFH for differentiating ALS from ALS mimics and for plasma NFL for estimating ALS short and long 
survival. All three biomarkers have diagnostic value in differentiating ALS from clinically relevant ALS 
mimics. Plasma NFL levels can be used to differentiate between clinical and genetic ALS subgroups. 

Amyotrophic lateral sclerosis (ALS) is an adult onset fatal neurodegenerative syndrome characterized by the 
insidious onset of progressive motor symptoms and signs secondary to the loss of upper and lower motor neurons 
and their  tracts1. In the majority of patients, symptoms start in a limb, termed spinal onset ALS, or in the head 
and neck region, named bulbar onset  ALS1. The median diagnostic delay is approximately a  year2 which is a long 
time for a condition with a median survival time from onset of paresis of only 30  months3. ALS is heterogeneous, 
misdiagnoses are frequent, and it is a challenge in clinical practice to determine an ALS  diagnosis4. It is essential 
in the diagnostic process to exclude a number of conditions termed ALS mimics that present with symptoms 
similar to ALS and may be difficult to  differentiate5–7. Approximately 10% of ALS patients self-report a family 
history of ALS (fALS), some also report frontotemporal dementia (FTD), and the other ≈90% are classified as 
having sporadic ALS (sALS)8. To date, over 40 ALS or ALS-FTD causative genes have been reported, the most 
common being an intronic hexanucleotide repeat expansion (HRE) in C9orf72 found in 8–12% of ALS patients 
in Caucasian populations and coding mutations in SOD1 (encoding superoxide dismutase type 1, SOD1) found 
in 2–5% of ALS  patients9. Most of the mutations identified in SOD1 result in an unstable mutant protein with 
reduced enzymatic  activity10. Analysis of SOD1 activity in the blood and SOD1 protein concentration in the 
cerebrospinal fluid (CSF) of patients were the first biomarkers used for diagnosing ALS and as an endpoint in 
anti-SOD1 clinical drug  trials10,11. The rarity of SOD1 mutations and the finding that seven SOD1 mutants have 
preserved enzymatic activity limit the clinical use of SOD1 enzymatic analysis, although the finding of reduced 
SOD1 enzymatic activity may be critical for correctly diagnosing ALS  in patients who had been on diagnostic 
 odysseys10,12,13. C9orf72HRE results in the formation of polydipeptides that can be detected in the CSF, but the 
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results have not yet become part of routine clinical  use14. Other ALS-causing genes have not resulted in the 
identification of a specific biomarker for clinical use.

Neurofilaments are neuron-specific cytoskeletal intermediate filament heteropolymers composed of neurofila-
ment light chain (NFL), NF medium chain, and NF heavy chain (NFH) in combination with either α-internexin 
in the central nervous system or peripherin in the peripheral nervous  system15,16. Levels of CSF NFL, CSF phos-
phorylated NFH (pNFH) and serum NFL levels increase with neuronal injury and axonal damage in several 
neurological disorders, including  ALS17–21. In longitudinal studies of carriers of SOD1 and C9orf72HRE muta-
tions, NFL levels start to increase 1–12 months prior to the onset of paresis (phenoconversion), continues to rise 
in early symptomatic patients but then remains relatively  stable22. NF levels correlate negatively with survival 
in  ALS17,23–25. Here, we retrospectively investigated the diagnostic and prognostic value of assaying CSF NFL, 
CSF pNFH and plasma NFL in samples collected from patients during the diagnostic procedure performed at 
a specialized university clinic for ALS evaluation and examined whether these biomarkers differed between 
clinical and genotypic subtypes of ALS.

Materials and methods
Participants. All procedures were performed in accordance with the 1964 Declaration of Helsinki and its 
later amendments. The study was approved by the Medical Ethical Committee (Forskningsetikkommitten FEK, nr 
1994-135 with later amendments in 1998, 2003, 2014, 2017, 2018) and written informed consent was obtained 
from all patients to obtain and study the samples and publish the results. The participants were referred to the 
Department of Neurology, University Hospital of Umeå, Sweden, from 1994 to 2016 to be examined for ALS. 
The patients were evaluated according to the diagnostic guidelines of the European Federation of Neurological 
Societies for the clinical management of ALS and diagnosed according to the revised El-Escorial  criteria26,27. 
Typically, the diagnostic workup would be performed with the patient in the neurology ward for 3–4 days, and 
the CSF and plasma samples used in this study were collected at this time. When investigating new patients, 
since 1994, it has been a custom in our clinic to routinely collect extra blood and CSF samples in case additional 
material is needed in the diagnostic evaluation after the patient has been discharged from the hospital. These 
samples are collected and stored with prior written informed consent and may (with approval by the Medical 
Ethical Committee, FEK) later be used for research purposes should they no longer be needed for further clinical 
analysis. Patients diagnosed with ALS were followed at regular intervals by a multidisciplinary clinical ALS team. 
Patients diagnosed with alternative diagnoses were followed by other specialized teams or by local neurologists.

In an initial selection process for inclusion in this study, stored samples from patients referred with a prior 
medical history of CNS infection, tuberculosis, neuroborreliosis, HIV, syphilis, severe systemic inflammatory 
disease, severe head trauma or neoplastic conditions or daily medication with anti-inflammatory drugs were 
excluded. Additionally, patients were excluded if their available CSF and/or plasma samples were insufficient, if 
they were lost to follow-up (moved abroad or the medical charts were censored for other reasons), participated 
in a clinical drug trial or their consent forms could not be retrieved.

ALS patient functional status at sampling was assessed retrospectively using the ALS functional rating scale 
revised (ALSFRS-R)28 and the disease progression rate (ΔFS) was calculated as  described29. Following diagnosis, 
riluzole was administered to most patients and eventually most patients received a gastrostomy for gastro-enteral 
feeding and non-invasive ventilation. None of the patients in this study received invasive ventilation through 
tracheostomy. Survival was defined as the time from onset of paresis to death, usually from respiratory failure 
due to paresis and/or pneumonia. Disease duration at sampling was defined as the time between onset of paresis 
and clinical evaluation. Eighteen patients were alive at the time of the study and were excluded from the survival 
analyses. With separate written informed consent and collection of additional blood for DNA analysis, genetic 
analyses were performed to evaluate a panel of ALS genes as previously  described30,31.

For the data analyses, one patient with C9orf72HRE who was diagnosed with FTD and a patient with C9or-
f72HRE with FTD and progressive muscular atrophy (PMA) were included in the ALS group. One ALS patient 
had a SOD1 G93S mutation and a vesicle-associated membrane protein-associated protein B gene (VAPB) muta-
tion and was included in the other SOD1 mutation group. One ALS patient was heterozygous for both C9or-
f72HRE and SOD1 D90A and was included in the C9orf72HRE mutation group.

Sample collection and measurements. An extra 2–4 mL of CSF was collected by lumbar puncture dur-
ing the diagnostic workup, aliquoted and immediately stored at −80 °C. The CSF was not centrifuged before stor-
age. Peripheral blood was collected at the same time by standard venipuncture and collected in EDTA-contain-
ing tubes, centrifuged at 1500 × g for 15 min, aliquoted and stored at −80 °C. Table 1 summarizes the patient age 
and disease duration at sampling. The samples included in this study had undergone one freeze–thaw cycle prior 
to the present analysis. CSF NFL concentrations were analysed with a validated ELISA with intra- and interplate 
variations of < 8% and < 13%,  respectively32. CSF NFL analyses were performed in duplicates. Two control sam-
ples were not analysed for CSF NFL due to the limited CSF volume. CSF pNFH concentrations were measured 
with an in-house-developed ELISA with minor modifications with intra- and interplate variations of < 3.9% 
and < 9.4%,  respectively33. Regarding CSF pNFH analyses, 226 samples were evaluated in singlicates due to the 
limited CSF volume. Plasma NFL concentrations were measured using a single-molecule array (SIMOA) assay 
on an HD-1 Analyzer (Quanterix, Billerica, MA, USA) with intra- and interplate variations of < 10% and < 12%, 
 respectively34. Plasma NFL analyses were evaluated in singlicates and in a single batch. Five control samples 
could not be analysed due to the lack of plasma. CSF NFL, CSF pNFH and plasma NFL analyses were evalu-
ated with the researchers in the laboratory blinded to clinical diagnosis and genotype. The CSF NFL result for 
one ALS patient was excluded due to a concentration below the calibration curve. For CSF pNFH, biomarker 
estimates of two ALS patients, one patient from the neuropathies & myelopathies group and one control were 
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excluded because they had concentrations below the calibration curve. For plasma NFL, biomarker estimates 
of five ALS patients and one patient from the neuropathies & myelopathies group were excluded because they 
had concentrations below the calibration curve. Patients who had CSF NFL concentrations above the calibration 
curve (eight ALS patients and one patient in the neuropathies & myelopathies group) were included.

Statistical analysis. Biomarker concentration estimates and patient characteristics were analysed in IBM 
SPSS Statistics version 26 (International Business Machines Corporation, Armonk, NY, USA). Due to non-nor-
mal distributions of estimates, the results are presented as the median and lower and upper quartiles (Q1–Q3) 
(Table 2). For a prognosis-relevant presentation of biomarkers, ALS patients were also categorized according 
to the years of survival from symptom onset. The survival times were < 2 years, 2 to < 5 years, 5 to < 10 years 
and ≥ 10; the biomarker estimates for ALS survival groups are presented as arithmetic mean, standard devia-
tion (SD) and 95% confidence interval (CI) (Table 2). Distributions of biomarker estimates for ALS patients 
with ≥ 10 years survival are not reported in Table 2 due to the low sample size in this group. Prior to analyses, 
biomarker estimates were  log10-transformed to reduce the influence of inhomogeneous variance, reduce distri-
butional skewness, improve normal approximation and decrease the influence of outliers. To compare differ-
ent relevant groups, one-way analysis of variance (ANOVA) was performed with planned comparison contrast 
tests and a 95% CI bias-corrected and accelerated bootstrap initially set at 1000 sample runs. In the statistical 
comparison of CSF NFL concentrations, sample runs had to be increased to 3000 to achieve convergence (stable 
p-values above or below < 0.05). For other statistical tests, there was no need to increase the number of samples 
per run beyond 1000 to achieve convergence. The Welch test was used when homogeneity of variance could not 
be assumed. Contrast tests were designed to I) test significant differences between ALS patients and all other 
groups individually; II) test significant differences between patients with other MNDs compared to those with 

Table 1.  Age distribution and disease duration at the time of sample collection. Values are presented as 
arithmetic mean ± SD or median; Q1–Q3.

Diagnose group Age at sampling (years) Disease duration at sampling (days)

ALS patients total 63.7 ± 13.0 426; 244–680

Spinal onset ALS 60.2 ± 13.1 469; 269–762

Bulbar onset ALS 69.9 ± 11.2 368; 205–506

ALS no known mutation 65.4 ± 13.1 395; 237–624

ALS SOD1 mutation 54.4 ± 11.9 1144; 437–2007

ALS C9orf72HRE mutation 62.7 ± 9.1 358; 194–556

ALS mimics 64.1 ± 12.1 1220; 527–2284

Table 2.  Concentrations of CSF NFL, CSF pNFH and plasma NFL in ALS patients. Patients were grouped 
according to their regions of symptom onset and genotype. ALS mimics are divided into the following groups: 
other MNDs, neuropathies & myelopathies and myopathies. Biomarker estimates for diagnosis groups are 
presented as the median; Q1–Q3 and biomarker estimates for ALS survival groups are presented as the 
arithmetic mean ± SD; 95% CI.

CSF NFL (pg/mL) CSF pNFH (pg/mL) Plasma NFL (pg/mL)

ALS total cohort 4363; 2813–7135 16,955; 9313–25,707 156; 99–236

Spinal onset ALS 4291; 2639–6994 16,682; 8584–25,397 140; 78–203

Bulbar onset ALS 4885; 3216–7261 18,064; 12,487–26,165 201; 115–291

Truncal onset ALS 3574; 1858–18,596 10,043; 7034–14,253 162; 65–422

ALS no known mutation 4374; 2918–7119 16,446; 9190–25,364 157; 101–238

ALS SOD1 mutation 3603; 2247–5421 17,598; 8682–28,270 138; 57–180

ALS SOD1 D90A mutation 2721; 1765–3920 13,318; 6394–21,344 100; 43–157

ALS A4V and other SOD1 mutations 4769; 3691–5574 33,381; 18,536–43,098 178; 62–354

ALS C9orf72HRE mutation 5991; 4119–7652 20,572; 14,331–27,587 181; 125–298

ALS < 2 years survival 7465 ± 5517; 6001–8929 23,206 ± 14,276; 19,271–27,141 291 ± 211; 235–348

ALS 2 to < 5 years survival 5763 ± 4274; 4952–6575 19,617 ± 10,219; 17,620–21,615 188 ± 132; 163–213

ALS 5 to < 10 years survival 4395 ± 4461; 2631–6160 14,528 ± 12,078; 9650–19,407 127 ± 83; 93–160

ALS mimics 1205; 758–2234 3651; 2695–5993 43; 25–80

Other MNDs 2260; 1107–5857 8211; 3704–14,485 83; 38–210

Neuropathies & myelopathies 1034; 588–2102 3372; 2201–5131 35; 22–69

Myopathies 992; 840–1150 3056; 2040–5076 40; 22–68

Controls 396; 215–892 1516; 1000–2958 12; 8–68
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neuropathies & myelopathies, myopathies and controls; III) test significant differences among spinal onset, bul-
bar onset and truncal onset ALS patients; IV) test significant differences between ALS patients with mutations in 
SOD1, C9orf72HRE and ALS patients with no known mutation and V) test significant differences in the SOD1 
mutation subgroups. The bivariate correlations were investigated using Spearman’s rank-order correlation coef-
ficient (ρ). Kaplan–Meier survival analyses were performed for ALS patients whose total survival from symp-
tom onset to death data were available. The time from self-reported symptom onset to death, rather than the 
time from sampling or diagnosis to death, was used to generate more accurate survival analyses. Kaplan–Meier 
survival analyses were performed for I) spinal onset and bulbar onset ALS patients and II) ALS patients with 
mutations in SOD1, C9orf72HRE and ALS patients with no known mutation. The Mantel–Cox log-rank test was 
used to test statistical significance for Kaplan–Meier survival analyses. Receiver operating characteristic (ROC) 
analyses were performed for the original biomarker estimates, and the area under the ROC curve (AUC) was 
composed for patients with ALS versus ALS mimics for all three biomarkers, where the 95% CI is presented for 
each AUC. ROC analyses and AUCs for ALS survival are presented for short (< 2 years) and long (≥ 5 years) sur-
vival after symptom onset, where patients who were alive during statistical analysis were excluded. AUCs > 0.80 
were considered high. Youden’s index highest value (J) was used to determine the optimal cut-off for the bio-
marker concentration, sensitivity, specificity, positive likelihood ratio (LR +) and negative likelihood ratio (LR-). 
Biomarker ratios were calculated for CSF NFL and CSF pNFH  (NFLCSF/pNFHCSF ratio) and for plasma NFL 
and CSF NFL  (NFLplasma/NFLCSF ratio) using the original biomarker values and are presented as the arithmetic 
mean ± SD. Statistical differences were considered significant at p < 0.05.

Results
Study population. The total number of research participants selected for the present study was 287. Par-
ticipants in the study were categorized as patients with ALS (n = 234) or ALS mimics (n = 44); the latter group 
consisted of patients with other types of motor neuron diseases (other MNDs) (n = 13), neuropathies & myelopa-
thies (n = 24) or myopathies (n = 7). In addition, controls (n = 9) with no known history of neurological disorders 
were recruited. The study population is summarized in Fig. 1, and ALS patient characteristics are summarized 
in Table  3 and Supplementary Table  S1. ALS patients were stratified into spinal onset ALS (n = 148), bulbar 
onset ALS (n = 72), truncal onset ALS (n = 11) and FTD onset ALS (n = 1). ALS patients were also stratified into 

Figure 1.  ALS and ALS mimics patient cohort. The study population consisted of patients who underwent 
investigation for possible motor neuron disease (MND) according to European Federation of Neurological 
Societies (EFNS) guidelines. The investigation comprised clinical evaluation, neuroimaging, neurophysiological 
testing (peripheral nerve conduction studies, central motor nerve conduction studies using transcranial motor 
evoked potentials analysis, and needle electromyography), cerebrospinal fluid and blood analysis. Patients either 
received an ALS diagnosis (n = 234) or an ALS mimic diagnosis (n = 44). The ALS mimic cohort consisted of 
patient with other MNDs (n = 13), neuropathies & myelopathies (n = 24) and myopathies (n = 7). A group of 
controls with no neurological symptoms was recruited for comparison (n = 9). ALS patients were grouped into 
spinal (n = 148), bulbar (n = 72), truncal (n = 11) or FTD (n = 1) groups according to the site of first onset. ALS 
patients were also stratified into carriers of mutations in SOD1 (n = 28), C9orf72HRE (n = 28), VAPB (n = 3) or 
patients with no mutation in these genes (n = 175).
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those with mutations in SOD1 (n = 28), those with C9orf72HRE mutations (n = 28), those with VAPB mutations 
(n = 3) or other ALS patients without mutations in these genes (n = 175). Patients with SOD1 mutations were 
further stratified into SOD1 D90A homozygous (n = 14), D90A heterozygous (n = 3), A4V heterozygous (n = 2) 
and other SOD1 mutation (n = 9) groups.

CSF NFL and CSF pNFH. Concentrations of CSF NFL and CSF pNFH are presented in Figs. 2A,C and 3F 
and Table 2. ALS patients had significantly higher CSF NFL and CSF pNFH levels than patients with neuropa-
thies & myelopathies (p < 0.01 for both), patients with myopathies (p < 0.01 for both) and controls with no neu-
rological disorder (p < 0.01 for both) (Fig. 2A,C). There was a statistically significant difference when comparing 
CSF pNFH in ALS patients to that of patients with other MNDs (p < 0.01) (Fig. 2C) but not when comparing CSF 
NFL (p > 0.05) (Fig. 2A). Patients in the other MNDs group had significantly higher CSF NFL and CSF pNFH 
levels than patients with neuropathies & myelopathies (p < 0.05 for both), myopathies (p < 0.01 for both) and 
controls with no neurological disorder (p < 0.01 for both) (Fig. 2A,C). Neither CSF NFL levels nor CSF pNFH 
levels were significantly different among ALS patients with spinal onset, bulbar onset or truncal onset (p > 0.05 
for overall ANOVA).

In patients in the ALS group, the concentrations of CSF NFL and CSF pNFH in patients with no known muta-
tion, SOD1 mutation and C9orf72HRE mutation did not show any statistically significant difference (p > 0.05 for 
overall ANOVA). When stratifying ALS patients into SOD1 mutation subgroups, ALS patients with SOD1 D90A 
homozygous or heterozygous mutations combined showed significantly lower levels of CSF pNFH compared to 
those with SOD1 A4V heterozygous and other ALS SOD1 mutations combined (CSF pNFH; p < 0.01, CSF NFL; 
p > 0.05). In ALS patients, the concentrations of CSF NFL and CSF pNFH were significantly correlated (ρ = 0.797, 
p < 0.0001) (Fig. 3F). ALSFRS-R was negatively correlated with CSF NFL levels (ρ = −0.241, p < 0.01) but not with 
CSF pNFH levels (p > 0.05). Furthermore, ΔFS was correlated with CSF NFL levels (ρ = 0.355, p < 0.0001) and 
CSF pNFH levels (ρ = 0.346, p < 0.0001). There was no significant correlation between freezer storage time and 
the concentrations of CSF NFL or between freezer storage time and CSF pNFH in the patients in the ALS or 
ALS mimics groups (p > 0.05 for both).

Plasma NFL. Concentrations of plasma NFL are presented in Figs.  2E, and 3A,C,E,G and Table  2. ALS 
patients had significantly higher plasma NFL concentrations than patients with other MNDs (p < 0.05), patients 
with neuropathies & myelopathies (p < 0.01), patients with myopathies (p < 0.01) and controls with no neuro-
logical disorders (p < 0.01) (Fig. 2E). Patients with other MNDs had significantly higher plasma NFL levels than 
patients with neuropathies and myelopathies (p < 0.01), patients with myopathies (p < 0.05) and controls with no 
neurological disorder (p < 0.01) (Fig. 2E).

Patients with bulbar onset ALS had significantly higher plasma NFL concentrations than patients with spi-
nal onset ALS (p < 0.01). There was no statistically significant difference when comparing the levels of plasma 
NFL of ALS patients with truncal onset to those of ALS patients with spinal onset or bulbar onset (p > 0.05 for 
both). In ALS patients, the concentrations of plasma NFL were significantly correlated with CSF NFL (ρ = 0.773, 
p < 0.0001) and CSF pNFH (ρ = 0.696, p < 0.0001). When stratified by the region of symptom onset, patients with 
spinal onset or bulbar onset ALS both showed a higher correlation between plasma NFL and CSF NFL levels 
(ρ = 0.790, p < 0.0001 and ρ = 0.762, p < 0.0001, respectively) (Fig. 3E) than all ALS patients as a whole group. The 
plasma NFL concentration was significantly higher in ALS patients with C9orf72HRE mutations than in patients 
with SOD1 mutations (p < 0.05). No significant difference in plasma NFL concentration was found by compar-
ing ALS patients with no known mutations to ALS patients with SOD1 or C9orf72HRE mutations (p > 0.05 for 
both). When stratifying ALS patients into spinal and bulbar onset groups, statistically significant differences in 
plasma NFL concentrations in spinal onset ALS patients were observed when comparing patients with C9or-
f72HRE mutations to both patients who were SOD1 mutation carriers (p < 0.01) and ALS patients with no known 

Table 3.  ALS patient characteristics. Data are presented as either frequency and percentage, arithmetic 
mean ± SD or median; Q1–Q3. Age of symptom onset, survival after symptom onset and age at death are 
presented in years.

ALS patient characteristics

ALS symptom onset: spinal onset/bulbar onset/truncal onset/FTD onset/unknown 148 (63.2)/72 (30.8)/11 (4.7)/1 (0.4)/2 (0.9)

Sex: male/female 124 (53.0)/110 (47.0)

Mutation status: No known mutation/SOD1/C9orf72HRE/VAPB 175 (74.8)/28 (12.0)/28 (12.0)/3 (1.2)

ALSFRS-R at sampling 42; 38–45

ΔFS at sampling 0.45; 0.23–0.90

Age of symptom onset: all ALS/spinal onset ALS/bulbar onset ALS 61.7 ± 13.4/57.9 ± 13.3/68.7 ± 11.4

Age of symptom onset: No known mutation/SOD1/C9orf72HRE 64.0 ± 13.2/50.3 ± 11.7/61.1 ± 9.0

Survival after symptom onset: all ALS/spinal onset ALS/bulbar onset ALS 2.9; 1.8–4.4/3.3; 2.3–5.4/2.5; 1.5–3.1

Survival after symptom onset: No known mutation/SOD1/C9orf72HRE 2.8; 1.7–4.1/5.2; 2.8–14.1/2.7; 1.8–3.3

Age at death: all ALS/spinal onset ALS/bulbar onset ALS 67.1 ± 11.9/64.3 ± 11.9/71.7 ± 10.9

Age at death: No known mutation/SOD1/C9orf72HRE 68.4 ± 11.7/59.0 ± 13.1/65.1 ± 8.8

Survival groups: < 2 years/2 to < 5 years/5 to < 10 years/ ≥ 10 years 57 (26.8)/110 (51.6)/27 (12.7)/19 (8.9)
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Figure 2.  Neurofilament levels and ROC analyses. (A) Boxplots of CSF NFL concentration estimates of 
participants in the ALS, ALS mimics and control groups. (B) ROC analysis of participants in the ALS versus 
ALS mimics groups for CSF NFL. (C) Boxplots of CSF pNFH concentration estimates in participants in the 
ALS, ALS mimics and control groups. (D) ROC analysis of participants in the ALS versus ALS mimics groups 
for CSF pNFH. (E) Boxplots of plasma NFL concentration estimates of participants in the ALS, ALS mimics 
and control groups. (F) ROC analysis of participants in the ALS versus ALS mimics groups for plasma NFL. 
ALS patients versus participants with other MNDs, participants with neuropathies & myelopathies, participants 
with myopathies and controls: *p < 0.05, **p < 0.01, ns  non-significant. Participants with other MNDs versus 
participants with neuropathies & myelopathies, participants with myopathies and controls: #p < 0.05, ##p < 0.01.
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Figure 3.  Biomarker correlation to survival, survival analyses in clinical symptom onset and genotype groups, 
biomarker ratios and ALSFRS-R in ALS patients. (A) Correlation between plasma NFL and survival after 
symptom onset stratified by spinal and bulbar symptom onset. (B) Kaplan–Meier survival analysis for spinal 
onset versus bulbar onset ALS patients. (C) Correlation between plasma NFL and survival after symptom onset 
for participants in the total ALS cohort. (D) Kaplan–Meier survival analysis between patients with no known 
mutation, SOD1 mutation and C9orf72HRE mutation (p-value presented for overall comparisons). (E) Ratios 
and correlations between plasma NFL and CSF NFL stratified for spinal onset and bulbar onset ALS patients. 
(F) Correlation between CSF NFL and CSF pNFH for participants in the total ALS cohort. (G) Correlation 
between ALSFRS-R and plasma NFL in ALS patients. (H) Correlation between ALSFRS-R and survival after 
symptom onset in ALS patients.
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mutations (p < 0.05); however, there was no statistically significant difference among different genotype groups 
in bulbar onset ALS patients (p > 0.05 for overall ANOVA). ALS patients homozygous or heterozygous mutation 
for the D90A SOD1 mutation combined showed significantly lower plasma NFL concentrations compared to 
patients with SOD1 A4V and other SOD1 mutations combined (p < 0.01). Plasma NFL concentration was nega-
tively correlated with ALSFRS-R (ρ = −0.328, p < 0.0001) (Fig. 3G) and positively correlated with ΔFS (ρ = 0.426, 
p < 0.0001). There was no statistically significant correlation between plasma NFL concentrations and freezer 
storage time from samples collected from ALS patients and ALS mimics (p > 0.05 for both).

ROC and survival analysis. ROC analyses showed high AUCs when ALS patients were compared with 
ALS mimics (Fig. 2B,D,F). CSF pNFH had the highest AUC (AUC: 0.874; 0.803–0.944) (J: 7623 pg/mL, sensitiv-
ity: 82.7%, specificity: 83.3%, LR + : 4.96, LR−: 0.21, p < 0.0001) (Fig. 2D), followed by plasma NFL concentra-
tion (AUC: 0.833; 0.756–0.910) (J: 95.42 pg/mL, sensitivity: 76.4%, specificity: 83.3%, LR + : 4.59, LR−: 0.28, 
p < 0.0001) (Fig. 2F) and CSF NFL (AUC: 0.805; 0.719–0.891) (J: 2532.5 pg/mL, sensitivity: 80.3%, specificity: 
81.8%, LR + : 4.41, LR−: 0.24, p < 0.0001) (Fig. 2B) when comparing patients with ALS to ALS mimics . Survival 
after ALS symptom onset was significantly negatively correlated with CSF NFL (ρ = −0.360, p < 0.0001), CSF 
pNFH (ρ = −0.295, p < 0.0001) and plasma NFL levels (ρ = −0.423, p < 0.0001). Furthermore, disease duration at 
sampling was significantly positively correlated with total survival in ALS patients (ρ = 0.600, p < 0.0001). There 
were significant differences in survival between spinal onset ALS and bulbar onset ALS patients (p < 0.0001) 
(Fig. 3B) and among ALS patient genotype groups (p < 0.0001 for overall comparisons, p < 0.01 for ALS patients 
with SOD1 mutations versus C9orf72HRE mutations) (Fig. 3D). Due to significant differences in plasma NFL 
concentrations and survival between spinal onset and bulbar onset ALS patients, a scatterplot revealed a signifi-
cant negative correlation between plasma NFL levels and survival for patients with spinal onset ALS (ρ = −0.349, 
p < 0.0001) and bulbar onset ALS (ρ = −0.472, p < 0.0001) (Fig. 3A). ROC analyses of ALS patients with short and 
long survival times showed the highest AUC for plasma NFL levels (AUC: 0.800; 0.716–0.884) (J: 205.66 pg/
mL, sensitivity: 58.9%, specificity: 91.1%, LR + : 6.63, LR−: 0.45) (p < 0.0001), followed by CSF NFL levels (AUC: 
0.751; 0.655–0.846) (J: 4265 pg/mL, sensitivity: 70.2%, specificity: 73.9%, LR + : 2.69, LR−: 0.40) (p < 0.0001) and 
CSF pNFH (AUC: 0.721; 0.618–0.825) (J: 18,537 pg/mL, sensitivity: 56.6%, specificity: 79.1%, LR + : 2.70, LR−: 
0.55) (p < 0.0001). ALSFRS-R was significantly positively correlated with survival (ρ = 0.284, p < 0.001) (Fig. 3H) 
and significantly negatively correlated with disease duration at sampling in ALS patients (ρ = −0.180, p < 0.05). 
Furthermore, ΔFS was significantly negatively correlated with survival in ALS patients (ρ = −0.659, p < 0.0001).

NFL and pNFH ratios. There was no significant difference in the  NFLCSF/pNFHCSF ratio among ALS 
patients, ALS mimic groups and controls (p > 0.05 for overall ANOVA) or between ALS symptom onset groups 
(p > 0.05 for overall ANOVA). Bulbar onset ALS patients had a significantly higher  NFLplasma/NFLCSF ratio 
(0.046 ± 0.021) than spinal onset ALS patients (0.034 ± 0.016) (p < 0.01) (Fig. 3E). Although patients with C9or-
f72HRE mutations had notably higher  NFLCSF/pNFHCSF ratios (0.302 ± 0.129) than patients with SOD1 muta-
tions (0.242 ± 0.111) (Fig. 3F), this difference did not reach statistical significance (p > 0.05 for overall ANOVA).

Discussion
Making a correct ALS diagnosis early after symptom onset has become even more important since observa-
tions from clinical drug trials show that patients enrolled early after onset of first paresis frequently have bet-
ter outcomes than patients enrolled  later35. The launch of promising bespoken therapy trials targeting SOD1, 
C9orf72HRE and fused in sarcoma gene (FUS) in symptomatic patients with mutations in these genes further 
emphasizes the need to be able to diagnose ALS early in the disease course. Additionally, experimental per-
sonalized gene therapy in adult asymptomatic carriers of these mutations will begin soon. A major obstacle 
is determining when to initiate prophylactic personalized medicine; the wide range in age at onset of the first 
symptom, heterogeneity in the first clinical presentation and the frequent occurrence of reduced disease pen-
etrance in families with mutations pose a  challenge10. Reliable biomarkers showing that the neurodegenerative 
process has begun or not begun are urgently needed. Although there is emerging evidence that in patients with 
a SOD1 mutation, the mutant SOD1 protein forms cytotoxic prion-like species that propagate through the motor 
 system36, no research group has yet successfully been able to detect such SOD1 prions in in vivo material from 
ALS patients. Presently, we must use less informative downstream biomarkers for diagnosing early ALS and for 
differentially diagnosing ALS.

In accordance with reports in smaller  cohorts21,37, the present study confirms that ALS patients have signifi-
cantly higher CSF and plasma levels of NFs than patients with a number of relevant ALS mimics. In this larger 
study, the overlap between the groups was small, demonstrating the usefulness of assaying NFs in the differential 
diagnosis of ALS. In particular, the levels of CSF pNFH and plasma NFL were significantly higher in patients in 
the ALS group than in patients in the other MNDs groups. When discriminating ALS from ALS mimics, CSF 
pNFH had a higher AUC than CSF NFL and plasma NFL levels, suggesting that CSF pNFH is a better biomarker 
assay in differentiating ALS from clinically relevant mimics in this study.

It has previously been reported that neurofilament levels in the CSF do not distinguish ALS patients accord-
ing to the site of ALS symptom  onset38. The present study shows similar results in CSF, although CSF NFL and 
CSF pNFH levels were notably (non-significantly) higher in bulbar onset ALS patients than in spinal onset ALS 
patients. In a previous study, bulbar onset ALS patients had close to significantly higher plasma pNFH levels 
than spinal onset ALS patients but without a statistically significant difference in  CSF39. In the present larger 
study, we found that plasma NFL levels were significantly higher in bulbar onset ALS patients than in spinal 
onset ALS patients. Furthermore, bulbar onset ALS patients showed a significantly higher  NFLplasma/NFLCSF ratio 
than spinal onset ALS patients.
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Bulbar onset ALS is associated with a worse prognosis than spinal onset  ALS3, and an earlier study suggested 
that NFL concentrations are related to the volume of damaged neuronal  tissue33. The usefulness of NFL and 
pNFH levels in the prognostication of ALS is  controversial24,40,41. Here, we found that ALS patients with lower 
levels of all three biomarkers survived longer than ALS patients with higher levels. Speculatively, the lower levels 
of neurofilaments and longer survival in some patients suggest that axonal loss progresses slower in these patients; 
thus, fewer neurofilaments are displaced into the CFS and plasma. Hence, interventions that markedly lower 
neurofilament levels in the CSF and plasma slow the progression of neuronal loss. The present finding that the 
plasma NFL concentration is higher in bulbar onset ALS patients than in spinal onset ALS patients is therefore 
in accordance with the worse prognosis in bulbar onset ALS patients than in spinal onset ALS  patients3.

Hypermetabolism and weight loss correlate with worse prognosis in  ALS42–44. Weight loss relates to the site 
of symptom onset and dysphagia in ALS, and survival has been shown to be affected by weight loss in both spi-
nal onset and bulbar onset ALS  patients45. However, the effect of weight loss and dysphagia on survival did not 
differ significantly between spinal or bulbar onset ALS  patients45, which might suggest worse survival in bulbar 
onset patients even if the same relative degree of weight loss was present in both groups. Thus, the significantly 
higher plasma NFL levels in bulbar onset ALS patients might suggest that the worse prognosis is primarily due 
to a more aggressive neurodegenerative process. In epidemiological studies, the incidence of bulbar onset ALS is 
higher in women and in patients as age  increases46. This is also the case in our study cohort, making the findings 
of differences in plasma NFL concentration between spinal and bulbar onset ALS patients clinically applicable.

In this study, a subset of ALS patients were carriers of mutations in SOD1, C9orf72 or VAPB. ALS patients car-
rying C9orf72HRE mutations have significantly higher CSF pNFH and serum pNFH levels than patients without 
a mutation in C9orf7247,48. Additionally, SOD1 mutation carriers had significantly lower CSF NFL levels than 
patients with no SOD1  mutations17. Our new results support these results, showing higher plasma NFL levels and 
worse survival in ALS patients with C9orf72HRE mutations than in patients with SOD1 mutations. Stratifying 
ALS patients into spinal and bulbar symptom onset, patients in the spinal onset group with a C9orf72HRE had 
significantly higher plasma NFL levels than ALS patients with a SOD1 mutation. This finding further supports 
the importance of evaluating neurodegeneration in ALS patients with regard to both clinical symptoms at onset 
and genotype.

Since patients with primary lateral sclerosis (PLS) with only upper motor neuron engagement or PMA with 
only lower motor neuron engagement generally have a better prognosis than ALS  patients49,50, it would be unfor-
tunate to enrol patients with PLS or PMA in an ALS intervention trial. It is therefore important to clearly differen-
tiate between early ALS and early PLS or PMA diseases. A study found that ALS patients have significantly higher 
serum NFL concentrations than PLS  patients37. We therefore propose further studies also using upper motor 
neuron-specific biomarkers (e.g., α-internexin) and lower motor neuron-specific biomarkers (e.g., peripherin).

Limitations of the present study include retrospective assessment of ALSFRS-R (the scale did not exist when 
the first patients were seen in our clinic), some of the CSF pNFH analyses were performed in singlicates and 
plasma pNFH analyses were not performed. The samples included in the present study were collected over 
several years and had undergone one freeze–thaw cycle prior to analysis. Arguably, the concentrations of NFL 
and pNFH could potentially be confounded by these factors. Reportedly, both NFL and NFH can withstand 
four freeze–thaw cycles without affecting concentrations significantly, and the Arrhenius plot for NFH suggests 
stable properties for storage at −80 °C for an extended  time51. This stability may be due to the phosphorylated 
carboxy-terminal of  pNFH52,53. In our dataset, there was no significant correlation between freezer storage time 
and concentrations of all three biomarkers, indicating that the samples were not significantly degraded due to 
storage time and therefore were comparable.

The strengths of the study are the analyses of NFL and pNFH levels in CSF and NFL in plasma samples from 
a large group of clinically relevant and commonly encountered ALS patients and ALS mimics; all performed in 
the same laboratory and blinded to clinical data. Moreover, the study extensively characterized patient cohorts 
with clinical and genotype information from patients from the same site. The long follow-up observation time 
following the collection of the analysed samples is of importance as it provides enough time for a correct diagno-
sis of slowly progressing ALS. Finally, 26 of the ALS patients later underwent post-mortem autopsy confirming 
the diagnosis.

In conclusion, our study results confirm earlier findings on neurofilament and  ALS6,18,19,24,25,37,38,41,54–58 but 
add new knowledge on the comparative performance of plasma and CSF neurofilaments in a clinical context, 
thus emphasizing the importance of a correct ALS diagnosis early and prognostication. Regarding the diagnostic 
properties, all three biomarkers are of clinical value in affirming an ALS diagnosis and excluding potential ALS 
mimics. CSF pNFH showed the highest AUC in terms of differentiating ALS from ALS mimics. Plasma NFL 
analysis has the advantage that it does not require a lumbar puncture, has only a minimal difference in diagnostic 
performance compared to CSF NFL levels and shows the highest AUC in terms of prognosticating ALS short 
and long survival.

Data availability
Data used and analysed in the present study will be available from the corresponding author upon reasonable 
request from other investigators adhering to the European Union General Data Protection Regulation (EU) 
2016/679 (GDPR).
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