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Abstract

We address the estimation of conditional average treatment effects (CATEs) for
structured treatments (e.g., graphs, images, texts). Given a weak condition on the
effect, we propose the generalized Robinson decomposition, which (i) isolates the
causal estimand (reducing regularization bias), (ii) allows one to plug in arbitrary
models for learning, and (iii) possesses a quasi-oracle convergence guarantee under
mild assumptions. In experiments with small-world and molecular graphs we
demonstrate that our approach outperforms prior work in CATE estimation.

1 Introduction

Estimating feature-level causal effects, so-called conditional average treatment effects (CATEs), from
observational data is a fundamental problem across many domains. Examples include understanding
the effects of non-pharmaceutical interventions on the transmission of COVID-19 in a specific region
[12], how school meal programs impact child health [13], and the effects of chemotherapy drugs
on cancer patients [52]. Supervised learning methods face two challenges in such settings: (i)
missing interventions, the fact that we only observe one treatment for each individual means models
must extrapolate to new treatments without access to ground truth, and (ii) confounding factors that
affect both treatment assignment and the outcome means that extrapolation from observation to
intervention requires assumptions. Many approaches have been proposed to overcome these issues
[1, 2, 3, 4, 5, 6, 7, 9, 10, 15, 18, 19, 21, 22, 23, 25, 27, 29, 33, 39, 41, 42, 45, 52, 56, 57, 60, 64, 67].

In many cases, treatments are naturally structured. For instance, a drug is commonly represented by
its molecular structure (graph), the nutritional content of a meal as a food label (text), and geographic
regions affected by a new policy as a map (image). Taking this structure into account can provide
several advantages: (i) higher data-efficiency, (ii) capability to work with many treatments, and (iii)
generalizing to unseen treatments during test time. However, the vast majority of prior work operates
on either binary or continuous scalar treatments (structured treatments are rarely considered, a notable
exception to this trend is Harada & Kashima [16] which we describe in Section 2).

To estimate CATEs with structured interventions, our contributions include:

• Generalized Robinson decomposition (GRD): A generalization of the Robinson decomposition
[47] to treatments that can be vectorized as a continuous embedding. This GRD reveals a learnable
∗Correspondence to jean.kaddour.20@ucl.ac.uk
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Causal graph
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Figure 1: Illustration of CATE estimation with structured treatments (e.g., molecular graphs).
Left: Problem setup with features X, treatment T, and outcome Y . Center: Observations the
estimator has access to, typically containing only one outcome per individual. Right: The CATE is
the difference between the expected outcomes given a fixed individual and a pair of treatments.

pseudo-outcome target that isolates the causal component of the observed signal by partialling out
confounding associations. Further, it allows one to learn the nuisance and target functions using
any supervised learning method, thus extending recent work on plug-in estimators [42, 29].

• Quasi-oracle convergence guarantee: A result that shows that given access to estimators of
certain nuisance functions, as long as the estimates converge at an O(n−1/4) rate, the target
estimator for the CATE achieves the same error bounds as an oracle who has ground-truth
knowledge of both nuisance components, the propensity features, and conditional mean outcome.

• Structured Intervention Networks (SIN): A practical algorithm using GRD, representation
learning, and alternating gradient descent. Our PyTorch [43] implementation is online.2

• Evaluation metrics designed for structured treatments. Since previous evaluation protocols of
CATE estimators have mostly focused on binary or scalar-continuous treatment settings, we
believe that our proposed evaluation metrics can be useful for comparing future work.

• Experimental results with graph treatments in which SIN outperforms previous approaches.

2 Related Work

Closest to our work is GraphITE [16], a method that learns representations of graph interventions
for CATE estimation. They propose to minimize prediction loss plus a regularization term that
aims to control for confounding based on the Hilbert-Schmidt Independence Criterion (HSIC) [14].
This technique suffers from two drawbacks: (i) the HSIC requires multiplication of kernel matrices
and scales quadratically in the batch size; (ii) selecting the HSIC kernel hyper-parameter is not
straightforward, as ground-truth CATEs are never observed, and empirical loss does not bound CATE
estimation error [1]. We discuss other related work not on structured treatments in Appendix A.

3 Preliminaries

3.1 Conditional Average Treatment Effects (CATEs)

Imagine a dataset where each example (xi, ti, yi) ∈ D represents a hospital patient’s medical history
record xi, prescribed drug treatment ti, and health outcome yi, as illustrated in Figure 1 (Center).
Further, we wish to understand how changing the treatment changes a patient’s health outcome. The
CATE, τ

(
t′, ti,xi

)
, describes the expected change in outcome for individuals with history xi, when

treatment ti is replaced by t′, depicted in Figure 1 (Right). In real-world scenarios, we only observe
one outcome for each patient at one treatment level. Further, the patient’s pre-treatment health
conditions xi influence both the doctor’s treatment prescription and outcome, thereby confounding
the effect of the treatment on the outcome.

Formally, we have the dataset D=
{

(xi, ti, yi)
}n
i=1

sampled from a joint distribution p (X,T, Y ),
where Y = f (X,T) + ε, as depicted in Figure 1 (Left). We define the causal effect of fixing

2https://github.com/JeanKaddour/SIN
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treatment variable T ∈ T to a value t on outcome variable Y ∈ R using the do-operator [44] as
E
[
Y | do(T = t)

]
. Crucially, this estimate differs from the conditional expectation E

[
Y | T = t

]
in that it describes the effect of an external entity intervening on T by fixing it to a value t (removing
the edge X → T). We further condition on pre-treatment covariates X to define the conditional
causal estimand E

[
Y | X = x, do(T = t)

]
. The conditional average treatment effect (CATE) is the

difference between expected outcomes at different treatment values t, t′ for given covariates x,

τ(t′, t,x) , E
[
Y | X = x, do(T = t′)

]︸ ︷︷ ︸
=:µt′ (x)

−E
[
Y | X = x, do(T = t)

]︸ ︷︷ ︸
=:µt(x)

, (1)

where µt (x) is defined as the expected outcome for a covariate vector x under treatment t.

Because we do not observe both treatments t, t′ for a single covariate x, we need to make assumptions
that allow us to identify the CATE from observational data.

Assumption 1. (Unconfoundedness) There are no confounders of the effect between T and Y beyond
X. Therefore, Pr

(
Y ≤ y | x, do(t)

)
= Pr

(
Y ≤ y | x, t

)
, for all (x, t, y).

Assumption 2. (Overlap) It holds that 0 < p
(
t | x

)
< 1, for all (x, t).

Assumption 2 means that all sub-populations have some probability of receiving any value of treatment
(otherwise, some τ(t′, t,x) may be undefined or impossible to estimate.) These assumptions allow
us to estimate the causal quantity τ(t′, t,x) through statistical estimands:

τ
(
t′, t,x

)
= µt′ (x)− µt (x) = E

[
Y | X = x,T = t′

]
− E

[
Y | X = x,T = t

]
. (2)

While one can model µt(x) with regression models, such approaches suffer from bias [9, 26, 29] due
to two factors: (i) associations between X and T, due to confounding, makes it hard to identify the
distinct contributions of X and T on Y , and (ii) regularization for predictive performance can harm
effect estimation. Mitigating these biases relies on exposing and removing nuisance components.
This transforms the optimization into a (regularized) regression problem that isolates the causal effect.

3.2 Robinson Decomposition

One way to formulate such nuisance components is via the Robinson decomposition [47]. Originally
a reformulation of the CATE for binary treatments, it was used by the R-learner [42] to construct a
plug-in estimator. The R-learner exploits the decomposition by partialling out the confounding of X
on T and Y . It also isolates the CATE, thereby removing regularization bias.

Let the treatment variable be T ∈ {0, 1} and the outcome model p
(
y | x, t

)
parameterized as

Y = f(X, T ) + ε ≡ µ0(X) + T × τb(X) + ε, (3)

where we define error term ε such that E
[
ε | x, t

]
= E

[
ε | x

]
= 0, and τb (x) , τ (1, 0,x).

Define the propensity score [48] e (x) , p
(
T = 1 | x

)
and the conditional mean outcome as

m (x) , E
[
Y | x

]
= µ0 (x) + e (x) τb (x) . (4)

From model (3) and the previous definitions, it follows that

Y −m (X) =
(
T − e (X)

)
τb (X) + ε, (5)

allowing us to define the estimator

τ̂b (·) = arg min
τb

{
1

n

n∑
i=1

(
ỹi − t̃i × τb (xi)

)2

+ Λ
(
τb (·)

)}
, (6)

where ỹi , yi−m̂ (xi) and t̃i , ti−ê (xi) are pseudo-data points defined through estimated nuisance
functions m̂(·), ê(·), which can be learned separately with any supervised learning algorithm.
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4 The Generalized Robinson Decomposition

Our goal is to estimate the CATE τ(t′, t,x) for structured interventions t′, t (e.g., graphs, images,
text) while accounting for the confounding of X on T and Y . Inspired by the Robinson decomposition,
which has enabled flexible CATE estimation for binary treatments [6, 9, 33, 42], we propose the
Generalized Robinson Decomposition from which we extract a pseudo-outcome that targets the
causal effect. We demonstrate the usefulness of this decomposition from both a theoretical view
(quasi-oracle convergence rate in Section 4.2) and practical view (Structured Intervention Networks
in Section 5). For details on its motivation and derivation, we refer the reader to Appendix B.

4.1 Generalizing the Robinson Decomposition

To generalize the Robinson decomposition to structured treatments, we introduce two concepts: (a)
we assume that the causal effect is a product effect: the outcome function f∗ (X,T) can be written
as an inner product of two separate functionals, one over the covariates and one over the treatment,
and (b) propensity features, which partial out the effects from the covariates on the treatment features.
Similar techniques have been previously shown to add to the robustness of estimation [9, 42].
Assumption 3. (Product effect) We consider the following partial parameterization of p(y | x, t),

Y = g (X)
>
h (T) + ε, (7)

where g : X → Rd, h : T → Rd and E[ε | x, t] = E
[
ε | x

]
= 0, for all (x, t) ∈ X × T .

This assumption is mild, as we can formally justify its universality. The following asserts that
provided we allow the dimensionality of g and h to grow, we may approximate any arbitrary bounded
continuous functions in C (X × T ) where X × T is compact.
Proposition 1. (Universality of product effect) LetHX×T be a Reproducing Kernel Hilbert Space
(RKHS) on the set X × T with universal kernel k. For any δ > 0, and any f ∈ HX×T , there is a
d ∈ N such that there exist two d-dimensional vector fields g : X → Rd and h : T → Rd, where
‖f − g>h‖L2(PX×T ) ≤ δ. (Proof in Appendix C)

This assumption allows us to simplify the expression of the CATE for treatments t′, t, given x,

τ
(
t′, t,x

)
= g (x)

>
(
h
(
t′
)
− h (t)

)
. (8)

Define propensity features eh (x) , E
[
h (T) | x

]
and m (x) , E

[
Y | x

]
= g (x)

>
eh (x) .

Following the same steps as in Section 3.2, the Generalized Robinson Decomposition for eq. (7) is

Y −m (X) = g (X)
>
(
h (T)− eh (X)

)
+ ε. (9)

Given nuisance estimates m̂(·), êh(·), we can use this decomposition to derive an optimization
problem for h(·), g(·) (note êh(·) implicitly depends on h(·), we address this dependence in Section 5).

ĝ (·) , ĥ (·) , arg min
g,h

 1

n

n∑
i=1

(
Yi − m̂ (Xi)− g (Xi)

>
(
h (Ti)− êh (Xi)

))2

+ Λ
(
g (·)

)
(10)

4.2 Quasi-oracle error bound of Generalized Robinson Decomposition

We establish the main theoretical result of our paper: a quasi-oracle convergence guarantee for the
Generalized Robinson Decomposition under a finite-basis representation of the outcome function.
This result is analogous to the R-learner for binary CATEs [42]: when the true e (·) ,m (·) are
unknown, and we only have access to the estimators ê (·) , m̂ (·), then as long as the estimates
converge at n−1/4 rate, the estimator τ̂b (·) achieves the same error bounds as an oracle who has
ground-truth knowledge of these two nuisance components.
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More formally, provided the nuisance estimators m̂(·) and êh(·) converge at an O
(
n−1/4

)
rate, our

CATE estimator will converge at an Õ(n−
1

2(1+p) ) rate for arbitrarily small p > 0, recovering the
parametric convergence rate for when the true m(·) and eh(·) are provided as oracle quantities.

Our analysis assumes that the outcome E
[
Y | X = x,T = t

]
can be written as a linear combina-

tion of fixed basis functions. By Proposition 1, as long as we have enough basis functions, this
representation is flexible enough to capture the true outcome function.
Assumption 4. Let α(X) ∈ Rdα , β(T) ∈ Rdβ be fixed, known orthonormal basis features on
X ∈ Rdx , T ∈ Rdt , respectively. The true outcome function f∗(x, t) = E[Y | X = x,T = t] can
be written as f∗(x, t) = α>(x)Θ∗β(t) for some (unknown) matrix of coefficients Θ∗.

Note that by setting g = α>Θ∗ and h = β, we recover eq. (7). Additionally, we will need overlap in
the basis features α(X ),β(T ).
Assumption 5 (Overlap in features). The marginal distribution of features Pα(X )×β(T ) is positive,
i.e. supp[Pα(X )×β(T )] = α(X )× β(T ).

Assumption 5 is typically weaker than requiring overlap in X and T, i.e., when dα, dβ � dx, dt.

With further technical assumptions specified in Appendix F, we establish the following theorem.
Theorem 2. Let Θ∗ denote the representer of the true outcome function. Suppose Assumptions 5, 6,
and 4 hold. Moreover, suppose that the propensity estimate êh is uniformly consistent,

sup
x∈X
‖êh(x)− eh(x)‖ →p 0 (11)

and the L2 errors converge at rate

E
[{
m̂(X)−m∗(X)

}2
]
,E
[
‖êh (X)− eh (X) ‖2

]
= O(a2

n) (12)

for some sequence an → 0, where (an) is such that an = O(n−κ) with κ > 1
4 . Further, we define

the regret as the excess risk

R
(
Θ̂n

)
, L

(
Θ̂n

)
− L (Θ∗) , L (Θ) , E

[{(
Y −m∗ (X)

)
−α (X) Θ

(
β (T)− eh (X)

)}2
]
.

(13)

Suppose that we obtain Θ̂n via a penalized basis function regression variant of the Generalized
Robinson Decomposition, with a properly chosen penalty Λn

(
‖Θ̂n‖2

)
(specified in the proof). Then,

Θ̂n satisfies the regret bound: R
(
Θ̂n

)
= Õ(r2

n) with rn = n−
1

2(1+p) for arbitrarily small p > 0.

5 Structured Intervention Networks

We introduce Structured Intervention Networks (SIN), a two-stage training algorithm for neural
networks, which enables flexibility in learning complex causal relationships, and scalability to large
data-sets. This implementation of GRD strikes a balance between theory and practice: while we
assumed fixed basis-functions in Section 4.2, in practice, we often need to learn the feature maps
from data. We leave the convergence analysis of this representation learning setting for future work.

5.1 Training Algorithm

We propose to simultaneously learn feature maps ĝ (X) , ĥ (T) using alternating gradient descent,
so that they can adapt to each other. A remaining challenge is that learning êh(X) is now entangled
with learning ĥ (T). While the R-learner is based on the idea of cross-fitting, where at each data
point i we pick estimates of the nuisances that do not use that data point, we introduce a pragmatic
representation learning approach for (ĝ, ĥ) that does not use cross-fitting3.

3We could in principle use cross-fitting for êh, although the loop between fitting ĥ alternating with êh would
break the overall independence between êhi (X) and data point i. While it is possible that cross-fitting for êh is
still beneficial in this case, for simplicity and for computational savings, we did not implement it.
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a SIN Training.
Input: Stage 1 data D1 := {(xi, yi)}mi=1,
Stage 2 data D2 := {(xi, ti, yi)}ni=1 Step sizes
λθ, λη, λψ, λφ. Number of update steps K.
Mini-batch sizes B1, B2.

1: Initialize parameters: θ,η,ψ,φ
2: while not converged do . Stage 1
3: Sample mini-batch {(xb, yb)}

mB1

b=1
4: Evaluate Jm (θ)

5: Update θ ← θ − λθ∇̂θJ(θ)
6: end while
7: while not converged do . Stage 2
8: Sample mini-batch {(xb, tb, yb)}

nB2

b=1
9: Evaluate Jg,h (ψ,φ) , Jeh (η)

10: for k = 1 to K do
11: Update φ← φ− λφ∇̂φJg,h (ψ,φ)

12: Updateψ ← ψ−λψ∇̂ψJg,h (ψ,φ)
13: end for
14: Update η ← η − λη∇̂ηJeh (η)
15: end while

b Pseudocode in a PyTorch-like style.
# Initialize submodels and optimizers
m, e, g, h = MLP(...), MLP(...), MLP(...),

GNN(...)
m_opt, e_opt, g_opt, h_opt = Adam(m.params(),

m_lr), Adam(e.params(), e_lr), ...

# Stage 1
for batch in train_loader:

X, Y = batch.X, batch.Y
m_opt.zero_grad()
F.mse_loss(m(X), Y).backward()
m_opt.step()

# Stage 2
for batch in train_loader:

X, T, Y = batch.X, batch.T, batch.Y
for _ in range(num_update_steps):

g_opt.zero_grad()
h_opt.zero_grad()
F.mse_loss((g(X)*(h(T) - e(X))).sum

(-1), (Y-m(X))).backward()
g_opt.step()
h_opt.step()

e_opt.zero_grad()
F.mse_loss(e(X), h(T)).backward()
e_opt.step()

Figure 2: The two-stage algorithm for training SIN.

We learn surrogate models for the mean outcome and propensity features m̂θ(X) and êhη(X) with
parameters θ ∈ Rdθ ,η ∈ Rdη , as well as feature maps for covariates and treatments ĝψ(X), ĥφ(T),
parameterized by ψ ∈ Rdψ ,φ ∈ Rdφ . We denote regularizers by Λ (·). Figure 2 summarizes the
algorithm. As the mean outcome model m̂θ (X) does not depend on the other components, we learn
it separately in Stage 1. In Stage 2, we alternate between learning ψ,φ,η.

Stage 1: Learn parameters θ of the mean outcome model m̂θ (X) based on the objective

Jm (θ) =
1

m

m∑
i=1

(
yi − m̂θ (xi)

)2
+ Λ (θ) , (14)

which relies only on covariates and outcome data D1 :=
{

(xi, yi)
}m
i=1

.

Stage 2: Learn parameters ψ,φ for the covariates and treatments feature maps ĝψ (X) , ĥφ (T), as
well as parameters η for the propensity features êhη (X).

Jg,h (φ,ψ) =
1

n

n∑
i=1

(
yi −

{
m̂θ (xi) + ĝψ (xi)

>
(
ĥφ (ti)− êhη (xi)

)})2

+ Λ (ψ) + Λ (φ) .

(15)

This loss hinges on êhη (X), which needs to be learned by

Jeh (η) =

n∑
i=1

∥∥∥ĥφ (ti)− êhη (xi)
∥∥∥2

2
+ Λ (η) , (16)

note again the dependence on ĥφ (T). While it may be tempting to learn ψ,φ and η jointly,
they have fundamentally different objectives (êhη (X) is defined as an estimate of the expectation
E
[
h (T) | x

]
). Therefore, we employ an alternating optimization procedure, where we take k ∈

{1, . . . ,K} optimization steps for ψ,φ towards Jg,h (ψ,φ) and one step for learning η. We observe
that setting K > 1, i.e. updating ψ,φ more frequently than η, stabilizes the training process.
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Figure 3: UPEHE@K for K ∈ {2, . . . , 10}.

5.2 Advantages of SIN

We conclude by describing the beneficial properties of SIN, particularly in finite-sample regimes:

1. Targeted regularization: Regularizing ĝψ (X) , ĥφ (T) in eq. (15) after partialing out con-
founding is a type of targeted regularization of the isolated causal effect. In contrast, outcome
estimation methods can suffer from regularization-induced confounding, e.g., regularizing the
effect estimate away from zero in the service of trying to improve predictive performance [29].

2. Propensity features: Learning propensity features can help us to (i) partial out parts of X that
cause the treatment but not the outcome, and (ii) dispose unnecessary components of T.

3. Data-efficiency: In contrast to methods that split the data into disjoint models for each treatment
group (known as T-learners for binary treatments [8, 10]), sharing causal effect parameters
between all covariates regardless of their assigned treatment increases data-efficiency.

4. Partial data: In settings without access to both the treatment assignment and the outcome but
only access to one of them, one can leverage that data to improve the (nuisance) estimator further,
e.g., when a patient’s recovery is observed one year after a drug was administered [33].

6 Experiments

Here we evaluate how CATE estimation with our proposed model SIN compares with prior methods.

6.1 Experimental Setup

Datasets. To be able to compute CATE estimation error w.r.t. a ground truth, we design two causal
models: a simpler synthetic model with small-world graph treatments and a more complex model
with real-world molecular graph treatments and gene expression covariates. The Small-World (SW)
simulation contains 1,000 uniformly sampled covariates and 200 randomly generated Watts–Strogatz
small-world graphs [61] as treatments. The Cancer Genomic Atlas (TCGA) simulation uses 9,659
gene expression measurements of cancer patients for covariates [62] and 10,000 sampled molecules
from the QM9 dataset [46] as treatments. Appendix D details the data-generating schemes.

Baselines. We compare our method to (1) Zero, a sanity-check baseline that consistently predicts
zero treatment effect and equals the mean squared treatment effect (poorly regularized models may
perform worse than that due to confounding), (2) CAT, a categorical treatment variable model using
one-hot encoded treatment indicator vectors, (3) GNN, a model that first encodes treatments with a
GNN and then concatenates treatment and individual features for regression, (4) GraphITE [16],
a CATE estimation method designed for graph treatments (more details in Section 2). GNN and
CAT reflect the performance of standard regression models. The contrast between these two provides
insight into whether the additional graph structure of the treatment improves CATE estimation. To
deal with unseen treatments during the evaluation of CAT, we map such to the most similar ones seen
during training based on their Euclidean distance in the embedding space of the GNN baseline.

Graph models. For small-world networks, we use k-dimensional GNNs [38], as to distinguish
graphs they take higher-order structures into account. To model molecular graphs, we use Relational
Graph Convolutional Networks [50], where the nodes are atoms and each edge type corresponds to a
specific bond type. We use the implementations of PyTorch Geometric [11].

7



Table 1: Error of CATE estimation for all methods, measured by WPEHE@6. Results are averaged
over 10 trials, ± denotes std. error (each trial samples treatment assignment matrix W).

Method SW TCGA
In-sample Out-sample In-sample Out-sample

Zero 56.26± 8.12 53.77± 8.93 26.63± 7.55 17.94± 4.86
CAT 51.75± 8.85 49.76± 9.73 155.88± 52.82 146.62± 42.32
GNN 37.10± 6.84 36.74± 7.42 30.67± 8.29 27.57± 7.95
GraphITE 34.81± 6.70 35.94± 8.07 30.31± 8.96 27.48± 8.95

SIN 23.00± 4.56 23.19± 5.56 10.98± 3.45 8.15± 1.46

Evaluation metrics. We extend the expected Precision in Estimation of Heterogeneous Effect
(PEHE) commonly used in binary treatment settings [19] to arbitrary pairs of treatments (t, t′) as
follows. We denote the Unweighted PEHE (UPEHE) and the Weighted PEHE (WPEHE) as

εUPEHE(WPEHE) ,
∫
X

(
τ̂
(
t′, t,x

)
− τ

(
t′, t,x

))2

p
(
t | x

)
p
(
t′ | x

)
p (x) dx, (17)

where the weighted version gives less importance to treatment pairs that are less likely; to account for
the fact that such pairs will have higher estimation errors. In fact, as the reliability of estimated effects
decreases by how likely they are in the observational study, we evaluate all methods on U/WPEHE
truncated to the top K treatments, which we call U/WPEHE@K. To compute this, for each x, we
rank all treatments by their propensity p

(
t | x

)
(given by the causal model) in descending order. We

take the top K treatments and compute the U/WPEHE for all
(
K
2

)
treatment pairs.

In-sample vs. out-sample. A common benchmark for causal inference methods is the in-sample
task, which we include here for completeness: estimating CATEs for covariate values x found in the
training set. This task is still non-trivial, as the outcome of only one treatment is observed during
training 4. In contrast, and arguably of more relevance to decision making, the goal of the out-sample
task is to estimate CATEs for completely unseen covariate realizations x′.

Hyper-parameter tuning. To ensure a fair comparison, we perform hyper-parameter optimization
with random search for all models on held-out data and select the best hyper-parameters over 10 runs.

Propensity. We define the propensity (or treatment selection bias) as p
(
T | x

)
=

softmax
(
κW>X

)
, where W ∈ R|T |×d,∀i, j : Wij ∼ U [0, 1] is a random matrix (sampled

then fixed for each run). Recall |T | is the number of available treatments and let d be the dimen-
sionality of the covariates. Here the bias strength κ is a temperature parameter that determines the
flatness of the propensity (the lower the flatter, i.e., κ=0 corresponds to the uniform distribution).

6.2 Comparison of Performances on different K Treatments

Figure 3 shows the UPEHE@K of all methods for K ∈ {2, . . . , 10}. We also report the WPEHE@6
of all methods in Table 1. Unless stated otherwise, we report results for bias strengths κ = 10 and
κ = 0.1 in the SW and TCGA datasets, respectively across 10 random trials.

The results indicate that the relative performance of each method, for both the in-sample and out-
sample estimation tasks, is consistent. Further, they suggest that, overall, the performance of SIN is
best due to a better isolation of the causal effect from the observed data compared to other methods.
The performance difference between CAT and GNN across all results indicate that accounting for
graph information significantly improves the estimates. We observe from the SW experiments that
GraphITE [16] performs slightly better than GNN, while it is nearly the same as GNN on TCGA.

Surprisingly, the results of the TCGA experiments with low bias strength κ = 0.1 expose that all
models but SIN fail to isolate causal effects better than the Zero baseline. These results confirm that
confounding effects of X on Y combined with moderate causal effects can cause severe regularization
bias for black-box regression models, while SIN partials these out from the outcome by m̂θ (X). We
include additional results on convergence and larger values of K in Appendix E.1.

4The original motivation comes from Fisherian designs where the only source of randomness is on the
treatment assignment [20]. Our motivation is simpler: rule out the extra variability from different covariates,
highlighting the difference between methods due to different loss functions and less due to smoothing abilities.
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Figure 4: WPEHE@6 over increasing bias strength κ.

6.3 Comparison of Robustness to different Bias Strengths κ

A strong selection bias (i.e. large κ) in the observed data makes CATE estimation more difficult,
as it becomes unlikely to see certain treatments t ∈ T for particular covariates x. Here, we assess
each model’s robustness to varying levels of selection bias, determined by κ, across 5 random
seeds. In Figure 4, we see that SIN outperforms the baselines across the entire range of considered
biases. Interestingly, SIN performs competitively even in a case with no selection bias (κ=0, which
corresponds to a randomized experiment). Importantly, all performances seem to either stagnate
(SW) or to increase (TCGA) with increasing biases. Notably, the poor performance of CAT suddenly
improves on datasets with high bias. We believe this is because, in high bias regimes, we see fewer
distinct treatments overall, which allows the CAT model to approach the performance of GNN.

7 Limitations, Future Work and Potential Negative Societal Impacts
Limitations and future work. Firstly, in some real-life domains, Assumption 1 (Unconfounded-
ness) can be too strong, as there may exist hidden confounders. There are two common strategies to
deal with them: utilizing instrumental variables [17, 58, 63] or proxy variables [35, 37, 59]. Devel-
oping new approaches for structured interventions in such settings is a promising future direction.
Secondly, SIN is based on neural networks; however, neural network initialization can impact final
estimates. To obtain consistency guarantees, GRD can be combined with kernel methods [35, 58].

Potential negative societal impacts. Because causal inference methods make recommendations
about interventions to apply in real-world settings, misapplying them can have a negative real-world
impact. It is crucial to thoroughly test these methods on realistic simulations and alter aspects of
them to understand how violations of assumptions impact estimation. We have aimed to provide a
comprehensive evaluation of structured treatment methods by showing how estimation degrades as
less likely treatments are considered (Figure 3) and as treatment bias increases (Figure 4).

8 Conclusion

The main contributions of this paper are two-fold: (i) the generalized Robinson decomposition that
yields a pseudo-outcome targeting the causal effect while possessing a quasi-oracle convergence
guarantee under mild assumptions, and (ii) Structured Intervention Networks, a practical algorithm
using representation learning that outperforms prior approaches in experiments with graph treatments.
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A Other Related Work

Plug-in estimators. A recent line of work for CATE estimation derives plug-in estimators [8].5
These work by decomposing CATE estimation into multiple sub-problems (so-called nuisance
components), each solvable using any supervised learning method [10, 15, 26, 29, 42]. Currently,
these approaches are limited to binary treatment setups. Our approach is inspired by these methods,
extending plug-in estimation to structured treatment settings.

CATE estimation with neural networks. Neural network CATE estimators typically use separate
prediction heads for each treatment option [24, 32, 41, 51, 52, 54, 55]. This architectural design
reduces one source of regularization bias: the influence of the treatment indicator variable might
be lost in the high-dimensional network representations. Extending this idea directly to structured
treatments would not only be computationally expensive, but would also not be able to make use of
treatment features or learn treatment representations.

Multiple treatments. While Inverse Probability Weighting (IPW) [30, 31, 66] is a popular tech-
nique for estimating effects with multiple, categorical treatments, it requires estimating the propensity
density which is infeasible in settings with hundreds or thousands of treatments; some of which may
have not been seen during training. Nabi et al. [39] propose a framework for sufficient dimensionality
reduction of high-dimensional treatments based on semiparametric inference theory. Besides relying
on IPW, this approach is designed for average treatment effects (not CATEs).

B The Generalized Robinson Decomposition

B.1 Motivation

frequently the influence of T on Y is very different from the influence of X on Y . Specifically,
f(X,T) often has different smoothness in X and T. For instance, different health histories X for a
fixed treatment t will have a much more variable effect on Y than different treatments t for a given
history X. This is why methods like the R-learner [42] have carefully separated estimation functions
of X from functions of T [8].

A generic way to extend the Robinson decomposition to arbitrary treatments is to learn a model
f̂(X,T) defined over the entire outcome surface, via mean outcome m̂(X) and treatment conditional
density p(T | X). In this case, we fit the relationship

Y −m (X) = f (X,T)− ep (X) + ε, where ep (x) , E
[
f (X,T) | x

]
. (18)

To learn f(·, ·) from a dataset D=
{

(xi, ti, yi)
}n
i=1

we need to solve,

f̂ = arg min
f∈F

1

N

N∑
i=1

[{
yi − m̂ (xi)

}
−
(
f (xi, ti)− êp (xi)

)]2
, (19)

where F is some function space and m̂ is a plug-in finite sample estimate of m. Because ep contains
f , we need to estimate it, which we denote êp.

One solution is to estimate the propensity p(T | X) and use it to compute êp. However, this approach
requires conditional density estimation over potentially high-dimensional, structured treatments,
which remains an open research question [65], and is prone to high variance [58]. Further, to compute
êp from it, one has to resort to Monte Carlo evaluation. By learning propensity features êhη (X)
instead of p(T | X), we avoid these issues.

Another option is to solve for f , fix it, then estimate êp using regression from finite samples, and
iterate to a fixed point. However, there is a fundamental issue with this approach: we are typically
interested in regularizing the causal effect directly as opposed to the generic regression function.
This is why, for instance, the R-learner parameterizes µ1(x) as a (nuisance) baseline µ0(x) plus the
CATE τb(x). The black-box f(x, t) does not capture the asymmetry between x and t in the implied
CATE f(x, t) − f(x, t′). Further, unlike the binary case, in many applications, we do not have a

5These are also called meta-learners. To avoid confusion with meta-learning, we call these plug-in estimators.
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baseline treatment t0 with respect to which we could parameterize f in terms of some τ(t, t0,x). To
regularize the causal effect more directly, we make the product effect assumption, which allows us to
partial out confounding.

B.2 Derivation in detail

We consider the product effect parameterization of p(y | x, t),

Y = g (X)
>
h (T)︸ ︷︷ ︸

=:f(X,T)

+ ε, (20)

where g : X → Rd, h : T → Rd and E[ε | x, t] = E
[
ε | x

]
= 0, for all (x, t) ∈ X × T .

Rearranging eq. (20) yields the Robinson residual

ε = Y − g (X)
>
h (T) , (21)

which we aim to rewrite in terms of m(X). To this end, we define propensity features eh (X) as

eh (X) , E
[
h (T) | X

]
, such that m (X) = E

[
Y | X

]
= g (X)

>
eh (X) . (22)

To obtain the generalized Robinson decomposition, one rewrites eq. (21) as

ε = Y −
(
g (X)

>
[
h (T) +�

��
eh (X)−�

��
eh (X)

])
(23)

= Y −
(
g (X)

>
eh (X) + g (X)

>
(
h (T)− eh (X)

))
(24)

= Y −
(
g (X)

>
eh (X)

)
︸ ︷︷ ︸

m(X)

−g (X)
>
(
h (T)− eh (X)

)
. (25)

Hence, the generalized Robinson decomposition is

Y −m(X) = g (X)
>
(
h (T)− eh (X)

)
+ ε. (26)

C Universality of Product Decomposition

Proof of Proposition 1.

Proof. DefineH0X×T as
{
f (x, t) =

∑n
i=1 αik

(
(xi, ti) , (x, t)

)
|n ∈ N, αi=1,··· ,n ∈ R

}
. By def-

inition, the RKHSHX×T is the set of pointwise limits of Cauchy sequences (fn)n ∈ H0X×T . By
Lemma 41 of [53], the Cauchy sequences also converges in theHX×T norm.

For any f ∈ HX×T , pick its Cauchy sequence (fn)inH0X×T . Since
∑∞
i=1 αik

(
(xi, ti) , (x, t)

)
converges in ‖ · ‖HX×T , for any ε̃ there exist a d̃ such that let fd̃ =

∑d̃
i=1 αik

(
(xi, ti) , (x, t)

)
, then

‖fd̃ − f‖HX×T ≤ ε̃ (27)

Since for any RKHS with kernel k, the RKHS norm is always an upper bound on the L2 norm up to
scaling by a constant Ck,

‖fd̃ − f‖L2(P(X×T )) ≤ Ck‖fd̃ − f‖HX×T ≤ Ck ε̃ (28)

Then for any ε, we can choose d ∈ N such that ‖fd − f‖L2(PX×T ) ≤ Ck · ε
Ck

= ε.

It remains to show that fd can be written as g>h as required. HX×T is isometrically isomorphic to
HX ×HT ; we can decompose k into the product kernel

k
(

(x, t) ,
(
x′, t′

))
= kX

(
x,x′

)
kT
(
t, t′

)
. (29)

Thus fd (x, t) =
∑d
i=1 αikX (x,xi)kT (t, ti). Set g(x) =

(
α1kX (x,x1) , · · · , αdkX (x,xd)

)>
,

h(t) =
(
kT (t, t1) , · · · , kT (t, td)

)>
, we obtain fd = g>.
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D Experimental Details

D.1 Simulations

Baseline effect Similarly as in [7, 10, 41], for each run of the experiment, we randomly sample a
vector u0 ∼ U(0,1), and set v0 = u0/ ‖u0‖ where ‖ · ‖ is the Euclidean norm. We then model the
baseline effect as

µ0 (x) = v>0 x. (30)

D.1.1 Small-World Networks

Covariates We uniformly sample 20-dimensional multivariate covariates X ∼ U (−1,1). The in-
sample dataset consists of 1,000 units, and the out-sample one of 500. For the treatment assignment,
we square the covariates element-wise; i.e., we sample treatment assignments according to p

(
T | x2

)
.

Graph interventions For each graph intervention, we uniformly sample a number of nodes between
10 and 120, number of neighbors for each node between 3 and 8, and the probability of rewiring each
edge between 0.1 and 1 Then, we repeatedly generate Watts–Strogatz small-world graphs until we
get a connected one. Each vertex has one feature, which is its degree centrality. We denote a graph’s
node connectivity as ν (G) and its average shortest path length as l (G).

Outcomes Analogously as for the baseline effect, we generate two randomly sampled vectors vν
and vl. Then, given an assigned graph treatment G and a covariate vector x, we generate the outcome
as

Y = 100µ0 (x) + 0.2ν (G)
2 · v>ν x + l (G) · v>l x + ε, ε ∼ N (0, 1) . (31)

D.1.2 TCGA

Covariates The The Cancer Genomic Atlas (TCGA) simulation uses 4,000-dimensional 9,659 gene
expression measurements of cancer patients for covariates [62], i.e., each unit is a covariate vector
X ∈ R4000. The in-sample and out-sample datasets consist of 5,000 and 4,659 units, respectively. In
each run, the units are split randomly into in- and out-sample datasets. We used the same version of
the TCGA dataset as used by Bica et al. [7] and Schwab et al. [52].

Graph interventions In each run, we randomly sample 10,000 molecules from the Quantum
Machine 9 (QM9) dataset [46, 49] (with 133k molecules in total). For each molecule, we create a
relational graph, where each node corresponds to an atom and consist of 78 atom features. An edge
corresponds to the chemical bond type, where we label each edge correspondingly, considering single,
double, triple and aromatic bonds. Furthermore, for each molecule, we obtain 8 of its properties mu,
alpha, homo, lumo, gap, r2, zpve, u0, which we collect in the vector z ∈ R8.

Outcomes For each covariate vector x, we compute its 8-dimensional PCA components, denoted
by x(PCA) ∈ R8. Then, given the molecular properties of the assigned molecule treatment z, we
generate outcomes by

Y = 10µ0 (x) + 0.01z>x(PCA) + ε, ε ∼ N (0, 1) . (32)

D.2 Hyper-parameters

To ensure a fair comparison between all models, we perform hyper-parameter optimization with
random search for all models on held-out data and select the best hyper-parameters over 10 runs.
While conceptually, choosing hyper-parameters based on predictive metrics may not necessarily lead
to good CATE estimation performance, Neal et al. [40] provide empirical evidence that doing so
indeed often does in practice.

Table 2 and Table 4 include the hyper-parameter search ranges we set in the SW and TCGA exper-
iments, respectively. Table 3 and Table 5 include the fixed hyper-parameter values across all SW
and TCGA experiments, respectively. We restricted the number of hyper-parameter optimization
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trials to 10 in all experiments. We observed that all models’ performances are rather insensitive to
hyper-parameter values in the considered search ranges, i.e., the performances across trials have not
varied much. The search ranges for the HSIC penalty λ are taken from the experimental section of the
GraphITE paper [16], where the authors also argue that their model’s performance is insensitive to
this weight. In consultation with Harada & Kashima [16], we use Ma et al. [34]’s implementation of
the normalized HSIC. We use early stopping for all models based on their training loss. We noticed
that a patience value below 10 often leads to pre-convergence stopping with subsequent sub-optimal
performance for all models but GIN.

D.2.1 SW

Hyper-parameter Search range
Num. of layers for covariates representations 2-4
Num. of layers for treatment representations 3-6
Num. of layers for m̂θ (X) ∗ 3-6
Num. of layers for êhη (X) ∗ 3-6
Num. of layer for final feed-forward network † 2-6
Dim. of hidden layers for covariates representations 50-300
Dim. of hidden layers for treatment representations 50-300
Dim. of hidden layers for m̂θ (X) ∗ 200-300
Dim. of hidden layers for êhη (X) ∗ 50-150
Dim. of ĝψ (X) , ĥφ (T) ∗ 50-250
Dim. of final covariates/treatment layer 2-200
Dim. of hidden layers for final feed-forward network 50-300
Num. update steps K∗ 10-20
Early stopping patience for m̂θ (X) ∗ {5, 10}
Early stopping patience for ĝψ (X) , ĥφ (T) , êhη (X) ∗ {1, 5}
Learning rates λψ, λφ∗ {5e-4, 1e-3}
Learning rate † {5e-4, 1e-3}
Dropout for m̂θ (X) ∗ {0, 0.2}
Dropout for êhη (X) ∗ {0, 0.2 }
Weight of HSIC penalty λ‡ {0.001, 0.01, 1, 10, 100, 1000}

Table 2: Hyper-parameter search ranges for SW experiments. ∗ denotes hyper-parameter only
applicable for GIN; † applicable for all models but GIN, ‡ applicable only for GraphITE.

Hyper-parameter Value
Optimizer Adam [28]
Batch size 500
Weight decay (all optims.) 0
λθ, λη 1e-3
Early stopping patience † 10
GNN Batch Norm True
MLP Batch Norm (all MLPs) False
Activation functions (all layers) ReLU
Validation set size (in %) 20%

Table 3: Fixed hyper-parameter values across all SW experiments. ∗ denotes hyper-parameter only
applicable for GIN; † applicable for all models but GIN, ‡ applicable only for GraphITE.
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D.2.2 TCGA

Hyper-parameter Search range
Num. of layers for covariates representations 2-5
Num. of layers for treatment representations 3-6
Num. of layers for m̂θ (X) ∗ 2-4
Num. of layers for êhη (X) ∗ 1-6
Num. of layer for final feed-forward network † 1-5
Dim. of hidden layers for covariates representations 100-400
Dim. of hidden layers for treatment representations 100-400
Dim. of hidden layers for m̂θ (X) ∗ 100-300
Dim. of hidden layers for êhη (X) ∗ 10-50
Dim. of ĝψ (X) , ĥφ (T) ∗ 200-600
Dim. of final covariates/treatment layer 2-800
Dim. of hidden layers for final feed-forward network 100-400
Num. update steps K∗ 10-20
Early stopping patience for ĝψ (X) , ĥφ (T) , êhη (X) ∗ {5, 10}
Learning rates λψ, λφ∗ {5e-4, 1e-3}
Learning rate † {5e-4, 1e-3}
Weight of HSIC penalty λ‡ {0.001, 0.01, 1, 10, 100, 1000}

Table 4: Hyper-parameter search ranges for TCGA experiments. ∗ denotes hyper-parameter only
applicable for GIN; † applicable for all models but GIN, ‡ applicable only for GraphITE.

Hyper-parameter Value
Optimizer Adam [28]
Batch size 1000
Weight decay (all optims.) 0
λθ, λη 1e-3
Early stopping patience † 10
GNN Batch Norm True
MLP Batch Norm (all MLPs) False
Activation functions (all layers) ReLU
Validation set size (in %) 20%

Table 5: Fixed hyper-parameter values across all TCGA experiments. ∗ denotes hyper-parameter only
applicable for GIN; † applicable for all models but GIN, ‡ applicable only for GraphITE.

D.2.3 Hardware details

All experiments were run on Microsoft Azure Virtual Machines with 12 Intel Xeon E5-2690 v4 CPUs
and 2 NVIDIA Tesla K80 GPUs. No single trial took longer than ∼ 30 minutes to run.
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E Additional Results

E.1 Comparison of Performances on different K Treatments

We present additional WPEHE@K results for the experiments in Section 6.2 with varying K.

Method SW TCGA
In-sample Out-sample In-sample Out-sample

WPEHE@2
Zero 52.17± 7.37 41.36± 5.04 25.17± 8.12 17.33± 5.41
CAT 44.63± 8.18 37.65± 5.90 160.35± 58.56 149.75± 46.86
GNN 32.98± 6.63 26.47± 3.87 29.35± 8.90 27.17± 8.67
GraphITE 30.18± 6.45 25.39± 4.04 28.60± 9.44 27.37± 9.87
GIN 18.00± 3.83 15.30± 2.60 10.44± 3.62 7.76± 1.56

WPEHE@3
Zero 51.61± 7.24 41.53± 4.96 25.97± 7.96 17.50± 5.11
CAT 44.87± 7.53 37.59± 5.46 159.48± 56.46 148.80± 44.87
GNN 32.97± 5.75 26.60± 3.70 30.22± 8.77 27.29± 8.30
GraphITE 30.39± 5.89 25.70± 3.70 29.71± 9.43 27.27± 9.38
GIN 19.79± 4.06 15.54± 2.56 10.62± 3.56 7.94± 1.51

WPEHE@4
Zero 52.92± 7.47 47.93± 6.68 26.35± 7.79 17.76± 5.05
CAT 46.95± 7.65 42.47± 6.91 158.02± 54.76 148.08± 43.71
GNN 33.89± 5.73 31.51± 5.27 30.51± 8.57 27.53± 8.23
GraphITE 31.43± 5.75 30.39± 5.71 30.07± 9.22 27.48± 9.28
GIN 20.78± 4.11 19.50± 4.12 10.76± 3.51 8.08± 1.51

WPEHE@5
Zero 55.02± 8.00 50.75± 7.92 26.53± 7.66 17.91± 4.96
CAT 49.78± 8.37 46.65± 8.86 156.77± 53.58 147.20± 42.86
GNN 36.06± 6.69 34.16± 6.41 30.61± 8.41 27.61± 8.10
GraphITE 33.69± 6.56 33.13± 6.92 30.22± 9.08 27.53± 9.12
GIN 22.06± 4.40 21.19± 4.80 10.90± 3.47 8.13± 1.49

WPEHE@6
Zero 56.26± 8.12 53.77± 8.93 26.63± 7.55 17.94± 4.86
CAT 51.75± 8.85 49.76± 9.73 155.88± 52.82 146.62± 42.32
GNN 37.10± 6.84 36.74± 7.42 30.67± 8.29 27.57± 7.95
GraphITE 34.81± 6.70 35.94± 8.07 30.31± 8.96 27.48± 8.95
GIN 23.00± 4.56 23.19± 5.56 10.98± 3.45 8.15± 1.46

WPEHE@7
Zero 58.16± 8.38 55.73± 9.01 26.66± 7.48 17.97± 4.81
CAT 54.62± 9.27 52.21± 9.74 155.24± 52.25 146.15± 41.90
GNN 39.21± 7.05 38.51± 7.50 30.67± 8.21 27.56± 7.86
GraphITE 37.00± 7.10 37.34± 8.05 30.33± 8.88 27.47± 8.86
GIN 24.71± 5.07 24.46± 5.79 11.02± 3.43 8.17± 1.45

WPEHE@8
Zero 59.57± 8.74 56.61± 8.94 26.73± 7.43 18.03± 4.76
CAT 56.24± 9.71 53.33± 9.71 154.86± 51.85 145.94± 41.61
GNN 40.44± 7.36 39.04± 7.33 30.72± 8.16 27.49± 8.78
GraphITE 38.42± 7.46 38.06± 7.89 30.39± 8.82 27.49± 8.78
GIN 25.90± 5.51 25.63± 6.03 11.10± 3.43 8.20± 1.44

WPEHE@9
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Zero 60.39± 8.94 55.72± 8.44 26.75± 7.40 18.06± 4.73
CAT 57.78± 10.27 53.06± 9.36 154.60± 51.57 145.73± 41.37
GNN 41.45± 7.60 38.47± 6.92 30.72± 8.11 27.60± 7.74
GraphITE 39.43± 7.69 37.43± 7.48 30.39± 8.78 27.50± 8.72
GIN 26.76± 5.80 25.30± 5.75 11.12± 3.42 8.22± 1.43

WPEHE@10
Zero 60.92± 9.10 56.44± 8.91 26.78± 7.35 18.09± 4.71
CAT 58.32± 10.29 54.76± 10.56 154.39± 51.32 145.57± 41.21
GNN 42.08± 7.82 39.11± 7.24 30.73± 8.07 27.61± 7.70
GraphITE 40.26± 7.94 37.99± 7.80 30.41± 8.74 27.51± 8.69
GIN 27.47± 6.07 26.01± 6.06 11.13± 3.41 8.23± 1.43

Table 6: Error of CATE estimation for all methods, measured by WPEHE@1 − 10. Results are
averaged over 10 trials, ± denotes std. error.

E.2 Comparison of Robustness to different Bias Strengths κ

We present additional WPEHE@K results for the experiments in Section 6.3 over increasing bias
strength κ and varying K.
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Figure 5: WPEHE@K over increasing bias strength κ and varying K.

F Quasi-oracle rates for generalized R-Learner

The goal of this section is to establish error bounds for learning conditional average treatment effects
(CATEs) when treatments are continuous. To do so, we will assume that the response function,
E[Y |X,T] can be written as follows,

E
[
Y | X,T

]
= α (X)

>
Θ∗β (T) , (33)

where α(X) ∈ RdX ,β(T) ∈ RdT are fixed, known basis functions6 (where dX, dT < ∞) and
Θ∗ ∈ RdX×dT is unknown. We will show that we can learn Θ∗ using the generalized Robinson
decomposition in eq. (10) (i.e., the minimization is now over Θ) with the same error rate as if we had
known the true oracle nuisance functions m∗ and ep, provided our estimates of m∗ and eP converge
to the ground truths at O(n−1/4) rate.

The reason we consider the above fixed basis setting instead of the more generic setup in the paper is
because there are many things that make the analysis of a more general setup difficult:

• There is a non-trivial dependence between estimators m(·), e(·), g(·), h(·) created by fitting using
the entire dataset (as opposed to using cross-fitting).

• Representation learning of the features typically involves non-convex loss functions; the conver-
gence analysis of such is largely still an untackled question.

• In the infinite-basis setting the problem becomes ill-posed (our current work provides insight into
fixing this, in particular in Lemma 8).

Addressing these issues is an interesting area of future work. Meanwhile, in this work, we focus on
the scenario where the features (i.e. basis functions) are fixed. We first sketch our result without
technical jargon as follows.

6In deep learning jargon, each dimension of the basis functions, αi, βj , is simply called a feature.
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Theorem (Sketch). Write m(x) := E
[
Y | X = x

]
and eP (x) := E

[
β(T) | X = x

]
. When the

ground truths m and eP are unavailable, we can still estimate E
[
Y | X,T

]
almost with rate

O
(
n−1/2

)
using only estimates of m and eP , provided the estimates themselves converge at rate

O
(
n−1/4

)
.

F.1 Preliminaries

To specify the above formally, we follow e.g. [53] to construct an RKHS for the hypothesis space
of the response function f as follows. Let X and T be compact metric spaces, endowed with
finite Borel measures PX and PT . Let {αi}dαi=1 ⊂ L2(X ,PX ) and {βi}

dβ
i=1 ⊂ L2(T ,PT ) denote

subsets of orthonormal functions in L2(X ,PX ) and L2(T ,PT ) which are feature maps for X and
T, respectively. Write α,β ∈ Rdα ,Rdβ as the vectors of features on X and T, with αi(x) := αi(x)
and βj(t) := βj(t). Then define kX : X × X → R as kX(x1,x2) = 〈α(x1),α(x2)〉2 where
〈·, ·〉2 is the standard Euclidean dot product in Rd, and define similarly kT : T × T → R as
kT(t1, t2) = 〈β(t1),β(t2)〉2. Then clearly kX and kT are positive definite functions and by
Moore-Aronsajn [53, Section 4] there exist unique RKHSesHX ,HT with kernels kX and kT.

For the readers familiar with [42], we can connect the setup to that of [42] as follows: following e.g.
[36], an element g inHX can be represented by g(x) = 〈θ,α(x)〉2 = 〈g,α(x)〉HX . Following [53],
we can define an integral operator based on the kernel kX:

SkX
: L2(X ;PX )→ C(X ) where C(X ) are the continuous functions on X . (34)

(SkX
f)(X) =

∫
kX(x1,x2)f(x2)dPX (x2), f ∈ L2(X ;PX ) (35)

TkX
= IkX

◦ SkX
(36)

with the inclusion IkX
: C(X ) ↪→ L2(X ;PX ) (37)

Clearly the eigenfunctions of TkX
are the orthonormal functions {αi}dαi=1 and the non-zero eigenvalues

are {σi = 1}dαi=1.

HT can be dealt with similarly to HX . Since HX×T is isometrically isomorphic to HX × HT ,
we can identify the basis functions on HX×T as {αiβj}

dα,dβ
i,j=1 , the eigenvalues as {σij = 1}dα,dβi,j=1 ,

and the inner product 〈·, ·〉HX×T = 〈·, ·〉HX 〈·, ·〉HT . By construction, the RKHS norm and the
L2 norm of HX×T are both equal to the matrix 2−norm of the function representer, that is, for
f ∈ HX×T , f(x, t) = 〈Θ,α(x)⊗ β(t)〉2,

‖f‖HX×T = ‖f‖L2
= ‖Θ‖2 (38)

Trivially, for all 0 < p < 1, the eigenvalues σij satisfy G = supi,j≥1(i+ dX(j− 1))1/pσij for some
constant G <∞, which was posed as an assumption in [42].
Remark 1. We did not need to require X and T as compact metric spaces. Requiring them to be
measurable spaces on which we can define L2 functions should be enough. But compact metric
spaces also include most spaces of practical concern, including graph spaces, so we choose it since
it satisfies the conditions of Mercer’s theorem.

F.2 Problem set-up

We assume that the true response function lie inHX×T :
Assumption 4. The true response function f∗(x, t) = E[Y | X = x,T = t] can be written as
f∗(x, t) = α>(x)Θ∗β(t) for some matrix of coefficients Θ∗.

First we write down the population and empirical loss functions we consider. In order to assert
that every element ofHX×T can be uniquely represented by some Θ, we use fΘ to denote fΘ :=
α(x)TΘβ(t) ∈ HX×T .

The expected loss of fΘ is defined by:

L(fΘ) = L(Θ) = E
[{

(Y −m∗(X))−α(X)TΘ(β(T)− eP (X))
}2
]

(39)
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The oracle (empirical) loss is defined by:

L̃n(fΘ) = L̃n(Θ) =

n∑
l=1

[{
(Y −m∗(Xl))−α(Xl)

TΘ(β(Tl)− eP (Xl))
}2
]

(40)

The feasible (empirical) loss is defined by:

L̂n(fΘ) = L̂n(Θ) =

n∑
l=1

[{
(Y − m̂(Xl))−α(Xl)

TΘ(β(Tl)− êP (Xl))
}2
]

(41)

Note that we use L(fΘ) and L(Θ) interchangeably due to the bijection between Θ ∈ RdX×dT and
HX×T .

The corresponding regret functions are defined by

R(Θ) = L(Θ)− L(Θ∗) (42)

R̃n(Θ) = L̃n(Θ)− L̃n(Θ∗) (43)

R̂n(Θ) = L̂n(Θ)− L̂n(Θ∗) (44)

We now formally state the assumptions we need to derive the result in Theorem 2.
Assumption 5 (Overlap). The marginal distribution of features Pα(X )β(T ) is positive, i.e.
supp[Pα(X )β(T )] = α(X )β(T ).
Assumption 6 (Boundedness). Without loss of generality, we assume that for all X ∈ X ,T ∈ T ,
supi ‖αi(X)‖∞, supj ‖βj(T)‖∞ ≤ A <∞. We also assume that the outcome Y are almost surely
bounded, i.e. P(|Y | < B <∞) = 1.

For clarity, we list all notations we use here.

Notation.

• H: A Product Reproducing Kernel Hilbert Space with finite number of basis functions, with
α the features of X and β the features of T .

• Θ: The matrix of coefficients for a given function inH.
• fΘ: fΘ(X,T ) := α(X)>Θβ(T ).
• Hc: The subset ofH which is the ball of radius c.
• Θc: fΘc is a minimiser of the loss inHc.
• R(fΘ): L(fΘ)− L(f∗).
• R(fΘ; c): L(fΘ)− L(fΘc)

Convention. Throughout, we will use capital letters A,B,C, ..., possibly with subscripts and
superscripts, e.g. A1, B

(2), etc. to denote constants. We may overload notation and use the same
letter to denote different constants.

F.3 Proof strategy

Here we lay forward the detailed proof for the quasi-oracle convergence rate for a featurized continu-
ous heterogeneous treatment effect estimation algorithm with Robinson decomposition. Our proof
extends the structure of Nie & Wager [42]. To make the proof self-contained while simultaneously
highlighting the differences with Nie & Wager [42], we present a complete version of the proof,
where we will pause to describe any difference and its significance where it appears.

The high-level idea of showing ‘quasi-oracle’ error rate is as follows. First, we show that both the
feasible loss and the oracle loss satisfy the same (quasi-)isomorphism with the true loss, where
the tightness of the quasi-isomorphism increases as sample size increases. The quasi-isomorphism
with the true loss then leads us to bound the feasible and oracle losses by the same quantity, which
decreases to 0 as sample size grows indefinitely. To show the (quasi-)isomorphism for the oracle
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learner can be done by leveraging on the standard least-squares regression ideas [36]; to achieve the
same for the feasible learner relies on the fact that the feasible loss differs from the oracle loss by
only a small amount relative to the true loss, which constitutes the bulk of the proof.

We start with stating the formal lemma which connects quasi-isomorphism with loss bounds.

F.4 From quasi-isomorphism to regret bound

Definition 3 (loss function). A function is a loss function if it maps from a hypothesis class H, to
the real numbers R.

Lemma 4. Let Ľ(fΘ ∈ Hc) be a loss function, and Ř(fΘ; c) = Ľ(fΘ)− Ľ(fΘc) be the associated
c-regret. Suppose ρ(r) is a positive, continuous, increasing function. If, ∀ 1 ≤ c ≤ C and some
k > 1, the following inequality holds for all fΘ ∈ Hc:

1

k
Ř(fΘ; c)− ρ(c) ≤ R(fΘ; c) ≤ kŘ(fΘ; c) + ρ(c) (45)

Then, writing κ1 = 2k + 1
k and κ2 = 2k2 + 3, any solution to the regularized minimization problem

with Λ(c) ≥ ρ(c),
fΘ̌ ∈ arg min

fΘ∈HC
{Ľ(fΘ) + κ1Λ(fΘ)H} (46)

also satisfied the following risk bound:

L(fΘ̌) ≤ inf
fΘ∈HC

{L(fΘ) + κ2Λ(fΘ)H (47)

Proof. Notice that {Hc; c ≥ 1} is an ordered set. Thus the same argument as [42] applies.

Lemma 4 tells us that if we have a quasi-isomorphism of the regrets in the form of 45, we immediately
can bound the expected risk of the (regularized) minimizer of the corresponding loss, Ľ as in 47.

F.5 A concrete instance of ρ(c) satisfying 45

By setting Ř to R̃n, 4 gives us a way to bound the oracle regret, but we still need a concrete
formulation of ρ(c) to derive the oracle convergence rate. To this end, we may use the result of
Mendelson & Neeman [36], but first we must show that their results can be applied to our setting.

Mendelson & Neeman [36] consider the optimization over a space of RKHS functions with the
least-squares loss. Our oracle case can be thought of in the same way as follows: since m∗ is
an oracle quantity, Y − m∗(X) can be thought of as the labels, the space H = {fΘ : X ×
T → R; for some Θ ∈ RdX×dT , fΘ(x, t) = α(x)>Θ(β(t) − eP (x))} is an RKHS with features
α(X)⊗ (β(T)− eP (X)). Thus, our setting can be thought of as a least-squares optimization over
the RKHSH and the results from [36] applies. To use the results of [36], we still need the following
technical result which decomposes H̄ into an ordered, parameterized hierarchy.

Definition 5 (Ordered, parameterized hierarchy). As defined in [36], let F be a class of functions
and suppose that there is a collection of subsets {Fr; r ≥ 1} with the following properties:

1. {Fr : r ≥ 1} is monotone (i.e. whenever r ≤ s,Fr ⊆ Fs);

2. for every r ≥ 1, there exists a unique element f∗r ∈ Fr such that L(f∗r ) = inff∈Fr L(f);

3. the map r → L(f∗r ) is continuous;

4. for every r0 ≥ 1,
⋂
r≤r0 Fr = Fr0 ;

5.
⋃
r≤1 Fr = F .

Given a class of functions F , we say that {Fr; r ≥ 1} is an ordered, parameterized hierarchy of F
if the above conditions 1-5 are satisfied.
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Lemma 6. Define

Hc := {fΘ : X × T → R : ∃Θ, ‖Θ‖2 ≤ c, (48)

s.t. fΘ(X,T) = α(X)>Θ(β(T)− ep(X))}, (49)

then
{
Hc
}

1≤c≤C
is an ordered parameterized hierarchy.

Proof. The first, fourth and fifth properties follow immediately. Hc is clearly convex. It is compact
because every sequence {fΘi

}i ⊂ Hc is induced by {Θi}i ⊂ Rn, ‖Θi‖2 ≤ c, and by Bolzano-
Weierstrass theorem in Rn, every bounded sequence has a convergent subsequence {Θk}k ⊂ {Θi}i
(w.r.t. the Euclidean norm). Thus pick the N such that for all k ≥ N where ‖Θk −ΘN‖2 ≤ ε, and
then∥∥fΘk

− fΘN

∥∥
L2(P (X ,T ))

=
∥∥fΘk−ΘN

∥∥
L2(P (X ,T ))

= E
[
〈Θk −ΘN ,α(X)⊗ (β(T)− ep(X))〉2

]1/2
(50)

≤ E
[
‖Θk −ΘN‖2

∥∥α(X)⊗ (β(T)− ep(X))
∥∥

2

]1/2
(51)

≤ εE
[∥∥α(X)⊗ (β(T)− ep(X))

∥∥
2

]1/2
≤ εB, (52)

where
∥∥α(X)⊗ (β(T)− ep(X))

∥∥
2
≤ B by Assumption 6 for some constant B. The second property

now follows from the fact thatHc is convex and compact. The third property follows by the same
argument as [36].

Mendelson & Neeman [36] thus provides a formulation of ρ which, with some constant U(ε), for
large enough n and probability at least 1− ε, satisfies 120 for the oracle loss function R̃n with k = 2:

ρn(c) = U (ε)
{

1 + log (n) + log
(
log (c+ e)

)}( (c+ 1)p log(n)√
n

)2/(1+p)

(53)

Thus, we may now realize the convergence rate for the oracle learner as follows.

F.6 Oracle convergence rate.

With 53, Lemma 4 immediately implies that penalized regression over HC with the oracle loss
function L̃n(·) and regularizer κ1ρn(c) satisfies the bound below with high probability:

R(Θ̃n) = L(Θ̃n)− L(Θ∗) ≤ inf
Θ∈HC

{L((Θ) + κ2ρn(‖Θ‖H)} − L(Θ∗) (54)

Furthermore, Corollary 2.7 in [36] gives that for any 1 < c < C,

inf
Θ∈HC

{L(Θ) + κ2ρn(‖Θ‖H)} ≤ L(Θ∗) + {L(Θ∗c)− L(Θ∗)}+ κ2ρn(c) (55)

Finally, note that for large enough c,{
L (Θ∗c)− L (Θ∗)

}
= 0, (56)

so the error is dominated by ρn(c), at

R
(
Θ̃n

)
= O

((
log(n)

) 3+p
1+p n−

1
1+p

)
= Õ(n−

1
1+p ), (57)

where Õ notation ignores the logarithmic factors.
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F.7 Bridging R̂n and R̃n

Now that we have the oracle convergence rate, we show a bridging result which will let us conclude
that 45 holds for R̂n as well, and thus the oracle rate also holds for R̂n.

To yield that bridging result, we first need to leverage the assumption of overlap to relate the L2

difference between fΘ and fΘc , i.e. E
[(
fΘ(X,T)− fΘc(X,T)

)2]
, with the c−regret R(Θ; c).

We first show that the L2 difference is always upper bounded by the regret up to a constant.
Lemma 7. ∃ε > 0 s.t. for all f ∈ Hc, Eα[〈f, α〉2] ≥ ε‖f‖L2

where α is a r.v. taking values inHc
and the support of α is of Lebesgue-measure non-zero inHc.

Proof. Let S = {f ∈ Hc : ‖f‖Hc = 1}, and define g : S → R+ as g(f) = Eα[〈f, α〉2]. By
Jensen’s inequality, Eα[〈f, α〉2] ≥ 0 since 〈f, ·〉2 : α 7→ 〈f, α〉2 is a convex function in α. Moreover,
whenever supp[Pα] is Lebesgue-measure non-zero inHc, 〈f, ·〉2 is non-linear on supp[Pα], so the
inequality is strict:

Eα[〈f, α〉2] > 0. (58)
Now since Hc is finite-dimensional, S is compact. Since g is continuous in f , and the continuous
image of a compact set is compact, we have that g(S) is compact, and therefore closed.

Note, at this point, that g(S) is the set of values achieved by Eα[〈f, α〉2] at various values of f . By
equation 58, g(S) 63 0. Since g(S) is compact, its complement thus contains 0. Moreover, since
R+ \ g(S) 3 0, ∃ a ball around 0 of radius ε̃ > 0 s.t. [0, ε̃) ⊂ R+ \ g(S). Therefore, g(S) ⊂ R+ is
lower bounded by ε̃ > 0.

Therefore,

∀f ∈ Hc,Eα
[
〈f, α〉2

]
=‖f‖2Hc Eα

〈 f

‖f‖2Hc
, α

〉2
 ≥ ε‖f‖2Hc = ε‖f‖2L2

, (59)

for some ε > 0. The last inequality is due to 38.

Lemma 8 (Usage of the overlap condition in the multiple treatment setting). Under Assumption 5,
i.e. we have overlap on the features, that is supp[Pα(X )×β(T )] = α(X )× β(T ), then ∃A ∈ R s.t.

E[
(
fΘ(X,T )− fΘc(X,T )

)2
] < AR(Θ; c) (60)

Proof. WithinHc, we seek to upper bound excess L2 risk of fΘ by its c-regret R(Θ; c); R(Θ; c) =
L(Θ)− L(Θc).

First we write down the expected loss functional again:

L(Θ) = E[({Y −m∗(X)} − {fΘ(X.T)− E[fΘ(X,T)|X]})2] (61)

= E[V{Y −m∗(X)|X,T}] + E[{(f∗(X,T)− fΘ(X,T))− E[f∗(X,T)− fΘ(X,T) | X]}2]
(62)

Thus the regret of Θ, which is defined as L(Θ)− L(f∗), is:

R(Θ) = E
[{

(f∗(X,T)− fΘ(X,T)− E[f∗(X,T)− fΘ(X,T) | X]
}2
]

(63)

= E[{(fΘ(X,T)− fΘc(X,T))− E[fΘ(X,T)− fΘc(X,T) | X]

+ (fΘc(X,T)− f∗(X,T))− E[fΘc(X,T)− f∗(X,T) | X]}2] (64)

= E[{fΘ(X,T)− fΘc(X,T))− E[fΘ(X,T)− fΘc(X,T) | X]}2]

+ E[{fΘc(X,T)− f∗(X,T)− E[fΘc(X,T)− f∗(X,T) | X]}2]

+ 2E[{(fΘ(X,T)− fΘc(X,T))− E[fΘ(X,T)− fΘc(X,T) | X]}
· {(fΘc(X,T)− f∗(X,T))− E[fΘc(X,T)− f∗(X,T) | X]}] (65)

Note that, by definition the c-regret of Θ is just the difference between the regret of Θ and Θc. And
the regret of Θc is the second term in equation 65. Thus, the c-regret of Θ is the first and third term
of equation 65.
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Now, note that the third term is non-negative becauseHc is convex. To see this, note that it is equal to

∂

∂ε
R
(
Θc + ε (Θ−Θc)

)
|ε=0, (66)

which must be non-negative for any Θ ∈ Hc since otherwise there will be another point inHc which
has a smaller regret than Θc.

Therefore,

R(Θ; c) ≥ E
[{
fΘ(X,T)− fΘc(X,T))− E

[
fΘ(X,T)− fΘc(X,T) | X

]}2
]

(67)

= E
[{
α(X)>(Θ−Θc)(β(T)− ep(X))

}2
]

(68)

= E
[〈

Θ−Θc,α(X)⊗ (β(T)− ep(X))
〉2]

(69)

Now, we would like to show that E
[〈

Θ−Θc,α(X)⊗
(
β(T)− ep(X)

)〉2
]

is bounded below by

the norm of Θ−Θc up to some multiplicative constant. We do so using Lemma 7. Under the context
of Lemma 7, set f := Θ−Θc, and α := α(X)⊗ (β(T)− ep(X)). To check that the support of α
is not of measure 0, we first note that the support of α(X) is not measure 0 by assumption; secondly,
the support of β(T)− ep(X) is not measure 0 provided that P (β(T ) | X) is a positive measure for
any X . Then by Lemma 7, we have that ∃ε > 0

R(Θ; c) ≥ ε‖fΘ − fΘc‖L2 (70)

Immediately after Lemma 8, we derive a bound on the infinity norm using the regret function which
we will repeatedly use later.
Corollary 9. Following from 38 and Lemma 8,

‖Θ−Θc‖∞ ≤ const(p)‖fΘ − fΘc‖
p
H‖fΘ − fΘc‖

1−p
L2
≤ const(p)cpR(Θ; c)

1−p
2 (71)

where we note that the second inequality follows from combining Lemma 8 with the fact that for
fΘ ∈ Hc,‖fΘ − fΘc

‖ ≤ 2c by the triangle inequality.

Proof. Immediate from 38 and Lemma 8.

Using Lemma 8, we can further show that the L2 difference between two constrained optima only
depends on the L2 norm of the one with the weaker constraint.
Corollary 10. Suppose we have overlap, i.e. Assumption 5. Then with a positive constant const. > 0,
the following holds for 1 < c < c′.

‖fΘc − fΘc′‖L2
≤ const.‖fΘc′‖L2

(72)

Proof. We have shown that
R(Θ; c) ≥ ε‖fΘ − fΘc

‖2L2
(73)

Then following [42], we check that

‖Θc −
c

c′
Θc′‖2L2

≤ εR(
c

c′
Θc′ ; c) (74)

= ε

(
L(

c

c′
Θc′)− L(Θc)

)
(75)

≤ ε
(
L(

c

c′
Θc′)− L(Θc′)

)
(76)

= ε

(
R(

c

c′
Θc′)−R(Θc′)

)
(77)
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To bound R
(
c
c′Θc′

)
−R (Θc′), note

R(Θ) = E
[
{(fΘ(X,T)− fΘc′ (X,T))− E[fΘ(X,T)− fΘc′ (X,T) | X]}2

]
+ E

[
{fΘc′ (X,T)− f∗(X,T)− E[fΘc′ (X,T)− f∗(X,T) | X]}2

]
+ 2E

[{
(fΘ(X,T)− fΘc′ (X,T))− E

[
fΘ(X,T)− fΘc′ (X,T) | X

]}
·
{

(fΘc′ (X,T)− f∗(X,T))− E
[
fΘc′ (X,T)− f∗(X,T) | X

]}]
(78)

so R(Θc′) is just the second term of equation 78, which we drop when considering R( cc′Θc′) −
R(Θc′)

R

(
c

c′
Θc′

)
−R(Θc′) = E

[
{( c
c′
− 1)fΘc′ (X,T)− E[(

c

c′
− 1)fΘc′ (X,T) | X]}2

]
+ 2E

[{
(
c

c′
− 1)fΘc′ (X,T)− E

[
(
c

c′
− 1)fΘc′ (X,T) | X

]}

·
{

(fΘc′ (X,T)− f∗(X,T))− E
[
fΘc′ (X,T)− f∗(X,T) | X

]}]
(79)

= E

[{
α(X)>

(
c

c′
− 1

)
Θc′

(
β(T)− ep(X)

)}2 ]

+ 2E

[{
α(X)>

(
c

c′
− 1

)
Θc′

(
β(T)− ep(X)

)}

·
{

(fΘc′ (X,T)− f∗(X,T))− E
[
fΘc′ (X,T)− f∗(X,T) | X

]}]
(80)

Denote the two terms E1 and E2. By the same argument as Lemma 7, where the Lebesgue-measure-
non-zero condition is satisfied by Assumption 5, there exist a constant const. > 0 such that E1 ≥(
c
c′ − 1

)2
const.‖fΘc′‖L2

→ const.‖f∗‖L2
as c′ →∞. But for E2, note that ‖fΘc′ − f

∗‖L2
→ 0

as c′ →∞. So E2 = o(E1), and under mild conditions there exists a constant F > 0 such that for
all c, c′,

R

(
c

c′
Θc′

)
−R(Θc′) ≤ FE

[{
α(X)>Θc′

(
β(T)− ep(X)

)}2
]

(81)
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. Then note:

E

[{
α(X)>Θc′

(
β(T)− ep(X)

)}2
]

= E

[
〈Θc′ ,α(T)⊗ (β(T)− ep(X))〉2

]
(82)

= E

[
〈Θc′ ⊗Θc′ , (α(T)⊗ (β(T)− ep(X)))⊗ (α(T)⊗ (β(T)− ep(X)))〉

]
(83)

= 〈Θc′ ⊗Θc′ ,E

[
(α(T)⊗ (β(T)− ep(X)))⊗ (α(T)⊗ (β(T)− ep(X)))

]
〉 (84)

≤‖Θc′ ⊗Θc′‖
∥∥∥E [(α(T)⊗ (β(T)− ep(X)))⊗ (α(T)⊗ (β(T)− ep(X)))

]∥∥∥ (85)

= ‖Θc′‖2

∥∥∥∥∥∥∥E
[
(α(T)⊗ (β(T)− ep(X)))⊗ (α(T)⊗ (β(T)− ep(X)))

]︸ ︷︷ ︸
constant

∥∥∥∥∥∥∥ (86)

= const.‖fΘc′‖
2
Hc′ (87)

= const.‖fΘc′‖
2
L2

(88)

where Eq. 85 is by Cauchy-Schwarz and the equation 86 uses the fact that under Euclidean norms for
finite dimensional real vectors a,b, ‖a⊗ b‖ = ‖a‖‖b‖. equation 87 is due to the vector 2-norm of
Θ is equal to the RKHS norm of fΘ, and equation 88 is due to the fact that in finite dimensions all
norms are Lipschitz equivalent. Note that the constant factors in 87 and 88 may be different but that
both positive.

Then finally by the triangle inequality,

‖fΘc − fΘc′‖L2 ≤ ‖fΘc′ −
c

c′
fΘc′‖L2 + ‖fΘc −

c

c′
fΘc′‖L2 (89)

≤
(

1− c

c′

)
‖fΘc′‖L2

+ constant.‖fΘc′‖L2
(90)

≤ const.‖fΘc′‖L2
(91)

again for a positive constant factor in the last equality.

Now we have arrived at the position to bound the difference between the oracle and feasible regrets
by functions of the true regret. We first present Lemma 11 which bounds the difference between R̂n
and R̃n in terms of R. Then, we leverage the result by [42] to linearize the dependence on R.
Lemma 11. Suppose that the propensity estimate ep(x) is uniformly consistent,

sup
x∈X
‖êp(x)− ep(x)‖ →p 0 (92)

and the L2 errors converge at rate

E
[
{m̂(X)−m∗(X)}2

]
,E
[
‖êp(X)− ep(X)‖2

]
= O(a2

n) (93)

for some sequence an → 0. Suppose, moreover, Assumptions 5, 6 and 4 hold. Then, for any ε > 0,
there exists a constant U(ε) such that the regret functions induced by the oracle learner and the
feasible learner are coupled with probability at least 1− ε as∣∣∣R̂n(Θ; c)− R̃n(Θ; c)

∣∣∣ ≤ U(ε)
{
cpR(Θ; c)(1−p)/2a2

n + c2pR(Θ; c)1−p 1√
n

log(n)

+c2pR(Θ; c)1−p 1
n log

(
cn1/(1−p)

R(Θ;c)

)
+ cpR(Θ; c)1− p2 1√

n

√
log
(
cn1/(1−p)

R(Θ;c)

)
+cpR(Θ; c)(1−p)/2an

1√
n

√
log
(
cn1/(1−p)

R(Θ;c)

)
+ ξnR(Θ; c)

} (94)

simultaneously for all 1 ≤ c ≤ log(n).
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Proof. Following [42], we start by decomposing the feasible loss function L̂n(Θ) into the oracle
loss together with additional terms as follows:

L̂n(Θ) =
1

n

n∑
l=1

(
(Yl − m̂(−q(l))(Xl))−α(Xl)

>Θ(β(Tl)− êp(−q(l))(Xl))
)2

(95)

=
1

n

n∑
l=1

[
(Yl −m∗(Xl)) + {m∗(Xl)− m̂(Xl)} −α(Xl)

>Θ(β(Tl)− ep(Xl))

− α(Xl)
>Θ(ep(Xl)− êp(−q(l))(Xl))

]2
(96)

=
1

n

n∑
l=1

[
{Yl −m∗(Xl)} −α(Xl)

>Θ(β(Tl)− ep(Xl))
]2

+
1

n

n∑
l=1

[{m∗(Xl)− m̂(Xl)} −α(Xl)
>Θ(ep(Xl)− êp(−q(l)))]

2

+
2

n

n∑
l=1

[
{Yl −m∗(Xl)} −α(Xl)

>Θ(β(Tl)− ep(Xl))
]

·
[
{m∗(Xl)− m̂(−q(l))(Xl)} −α(Xl)

>Θ(ep(Xl)− êp(−q(l))(Xl))
]

(97)

=
1

n

n∑
l=1

[
{Yl −m∗(Xl)} −α(Xl)

>Θ(β(Tl)− ep(Xl))
]2

+
1

n

n∑
l=1

[
{m∗(Xl)− m̂(−q(l))(Xl)} −α(Xl)

>Θ(ep(Xl)− êp(−q(l))(Xl))
]2

− 2

n

n∑
l=1

{Yl −m∗(Xl)}α(Xl)Θ(ep(Xl)− êp(−q(l))(Xl))

− 2

n

n∑
l=1

α(Xl)
>Θ(β(Tl)− ep(Xl)){m∗(Xl)− m̂(−q(l))(Xl)}

+
2

n

n∑
l=1

α(Xl)
>Θ(β(Tl)− ep(Xl))α(Xl)

>Θ(ep(Xl)− êp(−q(l))(Xl)) (98)

Furthermore, we may verify that some terms cancel out when we restrict our attention to the main
objective of interest

R̂ (Θ; c)− R̃ (Θ; c) = L̂n (Θ)− L̂n (Θc)− L̃n (Θ) + L̃n (Θc) (99)
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In particular, note that the first term in the decomposition above is exactly L̃n(Θ). Thus

R̂(Θ; c)− R̃(Θ; c)

= − 2

n

n∑
l=1

{m∗(Xl)− m̂(−q(l))(Xl)}α(Xl)
>(Θ−Θc)(e

p(Xl)− êp(−q(l))(Xl))

+
1

n

n∑
l=1

{α(Xl)
>Θ(ep(Xl)− êp(−q(l))(Xl))}2 − {α(Xl)

>Θc(e
p(Xl)− êp(−q(l))(Xl))}2

− 2

n

n∑
l=1

{Yl −m∗(Xl)}α(Xl)
>(Θ−Θc)(e

p(Xl)− êp(−q(l))(Xl))

− 2

n

n∑
l=1

α(Xl)
>(Θ−Θc)(β(Tl)− ep(Xl)){m∗(Xl)− m̂(−q(l))(Xl)}

+
2

n

n∑
l=1

α(Xl)
>Θ(β(Tl)− ep(Xl))α(Xl)

>Θ(ep(Xl)− êp(−q(l))(Xl))

− 2

n

n∑
l=1

α(Xl)
>Θc(β(Tl)− ep(Xl))α(Xl)

>Θc(e
p(Xl)− êp(−q(l))(Xl))

(100)

Letting Ac1(Θ), Ac2(Θ), Bc1(Θ) and Bc3(Θ) denote these 5 summands respectively, we seek to bound
each of the terms in terms of R(Θ; c). Starting with Ac1(Θ), we extract Θ−Θc by its infinity norm
and by Cauchy-Schwarz,

|Ac1(Θ)| ≤ 2

√√√√ 1

n

n∑
l=1

{
m∗(X)− m̂(−q(l))(Xl)

}2

·

√√√√ 1

n

n∑
l=1

∥∥∥∥α(Xl)⊗
(
ep(X)− êp(−q(l))(Xl)

)∥∥∥∥2

· ‖Θ−Θc‖∞ (101)

(102)

Using the fact that ‖a ⊗ b‖ = ‖a‖‖b‖ for a and b some (finite dimensional) vector, we may
separate out the norm of α(X) and we know ‖α(X)‖2 is uniformly bounded by Assumption 6. By
equation 93 and Markov’s inequality, the mean squared errors of the m− and e−models decay at rate
OP (an). Therefore, applying 71 to bound the infinity-norm discrepancy ‖Θ−Θc‖∞, we find that
simultaneously for all c ≥ 1,

sup{c−pR(Θ; c)−
1−p

2 |Ac1(Θ)| : fΘ ∈ Hc, c ≥ 1} = OP (a2
n) (103)

Following [42] and using a similar argument to extract ‖α(X)‖ and bound Θ−Θc by the c-regret
‖R(Θ; c)‖, we get that

|Ac2| = OP
((

cpR(Θ; c)
1−p

2 + c2pR(Θ; c)1−p
)
a2
n

)
(104)

In order to bound Bc1(Θ), decomposing it with respect to the cross fitting structure, we consider

Bc1,q(Θ) =

∑
{l:q(l)} 2{Y −m∗(X)}α(Xl)

>(Θ−Θc)(e
p(Xl)− êp(−q(l))(Xl))

|{l : q(l) = q}|
, (105)

noting that |Bc1(Θ)| ≤ σQq=1|Bc1,q(Θ)|. In particular, we bound its supremum supBc1,q(Θ). To
proceed, we bound this quantity over sets indexed by c and δ such that ‖fΘ − fΘc

‖L2 ≤ δ:

sup
Θ∈Hc

{
Bc1,q(Θ) : ‖fΘ − fΘc

‖L2 ≤ δ
}
. (106)
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Letting I(−q) = {Xl,Tl, Yl : q(l) 6= q} denote the set of data points excluded in the q−fold, using
a similar procedure to [42], we can check that the conditional expectation E

[
Bc1,q | I(−q)

]
= 0. By

conditioning on I(−q), the summands in Bc1,q(Θ) become independent, as êp(X)(Xl) is now only
random in X.

Now, the next step in [42] is to bound the expectation of the supremum of Bc1,q using [42, Lemma 5]
and [42, Eq. (36)]. Since we work with a vector of propensity features instead of a single propensity
score unlike in [42], we need to apply [42, Lemma 5] d times where d is the dimension of ep(X):

Bc1,q(Θ) =
〈(Θ−Θc),

∑
{l:q(l)} 2{Y −m∗(X)}α(Xl)⊗ (ep(Xl)− êp(−q(l))(Xl))〉

|{l : q(l) = q}|
(107)

=

∑
ij(Θ−Θc)ij ,

∑
{l:q(l)} 2{Y −m∗(X)}αi(Xl)(e

p
j (Xl)− êp(−q(l)),j(Xl))

|{l : q(l) = q}|
, (108)

so

sup
fΘ∈Hc

{Bc1,q(Θ)} ≤
∑
ij supfΘ∈Hc

∑
{l:q(l)} 2{Y −m∗(X)}αi(Xl)(e

p
j (Xl)− êp(−q(l)),j(Xl))(Θ−Θc)ij

|{l : q(l) = q}|
(109)

So bounding each term indexed by ij using Lemma 5 of [42] and equation 93, we will get the same
bound as in [42] because the sum over ij is finite and α is bounded.

Then, using a similar argument to [42], we may obtain that for any fixed c, δ, ε > 0, there exists a
different constant B such that with probability at least 1− ε,

sup
τ∈Hc

{
Bc1,q(τ) | I(−q) : ‖fΘ − fΘc

‖L2
≤ δ
}

< B

cpδ1−pan
log(n)√

n
+
cpδ1−pan√

n

√
log

(
1

ε

)
+

1

n
cpδ1−p log

(
1

ε

)
, (110)

which holds unconditionally of I(−q). In order to establish the bound for all values of c and δ
simultaneously, we may proceed with the same argument as [42]; instead of [42, Lemma 6], we
replace with our Lemma 10, which is our extension to the multidimensional setting. Bc2(Θ) may be
bounded similarly.

To bound B3(Θ), the argument of [42] is easily extended as well, using the decomposition which we
detail below.

To simplify notation, write

al = α(Xl)⊗
(
β(Tl)− ep(Xl)

)
(111)

bl = α(Xl)⊗
(
ep(Xl)− êp(−q(l))(Xl)

)
(112)

33



Note:

Bc3 =
2

n

n∑
l=1

〈Θ,al〉〈Θ,bl〉 −
2

n

n∑
l=1

〈Θc,al〉〈Θc,bl〉 (113)

=
2

n

n∑
l=1

{
2〈Θ,al〉〈Θ,bl〉 − 〈Θ,al〉〈Θ,bl〉

− 〈Θc,al〉〈Θ,bl〉+ 〈Θc,al〉〈Θ,bl〉
− 〈Θ,al〉〈Θc,bl〉+ 〈Θ,al〉〈Θc,bl〉

− 〈Θc,al〉〈Θc,bl〉

}
(114)

=
2

n

n∑
l=1

{
〈Θ−Θc,al〉〈Θ,bl〉+ 〈Θ,al〉〈Θ−Θc,bl〉 (115)

− 〈Θ−Θc,al〉〈Θ−Θc,bl〉

}
(116)

≤

∣∣∣∣∣∣ 2n
n∑
l=1

〈Θ−Θc,al〉〈Θ,bl〉

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 2n
n∑
l=1

〈Θ,al〉〈Θ−Θc,bl〉

∣∣∣∣∣∣
+

2

n

n∑
l=1

‖Θ−Θc‖22‖al‖2‖bl‖2 (117)

where the last term of the last inequality follows by Cauchy-Schwarz.

The first two terms can be bounded similarly to the argument used for bounding Bc1(Θ). For the last
term, we note that ‖Θ−Θc‖2 = ‖fΘ − fΘc‖L2

since by construction the RKHS norm and the L2

norms are equal. Therefore, the last term is bounded by ξn‖fΘ − fΘc‖L2 where

ξn = ‖α(Xl)⊗ (β(Tl)− ep(Xl))‖∞‖α(Xl)⊗ (ep(Xl)− êp(−q(l))(Xl))‖∞ = o(1). (118)

Note that we do not need the lower order terms present in [42] which followed from [42, Lemma 7].

Thus the desired result follows.

By [42, Lemma 2], Lemma 11 implies that under Assumptions 6 to 4, and the conditions in Lemma
11 and Lemma 4, where the (an) in Lemma 11 is such that an = O(n−κ) with κ > 1

4 , then∣∣∣R̂n(Θ; c)− R̃n(Θ; c)
∣∣∣ ≤ 0.125R(Θ; c) + o(ρn(c)) (119)

with probability at least 1− ε, for all Θ ∈ Hc, 1 ≤ c ≤ log(n) for large enough n.

Thus we have finally bridged R̂n and R̃n with respect to the expected regret R. We are ready to prove
our main theorem which concerns the regret bound of R̂n.

F.8 Using the bridge result to derive feasible regret bound

Theorem 2. Under Assumptions 5, 6, 4 and the conditions in Lemma 11 and Lemma 4, where the
(an) in Lemma 11 is such that an = O(n−κ) with κ > 1

4 , and suppose that we obtain Θ̂ via a
penalized basis function regression variant of the generalized R-learner, with a properly chosen
penalty of the form Λn(‖Θ̂‖2) that grows faster than ρn(‖Θ̂‖2) in 53 . Then Θ̂ satisfies the same
regret bound as Θ̃, R(Θ̂n) = Õ(n

1
1+p ).
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Proof. We have established that when we set ρn as

ρn(c) = U(ε){1 + log(n) + log log(c+ e)}
(

(c+ 1)p log(n)√
n

)2/(1+p)

,

we have that for every ε there exist a constant U(ε) such that for large enough n the following is
satisfied with probability at least 1− ε:

1

2
R̃n(fΘ; c)− ρn(c) ≤ Rn(fΘ; c) ≤ 2R̃n(fΘ; c) + ρn(c) (120)

Subsection F.6 argued that this leads to a rate of Õ(n−
1

1+p ) for R(Θ̃).

Now to show that feasible learner matches the rate of the oracle learner,

Eq. 119 implies that

R(Θ; c) ≤ 2R̃n(Θ; c) + ρn(c) (121)

≤ 2R̂n(τ ; c) + 0.25kR(τ ; c) + kρn(c) (122)

Rearranging the inequality implies that

R(Θ; c) ≤ 8

3
R̂n(Θ; c) + 2ρn(c) (123)

for large n for all 1 < c < log(n), with probability at least 1− 2ε. It can then be checked following
a symmetrical argument, that

3

8
R̂n(Θ; c)− 2ρn(c) ≤ R(Θ; c) ≤ 8

3
R̂n(Θ; c) + 2ρn(c) (124)

for n large enough for all 1 ≤ c ≤ log(n) with probability at least 1− 4ε.

Then, following the same argument as [42], we find that the feasible minimizer has the same regret
bound as the oracle minimizer: R(Θ̂n) = Õ

(
n−

1
1+p

)
.

This is to say:

R(Θ̂n) = O(r2
n), rn = n−

1
2(1+p) (125)
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