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ABSTRACT

Synthetic data is an emerging technology that can significantly accelerate the development and
deployment of AI machine learning pipelines. In this work, we develop high-fidelity time-series
generators, the SigWGAN, by combining continuous-time stochastic models with the newly proposed
signature W1 metric. The former are the Logsig-RNN models based on the stochastic differential
equations, whereas the latter originates from the universal and principled mathematical features
to characterize the measure induced by time series. SigWGAN allows turning computationally
challenging GAN min-max problem into supervised learning while generating high fidelity samples.
We validate the proposed model on both synthetic data generated by popular quantitative risk models
and empirical financial data. Codes are available at https://github.com/SigCGANs/Sig-Wasserstein-
GANs.git

Keywords generative modelling, neural networks, expected signature, log-signature, rough path theory, Wasserstein
generative adversarial networks

1 Introduction

The ability to model time-series data accurately is critical for numerous applications in the finance industry. In particular,
synthetically generated time-series datasets can facilitate training and validation of data-driven risk models and enable
data sharing by respecting the demand for privacy constraints. We refer the reader to [1, 2] for the overview of the
applications and challenges for synthetic data generation and to [3, 4, 5, 6, 7, 8] for generative modelling perspective
of some of the classical problems in quantitative risk management. While generative modelling has been highly
successful in generating samples from seemingly high dimensional probability measures, off-the-shelf techniques,
such as generative adversarial network’s (GAN) [9], struggle to capture the temporal dependence of joint probability
distributions induced by time-series data. Furthermore, the min-max objective function of classical GANs make them
notoriously difficult to tune. In this paper, we use mathematically principled feature extraction machinery that emerged
from the theory of rough paths to reduce the min-max formulation of GANs to an optimization problem. The proposed
method, called Sig-Wasserstein GAN, can handle irregularly spaced data streams of variable lengths and is poetically
efficient for data sampled at high frequency.

Related work It is by now well documented that popular machine learning frameworks enhanced with path signatures
achieve the state of the art performance across many time series learning tasks. For example, the combination of
rough path theory and variational autoencoder showed the strength in simulating financial time series in small data
environment [4]. In [10] authors showed that by combining signatures with classical quantitative finance models provide
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novel perspective on neural SDEs and lead to efficient calibration procedure. Related results have been obtained in [11].
The most related to this work is [12]. There authors developed the conditional Sig-Wasserstein GAN to simulate time
series that mimics the conditional law of the future time series given the past. This work focuses on the unconditional
case instead. Our Logsig-RNN generator extends the work of [13], as we do not require the equal time dimension of
input data and output data.

The article is structured as follows. In Section 2 we overview the key elements of rough path theory. In Section 3 we
present classical GAN framework which we then extend to Sig-Wasserstein GAN in Section 4. Section 5 contains
numerical examples.

2 Rough path theory

When working with time-series data, especially sampled at high frequency and/or with irregular time stamps, it is useful
to take a continuous-time perspective and view data as unknown continuous-time dynamics samples. In particular, rough
path theory offers a mathematically principled and universal way of describing the continuous-time data trajectories
(paths), which in turn allows designing computationally efficient algorithms. We briefly summarise these ideas below.

2.1 Signature of a path

Let E := Rd and J be a compact time interval. Let X : J → E denote a continuous path endowed with a norm denoted
by | · |. We first introduce the p-variation as a measure of the roughness of a path. The larger p-variation is, the rougher
a path is.

Definition 2.0.1 (p-variation) Let p ≥ 1 be a real number. Let X : J → E be a continuous path. The p-variation of

X on the interval J is defined by ‖X‖p,J = supD∈J

[∑r−1
j=0 |Xtj+1

−Xtj |p
] 1
p

, where the supremum is taken over any

finite time partition of J , i.e. D = (t1, t2, · · · , tr).

Definition 2.0.2 (The signature of a path) Let X : J → E be a continuous path of finite p-variation such that the
following integration makes sense. The signature of X denoted by S(X) is defined as an infinite series of Xk

J , i.e.
S(X)J = (1, X1

J , · · · , Xk
J , · · · ), where

Xk
J =

∫
· · ·
∫

u1<···<uk;u1,··· ,uk∈J

dXu1
⊗ · · · ⊗ dXuk ,∀k ≥ 1.

Let Sk(X)J denote the truncated signature of X of degree k, i.e. Sk(X)J = (1, X1
J , ..., X

k
J ).

Path augumentations There are a few commonly used path augumentations methods to accompany with the
signature feature to retain good properties of the signature. In our work, we use three augumentation methods (a) Time
augumentation, (b) Visiability transformation, and (c) Lead-lag transformation, which add the extra feature dimension
to encode the information on the time stamps, the starting point of the path and the lagged process respectively. We
refer [14] for the precise definition of the above path augmentations. For ease of notation, we denote the space of the
time-augmented and visibility transformed paths of finite p-variation by Ωp0(J,E). Such augumented path has the path
dimension 2d+ 1 where d is the dimension of the original path.

Intuitively the signature of a path plays a role of a non-commutative polynomial on the path space. With appropriate
path augmentations, the signature of a path has the uniqueness and universality, which make the signature a useful
candidate for the feature set of a path:
Uniqueness: The signature of a path determines the path up to tree-like equivalence [15, 16]. More specifically, when
restricted the path space to Ω1

0(J,Rd), the signature map is bijective. In other words, the signature of an augumented
path by time augmentation and visibility transformation determines the path completely.
Universality: Any continuous functional on the paths in Ω1

0(J,Rd) can be arbitrarily well approximated by a linear
functional of truncated signatures when the degree of the signature is high enough. To state it more precisely we have:

Theorem 2.1 Consider a compact set K ⊂ Ω1
0(J,Rd). Let f : K → R be any continuous function. Then, for any

ε > 0, there exists an integer M > 0, and a linear functional l ∈ T (M)(R2d+1)∗ acting on the truncated signature of
degree M such that

sup
X∈K

|f(X)− 〈l, SM (X)〉| < ε (1)
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2.2 Log-signature of a path

The log-signature is a parsimonious representation for the signature feature. To define the log-signature, we introduce
the logarithm of an element in the tensor algebra space, i.e. T ((E)) = ⊕E⊗n. Let a = (a0, a1, · · · , an) ∈ T ((E)) be
such that a0 = 1 and t = a− 1. Then the logarithm map is defined as follows:

log(a) = log(1 + t) =

∞∑
n=1

(−1)n−1

n
t⊗n,∀a ∈ T ((E)). (2)

Definition 2.1.1 The log signature of path X is the logarithm of the signature of the path X , denoted by LogSig(X).
Let LogSigk(X) denote the truncated log signature of a path X of degree k.

Uniqueness: Like the signature, the log-signature has the uniqueness as there is one-to-one correspondence between
the signature and the log-signature.
Dimension reduction When truncated by the same degree, the log-signature is of lower dimension compared with the
signature feature in general. It be used for significant dimension reduction when the path dimension d and the truncated
degree of the (log)-signature k is large. See the comparison figure of the dimension of the signature and log-signature.

k
d 2 3 4 5 6 7

1 3 2 4 3 5 4 6 5 7 6 8 7
2 7 3 13 6 21 10 31 15 43 21 57 28
3 15 5 40 14 85 30 156 55 259 91 400 140
4 31 8 121 32 341 90 781 205 1555 406 2801 728
5 63 14 364 80 1365 294 3906 829 9331 1960 19608 4088

Table 1: The left integer is the signature dimension whereas the right integer (in bold) is the log-signature dimension.

2.3 Expected signature of a stochastic process

Let us consider a E-valued stochastic process X under the probability space. Assume that the signature of X is well
defined almost surely, and S(X) has finite expectation. We call E[S(X)] the expected signature of X . Intuitively the
expected signatures serves the moment generating function, which can characterize the law induced by a stochastic
process under some regularity condition. More concretely, an immediate consequence of Proposition 6.1 in [17] on the
uniqueness of the expected signature is summarized in the below theorem:

Theorem 2.2 Let X and Y be two Ω1
0(J,E)-valued random variables. If E[S(X)] = E[S(Y )] and E[S(X)] has the

infinite radius of convergence, then X = Y in the distribution sense.

3 Wassersetein Generative Adversarial Network (WGAN)

Let (Ω,F ,P) be a probability space, under which µ and ν are two distributions induced by X -valued stochastic
process. The Kantorovich-Rubinstein dual representation of Wassersetein-1 (W1) metric defines a distance between
two measures µ and ν, denoted by W1(µ, ν) as follows:

W1(µ, ν) = sup
‖f‖Lip≤1

EX∼µ[f(X)]− EX∼ν [f(X)], (3)

where the supremum is over all the 1-Lipschitz functions f : X → R with its Lipschitz norm smaller than 1, i.e. for all
x1, x2 ∈ X , |f(x1)− f(x2)| ≤ |x1 − x2|.
In the context of generative modelling, let Z denote a latent space and Z ∈ Z denote a variable with the known
distribution µZ ∈ P(Z). Let µ ∈ P(X ) denote a target distribution of observed data. The aim of Wassersetein
Generative Adversarial Network (WGAN) is to train a model that induces distribution ν, so that W1(µ, ν) is small.
The WGAN is composed of the generator G and the discriminator D. The generator Gθ : Z → X is a parameterized
map transporting the latent distribution µZ to the model distribution ν, i.e. the distribution induced by Gθ(Z), where
θ ∈ Θg is a parameter set. To discriminate between real and synthetic samples, one parameterises the test function f

3
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in definition of W1 metric (Eqn. (3)) by a network fη with the parameter set η ∈ Θd. Training the generator entails
solving min-max problem. Indeed, to find optimal (θ?, η?), one needs to solve

min
θ

max
‖fη‖Lip≤1

E[fη(X)]− E[fη(Gθ(Z))].

In practice, the min-max problem is solved by iterating gradient descent-ascent algorithms and it convergence can
be studied using tools from game theory [18, 19]. It is well known that first order methods that are typically used in
practice to solve the min-max problem might not converge, even if the convex-concave case, [20, 21, 22]. Consequently
the adversarial training is notoriously difficult to tune, [23, 18], and generalisation error is very sensitive to the choice
of discriminator and hype-parameters as it was demonstrated in large scale study in [24].

4 Sig-Wassersetein Generative Adversarial Network (Sig-WGAN)

In this work we design algorithms for generating time-series data. Let x1:T := (x1, · · · , xT ) ∈ X ⊆ Rd×T denotes
a sample, or trajectory, of a time series data and assume that x1:T is distributed according to some unknown target
distribution ν ∈ P(X ). Unlike majority of work in the literature, we don’t assume that the data points are equidistant
from each other. Given N independent trajectories (xi1:T )Ni=1 sampled from ν ∈ P(X ) or given one long trajectory
(xiT,(i+1)T )Ni=0 of stationary data, the aim of generative modelling is to learn a model capable of producing high fidelity
data samples from ν ∈ P(X ), without explicitly modelling the target distribution.

4.1 Signature Wassersetein-1 (Sig-W1) metric

We propose a new Signature Wasserstein-1 (Sig-W1) metric on the measures on the path space X = Ω1
0(J,Rd) by

combining the signature feature and the W1 metric to achieve better computation efficiency. Let µ and ν be two
measures on the path space X . When using W1 with. discrete time series, one needs to fix the time dimension of
time series a prior. Here we (linearly) interpolate the data and compute its signature, possibly using appropriate path
augmentation methods without information loss. The signature, as a universal and principled feature, encodes the
temporal information regardless of the sampling frequency and variable length. Hence one may consider using the W1

metric on the signature space to define a distance between the measure induced by two measures on the path space µ
and ν, i.e.

W Sig space
1 (µ, ν) = sup

‖f‖Lip≤1
EX∼µ[f(S(X))]− EX∼ν [f(S(X))] (4)

While the use of signature features space W Sig space
1 significantly reduces the time dimension of the problem, practical

challenges of solving min-max problem remains. By working with the signature feature, one can reduce the computation
of W Sig space

1 distance over the class of Lipschitz functionals to the linear functionals on the signature space thanks to
the universality property of the signature. This motivates us to consider the proposed Signature Wasserstein-1 metric
between µ and ν defined by

Sig-W1(µ, ν) := sup
L is linear, ‖L‖ ≤ 1

EX∼µ[L(S(X))]− EX∼ν [L(S(X))] . (5)

Hence, by using Sig-W1 we reduced the nonlinear optimisation task to the linear problem with constraints.

In practice, one needs to truncate the infinite dimensional signature to a finite degree for numerical computation of
W Sig space

1 and Sig-W1(µ, ν). The factorial decay of the signature enables us to approximate the signature in Eqn. (5)
by its truncated signature up to degree M for a sufficiently large M . Therefore we propose to define the truncated
Sig-W1(µ, ν) metric up to a degree M as follows:

Sig-W(M)
1 (µ, ν) := sup

‖L‖≤1,L is linear
L(EX∼µ[SM (X)]− EX∼ν [SM (X)]), (6)

When the norm of L is chosen as the l2 norm of the linear coefficients of L, this reduced optimization problem admits
the analytic solution

Sig-W(M)
1 (µ, ν) := |Eµ[SM (X)]− Eν [SM (X)]| (7)

where |.| is l2 norm. In [25], if one chooses the truncated signature up to degree M as the feature map, then the
corresponding Maximum Mean Discrepancy (Sig-MMD) is the square of Sig-W(M)(µ, ν).

4
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The following toy example illustrates the relationship between the Sig-W1 distance and the W1 distance between two
path distributions. Let X = (Xt)t∈[0,T ], X̂ = (X̂t)t∈[0,T ] two 1-dimensional GBMs given by,

dXt = θ1Xtdt+ σXtdWt, X0 = 1;

dX̂t = θ2X̂tdt+ σX̂tdŴt, X̂0 = 1,

with the same volatility but with possibly different drifts θ1, θ2. Let µ, ν be the laws ofX, X̂ . We fix σ = 0.1, θ1 = 0.02,
and for θ2 = 0.02 + j0.025, j = 0, . . . , 4. When θ2 is increasing, the discrepancy between X and X̂ is increasing. We
calculate three distances, i.e. W path space

1 , W Sig space
1 and Sig-W1 to quantify the distance between X and X̂ for different

θ2, which all increase when enlarging θ2 as expected. Since Sig-W(M)
1 (µ, ν) admits an analytic solution, it is cheaper to

calculate than W path space
1 (µ, ν) and W Sig space

1 (µ, ν), where one needs to parametrise f by a neural network and optimise
its weights. We observe in Figure 1 how these three values increase with similar rate as θ2 increases.
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Figure 1: The top row displays blue and red samples from X, X̂ respectively for fixed θ1, and different values of θ2

4.2 LogSig-RNN Generator

In this section, we introduce two generators of continuous type, which both are motivated by the numerical
approximation of stochastic differential equations (SDEs). The first generator is the Neural SDE, which approximates
the vector field by a feed-forward neural network in the Euler scheme, while the second generator – the Logsig-RNN re-
sembles the high-order Taylor approximation of SDEs by combining the recurrent neural network with the log-signature.

Fix a filtered probability space (Ω,F , {Ft}t≥0,P), under which W = (Wt)t∈[0,T ] be a d-dimensional Brownian
motion. Let W = (Wt)t∈[0,T ] denote the time-augmented Brownian motion, where Wt = (t,Wt) for ease of the

5



Sig-Wasserstein GANs for Time Series Generation A PREPRINT

notation. Consider a Re-valued process X = (Xt)t∈[0,T ], which satisfies the following time-homogeneous SDEs driven
by the Brownian motion W with the drift term µ and the volatility term σ, i.e.

dXt = µ(Xt)dt+ σ(Xt)dWt := f(Xt)dWt, (8)

where the stochastic integral is taken in the stratonovich sense and the vector field f : x×(s, ω) 7→ µ(x)s+σ(x)ω,∀x ∈
Re, s ∈ R and ω ∈ Rd. 1

One can approximate the solution X defined by (8) via the step-M Taylor expansion locally; when s and t are close,

Xt −Xs ≈
M∑
m=1

f◦k(Xs)

∫
s<s1<···<sm<t

dWs1 ⊗ · · · ⊗ dWsm , (9)

where 0 < s < t < T , f◦m : Re → L((Rd+1)⊗m,Re) is defined inductively by

f◦1 = f ; f◦m+1 = D(f◦m)f

with D(g) denoting the differential of the function g. This leads to the numerical approximation scheme by pasting the
local step-M Taylor approximation together. Indeed, fix time partitions Πh = (uj)

N1
j=0 and ΠX = (tk)N2

k=0 of [0, T ],
which are time partition of Taylor expansion and the time discretization of the solution X respectively. Without loss of
generality, Πh ⊂ ΠX . We define X̂ evaluated at the time partition ΠX inductively; let X̂0 = x0. For any tk ∈ ΠX find
j such that tk ∈ (uj−1, uj ], we apply the Taylor approximation of Xtk around the reference time point t = uj−1 ∈ Πh,
and hence obtain

X̂tk = X̂uj−1 +

M∑
m=1

f◦m(X̂uj−1)

∫
uj−1<s1<···<sm<tk

dWs1 ⊗ · · · ⊗ dWsk

:= F (X̂uj−1
, SM (Wuj−1,tk)) = F̃ (X̂uj−1

,LogSigM (Wuj−1,tk)). (10)

Motivated by [26], we approximate F̃ in (10) by using a recurrent neural network. This leads to generalized Logsig-
RNN model, which maps a d-dimensional Brownian motion W[0,T ] to (otk)N2

k=1 ∈ RN2×e as the generator of Re-valued
stochastic process: ∀j ∈ {1, · · · , N1} and ∀k ∈ {1, · · · , N2},

htk = σ1(θ1huj−1
+ θ2LogSigM (Wuj−1,tk)); (11)

otk = σ2(θ3htk).

where σ1, σ2 are two activation functions and Θ = {θ1, θ2, θ3} is the learnable parameter set. When Πh = ΠX , this is
exactly the Logsig-RNN model in [26]

Figure 2: The pictorial illustration of the generalized Logsig-RNN model.

1The time-inhomogeneous SDE can be viewed as the projection of the solution to time-homogeneous SDE by lifting X to its
time-augmented process.

6
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5 Numerical results

To validate the performance of the proposed Sig-Wasserstein GANs (SigWGANs), we consider three datasets, i.e. (1)
synthetic data generated by multi-dimensional Geometric Brownian motion (GBM); (2) synthetic data generated by
the rough volatility model; (3) stock price and realized volatility data. The former two datasets are representatives
of commonly-used Markovian and non-Markovian model for the underlying price process. For each dataset, we
compare the proposed SigWGANs with WGANs to demonstrate the advantages of Sig-Wasserstein metric in terms
of the accuracy and efficiency. Besides for the SigWGANs, we benchmark the proposed Logsig-RNN generators of
continuous type against the Long short-term memory (LSTM) model. To assess the quality of generated data, we
consider the following test metrics:

1. Sig-W1 metric.

2. Marginal distribution metric. To assess the fitting of the marginal distribution, we compute the average of
Wasserstein distance (also called earth mover’s distance, EMD for short) between each marginal distribution
X

(i)
t of the real time series and fake time series over all time t and feature channel i as the marginal distribution

metric.

3. Correlation metric. To quantify the fitting of spatial and temporal dependence, we consider how close the
correlation of X(i)

t and X(j)
s for any feature coordinate i and j and any time s and t. The correlation metric

of X and X̂ is defined as cor(X, X̂) =
∑T
s,t=1

∑d
i,j=1

∣∣∣ρ(X
(i)
s , X

(j)
t )− ρ(X̂

(i)
s , X̂

(j)
t )
∣∣∣, where ρ(X,Y )

denotes the correlation of two real-valued random variables X and Y .

The smaller test metrics indicates better performance.

Moreover, on the synthetic dataset, we test the predictive performance of the generative model, which is trained on the
dataset of one time frequency and is tested on another time frequency. The better fitting performance on the test time
frequency shows the robustness and generalization of the trained generative model against variation in sampling time.

5.1 Multi-dimensional Geometric Brownian motion (GBM)

As a motivating example, we consider a d-dimensional GBM X = (Xt)t∈[0,T ] satisfying the following SDE: for
i ∈ {1, · · · , d},

dX
(i)
t = µiX

(i)
t dt+ σiX

(i)
t dW̃

(i)
t

where Xt ∈ Rd, µ ∈ Rd, σ ∈ Rd and W̃ is a d-dimensional correlated Brownian motions with correlation matrix
(ρij)i,j∈{1,··· ,d}. In this example, we set µi = 0.1, σi = 0.2, ∀i ∈ {1, ..., d} and ρij = 0.5, for i 6= j. We use the
equally spaced time partition of the time interval [0, 1] with step size ∆t = 10−3, and simulate 4000 samples of the
solution X to the SDE (5.1) using the analytic formula: X(i)

tn = X
(i)
tn−1

exp[(µi− 1
2σ

2
i )∆t+ σi(W̃

(i)
tn − W̃

(i)
tn−1

)] where
tn = n∆t and i ∈ {1, · · · , d}. Here we specify d = 3.

5.1.1 Performance comparison of SigWGAN v.s WGAN

Figure 3 shows that by replacing the W1 discriminator by Sig-W1 discriminator, three test metrics drop more quickly at
the beginning of training period, which indicates that the Sig-WGAN is more efficient to train. Besides, regardless of
the generator, the Sig-WGAN outperforms the WGAN in terms of the three test metrics during the training.

5.1.2 Sensitively analysis in terms of number of time steps

Table 2. As shown in Table 2, the Sig-W1 GAN with the LSTM generator works best when NT is small (e.g. 10 or
20). However, when increasing the number of time step NT , it gets more challenging for the LSTM generator to learn
the joint path distribution in terms of correlation metric. In contrast to the LSTM, the performance of the LogsigRNN
is much robust in terms of high frequency sampling of the data. In particular, combined with Sig-W1 metric, the
Logsig-RNN generator achieves the correlation metric and marginal distribution of narrow range [0.045, 0.050] and
[0.919, 1.032] for each NT ∈ {10, 20, 50, 100} respectively. For NT = 100, when using the SigWGAN, the test
metrics of the LSTM generator is about four times of that of the Logsig-generator. For a fixed generator, we observe the
consistent performance improvement of using Sig-W1 over the W1 metric as the discriminator.

7
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Figure 3: The upper/lower panel are the evolution of the test metrics of the Logsig-RNN/LSTM generator during
training for the first 100 seconds. From left to right, the test metrics are Marginal distribution metric (Left), Correlation
metric (Middle) and SigW1 metric (Right). The results are trained on 3-dimensional Geometric Brownian motion.

W1 Sig-W1
NT 10 20 50 100 10 20 50 100

SigW1 Metric(1e-1)
LSTM 0.140 0.125 0.677 0.651 0.096 0.064 0.020 0.196
LogsigRNN 0.264 0.128 0.162 0.160 0.047 0.040 0.042 0.037

Correlation Metrics (1e-3)
LSTM 1.057 0.862 5.512 2.658 0.478 0.852 0.9698 3.391
LogsigRNN 2.125 1.811 9.277 2.219 0.962 1.032 0.967 0.919

Marginal Distribution Metric
LSTM 0.052 0.065 0.132 0.082 0.026 0.043 0.036 0.140
LogsigRNN 0.122 0.059 0.317 0.067 0.050 0.047 0.050 0.045

Training time (seconds)
LSTM 376.55 374.78 375.44 375.53 134.33 134.66 134.71 135.89
LogsigRNN 682.21 718.21 721.21 781.21 261.23 322.33 371.21 472.21

Table 2: Evaluation for 3-dimensional GBM with various numbers of timesteps NT ∈ {10, 20, 50, 100}.

5.2 Rough Volatility model

We consider a rough stochastic volatility model for an asset price process St, which satisfies the below SDE:

dSt =
√
vtStdZt

vt := ξ(t) exp

(
ηWH

t −
1

2
η2t2H

)
(12)

where ξ(t) denotes the forward variance and WH
t denotes the fBM given by

WH
t :=

∫ t

0

K(t− s)dWs, K(r) :=
√

2HrH−1/2

where Zt,Wt are (possibly correlated) Brownian motions. In our experiments, the synthetic dataset is sampled from (12)
with t ∈ [0, 1], H = 0.25, ξ(t) = 0.25, η = 0.5, ρ = 0 where ρdt = d〈W,Z〉t. Each sampled path is a stream of data
of 20 points sampled uniformly between [0, 1].

For the training details, we train the generators to learn

• the log price distribution,

8
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• the log price and the log volatility joint distributions

using WGAN and Sig-W1 GAN. In both learning algorithms we scale the log-price paths by 2 and the log-volatiliy by
0.5 so that they have similar variance. In addition, in the SigWGAN we augment the paths by adding time dimension
and visibility transformation before computing the expected signature up to degree 4. For a fair comparison, we train
the Wasserstein GAN and the Sig-W1 GAN for 2 500 iterations of the generator. The Sig-W1 GAN provides an explicit
form for the Sig-W1 distance between two path distributions, which implies that the overall number of gradient steps is
2 500. However, training the Wasserstein GAN involves training the generator and the discriminator; in our settings,
for every gradient step of the generator, we take three gradient steps on the discriminator, thus the overall number of
gradient steps is 10 000.

Table 3 shows the evaluation metrics of the trained generators.

W1 Sig-W1
Data (Xt)t (St) (St, vt) (St) (St, vt)

SigW1 Metric
LSTM 0.29 0.42 0.07 0.17
LogsigRNN 0.20 1.43 0.11 0.32

Correlation Metric(1e-3)
LSTM 4.76 5.21 1.58 8.23
LogsigRNN 2.19 8.19 1.09 4.82

Marginal Distribution Metric(1e-2)
LSTM 2.37 1.95 1.62 4.83
LogsigRNN 1.17 9.25 1.38 4.03

Training time(seconds)
LSTM 158 205 164 256
LogsigRNN 814 845 352 452

Table 3: The test metrics of the trained models on a one dimensional price data (St)t∈[0,T ] and two dimensional price
and volatility data (St, vt)t∈[0,T ] respectively.

Sig-W1 GANs outperform GANs in all evaluation metrics, except for the training time in the case of the LSTM
generator. The LSTM and the LogSigRNN generators have similar performances in terms of correlation metric, SigW1
metric and Marginal Distribution metric.

Regarding the training time, the LSTM generator is marginally cheaper to train with the W1-GAN algorithm, even
if the training of the W1-GAN involves 4x more gradient steps than the Sig-W1 GAN. This is due to the fact that
calculating the signature of the augmented path in the Sig-W1 GAN algorithm accounts for the additional iterations
taken to train the W1-GAN. However, for a more complex generator as is the case of the LogSigRNN, the Sig-W1
GAN is 2x cheaper than the W1-GAN in terms of training time.

5.2.1 Correlation metric comparison

The error plot of the covariance matrix
(

cov(X
(i)
s , X

(j)
t )
)
i,j∈{1,2},s,t∈{1,··· ,NT }

in Figure 4 clearly shows that the

combination of the Logsig-RNN and SigW1 metric are able to capture the temporal and spatial dependency of the
rough volatility data best. The WGAN struggles to the temporal covariance of the volatility data.

5.2.2 Robustness to the variable sampling frequency

We test the robustness of the trained generator by generating data streams with a different frequency than the frequency
used for training and we test them on synthetic data generated from (12) with the same new frequency. Namely, we
generate data streams of 30 points on [0, 1], whilst training was performed on data streams of 20 points on [0, 1].
Table 4 shows how in this new setting Sig-W1 GANs outperform GANs by two orders of magnitude. It is also verified
qualitatively and visually by comparing the sample trajectories of the real paths and the synthetic path generated by the
SigWGAN and WGAN using the same LogsigRNN generator in Figure 5.

5.3 S&P 500 and DJI Market Data

We validate our proposed SigWGAN model on the empirical financial data. Here we choose daily spot-prices of the
S&P 500 and DJI from January 1st 2005 to June 1st 2020. This dataset is from the Oxford MAN Realized Library. We
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Figure 4: The upper/lower figures are the covariance error plots of the Logsig-RNN/LSTM generators for each dimension
(St, vt) and each timestep. From Left to Right, each heatmap displays the covariance error of the Sig-WGAN and the
WGAN respectively.

W1 Sig-W1
Data (Xt)t (St, vt) (St, vt)

Correlation Metric(1e-4)
LSTM 358.84 8.32
LogsigRNN 411.39 5.02

Table 4: The test metrics of the trained models on two dimensional price and volatility data (St, vt)t∈[0,T ]. Models are
trained on data streams sampled every T

20 units of time, and evaluated on data streams sampled every T
30 units of time.

compute the log return series from the close price of both S&P 500 and DJI, then apply rolling window to get 3856
samples of log return paths of 10 time steps. We use 80% samples as the training set and the rest 20% as the test set.

To train the SigWGAN, we use the basepoint path augmentation, cumulative sum and the lead-lag transformation.
According to Table 5, for a fixed generator (LSTM/LogsigRNN), the SigWGAN improves the WGAN in terms of both
the correlation metric and marginal distribution metrics. Besides, SigWGAN is more efficient than WGAN, which
is illustrated by the half reduced training time when using the Logsig-RNN generator. Although the SigWGAN with
the Logsig-RNN generator takes a bit longer to train than the other models, it can significantly reduce the correlation
metric from 0.5982 to 0.5031 and the marginal distribution metric from 0.1752 to 0.1304 compared with the second
best model.

5.3.1 Correlation metric comparison

The error plot of the correlation matrix in Figure 6 clearly shows that the combination of the Logsig-RNN and SigW1
metric are able to capture the temporal and spatial dependency of the stock data best. However, the error plot of
correlation matrix of Logsig-RNN and W1 metric shows more dark areas. Hence the combination of Logsig-RNN and
W1 metric struggles to the temporal correlation of the volatility data.
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Figure 5: From left to right, generated paths with new frequency (i.e. 30 time steps), generated paths using the trained
LogSigRNN with Sig-W1 GAN on the old frequency (20 time steps), generated paths using the trained LogSigRNN
with Wasserstein-GAN on the old frequency.

Type W1 Sig-W1
SigW1 Metric(1e-4)

LSTM 5.0632 2.7510
LogsigRNN 5.6269 2.8161

Correlation Metric(1e-1)
LSTM 0.6422 0.5161
LogsigRNN 0.5982 0.5031
Marginal Distribution Metric(1e-2)

LSTM 0.2001 0.1513
LogsigRNN 0.1752 0.1304

Training time(seconds)
LSTM 0.138882 0.103918
LogsigRNN 0.472448 0.210008

Table 5: The test metrics of the trained models on the log price of S&P 500 index and S&P 500 and DJI index.
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Figure 6: The correlation error of synthetic data generated by LogsigRNN using SigWGAN and WGAN resp. for stock
data.
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