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Quantifying cell-generated forces: Poisson’s ratio
matters
Yousef Javanmardi1,6, Huw Colin-York 2,6, Nicolas Szita3, Marco Fritzsche2,4✉ & Emad Moeendarbary 1,5✉

Quantifying mechanical forces generated by cellular systems has led to key insights into a

broad range of biological phenomena from cell adhesion to immune cell activation. Traction

force microscopy (TFM), the most widely employed force measurement methodology, fun-

damentally relies on knowledge of the force-displacement relationship and mechanical

properties of the substrate. Together with the elastic modulus, the Poisson’s ratio is a basic

material property that to date has largely been overlooked in TFM. Here, we evaluate the

sensitivity of TFM to Poisson’s ratio by employing a series of computer simulations and

experimental data analysis. We demonstrate how applying the correct Poisson’s ratio is

important for accurate force reconstruction and develop a framework for the determination of

error levels resulting from the misestimation of the Poisson’s ratio. In addition, we provide

experimental estimation of the Poisson’s ratios of elastic substrates commonly applied in

TFM. Our work thus highlights the role of Poisson’s ratio underpinning cellular force quan-

tification studied across many biological systems.
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Cell mechanics and mechanobiology are primarily built
upon an understanding of the material properties of living
cells, as well as their force mechanosensation1–7, genera-

tion, and transmission abilities8–11. Accordingly, there has been a
growing demand for methodologies with sufficient sensitivity to
robustly quantify cell generated mechanical forces12–14. Traction
force microscopy (TFM) is one of the most powerful and widely
used force quantification modalities applied to study a broad
range of cellular phenomena14,15. TFM has significantly benefited
from recent progress in super-resolution optical imaging mod-
alities and computational techniques16–18. Nevertheless, as the
sensitivity of TFM continues to improve, there is a pressing need
to advance our understanding of the force–displacement rela-
tionship, which relies on the mechanical properties of the

substrates used in TFM. A typical TFM experiment involves a cell
that is adhered to an elastic substrate containing fluorescent beads
(Fig. 1a). Fluorescent beads act as fiducial markers, allowing the
displacements generated under the influence of cellular forces to
be tracked by fluorescent time-lapse imaging. Typically,
mechanically tuneable materials such as hydrogels or silicone
elastomers are employed as substrates or embedding matrices that
mimic the mechanical environment of the cells and report on the
cell generated forces.

Owing to their biocompatibility and linear isotropic elastic
behaviour, polymer-based gels are well suited to investigate the
mechanical interactions between cells and their environment11,19.
They primarily behave in an elastic manner under cell induced
deformations, independent of the directionality and spatial

Fig. 1 Conceptual analysis of the role of Poisson’s ratio. a Direct impact on stresses estimated by common traction force microscopy (TFM) modalities
shown in the schematics. In 2D or 2.5D setting a cell adheres to the surface of a substrate and in the 3D condition a cell is embedded within a gel. b Cell
generated forces deform a representative element in the vicinity of the cell. The normal and shear stress components are linked with the deformations
through an isotropic linear elastic constitutive law that depends on Young’s modulus and Poisson’s ratio. c Indirect impact on estimation of the Young’s
modulus measured via indentation tests. Fitting of the force-indentation curve with the simplest analytical Hertz model quantifies contact modulus:
E/(1− ν2) rather than Young’s elastic modulus E. d Typically a Poisson’s ratio of 0.5 (incompressible material assumption) is considered to estimate the
Young’s elastic modulus but this may generate some errors as the true values of the materials Poisson’s ratio deviates further from 0.5. The errors are
obtained by considering either the realistic finite element (FE) simulations of the indentation (red line) or Hertz formulation (blue line). Error bars represent
standard deviation (n= 15 simulations). e Schematic representation of the aligner device used to measure the Poisson’s ratio. Lower panels show images of
a Polyacrylamide hydrogel (PAH) before and after stretching. When stretching, the distances in the direction of the stretch increases, while the diameter of
the gel decreases. Scale= 250 μm. f Long-time Poisson’s ratio of PAH as a function of acrylamide concentration. The black circles show average and centre
line represent median (n= 3 independent experiments). g Poisson’s ratio of q-gel and Polydimethylsiloxane (PDMS) for a range of elastomers proportions
(n= 3 independent experiments). h Experimental demonstration of time-dependency of the Poisson’s ratio for PAH; Presence of large amount of liquid
within hydrogels and the possibility of redistribution of the liquid within their pores make their mechanical responses time dependents. The term
“apparent” implies that the time dependent changes observed in the diameter of the hydrogel is due to the liquid redistribution within the pores of
hydrogel. Error bars represent standard deviation (n= 3 independent experiments).
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position of the applied stress20,21. Isotropic linear elastic materials
are fully characterised by two fundamental material parameters:
The Young’s modulus (E) and the Poisson’s ratio (ν). The
Young’s modulus defines the elastic behaviour of a material or a
cell in the loading direction, while the Poisson’s ratio describes
the degree to which the material or cell contracts or expands in
the transverse direction, perpendicular to the loading
direction22,23. While incompressible materials (ones that main-
tain their volume under load, i.e., ν= 0.5) are rare in nature, most
hydrogels and silicone elastomers have Poisson’s ratio values
ranging between 0.25 and 0.49, depending on their specific
composition and method of preparation24–28.

While the spatiotemporal resolution of displacement mea-
surements has been substantially increased thanks to the recent
advancements in super-resolution microscopy technologies16,29,
there is an emerging need to improve our understanding of the
mechanical properties of the gels used for TFM. Previous works
have primarily focused on the quantification of the Young’s
modulus, using methods such as atomic force microscopy (AFM),
to investigate its effects on cellular responses and estimate the
cellular forces30. However, the role of the Poisson’s ratio and its
impact on mechanical force estimation have mostly been
overlooked.

Here, motivated by the biological significance and potential
broad implications for cell mechanics quantification, we com-
bined computer simulations and analysis of experimentally
acquired traction force data to establish the sensitivity of the TFM
method to the Poisson’s ratio, and thus unravel how forces
measured by TFM fundamentally rely on the correct value of the
Poisson’s ratio.

Results and discussion
Conceptual interpretation of the influence of Poisson’s ratio in
TFM. To highlight the conceptional influence of the Poisson’s
ratio we consider two typical TFM modalities (Fig. 1a); (i) when a
cell is adhered to a substrate surface and (ii) when a cell is
embedded in a three-dimensional (3D) gel matrix. In case (i),
although the geometry is planar, the traction forces can be 3D in
nature with normal and shear stresses deforming the substrate
axially and laterally. The presence of both lateral and axial
deformations on a planar substrate is commonly referred to as
2.5D-TFM while early 2D-TFM works21,31 were only able to
capture two-dimensional (2D) lateral displacements of the fidu-
cial markers. In case (ii), referred to as 3D-TFM, the fluorescent
markers are scattered throughout the bulk of the gel and both the
geometry and the traction forces are 3D. In all cases, the cells
apply forces to their adjacent environment, which are balanced by
the stresses generated within the material located in the vicinity of
the cell (Fig. 1b). The surrounding material in most TFM analysis,
as well as this work, is considered to behave as a linear elastic
material. The constitutive law for such materials indicates the
dependence of both shear and normal stresses on the Poisson’s
ratio in addition to the Young’s modulus (Fig. 1b). Therefore, any
mismatch between the assumed Poisson’s ratio and the true
underlying material Poisson’s ratio can lead to errors in the
estimation of shear and normal stresses (Supplementary note 1).
Additionally, considering the nature of the constitutive law,
higher levels of error in the normal stress compared to those in
the shear stress are expected (Supplementary Fig. S1 and Sup-
plementary note 1). Specifically, the incompressibility assumption
(ν= 0.5) may result in large errors in the normal stresses.

Beyond the direct involvement of the Poisson’s ratio in the
force calculations, its misestimation during mechanical charac-
terisation of the TFM substrate material can influence the
measurements of the Young’s modulus, which is the most

fundamental parameter in TFM analysis. Indeed, most mechan-
ical characterisation techniques cannot estimate the Young’s
modulus independently of the Poisson’s ratio. For example, AFM
indentation, as one of the most common techniques used for the
characterisation of soft substrates and hydrogels32,33, involves the
application of defined forces and probing of the concomitant
indentation displacements (Fig. 1c). To estimate the Young’s
modulus, the resultant force-indentation curve is typically fit by a
contact mechanics model such as the Hertz model (Fig. 1c),
which is the simplest analytical formulation34 describing the
contact behaviour observed in an AFM experiment. The outcome
of these fitting procedures, in the case of the Hertz model, is the
contact modulus E/(1− ν2) and thus calculation of the Young’s
modulus (E), involves presuming a value for the Poisson’s ratio.
Consequently, obtaining an accurate Young’s modulus is of
utmost importance and requires precise determination of the
Poisson’s ratio through an independent mechanical test (Fig. 1d).

Taken together, while achieving sufficiently high bead densities
(BD) is a key determinant of TFM accuracy16, the intrinsic
dependence of the stress and indirect reliance of Young’s
modulus on the Poisson’s ratio suggest that even with perfect
quantification of the substrate displacements, the predominate
source of error in TFM could result from misestimation of this
material property (Supplementary Fig. S1).

Experimental quantification of the Poisson’s ratio of TFM
substrates. Given the reliance of both stress estimation and
mechanical characterisation, we developed a straightforward
method of experimentally quantifying the Poisson’s ratio of
substrates commonly used for TFM, including the polyacrylamide
hydrogel (PAH), and two silicone gels, polydimethylsiloxane
(PDMS) and q-gel (see “Methods” section). Several methods have
been proposed to quantify the Poisson’s ratio of soft
materials26,35–37 such as simple stretching of a long strip of
material18,38,39, or more complex indention procedures40. In line
with previously established methods, a strip of the gel was firmly
attached to a simple aligner device consisting of a sliding block
and a fixed component. Through an aperture in the device, the
distance between fiducial markers manually placed on the gel was
imaged using an optical microscope (Fig. 1e). By pulling the
sliding block relative to the fixed part, the strip could be stretched
leading to an increase in the lateral distance between the two
fiducial markers (L1 < L2) and a decrease in the width (D1 >D2,
Fig. 1e). Measurement of these geometrical changes allowed for
the estimation of the Poisson’s ratio (see “Methods” section).

We measured the Poisson’s ratio of PAHs made with a range of
acrylamide concentrations: 3, 4, and 5% which correspond to
Young’s moduli of 1, 2, and 3 kPa, respectively. The Poisson’s ratio
was larger for the PAHs with a higher concentration of acrylamide
and it increased from 0.24 through 0.30 to 0.32 when the
acrylamide concentration increased from 3% through 4 to 5%
(Fig. 1f). In contrast to the PAH, the measured Poisson’s ratio of
the two silicone gels (PDMS and q-gel) was close to 0.5 indicating
a relatively incompressible behaviour for these gels. Additionally,
varying the proportion of elastomers did not influence the
Poisson’s ratio significantly for both gels (p-value > 0.2, Fig. 1g).
Examination of the error bars in Fig. 1f, g showed that our method
can quantify the Poison’s ratio with a good precision (±0.05) and
the estimated values of the Poison’s ratio are in agreement with
the values reported previously22,36,40. Nevertheless, a wide range
has been reported for the PAH’s Poisson’s ratio as different
methodologies, timescales, and concentrations of bis-acrylamide
and ammonium persulfate were used in different studies24,26.

In order to maintain the level of hydration of the PAH during
stretching and to replicate conditions in a typical TFM
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experiment, the PAH strip was submerged in PBS while attached
to the device, and sufficient time was given for it to swell before
stretching. Following fast stretching of a submerged PAH strip,
the Poisson’s ratio was measured over time (Fig. 1h). After the
initial stretch, the Poisson’s ratio values decreased from 0.39 to an
asymptotic value of 0.30 after ~300 s. This time dependent
behaviour can be explained through the poroelastic characteristic
of the PAHs as discussed in refs. 41–43. The time-dependency of
Poisson’s ratio in PAHs is in contrast with the behaviour of the
silicone gels, whose Poisson’s ratio appeared to remain constant
and nearly incompressible over time. While the Poisson’s ratio of
the PAHs and other hydrogels is time dependent, this
dependence is only significance when the timescale of the
mechanical events is in the order of L2/Dp, where L is the
involved length scale and Dp is the poroelastic diffusion
coefficient44,45. Within the context of TFM, considering that
the length scale is smaller than the single cell size (L < 20 µm), the
Poisson’s ratio approaches its asymptotic value within a fraction
of a second for PAHs (with Dp ~6 × 10−9 m2 s−1), while normally
the cellular force generation occurs during 1–10 s for the fastest
cellular processes (Supplementary note 7). This implies that
asymptotic Poisson’s ratio would provide the most relevant value
to be used in a linear elastic TFM analysis. Therefore, the values
reported in Fig. 1f are the long-time (asymptotic) values of PAH’s
Poisson’s ratios. Nevertheless, a poroelastic model describes the
mechanical behaviour of the hydrogel more precisely, though
carrying out such a complex analysis may not be computationally
efficient.

Assessment of influence of Poisson’s ratio in different TFM
scenarios. Having measured the typical range of Poisson’s ratio
for materials commonly used for TFM, we next assessed its
potential impact on TFM measurements via computer simula-
tions in representative 2D, 2.5D, and 3D-TFM scenarios
(Fig. 2a–d). First, a specified stress field was applied within a
defined region and the concomitant displacements in the whole
domain were estimated by finite element (FE) method consider-
ing a specified Poisson’s ratio (forward problem) (Fig. 2a). To
mimic TFM experiments, displacements were sampled at several
random points (representing a defined BD) relevant to each
scenario (Fig. 2b). The sampled displacements were then inter-
polated to estimate the strain field and considering a presumed
Poisson’s ratio the FE simulations were run again to estimate the
stress field (inverse problem) (Fig. 2c). Finally, the error was
calculated by comparing the simulated (forward problem) and
reconstructed (inverse problem) stresses (Fig. 2d).

When the Poisson’s ratio is matched between the forward and
the inverse problems (i.e., the Poisson’s ratio of the material is
precisely known), the error was found to be mainly dependent on
the sampling density, while a weak dependence on the value of
the Poisson’s ratio was observed, specifically, in the 2.5D scenario,
regardless of the value of Poisson’s ratio, the magnitude of error
was 59, 27, and 9% for BD= 0.05, 0.25, and 2 μm−2, respectively.
As it has been investigated by other researchers16,46, for lower
BDs, such a significant increase in the error (p-value < 0.0001)
supports the application of super-resolution-based TFM to
sample high BDs and accurately localise the position of the
fiducial markers (Fig. 2e and Supplementary Note 1). We also
investigated the impact of BD for the 3D scenario which involves
interpolation of displacements throughout the whole domain.
The 3D scenario exhibited slightly lower levels of error
(Supplementary Note 3), with the error falling to 40, 23, and
8% for BD= 0.05, 0.25, and 2 μm−3, respectively.

Next, the level of the error resulting from a Poisson’s ratio
mismatch were evaluated by considering the actual Poisson’s ratio

of the material (in the forward problem) to vary from 0 to 0.5,
while in the inverse problem the Poisson’s ratio was maintained
at 0.5 which is a value that has been assumed in many previously
published TFM works15,47–60 (leading to mismatches from 0.5 to
0, Fig. 2f). Strikingly, as the mismatch increases from 0 to 0.5, the
error also increases monotonically from 10 to 93% in the 2.5D
scenario (BD= 2 μm−2) and from 8 to 57% in the 3D scenario
(BD= 2 μm−3). For 2.5D scenario, the curves corresponding
BD= 0.05, 0.25, and 2 μm−2 converge as the mismatch
approaches 0.5. For the 2D scenario the relationship between
the error and the mismatch is biphasic (see Supplementary Note 2
for further discussion). When no Poisson’s ratio mismatch exists
between forward and inverse problems (Fig. 2e), the error curves
corresponding to BD= 0.05, 0.25, and 2 μm−2 indicate the
isolated impact of BD. On the other hand, Fig. 2f displays
the combined effects of BD and Poisson’s ratio mismatch on the
errors. For example, in the 2.5D scenario, when BD= 2 μm−2, up
to 10% errors can be expected considering only the effects of BD
(Fig. 2e), while the combined effects of BD and Poisson’s ratio
mismatch lead to 93% error for a mismatch of 0.5 (Fig. 2f).
Similarly, in the 3D scenario and for BD= 2 μm−3, the error
increases from ~8 to 57% when the Poisson’s ratio mismatch of
0.5 is considered. Such dramatic increases in the errors
demonstrates the importance of considering the Poisson’s ratio
alongside BD for accurate reconstruction of traction forces. It is
worth mentioning that although the experimental data suggest
that the PAHs have a Poisson’s ratio in the range of [0.24–0.4]
(Fig. 1f) and both silicone gels exhibit a nearly incompressible
behaviour (Fig. 1g), in Fig. 2, the Poisson’s ratio was varied in the
full range of [0–0.5] to examine all the conditions that a
biomaterial may potentially exhibit.

To generalise our conclusions and present experimentalist with
a practical guide, we obtained a contour map of the error by
estimating the error for any combination of Poisson’s ratio in the
forward (materials actual value) and inverse (considered in TFM
analysis) problems (Fig. 2g). Considering the iso-lines in the
contour map, it is possible to predict the degree of accuracy
required in the measurement of the Poisson’s ratio to maintain
the errors below a specific level (Fig. 2h). For example, in 2.5D-
TFM for a material with a true Poisson’s ratio of ν= 0.4, to keep
the overall error below 5%, the Poisson’s ratio used in the TFM
analysis must be known to the accuracy level of ν ± 0.02 (i.e.,
0.4 ± 0.02).

Lastly, we assessed the role of force directionality and how the
Poisson’s ratio mismatch influences the estimation of shear and
compressive/tensional forces (Fig. 2i) by changing the ratio of the
normal (σ) to shear (τ) stress from 0 (presence of only shear
forces) to 1 (equal shear and normal forces). As expected, in the
2D scenario the anisotropy in the forces has a negligible effect
since the normal component is excluded. In contrast, in the 2.5D
scenario, the error increases when either the mismatch in
Poisson’s ratio increases for a given ratio σ/τ or the ratio σ/τ
increases for a given mismatch in Poisson’s ratio (Fig. 2i).
Importantly, when σ/τ is greater than ~0.1 (which corresponds to
displacement ratio Uaxial/Ulateral > 0.06) the difference of the error
between 2.5D and 2D is considerable, meaning, in such
circumstances, ignoring the axial displacement can lead to
significantly large errors (p-value < 0.05, Supplementary Fig S10b
and Supplementary Note 4) and thus tracking fluorescent
markers in all three directions is essential to ensure accurate
force reconstruction. Additionally, for 3D-TFM the effect of stress
anisotropy is not significant while for 2.5D the reconstructed
stresses are highly sensitive to the axial displacements (Supple-
mentary Fig. S10d and Supplementary Note 4), which further
corroborates the importance of accurate measurement of the axial
displacements.
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Fig. 2 Assessment of the impact of the Poisson’s ratio on the accuracy of traction force microscopy (TFM) through finite element (FE) simulations.
a–d Steps to compute error in the traction force estimation. a In 2D and 2.5D-TFM, shear and normal stresses are applied on a circular region located at the
top surface of a cubic region with zero displacement boundary condition at the bottom surface. For 3D-TFM, a spherical traction region is defined within a
cubic region whose deformation is again constrained at the bottom surface. Considering the linear constitutive law, the deformations resulting from the
applied stress fields were calculated at all nodes within the FE mesh using the so-called forward Poisson’s ratio ν= νforward, which represents the true
Poisson’s ratio of the material. b The displacements were selected at random nodes (representing the finite sampling imposed by a given BD in a TFM
experiment) and interpolated on the whole domain to obtain the displacement field. For the 2D case only lateral components of the displacement are
extracted, while the axial component is discarded, replicating the lack of axial sensitivity in 2D-TFM. For 2.5D, both lateral and axial components of
displacements are sampled from nodes at the top surface of the elastic substrate representing the typical experimental condition in 2.5D-TFM. To replicate
3D-TFM experiments, all components of the displacement from nodes throughout the cubic region were sampled. c The interpolated displacements were
used to solve the inverse problem considering a ν= νinverse, which is a Poisson’s ratio that is hypothetically assumed to reconstruct the forces in typical
TFM analysis. d The initially applied 3D traction forces were compared with the reconstructed ones to find the error. e Even considering the ideal case of
νforward= νinverse, some intrinsic errors are generated which are highly dependent on the sampling density. 2D and 2.5D results are represented with
dash and solid curves, respectively (n= 10 for 2D/2.5D and n= 5 for 3D simulations). f The mismatch error was estimated considering νinverse= 0.5 and
νforward to vary from 0 to 0.5 generation Poisson’s ratio mismatch (νinverse− νforward) ranging from 0.5 to 0 (n= 8 for 2D/2.5D and n= 5 for 3D
simulations). g Contour maps showing the errors generated as the result of considering all combinations of νforward (possible true value) and νinverse (used
in TFM analysis) varying from 0 to 0.5 for the 2.5D (left) and 3D (right) scenarios. h Bilateral tolerance in the Poisson’s ratio for three allowable levels of
traction error for the 2.5D (left) and 3D (right) scenarios. i Effects of force anisotropy on the error. To generate different force anisotropy, the ratio of
normal to shear stress was varied from 0 to 1 for 2D and 2.5D cases and from 0 to 2 for the 3D case. (n= 5 simulations). Error bars represent standard
deviation in all panels.
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Experimental assessment of the influence of Poisson’s ratio in
TFM. Having simulated the extent to which the accuracy of the
Poisson’s ratio affects the traction reconstruction in 2D, 2.5D, and
3D-TFM scenarios, we next investigated how our findings extend to
real experimental settings. In contrast to the methodology of Fig. 2,
in which a uniform load was applied on a circular region, in this
section we utilise experimentally acquired cell geometry and cell-
induced displacement fields. This allows us to investigate the rele-
vance of the idealised results shown in Fig. 2 to real TFM experi-
ments. We focus on investigating 2.5D-TFM data, acquired using
astigmatic-TFM (aTFM)61, since the simulation results demon-
strated that the impact of Poisson’s ratio mismatch is more evident
in the 2.5D scenario compared to the 3D condition (Fig. 2e, f, i).
Immune cell activation and cell adhesions exhibit shear and normal
stresses when in contact with the TFM substrate, making them
interesting biological systems within which the effects of the
materials Poisson’s ratio on the resulting force distribution could be
studied. In the first example, a Rat Basophilic Leukaemia (RBL) cell
is activated on an antigen coated surface while generating shear and
normal forces, leading to lateral and axial deformations (on the
100–150 nm length scale) of the substrate (Fig. 3a, b). For a typical
2.5D-TFM scenario both axial and lateral displacements were
implemented (Fig. 3c) while to mimic the 2D scenario the axial
component was ignored (Fig. 3d). Assuming a range of values for
the Poisson’s ratio led to different distribution of reconstructed
normal and shear stresses in each scenario. The q-gel substrate
displayed an almost incompressible behaviour (ν ≈ 0.5 as measured
in Fig. 1g), and therefore considering the incompressibility
assumption in the simulations yields a negligible mismatch error.
Nevertheless, if we consider a hypothetical case with a PAH (with
3% acrylamide and a Poisson’s ratio of 0.24 as measured in Fig. 1f)
as the TFM substrate and displacement field is exactly similar to
those measured in our TFM experiments, the incompressibility

assumption in the TFM analysis can lead to 55% error for the RBL
cell (Fig. 3e). Contour maps in Fig. 3e, display estimated errors for
any combination of possible ground truth Poisson’s ratio (possible
true value) and the ratio used in the simulations (used in TFM
analysis). Similar analyses were conducted for a HeLa cell under-
going early substrate adhesion (Fig. 4a–e). Importantly, when the
axial component of displacement is ignored (which is the 2D-TFM
scenario), a minimum of ~35% error for immune cell activation and
~25% for cancer cell adhesion was observed even in absence of any
mismatch in the Poisson’s ratio. The error is larger for the RBL cell
which exhibits a higher ratio of normal to shear stresses as predicted
by our analysis as in Fig. 2i. Additionally, for a 2.5D scenario, a
mismatch of 0.2 in the Poisson’s ratio leads to up to 50 and 30%
error in constructed tractions for the RBL cell and HeLa cell,
respectively (Figs. 3e and 4e). Taken together, the errors for both
cell types are in close agreement with the plots of Fig. 2 and the
error contours indicate less sensitivity of forces to the Poisson’s ratio
for the HeLa cell adhesion compared to RBL cell activation.

Beyond the effects of Poisson’s ratio mismatch, displacement
noise is another source of uncertainty, which may generate
significant errors46. Empirically, the applied TFM modality using
fast single-frame astigmatic imaging coupled with total internal
reflection fluorescence microscopy has a minimum experimental
lateral and axial displacement uncertainty of approximately 4 and
7 nm61, respectively (Supplementary note 6). This leads to errors of
~6 and 17 Pa in shear and normal stresses, respectively (Supple-
mentary Fig. S12), which are insignificant compared to the
magnitude of the traction stresses generated by RBL and HeLa cells.

Conclusions
Quantifying the mechanical forces generated by living systems is
key to furthering the understanding of biomechanics and
mechanobiology. Hence, building tools that can reliably quantify

Fig. 3 Impact of Poisson’s ratio on the experimentally acquired data from a rat basophilic leukaemia (RBL) cell. a Total internal reflection fluorescence
structured illumination microscopy (TIRF-SIM) image of an RBL cell expressing Lifeact-citrine activating on an antigen coated elastic substrate.
Scale= 5 μm. (reproduced and reanalysed data from Li et al.61) b The axial and lateral displacements during RBL cell activation were estimated by
employing astigmatic traction force microscopy (aTFM). c Magnitude of the reconstructed normal and shear stresses considering both axial and lateral
components of the displacement when the Poisson’s ratio of the substrate ranges between 0–0.5. d Magnitude of the reconstructed normal and shear
stresses when the axial component of displacements was ignored and only the lateral components were considered. e Contour map of the error for a
hypothetical problem (for RBL cell activation) considering all combinations of the possible true Poisson’s ratio and the Poisson’s ratio used in TFM analysis,
varying from 0 to 0.5.
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these forces at sufficient sensitivity without perturbing the bio-
logical system is essential. Together with advances in high-
resolution optical imaging, TFM represents a powerful metho-
dology to address these requirements. Nevertheless, the sensitivity
of TFM is fundamentally reliant on knowledge of the material’s
Young’s modulus and the Poisson’s ratio. In this work, we
developed a framework for determining the error levels intro-
duced via misestimation of the Poisson’s ratio in TFM, demon-
strating the critical importance of using the correct material
Poisson’s ratio by simulating common TFM modalities and
evaluating experimentally acquired data.

In the current study, reliable quantification of the long-time
Poisson’s ratio was acquired through development of a simple
platform, which enabled us to calculate the Poisson’s ratio directly
without any specific assumption. Additionally, to quantify the
Poisson’s ratio, an optimum length-scale of ~1 mm was adopted
for the gel samples. This length scale is sufficiently large that
allows the precise measurement of displacements using conven-
tional light microscopy while it is small enough that the samples
reach their long-time (asymptotic) state within a reasonably short
timescale. Employing the platform, we demonstrated that silicone
gels display a nearly incompressible and time-independent
behaviour irrespective of their elastomer proportions. On the
other hand, the Poisson’s ratio of PAH is considerably less than
0.5 and a function of the PAH constituent concentrations. Fur-
thermore, since PAHs exhibit poroelastic behaviour, their Pois-
son’s ratio is time dependent and converges to an asymptotic
value at long time scales, which is a fraction of a second within
the context of TFM. The different mechanical behaviour of these
gels highlights the potential challenge for the selection of the
substrate material for use in TFM experiments and setting
material values in the TFM analysis. Future investigation of
the mechanical behaviour of the substrates beyond a linear
elastic model and considering the time-dependent (such as

viscoelasticity and poroelasticity) behaviour will be of critical
importance towards a more accurate and robust quantification of
cell generated forces.

Our analyses lead to several important experimental con-
siderations. Firstly, consistent with previous works16 we have re-
evaluated that the density of the fiducial markers is a key para-
meter in determining the overall accuracy of the TFM in all
geometries in 2D, 2.5D, and 3D. In addition to the bead density,
we found that small errors in the estimation of fiducial marker
location can lead to large errors in traction reconstruction (for
example location errors in the order of 2% can generate traction
errors of 25%, Supplementary Fig. S1). These results further
emphasise the importance of using an imaging modality with a
spatial resolution sufficient to capture mechanical details within a
given biological system.

Secondly, we demonstrated that the Poisson’s ratio is of par-
ticular importance in 2.5D and 3D TFM scenarios, where both
lateral and axial substrate deformations are present, with a mis-
match of 0.2 in the Poisson’s ratio leading to errors of up to 100%
for both the magnitude and distribution of constructed traction
(particularly the axial component) (Supplementary Figs. S6–S8).
This key finding suggests that when the ratio of the normal and
shear stress is greater than ~0.1, the axial components of dis-
placement cannot be ignored and the application of 2D TFM may
result in incorrect reconstruction of forces (Supplementary
Fig. S9). With the increasing availability of techniques that can
quantify both 2.5D and 3D displacements25,29, these results will
serve as a key guide for experimentalist in choosing the appro-
priate TFM modality to address their biological question.

Finally, to frame our conclusions into a wider practical per-
spective, we introduce a robust measure of the sensitivity of TFM
to the Poisson’s ratio by analysing the error in the traction force
reconstruction across a wide range of Poisson’s ratios (Fig. 2h).
We provide a quantitative method and guide demonstrating the

Fig. 4 Impact of Poisson’s ratio on the experimentally acquired data from a HeLa cell. a Total internal reflection fluorescence structured illumination
microscopy (TIRF-SIM) image of a HeLa cell adhering to the elastic substrate. Scale= 5 μm (reproduced and reanalysed data from Li et al.61). b Magnitude
of axial and lateral displacements during HeLa cell adhesion were estimated by employing astigmatic traction force microscopy (aTFM). c Magnitude of
the reconstructed normal and shear stresses considering both axial and lateral components of the displacement when the Poisson’s ratio of the substrate
ranges between 0–0.5. d Magnitude of the reconstructed normal and shear stresses when the axial component of displacements was ignored and only
the lateral components were considered. e Contour map of the error for a hypothetical problem (for HeLa cell adhesion) considering all combinations of the
possible true Poisson’s ratio and the Poisson’s ratio used in TFM analysis, varying from 0 to 0.5.
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accuracy required in the measurement of the Poisson’s ratio to
achieve a desired level of error. These results will inform both the
future characterisation tools (for more accurate quantification of
the material properties62), as well as TFM experimental methods
and analysis techniques. In addition, our work highlights the
importance of establishing the correct value of the Poisson’s ratio
not only in TFM measurements but more broadly to any cell
mechanics measurements relying on a linear elastic framework.

Methods
Device fabrication. The Poisson’s ration measurement device was fabricated by
cutting (Epilog laser cutter) the design through 2 mm thickness polymethyl
methacrylate (PMMA) sheets. It comprised three layers sitting on top of each
other. The size of the device is 62 × 25 × 6 mm in an unstretched state. The two
lower blocks (baseplate/alignment blocks in Fig. 1e) and the fixed block were
bonded together by chemical bonding (SciGrip Weld ON 4SC). A 20 × 10mm
aperture on the lower blocks enabled microscope imaging. The moving block, in
turn, consisted of three layers, bonded together using the adhesive. The two lower
layers fit tightly inside slits on the fixed block, constraining the sliding block to
move forward/backward only in one direction.

Gel preparation. To prepare PAH, acrylamide (with final concentrations of 3, 4,
and 5%, Sigma), bis-acrylamide (0.1%, Severn Biotech), Ammonium persulfate
(1%, Sigma), and TEMED (0.1%, Sigma) were dissolved in PBS. After mixing,
around 40 µL of the solution was immediately directed into a tube (inner diameter
1 mm, Agilent Technologies) using a 1 mL syringe (BD plastic) connected to the
other end of the tube and left there for 15 min at room temperature to cure. Then,
the gel was expelled from the tube gently and at the same time was placed on the
stretching device.

To prepare q-gel, parts A and B of q-Gel 920 (Quantum Silicones LLC), were
mixed with ratios of 1:1.1, 1:2, and 1:3 and were transferred into a 30 × 3 × 3mm
mould. After degassing the mixture, it was baked at 100 °C for 90min. Then the cured
gel was removed from the mould carefully and mounted on the device. To prepare
PDMS, the elastomer and curing agent (Ellsworth adhesives) were mixed with a ratio
of 80:1, 10:1, and 5:1, and the mixture was moulded and degassed followed by baking
at 90 °C for 90min. For the measurements, a very thin (~1mm) layer of the PDMS
were peeled off from the bulk and placed on the stretching device.

Poisson’s ratio measurement. The strips of different gels were placed carefully on
the stretcher device and taped firmly to the fixed and sliding blocks. To ensure that
the strip lied straight, it was placed on the positioning grooves (Fig. 1e). As fiducial
markers, two stains were inked on the strip using a permanent marker. For
hydrogels, unlike silicone gels, the device was placed in a Petri dish filled with PBS
and the hydrogel was allowed to swell for 2 h. Using an optical microscope (Leica
DMi 8), the gel was imaged once, and after being stretched by pulling the sliding
block, the imaging was continued every 30 s for 5 min.

To compute the Poisson’s ratio, sample’s diameter and also the distance
between the two stains were measured at least at five different locations (L1, L2, D1,
and D2 in Fig. 1e, in which subscripts 1 and 2 represent before and after starching
of the gel, respectively). Axial and lateral strains were calculated using
εa= (L2− L1)/L1 and εl= (D2−D1)/D1, respectively at each location and their
averages were obtained. Finally, the Poisson’s ratio was calculated using ν ¼ �εl=εa
in which εa and εl represent the average axial and lateral strains, respectively. For
statistical analysis, each experiment was repeated at least three times. The values
reported in Fig. 1f, g are the long-timescale Poisson’s ratio (Supplementary note 7)
that were obtained from the images taken 5 min after stretching the gel.

Finite element simulations. The results presented in the main figures of this study
were obtained from FE analyses for both direct and inverse problems. FE simulations
provide straightforward and robust solutions and benefit from key features including
the flexibility to simulate complicated geometries, the ability to model materials with
different degrees of compressibility and more complex constitutive laws, as well as the
capability to include nonlinear effects. Furthermore, for the inverse problem, the FE
analysis may provide more robust solutions compared to Tikhonov regularised Green
function’s methodology (Supplementary note 5). It is worth noting that FE uses the
similar steps to solve the forward and inverse problems including: discretisation of the
domain into finite elements, finding the stiffness matrix for each element (that only
depends on the geometry and material properties of the element), assembly of the
stiffness matrices of the elements to form the global stiffness matrix, applying natural
boundary conditions to form the global load vector, applying the essential boundary
conditions to the algebraic system of equations, solving the system of equations to
obtain the displacement field and the secondary field variables such as stress. Thus,
the only difference between the forward and inverse problem is in the type of
boundary conditions applied to the algebraic system of equations. For the forward
and inverse TFM problems, the discrete nature of FE method guarantees that the
system of equations will turn into a well-posed problem after applying the boundary
conditions and therefore no regularisation is required to solve the problem. FE

simulations were carried out using a commercial FE software (ABAQUS, Dassault
systèms, France). Details of simulations and the parameter selections for solving the
forward and inverse problems have been extensively described in ref. 29. Briefly, the
domain size was considered large enough to minimise the finite domain boundary
effects. Mesh size was adopted after carrying out a mesh sensitivity analysis. A
quadratic tetrahedral 10-node element using hybrid formulation with improved
surface stress visualisation (C3D10HS) was employed to discretise the domain. The
isotropic linear elastic constitutive law with large deformation formulation, which
captures geometrical nonlinearity was implemented. A comparison between FE
method and the Tikhonov regularised Green’s function method is also provided in
Supplementary Note 5.

To assess the influence of misestimation of the Poisson’s ratio on estimation of
the Young’s modulus obtained from AFM (Fig. 1d), a FE model of a rigid sphere
indenting a deformable substrate of original E and ν, was employed. The shear and
normal behaviour of the contact was selected as rough and hard contact,
respectively. The force-indentation curve obtained from the simulation was used to
derive E/(1− ν2). Then, assuming ν= 0.5, the Young’s modulus was estimated, and
the respective error was computed by comparing the estimated Young’s modulus
with the original E. For each original ν, such procedure was repeated for several
bead sizes, indentation depths and original Young’s modulus to find the average
and standard deviation of the error (Fig. 1d).

Cell culture. The experiments were performed using RBL-2H3 clone cells (CRL-
2256, ATCC, USA; mycoplasma tested) and HeLa cells (product 93021013, Sigma-
Aldrich; mycoplasma tested). Stable expression of Lifeact-citrine in both RBL and
HeLa cells was achieved via a lentivirus transduction strategy. RBL cells were
maintained at 37 °C in 5% CO2 in minimum essential media (MEM) (Sigma
Aldrich) containing 15% fetal bovine serum (FBS), 10 mM HEPES (Lonza, UK),
2 mM L-glutamine and 1% penicillin–streptomycin. HeLa cells were maintained at
37 °C in 5% CO2 in DMEM (Sigma-Aldrich) supplemented with 10% FBS, 2 mM L-
glutamine and 1% penicillin−streptomycin. Cells were split every two days at a
volume ratio of 1:5. Twenty-four hours prior to TFM experiments, RBL cells were
treated with 0.05% Trypsin-EDTA (Lonza), facilitating their detachment from the
cell culture flask. Cells were then transferred to a rotating chamber at 37 °C in 5%
CO2 to maintain their suspension state prior to experiments.

Astigmatic TFM (aTFM) measurements. The data presented in Figs. 3 and 4 was
acquired using astigmatic TFM conducted on RBL and HeLa cell lines. By com-
bining super-resolved TIRF-SIM microscopy with astigmatic imaging, aTFM is
able to capture nano-scale axial and lateral deformations of the underlying gel
substrate, in addition to a super-resolved SIM image of the cell in contact with the
substrate. Full details of the experimental methods of aTFM are provided in ref. 61.

Statistics. For aTFM experiments on both HeLa and RBL cells, force data was
acquired in at least 20 cells, from three independent experiments, in each case of
which representative data is presented in Figs. 3 and 4. Random node sampling was
repeated more than five times to obtain each data points in Fig. 2e, f, i. Error bars
represent standard deviation and a two-tailed t-test was carried out to compare the
errors and compute p-values.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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