
Count regression and machine learning approach for 

zero-inflated over-dispersed count data.     

Application to micro-retail distribution and urban form. 

Alessandro Araldi1 [0000-0002-9732-0857], Alessandro Venerandi 1[0000-0003-4887-0120] and 

Giovanni Fusco2 [0000-0002-6171-5486] 

1 Université Côte-d’Azur, ESPACE, Nice, France 
2 Université Côte-d’Azur, CNRS, ESPACE, Nice, France 

{alessandro.araldi,alessandro.venerandi,giovanni.fusco} 

@univ-cotedazur.fr 

Abstract. This paper investigates the relationship between urban form and the 

spatial distribution of micro-retail activities. In the last decades, several works 

demonstrated how configurational properties of the street network and morpho-

logical descriptors of the urban built environment are significantly related to store 

distribution. However, two main challenges still need to be addressed. On the one 

side, the combined effect of different urban form properties should be considered 

providing a holistic study of the urban form and its relationship to retail patterns. 

On the other, analytical approaches should consider the discrete, skewed and 

zero-inflated nature of the micro-retail distribution. To overcome these limita-

tions, this work compares two sophisticated modelling procedure: Penalised 

Count Regression and Machine Learning approaches. While the former is specif-

ically conceived to account for retail count distribution, the latter can capture 

non-linear behaviours in the data. The two modelling procedures are imple-

mented on the same large dataset of street-based measures describing the urban 

form of the French Riviera. The outcomes of the two modelling approaches are 

compared in terms of prediction performance and selection frequencies of the 

most recurrent variables among the implemented models.   

Keywords: Retail Distribution, Urban Form, Street-network Configuration, 

Feature Selection, Penalised Models, Machine Learning 

1 Introduction 

Distribution of micro-retail is one of the most studied phenomena in urban space: the 

presence of stores is traditionally associated with socioeconomic dynamics and attrac-

tiveness of urban spaces [1]. Understanding the relationship between retail distribution 

and urban form, also named 'the morphological sense of commerce' [2], might provide 

academics and practitioners with evidence on how urban systems work and, ultimately, 

nourish the discussion on how to improve quality of life in urban areas through design 

and planning.  

This is a peer-reviewed, accepted author manuscript of the following paper : Araldi, A., Venerandi, A., & Fusco, G. (2020). Count regression and 
machine learning approach for zero-inflated over-dispersed count data. Application to micro-retail distribution and urban form. In O. Gervasi, B. 
Murgante, S. Misra, C. Garau, I. Blecic, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, C. M. Torre, & Y. Karaca (Eds.), Computational Science 
and Its Applications – ICCSA 2020: 20th International Conference, Proceedings (pp. 550-565). (Lecture Notes in Computer Science (including subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12252 LNCS). Springer Science and Business Media Deutschland GmbH. 
https://doi.org/10.1007/978-3-030-58811-3_40.



 

 

In the last two decades, a large number of empirical works investigated the association 

between store distribution and specific aspects of urban form [3]. Within the theoretical 

framework of Hillier's Movement Economy Theory (MET) [4,5], the street-network 

represents the most extensively explored aspect of the urban environment. MET ex-

plains how the spatial configuration of public spaces influences movement patterns and 

indirectly the location of stores. Inspired by this theory, several works investigated the 

relationship between store distribution and street-network configuration in different ur-

ban and socioeconomic contexts, for example, through the metrics of integration in 

Space Syntax-SSx [5] and Betweenness in Multiple Centrality Assessment (MCA) [6].  

While an overall agreement on the importance of street-network properties in rela-

tion to the location of stores might be found in this specific literature, several criticisms 

were raised by other authors. The configurational analysis did not account, in fact, for 

additional aspects of urban form, such as building distribution and heights, site mor-

phology, built-up density, which might also participate to the description of the rela-

tionship between urban form and retail distribution [3]. Together with configurational 

approaches, researchers have been gradually introducing additional descriptors, for ex-

ample, street-based urban design qualities [7], skeletal streetscape [8], street-block ty-

pologies and built-up density [9,10], and plot system [11]. Moreover, they started to 

investigate how the importance of each descriptor of urban form might play different 

roles depending on the relative morphological context: different aspects of urban form 

might be associated with the presence of retail in different typo-morphological regions, 

such as urban fabrics [8], centre-periphery [12], the extent of the urban centre or the 

different morphogenetic processes (spontaneous or planned) underlying urban grids 

[13]. 

Beyond the theoretical and methodological discussion underlying the identification 

and conceptualisation of variables of urban form, two aspects related to the modelling 

procedures should be highlighted. Firstly, the aforementioned proliferation of ap-

proaches and features of urban form investigated in relation to retail distribution results 

in a rich yet fragmented literature. Despite evidence about the individual importance of 

specific aspects of urban form on store distribution, we still miss an overall picture. 

Assessing the combined and relative importance of a large number of urban form de-

scriptors with innovative data analysis and feature selection procedures might provide 

further evidence about the relative importance of each component. 

Secondly, the techniques of data analysis utilised in previous works tend to be overly 

simplistic [14]. Indeed, while important efforts have been devoted to the conception 

and implementation of sophisticated computer-aided procedures for the description of 

different aspects of urban form, the choice and implementation of statistical and mod-

elling procedures have received less attention [8]. Relationships are often checked 

through visual inspection of maps [10], simple bivariate correlation [6,12], or Multiple 

Linear Regressions (MLR) [13,14].  However, the assumption of normality of residuals 

underlying MLR is hardly met given the usually very skewed and zero-inflated distri-

bution of number/density of stores in the spatial unit. Only very few works considered 

these two specificities of the retail distribution: log-transformation of the dependent 



 

 

variable [15] or count regressions approaches [9] for the former, suppression of spatial 

units without retail for the latter [6].  

Nonetheless, the absence of retail should be considered as much informative as its 

presence and ignoring this specific aspect would hide important evidence on the phe-

nomena under study. The retail distribution might be explained as the combined result 

of a twofold generative process defining presence/absence and number of stores, each 

one associated with different combinations of urban form features. Zero-Inflated Neg-

ative Binomial (ZINB) technique [16] has been shown to better perform when com-

pared to traditional MLR and count regression [8,17], with the only downside of not 

being able to capture non-linear behaviours in data. 

To overcome the limitations stated above and provide a more robust description of 

the relationship between features of urban form and retail distribution, the ZINB model 

developed by Araldi [17] is here compared to Gradient Boosting (GB) [18]. The former 

is a count regression model, part of the larger family of Generalised Linear Models 

(GLM) providing a built-in variable selection solution. The latter is a recently devel-

oped Machine Learning (ML) algorithm, combined with a forward feature selection, 

which proved to be a very versatile and robust technique of data analysis based on train 

and test and cross-validation [19].  

These two methodologies are here compared to analyse the relationship between a 

large set of urban features and retail distribution in the French Riviera, a large metro-

politan area located in the south of France. Outcomes, both in terms of prediction per-

formance and selected variables, are compared and discussed. Findings show that ZINB 

is, in general, better than canonical GB. However, a specific nested modelling architec-

ture combining Boolean and regressive GBs approaches to model respectively ab-

sence/presence and retail count provides higher performance levels.  

The paper is structured as follows: Section 2, specify the goal of the paper. Section 

3 presents the methodology under investigation: we briefly describe the study area, data 

sources, the set of urban form descriptors and the two modelling procedures under anal-

ysis. Outcomes of the two modelling procedures are presented and compared in Section 

4, focusing both on predictive potential and the selected variables. Conclusion and per-

spectives of future work conclude the paper.   

2 Objective  

As introduced in the previous section, the major challenge in this work is how to 

deal with zero-inflated and highly skewed distribution characterising the retail distri-

bution along streets. ZINB regressions were shown to handle both skewness and infla-

tion in the data distribution in the case of retail distribution modelling, better perform 

among other statistical regressive approaches [8,17]. Nonetheless, an important limita-

tion still persists: count data models might not be able to detect the presence of complex 

non-linear interactions between the predictors and the response variable. To overcome 



 

 

this problem, GB is here implemented and compared to ZINB. GB is an improved ver-

sion of Random Forests (RF), a technique of data analysis based on multiple decision 

trees. However, while the prediction output by RF is the average of the predictions of 

each of such trees, the one made by GB is obtained through an iterative process that, 

each time, fits new decision trees to improve predictions, and thus reduce errors [18].  

However, despite a high predictive capacity, two main limitations are traditionally 

associated with ML (and therefore GB) approaches: firstly, the interpretation of the 

parameters is less straightforward. Secondly, the sample size for each class or range to 

be predicted should roughly be similar. When this assumption is not met, the applica-

tion of a canonical ML might produce biased results focusing on the prediction of the 

class/range with the highest number of samples [20]. Data imbalance/skewness repre-

sents a non-trivial problem that has received growing attention in the last two decades 

within the ML community [20,21]. To overcome these limitations, numerous solutions 

have been proposed in the ML literature. Three groups might be recognised [22]: i) ad-

hoc modification at the data level (i.e. over/under-sampling techniques); ii) variation at 

the algorithm level removing the bias towards the majority class (i.e. cost-sensitive ap-

proaches); iii) hybrid approaches combining both data and algorithm modifications.  

Although many efforts targeting imbalanced distributions are regularly proposed in 

the community, these procedures are mainly based on heuristics aimed at the improve-

ment of the prediction performance. Moreover, they lack relevant insights/basis on the 

generating process(es) underlying the phenomena to be modelled, that might guide the 

development of systematic imbalanced learning approaches. As recently observed by 

Kravzczyk [22], many shortcomings in existing methods and problems still need to be 

addressed appropriately. Furthermore, alterations of canonical procedures might also 

be associated with degradation of model performances. 

For these reasons, in this work, rather than focusing on procedures that could handle 

imbalanced models, we propose a theory/process-based solution combining canonical 

well-established ML approaches. Starting from the same hypothesis underlying tradi-

tional zero-inflated regression approaches, we propose to study the retail distribution 

with a decomposition of the original problem into a set of two sub-problems: ab-

sence/presence and amount of stores. These two aspects are investigated with canonical 

classificatory (Boolean) and regressive GB, both in a disconnected and com-

bined/nested fashion. This approach allows a straightforward comparative assessment 

of the two modelling approaches investigated in this paper (ZINB and RF). Moreover, 

feature selection procedures can be easily implemented through shrinkage (or penal-

ised) regressions [23] and Sequential Forward Selection (SFS) [24] for ZINB and RF, 

respectively.  

The implementation of these procedures on the same study area provides important 

empirical evidence about specificities of these two methodological approaches and on 

two major challenges: on the one side, the ability to deal with zero-inflated and highly 

skewed distribution characterising the retail distribution along streets, on the other, the 

need to identify a subset of meaningful variables from a large set, characterised by high 



 

 

multicollinearity. Comparing the selected variables from the two methods allows un-

derstanding whether the underlying assumptions of traditional modelling approaches 

might influence the results of the analysis and if non-linearity might better explain the 

relationship between urban spaces and retail distribution.  

Both procedures are applied to a vast metropolitan region and on nine sub-regions 

defined for their different morphological/contextual characteristics and degrees of 

skewness and zero-inflation. The spatial decomposition of the models allows assessing 

performances and selected variables in different contexts, providing information on the 

scale/contextual independence/dependency of each variable and possible non-linear be-

haviours between descriptors of urban form and retail. 

3 Methodology 

3.1 Study area and data sources 

In order to assess the modelling protocols under analysis, we implement them on a 

real case study, that of the French Riviera, an extensive metropolitan area, including 88 

coastal and inland municipalities of the department of the Alpes-Maritimes, in the 

southern French region Provence Alpes Côte d'Azur (PACA). Six main urban centres 

structure the French Riviera (Fig.1). In its western part, we find the inland town of 

Grasse and the two coastal cities of Cannes and Antibes, counting respectively 51, 74.2, 

and 73.8 thousand inhabitants. Nice, with its 343 thousand inhabitants, represents the 

largest municipality of the French Riviera and the administrative centre of the depart-

ment. The enclave of Monaco and the border city of Menton have respectively 38 and 

28 thousand inhabitants. Spread around these main centres, 295 thousand people find 

their home in smaller cities, villages, and hamlets. With a total of more than 1 million 

inhabitants, the French Riviera is the seventh most populated conurbation in France.  

The combination of all these elements produces a sequence of urban centres and 

peripheral areas of different sizes and urban forms. Considering such a variety might 

help to overcome the limitation of traditional works investigating only urban cores [3]. 

Furthermore, the high heterogeneity of urban forms present in this study area allows a 

more thorough assessment of the outcomes of our two modelling approaches as differ-

ent zero-inflation and overdispersion of the micro-retail distributions are observed.  

Two sources of data have been used in this work. The official data on retail distribu-

tion has been provided by the local Chamber of Commerce of Nice Cote-d'Azur. Urban 

form descriptors are based on the geographic databases (BD TOPO®, 2017) from the 

French National Institute of Geographical and Forest Information. Four layers of urban 

morphological elements have been used: building, street-network, parcel and digital 

terrain model-DTM. While GIS-based protocols have been implemented for computing 

the different descriptors of urban forms, open-source Python and R libraries were used 

to implement GB (scikit-learn) and ZINB models (mpath).   



 

 

 

Figure 1 The study aera and the morphological regions at the macro- (First/Second-Age Cit-

ies, left) and meso-scale (the nine Urban Fabrics, right), considered in this work. Source: [8]. 

3.2 The variables under investigation 

The spatial unit of analysis considered in this work is the street segment. It represents 

one of the most used spatial units and has attracted the attention of urban designers, 

morphologists, and geographers in the last twenty years, [25]. The street is also consid-

ered the bridging element between different theoretical backgrounds and methodologi-

cal approaches [26].  

The output variable was computed by assigning to each street segment, belonging to 

the study area under exam, the number of small stores (surface < 300 m2) lying on it. 

In order to describe different aspects of urban form, several computer-aided procedures, 

extracted from established scientific literature, were applied to our study region. Once 

excluded empty streets segment,1 our dataset had 63 thousand elements, described by 

more than one-hundred street-based indicators of urban form.  

Such descriptors can be categorised in four main subsets. Forty indicators describe 

street network configurational properties and were computed through the MCA proto-

col [27]. Four traditional configurational indices, Reach, Straightness, Closeness and 

Betweenness centralities were implemented at different radii and impedances (metric 

and temporal, corresponding to pedestrian movement and vehicular mobility). Thirty-

six indicators describe the street-network accessibility towards public squares, coastline 

and Anchor Stores (e.g., shopping centres, arcades etc. with an overall surface > 2000 

m2, AS), considered as influential components in the commercial fabric of cities [28]. 

As for the previous metrics, different radii and impedances were considered. Thirty 

indicators measure various aspects of urban form and were implemented through GIS 

procedures. These indicators describe the layout of the built form along street edges 

                                                           
1 Defined as those street segment where no built-up elements are observed within a radius of 50 

meters from its edges. 



 

 

(also named skeletal streetscape [29]). Examples of such indicators are: façade align-

ment, set-back of buildings, average building height, distribution of plots, etc. 

Finally, street-based contextual variables are obtained through the implementation 

of the Multiple Fabric Assessment procedure [30,31]. Each street segment is associated 

with twelve values, each describing the probability of association to nine families of 

urban fabrics and three morphological regions, respectively, at the neighbourhood and 

district level (Fig.1). These two typo-morphological partitions of the space also define 

the subareas where count regression and GB models were separately applied. 

3.3 Modelling approaches  

Based on the thematic and methodological literature previously discussed, this paper 

investigates the relationship of micro-retail distribution and urban form as generated by 

a double process (store presence and quantity), through count regression and GB. For 

each study (sub)region, we implement at first two couples of models exploring the 

aforementioned processes separately: Binomial (B) regression and GB Boolean classi-

fication for the former, Negative Binomial (NB) regression and regressive GB for the 

latter. The separation of these two processes requires the manipulation and separation 

of the original dataset that corresponds, in other terms, to an artificial introduction of 

expert-based knowledge in the modelling procedure. Consequently, the models of pres-

ence/absence of retail do not consider the number of stores observed along each street 

and their outcomes only describe streets with favourable or hostile conditions to the 

presence of at least one store. Contrarily, in the case of count models, outcomes describe 

those features of urban form which are best associated with greater/smaller numbers of 

stores on street segments, when/if observed. To model the combined effect of these two 

processes without their manual separation, specific procedures are therefore imple-

mented. 

In the GML count regression methodological framework, the Zero-Inflated Negative 

Binomial regression (ZINB) provides a built-in solution for the simultaneous imple-

mentation of a Binomial and a Negative Binomial regression. In such an approach, ze-

ros are originated by two simultaneous processes: structural zeros (or true zeros) and 

random zeros (or false zeros). ZINB is a well-established statistical procedure already 

tested and implemented in several disciplines and, more recently, demonstrated to well 

perform when investigating retail distribution. 

On the contrary, for what concerns the GB methodological framework, the absence 

of a specific acknowledged procedure able to consider the two processes requires us to 

test two different solutions. The first consists in implementing the canonical algorithm, 

where no difference between the two processes is made. Canonical GB is a versatile 

and robust technique of data analysis that combines several weak models to output a 

stronger overall prediction [18]. As mentioned above, the prediction made by GB is 

based on an iterative process that fits new decision tree models to improve predictions, 

and thus reduce errors, at each iteration. The minimisation of such errors is based on a 

loss cost function pointing in the negative gradient direction. To avoid overfitting, the 



 

 

original dataset is divided in train and test subsets. First, the model is trained on a ran-

dom subset of the dataset. Second, its performance is evaluated on the part of the dataset 

that was not used in the previous step. This procedure must be combined with the k-

fold cross-validation, which consists in dividing the dataset into k folds and using each 

fold k−1 times as train set and once as test set to be predicted. The number of folds 

considered is this work is 10.  

The second solution within the GB methodological framework accounts for the two 

processes in retail distribution (store presence and quantity) and uses several ML algo-

rithms in a nested fashion. Firstly, to identify the best predictors of presence/absence of 

retail, a GB classifier is fitted in a cross-validated regime. Having obtained the model, 

this must be used to predict presence/absence of retail across all observations in the 

study area. Subsequently, a regressive GB is implemented again, in in a cross-validated 

regime, to predict retail count where the previous model predicted presence. The pre-

sented nested solution allows to specifically consider the two process of retail pres-

ence/absence and count without manual separation of the two subsets.  

In order to deal with the redundant and highly correlated information originated by 

the large number of variables,2 both GLM and GB procedures are combined with spe-

cific variable selection procedures to allow the identification of the most significant 

variables of urban form related to retail distribution. In the case of count regressions 

(B, NB and ZINB), penalised regression approaches are applied: the notion underlying 

this procedure is to shrink the regressive coefficients toward zero. The coefficients as-

sociated with the variables with a minor contribution to the outcomes of the model are 

close or equal to zero. In this way, the complexity of the model is reduced. The specific 

ElasticNet (Enet) procedure [32] is implemented in this work.For what concerns the 

ML approach, GB models (both classificatory and regressive) are all preceded by a 

Sequential Forward Selection (SFS). SFS identifies the best predictors of the output 

variable through an iterative process based on a regressor performance that adds one 

variable at the time until an optimal subset of features is reached [19].  

The implementation of Enet and SFS procedures, allow us to identify those subsets 

of variables associated with retail presence/absence and count separately, within each 

sub-region. To compare the outcomes of all modelling solutions (ZINB, canonical GB, 

and nested GB), F1 scores must be computed to evaluate their performances. The F1 

score measures a model's accuracy as the harmonic mean of precision and recall [33]. 

The former represents the number of correct positive predictions divided by the total 

number of all positive predictions output by the model. The latter is the number of 

correct positive predictions divided by the number of all samples that should have been 

identified as positive. F1 scores range between 1 (perfect accuracy) and 0 (worst accu-

racy). These performance measures describe the combined effect of the variable selec-

tion and modelling procedures within the GLM and ML approaches where specific sub-

set of selected variables underlies each model. We will, however, remark that F1 scores 

are better suited to compare the zero-part of the models (presence/absence of stores) 

than the count part. For the latter, any predicted value differing from the observed one 

                                                           
2 Which might especially affect the GLM based on the assumption of independent regressors. 



 

 

will contribute equally to lowering the F1 score, regardless of the magnitude of the 

difference. More specific measures, like the area under the Count-REC (Regression 

Error Characteristic) curve [8] could be used to compare the quality of the count mod-

els. As for the GM models, F1 scores are always calculated as an average of the 10 test 

subsets within the k-fold procedure. 

The outcomes of the variable selection procedures are finally presented in terms of 

selection frequency. Comparing the selected variables from each couple of models (B 

vs Boolean GB, zero-truncated NB vs regressive GB, ZINB vs canonical/nested GB) 

allows identifying the degree of similarity of the GLM and ML modelling approaches. 

4 Results 

3.4 Comparing model goodness of fit values  

In Table 1, the outcomes of all 81 models are collected and compared. For each study 

(sub)region, zero rates and variances of the count part are provided. By visually in-

specting Table 1, we note that higher zero-inflation is associated with lower overdis-

persion in non-dense sub-regions while dense urban fabrics are associated with lower 

zero-inflation and higher variability. F1 scores are separately evaluated for the zero and 

count parts allowing a direct comparison and evaluation of the different modelling pro-

cedures in relation to conditions of zero-inflation and overdispersion. Before discussing 

performances, we remind the reader that each model is based on different subsets of 

variables, since different feature selection procedures had to be used in GLM and ML. 

The performances showed in Table 1 are to be considered the combined result of such 

feature selections and modelling, implemented on the same original dataset of 105 de-

scriptors of urban form and optimised for each sub-region under analysis.  

Depending on the process(es) under analysis and judging solely from F1 scores, dif-

ferent outcomes can be outlined: when focusing on the presence/absence prediction of 

stores (zero part), both Binomial and GB Boolean models show better performances for 

sub-regions with more zero-inflation. F1 scores of the two modelling approaches con-

verge for sub-regions with higher zero-inflation (less than 1,5% of variation), although 

traditional Binomial regressions tend to perform slightly better than GB Boolean clas-

sifiers. On the other hand, the latter tends to perform better than Binomial regressions 

in cases with less zero-inflation.  

When modelling the number of stores (count part) with zero-truncated Negative Bi-

nomial regressions and regressive GB, the latter approach is consistently associated 

with higher predictive capacity, with an improvement of the F1 scores between 25% 

and 125%. Furthermore, stronger improvements seem to be associated with larger sub-

sets rather than with smaller ones, which also tend to be more zero-inflated and/or over-

dispersed.  

When the two processes of presence/absence and quantity of retail are modelled with 

ZINB and canonical GB, we observe that: i) F1 scores of both zero and count parts are 



 

 

lower than the ones obtained through models that considered the two processes sepa-

rated; ii) canonical GB performs slightly better for both zero and count parts, when 

considering the entire dataset; iii) in compact/planned urban fabrics, where greater 

numbers of stores can be found, the ZINB outperforms the canonical GB for both zero 

and count parts; vi) in the remaining subspaces, GB performs better in the zero part, 

while ZINB provides better predictions for the count part.  

The proposed nested GB protocol, inherit the higher predictive performance from 

the separate implementation of Boolean and regressive GB. We observe that the nested 

GB always performs better than the canonical GB, in both zero and count parts. When 

comparing nested GB to ZINB, we observe that: i) F1 scores of the zero parts for the 

former are always greater than the ones for the latter, although the improvement de-

creases in those cases with stronger zero-inflation; ii) F1 scores relative to the count 

part of the nested GB are greater than the ones for ZINB, with the exception of those 

urban fabrics with grater variability of values. Finally, in UF2 (traditional planned ur-

ban fabrics with adjoining buildings), nested GB and ZINB show similar predictive 

performances, while, in UF4 (modern discontinuous urban fabrics with big and me-

dium-sized buildings), ZINB outperforms the nested GB approach.     

Table 1 Performance of models subdivided for morphological contexts/regions. Count vari-

ance and zero-inflation are reported in the first row. F1 scores are provided separately for the 

zero and count parts. The darker the red, the stronger the improvement in performance of GB 

approaches over GLM ones. The darker the green, the stronger the improvement in performance 

of regressive GLM over GB ones.   

 
 

To conclude, when retail absence/presence and count are modelled separately, Bool-

ean GB and the traditional Binomial model show similar results for absence/presence, 

while GB outperforms zero-truncated NB in predicting the number of stores. Nested 

GB outperforms canonical regressive GB when the output variable shows skewed and 

Study 

Region
Global First Second UF1 UF2 UF3 UF4 UF5 UF6

Variance 

(count part)
28,40 40,62 16,55 11,86 50,62 5,00 27,66 2,38 1,30

Modelled 

process
% zeros 77,4 63,1 85,7 74,9 52 81,8 80,5 88,7 89,6

0,911 0,830 0,924 0,872 0,763 0,902 0,893 0,943 0,948

0,913 0,843 0,923 0,874 0,758 0,896 0,896 0,942 0,947

0,26% 1,54% -0,07% 0,21% -0,62% -0,63% 0,37% -0,12% -0,16%

0,170 0,123 0,239 0,195 0,110 0,285 0,155 0,399 0,484

0,366 0,224 0,408 0,312 0,148 0,452 0,218 0,585 0,618

115,34% 81,64% 70,50% 59,63% 34,43% 58,77% 40,55% 46,57% 27,68%

0,883 0,764 0,909 0,843 0,676 0,885 0,863 0,934 0,948

0,903 0,812 0,906 0,853 0,696 0,892 0,875 0,944 0,949

2,25% 6,36% -0,25% 1,16% 2,98% 0,82% 1,40% 1,11% 0,14%

0,913 0,843 0,923 0,874 0,758 0,896 0,896 0,942 0,947

3,4% 10,4% 1,6% 3,6% 12,1% 1,2% 3,9% 0,9% -0,1%

0,102 0,157 0,154 0,214 0,133 0,220 0,169 0,145 0,180

0,106 0,115 0,084 0,174 0,108 0,117 0,028 0,000 0,000

4,55% -27,04% -45,47% -18,81% -18,94% -46,85% -83,65% -100,00% -100,00%

0,209 0,216 0,337 0,290 0,134 0,412 0,126 0,367 0,705

105,8% 37,5% 119,2% 35,3% 0,7% 86,9% -25,2% 153,8% 291,1%
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zero-inflated distributions, both in zero and count processes. When comparing nested 

GB and ZINB regressive approaches, the former outperforms the latter, especially in 

those cases with stronger zero-inflation. Conversely, in cases with less 0s and stronger 

dispersion, the two modelling approaches output similar results.  

4.2 Comparing outcomes of feature selections 

The attentive interpretation of regression coefficients and feature importance output 

by each model goes beyond the goals (and limits) of this work. In this section, we will 

focus instead only on checking similarities and differences between the indicators of 

urban form selected by the two feature selection procedures (Enet and SFS), in each 

model.  

The number of selected indicators varies between few, in the case of non-compact 

peripheral regions, to many in compact urban areas (up to 30 variables, a third of the 

input variables). The nested GB approach displays the greatest number of selected in-

dicators in the overall study area and in compact regions (i.e. between 18 and 30), due 

to the double selection procedure for each retail distribution process under analysis 

(presence/absence and quantity). To summarise and assess the importance of each of 

the chosen indicators, the frequency of their presence in the models is evaluated. Tables 

2 and 3 show such frequencies for the different modelling approaches, retail distribution 

processes, and spatial subsets. 

The first column of Table 2 reports those indicators with the highest frequencies (> 

30%), across all 63 models. Among the ten most selected indicators, seven describe 

morphometric properties of the skeletal streetscape: Street Length, Building Coverage 

Ratio, Street Acclivity, Street Corridor Effect, Built-up Fragmentation, Average Build-

ing Height and Street Open Space. Local Betweenness at different scales (1,200 meters, 

5 and 20 minutes) are the most selected variables among the configurational de-

scriptors. In the next two columns of Table 2, frequencies are separately reported for 

the two modelling approaches, GLM and GB techniques. Five of the aforementioned 

indicators are found relevant for retail distribution independently by the modelling pro-

cedure (Street Length, Corridor Effect, Coverage Ratio, Built-up Fragmentation, Be-

tweenness at 1,200m). However, we observe higher selection frequencies in the GLM 

approaches compared to GB ones. The former identifies a similar subset of variables 

for the different spatial partitions. The latter tends instead to select more diverse sets of 

variables for each model, seizing distinctive characteristics in each morphological sub-

region. Moreover, GB approaches tend to select variables with a regionalised distribu-

tion such as Slope, contextual morphometric partitions (UFs and morphological re-

gions) and proximity to specific features (coastline and AS). They also tend to select 

variables describing punctual/discrete occurrences (i.e. cul-de-sac). Here again, the rea-

son underlying these outcomes might be related to the ability of GB approaches to 

model non-linear relationships. In the last two columns of Table 2, frequencies are re-

ported considering zero/count models for compact (First Age City, UF1-3) and 

sprawled/modernist (sub)regions (Second Age City, UF4-6), separately. We observe 



 

 

how the same indicators of urban form might play different roles in the two retail dis-

tribution processes. For instance, Street Corridor Effect appears to have a relatively 

higher importance in defining the number of stores rather than their presence/absence, 

in compact contexts; however, the opposite behaviour is observed in non-compact re-

gions. Similar presence of configurational and morphometric indicators is as influenc-

ing the retail presence/absence independently by the urban context; nonetheless, count 

process in compact areas seems to be more importantly influenced by morphometric 

streetscape descriptors than configurational ones.  

Table 2 Outcomes of feature selection procedures. Selection frequencies of the most recurrent 

descriptors of urban form, in relation to micro-retail spatial distribution. Frequencies are here 

reported considering all 63 models under analysis, grouped by modeling approach (GLM/ML), 

Zero/ Count Parts, in Compact and Sprawled/Modernist morphological regions. Background col-

ors identify groups of urban form descriptors: yellow- street-network configuration, light-green 

- skeletal streetscape, green - urban fabrics, blue - directional descriptors. 

 
 

In Table 3, we report the top 30 most selected features of urban form (the stronger 

the red, the greater the frequency of a feature). Models are divided only by considering 

the study (sub)regions. In this case, higher values describe greater importance of the 

Street Length 75% Street Acclivity 85% Street Length 72% Build. Coverage Ratio 100% Street Corridor Effect 88%

Street Corridor Effect 70% Street Corridor Effect 81% Street Corridor Effect 61% Street Length 100% Street Length 88%

Build. Coverage Ratio 67% Build. Coverage Ratio 78% Build. Coverage Ratio 58% Betweenness 1200m 75% Betweenness 1200m 75%

Street Acclivity 63% Street Length 78% Slope 56% Betweenness 5min 75% Betweenness 63%

Betweenness 1200m 60% Betweenness 1200m 74% Cul de sac 53% Street Corridor Effect 75% Street Acclivity 38%

Betweenness 5min 54% Avg Build. Height 67% Reach AS 300m 53% Straightness 5min 75% Avg Open Space 38%

Built-up Fragmentation 54% Betweenness 5min 67% UF9 53% Straightness 1200m 75% Betweenn GS 38%

Avg Open Space 48% Built-up Fragmentation 59% Betweenness 1200m 50% Street Acclivity 63% Betweenness 20min 38%

Avg Build. Height 41% Avg Open Space 52% Built-up Fragmentation 50% Betweenness 20min 63% First Age City 38%

Betweenness 20min 41% Small Houses (<125m 2 ) 52% Build.Specialisation 50% Built-up Fragmentation 63% Built-up Fragmentation 38%

Cul de sac 40% Straightness 5min 52% Street Acclivity 47% Avg. HW ratio 50% Straightness 5min 38%

Straightness 5min 40% Betw.AS 1200m 48% Betw. AS 300m 47% Avg Open Space 50% Avg Build. Height 25%

Betw. Coast 2400m 37% Straightness 20 min 48% Avg Open Space 44% Reach1200m 50% Small Build. (250-1000m
2
) 25%

Build.Specialisation 35% Betweenness 20 min 44% Betweenness 5min 44% Straightness 300m 50% Build. Coverage Ratio 25%

UF9 34% Freq Parc 44% Clos.  Coast 1200m 44% Avg Build. Height 38% Cul de sac 25%

Reach AS 600m 32% Sd. Building Set-back 44% UF1 44%

Slope 32% Straightness 600m 41% Closeness 1200 42% Street Corridor Effect 88% Street Acclivity 50%

UF2 30% Straigh. AS 1200m 41% Reach AS 600m 42% Street Length 88% Betweeness 300m 50%

Betw.AS 1200m 30% Betw. Coast 2400m 37% Betw. Squares 300m 39% Street Acclivity 75% Betweenness 5min 50%

Reach AS 300m 30% Straigh.  Coast 600m 37% Betweenness 20min 39% Avg Build. Height 63% Small Build. (250-1000m
2
) 50%

Straightness 300m 30% Sd. Build. Height 33% Betw. Coast 2400m 36% Betw. Coast 2400m 63% Street Corridor Effect 50%

Straightness 600m 30% Straightness 1200m 33% Closeness  AS 300m 36% Betweenness 20min 63% Build.Specialisation 50%

Straigh. AS 1200m 30% Reach 20 min 30% First Age City 36% Build. Coverage Ratio 63% Straightness 20min 50%

Straightness 300m 30% Natural Spaces 36% Cul de sac 63% Betw. Coast 2400m 38%

Straigh. AS 600m 30% Second Age City 36% Built-up Fragmentation 63% Betw. Squares 300m 38%

Straight. AS 300m 36% Sd. Building Set-back 63% Ave. Build. (1000-4000m
2
) 38%

Straight.Squares 300m 36% Straightness 600m 63% Large Build. (>4000m
2
) 38%

Clos.Squares 300m 33% Avg. Open Space 50% Build. Coverage Ratio 38%

Reach Squares 600m 33% Betw. AS 1200m 50% First Age City 38%

Closeness 20min 31% Betweenness 1200m 50% Reach AS 600m 38%

Reach AS 1200m 31% Betweenness 5min 50% Second Age City 38%

Reach Squares 300m 31% Small Houses (<125m
2
) 50% Straight. Coast 600m 38%

Straightness 5min 31% Closeness  Coast1200m 50% Straight. Coast 2400m 38%

Straightness 300m 31% Reach 20 min 50% Street Length 38%

UF2 31% Reach Squares 1200m 50% UF1 38%

UF7 31% Sd. Open Space 50% UF6 38%

Proximity towards Coastline, 

Anchor Stores (AS) and Squares

Street-Network Configuration

Typo-morphologicalcontext

Skeletal streetscape 

Street-based indicator group

Count Parts (18)

Sprawled/Modernist

Zero Parts (18) Zero Parts (18)

Count Parts (18)

Compact Modeling approach
ALL (63)

Machine Learning (36)Regression (27)



 

 

variable in relation to retail, independently by the modelling procedure and by the sep-

aration of the zero and count processes. Among the top 10 most selected indicators, we 

still find the indicators mentioned in the previous paragraph (i.e. Street Length, Build-

ing Coverage Ratio, Street Acclivity, Street Corridor Effect, Built-up Fragmentation, 

Average Building Height and Street Open Space, Local Betweenness at 1,200 meters, 

5 and 20 minutes). Nonetheless, when considering each sub(region), different frequen-

cies can be observed: for instance, in compact city centres (First-Age city), together 

with the ten aforementioned indicators, Standard Deviation of the Building Set-back 

and Straightness centrality at 1,200m also play important roles in the definition of retail 

distribution.  

Table 3 Outcomes of feature selection procedures. Selection frequencies (highlighted in red) 

of the most recurrent descriptors of urban form, in relation to micro-retail spatial distribution, in 

the French Riviera (Global), in the context-based partitions at the district scale (Fist/Second Age 

City), and at the neighbourhood scale (UF1-6). Background colors identify groups of urban form 

descriptors: yellow- street-network configuration, light-green - skeletal streetscape, green - urban 

fabrics, blue - directional descriptors. 

 

We finally compared the sets of variables selected by the two modelling approaches 

implemented in each region. For each couple of models (B vs Boolean GB, NB vs re-

gressive GB, ZINB vs canonical/nested GB), we considered the number of variables 

found in common and computed a Similarity Index as the harmonic mean of the rate of 

the shared variables. This indicator describes the degree of resemblance of the selected 

variables between GLM and ML approaches (thorough Enet and SFS, respectively). 

The sets of selected variables tend to show greater Similarity Indexes in larger re-

gions (Global, First/Second Age city with values between 0.31 and 0.49). Conversely, 

values are lower in smaller partitions (each single UF, with the exception of UF2, for 

Global
First 

Age City

Second   

Age City
UF1 UF2 UF3 UF4 UF5 UF6

Street Length 100% 100% 86% 71% 86% 86% 71% 57% 14%
Street Acclivity 100% 100% 71% 71% 86% 29% 57% 29% 29%

Build. Coverage Ratio 86% 100% 86% 57% 100% 86% 29% 29% 29%
Betweenness 1200m 100% 100% 57% 57% 57% 43% 57% 57% 14%
Street Corridor Effect 86% 71% 86% 57% 86% 71% 71% 29% 71%

Built-up Fragmentation 86% 100% 57% 43% 86% 29% 71% 14%
Betweenness 5min 71% 71% 43% 29% 71% 71% 71% 57%

Avg Building Height 86% 71% 57% 43% 43% 43% 14% 14%
Betweenness 20min 71% 57% 43% 14% 86% 71% 29%

Avg. Open Space 57% 100% 57% 29% 29% 71% 43% 29% 14%
Straight. AS 1200m 86% 29% 43% 57% 29% 14% 14%
Betw. Coast 2400m 43% 57% 57% 57% 43% 43% 29%

Straightness 5min 43% 57% 43% 57% 43% 71% 29% 14%
Straightness 600m 57% 57% 29% 29% 43% 43% 14%
Straightness 20min 57% 29% 57% 57% 14% 14% 14% 14%

UF2 86% 43% 29% 14% 29% 43%
Cul de sac 29% 43% 57% 29% 57% 43% 43% 43% 14%

Straightness AS 600m 43% 29% 43% 29% 57% 29% 14% 14%
Small Houses (<125m

2
) 29% 43% 57% 29% 57% 29% 14%

Reach20min 43% 29% 29% 43% 57% 14% 14% 29%
Straightness Coast 600m 43% 29% 57% 29% 43% 14%

Large Houses (125-250m
2
) 57% 29% 57% 14%

Build. Specialisation 29% 29% 71% 29% 29% 57% 43% 14% 14%
Sd. Building Set-back 14% 71% 14% 29% 57% 14% 29%

Closeness 1200m 43% 43% 14% 43% 29% 43%
Straight. Coast 1200m 57% 43% 29% 29%

Betweenn AS 1200m 29% 43% 57% 29% 14% 29% 29% 43%
Straightness 1200m 14% 71% 71% 43% 43% 14%

Straightness 300m 14% 29% 43% 100% 57% 29%
Reach 600m 43% 29% 43% 57% 14% 14%

Street-Network ConfigurationTypo-morphologicalcontext
Skeletal streetscape Proximity towards Coastline, AS, Squares

Street-based indicator group



 

 

which values are still between 0.30 and 0.36). Higher similarity can also be observed 

for the absence/presence models between Binomial regression and Boolean GB ap-

proaches. In general, the harder the task (count vs absence/presence) and the smaller 

the spatial domain, the more specific the models produced by the different approaches.  

5 Conclusion and discussion 

In this work, we proposed a comparative study between GLM and ML approaches 

to explain the relationship between descriptors of urban form and number of stores, 

along street segments.  Following previous works by Araldi [8,17], retail distribution 

was modelled in two ways: firstly, by applying separate models on the presence/ab-

sence and quantity of retail and, secondly, by using specific solutions able to model the 

two processes conjointly. To assess the two modelling procedures, implemented in 

these two different manners, we applied them on the same dataset, describing 105 dif-

ferent street-based aspects of the urban form of the French Riviera, a large coastal con-

urbation located in the south of France. The two modelling approaches were tested on 

the whole study area, but also on smaller morphological sub-regions, with different 

conditions of zero-inflation and overdispersion.   

For what concerns model performances, similar outcomes between GLM and GB 

approaches were observed when modelling presence/absence; the latter proved more 

successful when describing the number of stores. When modelling the combined effect 

of the presence/absence and count processes, the canonical GB model showed lower 

performance compared to the ZINB model. On the contrary, the nested GB proposed 

in this paper proved to be a better modelling solution for dealing with the zero-inflation 

of retail distribution. Just like ZINB, the nested GB approach does not inject any expert 

knowledge in data partitioning and is not prone to survivorship biases. Nonetheless, 

when modelling highly skewed distribution in specific urban fabrics (UF2-4), the 

nested GB did not outperform ZINB. 

For what concerns the outcomes of the feature selection, similarities among sets of 

variables were stronger in larger and central (sub)regions, while they were weaker in 

smaller and peripheral urban fabrics. The most recurrent variables tended to be street 

properties (Length and Acclivity), streetscape descriptors (Building Coverage Ratio), 

and aspects related to the layout of buildings (i.e. Corridor Effect, Built-up Fragmenta-

tion, Building Height and Open Space). A key role was also found to be played by local 

Betweenness centrality, while other configurational indices were found to be important 

only in specific urban contexts.  

The work proposed in this paper lies the basis for more advanced comparative stud-

ies that would provide better descriptions – linear and non-linear – of the relationship 

between features of urban form and retail distribution. We argue that this could be very 

helpful to confirm or reformulate previous theories, but also to propose new ones. 

In this work, we only evaluated the frequencies of the variables selected in the dif-

ferent models. Future work will focus on interpreting the behaviours and relative mag-

nitudes of such variables in light of further aspects of urban morphology and concurrent 

urban phenomena acting on the study area.  



 

 

For what concerns the approaches presented in this paper, future work might develop 

improvements to classic GB algorithms that would allow a better modelling of zero-

inflated/skewed distributions, for example through the combination of weak (i.e. deci-

sion trees) and strong estimators (i.e. models for count data) as proposed by [34] or with 

multi-output modelling approaches [35]. Advanced cross-validation techniques specif-

ically conceived for highly spatially correlated data [36] might be also considered.  

Intelligibility of model results is also an issue [37]. Statistical models are easier to 

interpret: the signs of coefficients indicate whether regressors contribute positively or 

negatively to the target variable. The same cannot be said for ML approaches, and more 

sophisticated techniques are needed to help the understanding of model results [19]. 

Finally, future research might focus on the implementation of the same procedures to 

analyse the relationship between urban form and other urban phenomena, such as the 

number of traffic accidents, tweets, etc. 
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