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As massive amounts of information are becoming available to people, understanding the mechanisms underlying information-
seeking is more pertinent today than ever. In this study, we investigate the underlying motivations to seek out information in
healthy and addicted individuals. We developed a novel decision-making task and a novel computational model which allows
dissociating the relative contribution of two motivating factors to seek out information: a desire for novelty and a general desire
for knowledge. To investigate whether/how the motivations to seek out information vary between healthy and addicted
individuals, in addition to healthy controls we included a sample of individuals with gambling disorder—a form of addiction
without the confound of substance consumption and characterized by compulsive gambling. Our results indicate that healthy
subjects and problem gamblers adopt distinct information-seeking “modes”. Healthy information-seeking behavior was mostly
motivated by a desire for novelty. Problem gamblers, on the contrary, displayed reduced novelty-seeking and an increased desire
for accumulating knowledge compared to healthy controls. Our findings not only shed new light on the motivations driving
healthy and addicted individuals to seek out information, but they also have important implications for the treatment and
diagnosis of behavioral addiction.
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INTRODUCTION
Recent advancements in neuroscience have shown information-
seeking to be an essential aspect of human cognition that
supports healthy decision-making and goal-directed processing
[1–8]. Information-seeking is often contraposed to the human
tendency of maximizing immediate benefits (i.e., reward-seek-
ing). A decision-maker who is trying to find the best restaurant in
town may try out all the different available options in order to
obtain information on the potential benefits of each restaurant,
but this information search may be costly or result in unpleasant
experiences.
Yet, healthy humans finely balance the urge for immediate reward

vs. longer-term information gain during repeated choice behavior,
thus negotiating an exploration–exploitation trade-off [4, 6, 9]. On
the contrary, in certain psychopathologies such as behavioral
addiction [10] resolving this tension is highly compromised resulting
in reduced information-seeking [11]. Previous studies have sug-
gested that a desire for novelty [1, 12–16] and a general drive to seek
out knowledge (general information [17, 18]), may both drive human
information-seeking behavior. However, there has been no study
that systematically analyzes the relative importance of these two
factors in healthy humans, nor how these information-seeking
systems might be altered in behavioral addiction.
While novelty is only associated with a completely novel item, a

general desire for knowledge can promote the exploration of an

option beyond the first encounter. These two motivational factors
are however highly related, since the potential for general
knowledge gain and a novelty bonus can be easily mistaken for
one another as statistically significant explanatory factors. However,
these two motivational factors seem to rely on different neural
regions in the brain, with novelty-seeking expressed in midbrain
dopaminergic regions [12, 13, 19, 20] and general information
seeking in prefrontal regions [21–23]. Here, we state that the
distinction between novelty-seeking and general information-
seeking is essential to understand the underlying motivations to
seek out information in healthy and addicted individuals.
For example, evidence for general information-seeking has

come from variants of sequential learning and decision-making
tasks (e.g., the bandit tasks [4, 6, 8, 24]). This may leave the
possibility that general information-seeking is more important for
scenarios in which repeated choices are necessary such as during
learning or planning, while novelty-seeking might be more
relevant for single-stage decisions or early stages of learning
[13, 15]. In addition, impaired information-seeking in addictive
disorders [11, 25] has been explained as a general reduction in
the desire to reduce uncertainty about the environment.
However, these impairments might be equally explained as a
reduced desire for exploring novel opportunities or engaging in
novel behavioral patterns. This distinction is crucial for behavioral
addiction—of which gambling disorder is a prototype [10].
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If reduced information-seeking is caused by a reduced motivation
specifically for exploring novel options, this could explain why
pathological gamblers exhibit perseverance in behavioral rou-
tines despite the negative consequences associated with them
(e.g., financial loss [10]), but at the same time, they still prefer
choices associated with high uncertainty about reward outcomes
(e.g., gambling games such as gaming machines or blackjack
[26, 27]). Insight into the distinction between novelty-seeking and
general information-seeking is therefore particularly relevant for
understanding addictive behaviors, as well as potentially devel-
oping better diagnostic tools or clinical treatments.
Here, we explicitly compare novelty-seeking and general

information-seeking in a modified version of the bandit task,
which makes it possible to dissociate the relative contribution of
expected reward, novelty, and general information as motivating
factors in choice behavior. In particular, choices in our task are
reward-driven if participants chose options associated with the
highest experienced rewards, novelty-driven if participants chose
options that had never been experienced in the previous trial
history, and general information-driven if participants chose
options that had been previously encountered but imperfectly
explored (“Method and material”). We also implement a
reinforcement-learning type model to quantitatively separate
out the importance of these three factors in driving human
choice behavior. In addition to healthy controls (HCs), we include a
sample of individuals with gambling disorders (PGs). This allows us
to investigate the relative contribution of general information-
seeking and novelty-seeking in behavioral addiction.

METHODS AND MATERIAL
Participants
Forty (40) unmedicated PGs (mean age= 30.1, 4 females) and
twenty-two (22) HCs (mean age= 29.0, 4 females) were recruited
from the local communities (Table 1 and Supplementary results).
The sample size of both groups was based on previous studies
[6, 28]. Gamblers were selected among those who were gambling
at least once per week, while HCs were those without gambling
experience in the year preceding experimental participation
(Table 1 and Supplementary results). Subjects were compensated
for the time spent in the study.

Behavioral task
Participants performed 162 games of a decision-making task [6]
that makes it possible to dissociate the influence of reward and
information on sequential choices [4] (Fig. 1a and Supplementary
methods). On each trial, choice options were displayed on the
screen as 3 decks of cards. Selecting a deck revealed a card
associated with a certain number of points. Each game consists of
two phases (or tasks): participants were initially instructed about
which option to choose from on each trial (forced-choice task;
Fig. 1b) for six consecutive trials, after which they were free to
choose from any of the options (free-choice task; Fig. 1c) so as to
maximize their total gain. In the forced-choice task, participants
needed to choose a preselected deck that was highlighted in blue.
In the free-choice task, on the contrary, they were free to select
the deck of their choice. The number of free-choice trials varied
from 1–6 trials and was inverse-exponentially distributed, such
that subjects were most frequently allowed to make 6 free
choices. Participants played the task for about 1 h.
When selected, each deck provided a reward (from 1 to 100

points) generated from a truncated Gaussian distribution with a
fixed standard deviation of 8 points, and then rounded to the
nearest integer. Participants were instructed that the total gain
(i.e., the total points accumulated across trials) was converted to
a monetary payoff at the end of the experiment where every 60
accumulated points correspond to 0.01 euros. The generative
mean for each deck was set to a base value of either 30 or 50
points and adjusted independently by ±0, 4, 12, or 20 points
(i.e., the generative means ranged from 10 to 70 points) with
equal probability, to avoid the possibility that participants might
be able to discern the generative mean for a deck after a single
observation. The generative mean for each option was stable
within a game but varied across games. The generative mean of
the three decks had the same value in 50% of the games
(Equal Reward) and different values (Unequal Reward) in the
other 50% of the games. In the Unequal Reward condition,
the generative means differed so that two options had the same
higher reward values compared to the third one in 25% of the
games (High Reward), and in 75% of the games, two options had
the same lower reward values compared to the third one (Low
Reward). The appearance of the reward conditions was
randomized, as were the assignments of which two options
had the same generative mean within each game (in the
Unequal Reward games).
In the free-choice task, participants could either select the

options from which they saw the highest number of points drawn
from or they could instead explore the other two alternatives. On
trials when participants explore additional alternatives, they can
either choose at random (undirected or random exploration) [4],
direct their exploration toward a novel option (novelty-seeking), or
distribute their exploration among alternatives inversely propor-
tional to how frequently they have been seen in the past (general
information-seeking). In order to dissociate among these factors,
we implemented two conditions in the forced-choice task [4].
Participants were either forced to choose each of the three decks
2 times (Equal Information), or to choose one deck four times, a
second deck 2 times and the third 0 times (Unequal Information).

Table 1. Demographic information.

PGs
n= 40

HCs
n= 22

Test
statistic

Gender (M/F) 36 | 4 18 | 4 p= 0.601

Age 30.1(9.3) 29.0(6.6) p= 0.982

Years of education 14.7(2) 16.2(2.2) p= 0.037*

IQ (WAIS block) 8.4(2.6) 9.3(1.9) p= 0.131

Gambling severity (CPGI) 8.8(6.1) 0 p < 10−10*

Alcohol use (AUDIT) 4.6(3.9) 5.3(3.1) p= 0.48

Drug use (DAST) 0.225(0.423) 0.227(0.429) p= 0.992

Smoking
dependence (FTND)

n= 4 n= 1 NA

Memory capacity (WAIS) 10.3(3.5) 9.7(4.1) p= 0.483

Attentional control (ACS) 35.4(9) 37.5(7) p= 0.312

Depression (BDI) 5.6(4.9) 4.2(4.8) p= 0.137

Anxiety (STAI-S) 35.1(10.9) 37.9(9.5) p= 0.173

Anxiety (STAI-T) 39.6(12.4) 43.1(11) p= 0.2

Positive mood (PANAS) 35.4(6.3) 36.3(5.3) p= 0.701

Negative mood (PANAS) 21.1(7.9) 19.8(4.8) p= 0.808

Mean and standard deviations are shown for each measure. For each
comparison, we ran a two-sampled t test, except for gender comparison
where the chi-squared test was used. The two groups differ only in terms
of gambling severity (with no gambling problems reported in the control
group) and years of education, as often reported in the literature [28]
(years of education did not correlate with any of the behavioral measures
considered in this study, and removing PGs with fewer years of education
did not change the main results reported in the text). WAIS IV-Wechsler
Adult Intelligence Scale (the block-design component of the WAIS is the
subtest that best predicts performance IQ [58]).
CPGI Canadian problem gambling index, AUDIT alcohol use disorders
identification test, DAST drug abuse screening test, FTND Fagerström test
for nicotine dependence, ACS attentional control scale, BDI beck
depression inventory, STAI-S state version of the state-trait anxiety
inventory, STAI-T trait version of the state-trait.
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In the latter condition, the “0 time” deck is perceptually familiar to
participants (the stimulus is presented at the beginning of the
game) but its reward distribution is novel to participants. While
only the “0 time” deck is completely novel, the “2 times” deck
should be relatively more information-rich than the “4 times” to
the participants. As generative means were equal across options in
50% of the total games, the generative means of the decks that
had been sampled 2 times were equal to those of the decks that
had been sampled either 4 times or 0 times decks in 50% of
Unequal information trials, while it had lower or higher values in
the rest of the trials. This assures that the reward associated with
this option was balanced across trials. 50% of the games were
assigned to the Unequal information condition. The order of card
selection was randomized in both information conditions, as was
the occurrence of the equal and unequal information conditions.
Considering only the first free-choice trial (the trial where

reward and information are least correlated [4]; Supplementary
methods), we then define three types of behaviors, corresponding
to three distinct motivational factors: (1) Novelty-seeking refers to
choosing the novel, never-seen option in the Unequal Information
condition; (2) General information-seeking refers to choosing
partially informative options sampled twice in the Unequal
Information condition—these options are still informative when
explored but not completely novel; (3) Reward-seeking refers to
choosing options associated with the highest gain. In addition, we
define a fourth behavior—undirected exploration—which refers to
choosing options associated with the lowest gain in the Equal
Information condition, as this type of choice is neither driven by
reward nor by information.

Computational model
We assume that humans behave according to both reward- and
information-related internal beliefs/motivation when performing
the above decision-making task [6]. We formalize this using a
reinforcement-learning (RL) type computational model (Fig. 1c). In
order to investigate the nature of information valuation in HCs
and PGs, we implement a novel computational model that we

term the “novelty-knowledge RL” (nkRL) model. As in a previously
proposed variant, nkRL learns reward expectations Qtþ1;j cð Þ using
a delta learning rule [29] (Eq. (S1) and Fig. 1d) where Qtþ1; j cð Þ is
updated each time a new reward is experienced from option c.
Next, the value of an option Vt; j cð Þ is determined by combining
reward expectations and information evaluations (Eq. (S3) [6] and
Fig. 1c, d). Contrary to previous variants, nkRL specifically
dissociates information evaluation into two terms: novelty and
general information-seeking. The resulting choice value is:

Vt; j cð Þ ¼ Qtþ1; j cð Þ þ
Xt

1

it; j cð Þ � k þ 1novel � ν (1)

where Qtþ1;j cð Þ is the expected reward value on trial t in-game j for
choice c (computed using Eq. (S1)) and the last two terms
represent general information and novelty, respectively. In
particular,

Pt
1 it;j cð Þ is the cumulative information about option

c acquired through trial t (it;j is 1 if selected on trial t, or 0
otherwise). k is the knowledge parameter that defines the weight
toward previously acquired information. We acknowledge that
this parameter does not distinguish between attraction/repulsion
of cumulative knowledge and repulsion/attraction of incremental
knowledge gain. 1novel � ν captures the value associated with
novelty, where 1novel is a Kronecker delta function that evaluates to
1 when c has never been seen in the current game and 0
otherwise, and the parameter ν quantifies the value associated
with novelty. As in previous algorithms in artificial intelligence, the
novelty bonus is incorporated as optimistic initialization to the
starting value of novel options [30]. Finally, we assume choices are
made via a softmax function of Vt;j cð Þ [31] (Eq. (S2)), where options
with a higher choice-value would result in a higher probability to
determine the choice on that trial. As we assume that participants’
choices are not deterministic, decision noise is entered into the
softmax function by adding the inverse temperature parameter β
(Fig. 1d). NkRL can shed light on the processes that underpin
information valuation in both HCs and PGs by distinguishing the
effects of reward-seeking and information-seeking on choices

Fig. 1 Behavioral task and RL model. a On each trial, participants made choices among three decks of cards. After selecting a deck, the card
flipped and revealed the points earned, between 1 and 100 points. Participants were instructed to attempt to maximize the total points
earned by the end of the experiment. b On each game, participants played a forced-choice task (six consecutive trials) followed by a free-
choice task (variable between 1 and 6 trials) on the same three decks. Subjects earned points only in the free-choice task. c On each trial, the
novelty-knowledge RL (nkRL) model computes an option value function according to both experienced reward and information associated
with each option, then the model generates a choice by passing the option values through a softmax function. d For each chosen option,
nkRL uses a delta rule to update the reward prediction (α parameterizes the learning rate) and updates information prediction as to the sum of
general information (total number of times an option has been chosen) and a novelty term. The general information term describes the level
of general information participants have about the selected option, while the novelty bonus is assigned to options the outcome of which has
never been experienced in previous trials. Reward and information predictions are then combined into an overall action value, which is
combined across options through the softmax function (whose randomness is parameterized by the inverse-temperature parameter β). Model
parameters are shown in bold.
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(β vs. k, ν), and of novelty and knowledge on information-seeking
(ν vs. k). The model’s parameters are estimated by fitting nkRL to
trial-by-trial participants’ free choices (Supplementary methods).
NkRL model will be compared to additional models to determine
which model best-described participants’ choices in our task.
Model comparison was carried out by computing the Bayesian
Information Criterion (BIC; Supplementary methods), for which the
lower the value, the better the model is in explaining the data.

RESULTS
Model-free results
Novelty-seeking in HCs and novelty-failure in PGs. We first examined
how HCs and PGs compare the influence of reward and information
on choice behavior. We focus on the Unequal Information condition
(equal information games have no informative options) and the first
free-choice trial, the one trial where we can be sure that information
and experienced reward are uncorrelated (Supplementary methods
[4]). We consider a trial to be novelty-seeking if the participant selects
the novel option, and reward-seeking if the participant selects a
previously experienced option with the higher empirical mean
(regardless of whether it was seen twice or four times). For each
subject, we computed the relative frequency of novelty-seeking
trials and of reward-seeking trials over the total number of novelty-
seeking and reward-seeking trials. We then entered these values
into a mixed-effects logistic regression model predicting the choice
type (novelty-seeking, reward-seeking), with group (PGs, HCs),
reward condition (low reward, high reward), and their interaction
as fixed effects, and subject as random intercepts (1|Subject). This
standard random intercept model had lower BIC (6076.5) compared
to a full random coefficient model (with random intercepts and
slopes: BIC= 6110.2). First, consistent with previous studies using
the same experimental design on healthy subjects [6, 9], we found
a main effect of reward (beta coefficient=−0.824 ± 0.104 (SE),

z=−7.90, p < 10−3), with novelty-seeking generally more common
in the Low Reward condition. More interestingly, we found a
significant fixed effect of group (beta coefficient= 0.643 ± 0.268
(SE), z= 2.4, p= 0.016), with PGs engaging in less novelty-seeking
and more in reward-seeking behavior (Fig. 2a). The interaction
between group and reward condition was not significant (beta
coefficient=−0.144 ± 0.132 (SE), z=−1.093, p= 0.274), suggesting
that the two groups did not differ in the way the reward conditions
affected choice behavior.
Interestingly, PGs and HCs show comparable choice behavior

when choices were equally informative (Equal Information
condition, Supplementary results and Fig. 2b). This suggests
that differences between the two groups were only present
when choices were associated with different levels of informa-
tion. In addition, the shift in preference from more informative
options (when subjects chose the option sampled the least
number of times) early on in the free-choice task to more
familiar options (when they chose the option sampled the most
number of times) later on was smaller in PGs than HCs
(Supplementary results). Lastly, a “novelty-familiarity” shift was
apparent in HCs (they preferred novel options in the first free
choice trial) but absent in PGs who preferred novel options and
familiar options equally on trial 1 (Fig. 2d, e).

PGs have reduced preference for novelty but not for general
information. The above analyses yielded hints that PGs have
reduced preference specifically for novelty. To test this suggestion,
we calculated the number of trials in which participants engaged
in novelty-seeking and in general information-seeking (partially
informative options sampled twice during the forced-choice task)
and divided them by the total number of novel and general
information trials to obtain their relative frequencies (i.e., we
excluded trials in which the subject chose the option that was
selected 4 times during the forced-choice task). If alterations in

Fig. 2 Model-Free analysis. a Frequency of making novelty-seeking and reward-seeking choices over the total number of novelty-seeking and
reward-seeking trials in the first free-choice trial of the Unequal Information condition (i.e., when options are sampled unequally during the
forced-choice task; Unequal Info Condition in the figure). Novelty-seeking choices decreased and reward-seeking choices increased in PGs
compared to HCs. b Frequency of engaging in reward-seeking and undirected exploration in the first free-choice trial of the Equal Information
condition (i.e., when options are sampled equally during the forced-choice task; Equal Info Condition in the figure). No difference was
observed between the two groups. c Frequency of engaging in novelty-seeking and general information-seeking over the total number of
information-seeking trials in the first free-choice trial of the Unequal Information condition: PGs have reduced information-seeking toward
novel options (novelty-seeking) relative to information-seeking toward options selected twice in the forced-choice task (general information-
seeking). d HCs showed a novelty-familiarity shift: increased preference toward informative options in the first free-choice trial, and increased
preference for familiar alternatives in the last free-choice trial. e PGs showed no preference between informative and familiar options in the
first free-choice trial, but a significant preference toward familiar options on the last free-choice. In all the figures, error bars represent the
standard error of the mean (sem).
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PGs’ behavior are not specific to novelty, we should also expect to
find a lower selection of options experienced twice during the
forced-choice task. Results showed that while PGs chose the novel
option less often than HCs (p= 0.015; Fig. 2c) on the first free-
choice trial in the Unequal Information condition, PGs chose the
partially informative option (seen twice) more often (M= 0.446,
SD= 0.21) compared to HCs (M= 0.32, SD= 0.239; Wilcoxon
Signed Rank test, p= 0.015; Fig. 2c), suggesting that PGs
specifically shy away from novelty-seeking. This was also the case
when restricting the analysis to trials in which the 3 decks had the
same generative means (for partially informative options—MPGs=
0.46; MHCs= 0.319; Wilcoxon Signed Rank test, p= 0.015). As an
additional check, we constructed a mixed logistic regression
model to predict choice type (partially informative option, familiar
option, i.e., excluding novel option trials) with group (PGs, HCs) as
fixed effect and subject as random intercept term (1|Subject; this
model had lowest BIC compared to a model with random
intercepts and slopes), and found no effect of group (beta
coefficient= 0.011 ± 0.088 (SE), z= 0.12, p= 0.905), additionally
suggesting no decrease in general information-seeking in PGs
compared to HCs. We further examine this point in the next
section.

Model-based results
HCs have increased novelty bonuses, while PGs have increased
knowledge parameter. In order to further elucidate the mechan-
isms underlying information-seeking in HCs and PGs, we turn to
model-based analyses. Here, we propose a novel reinforcement
learning-type model that we call “novelty-knowledge RL” (nkRL,
“Methods and material”). We first ran a model comparison analysis
(Supplementary methods) and observed that nkRL was better able
to explain participants’ behavior compared to the following
models: a standard RL (sRL) model [29], where only reward
predictions influence choices; a knowledge RL (kRL) model [6],
which linearly combines reward and information associated with
options without explicitly decomposing information into novelty
and general information; leaky nkRL, where information accumu-
lation across trials proceeds in a leaky fashion; gamma nkRL
(gnkRL), where information is measured sub- or super-linearly in
the number of observations (Fig. 3a, b; Supplementary results).
We then utilized nkRL to better investigate the process

underlying the differences in information-seeking between PGs
and HCs. We first simulated nkRL, using the individually fit
parameters, to verify that the model was able to replicate key
behavioral patterns observed in the data. As shown in Fig. 3, nkRL is

Fig. 3 Model Comparison and nkRL simulations. BIC comparison of the 5 RL models in HCs (a) and PGs (b). The comparative fit is based on
the sum of individual BIC computed by fitting each model to participants’ free choices. In both groups, the novelty-knowledge RL model
(nkRL, in green) better explains participants’ behavior compared to a leaky novelty-knowledge RL model (leaky nkRL), a knowledge RL model
(kRL), a standard RL model (sRL), and a gamma novelty-knowledge RL model (gnkRL). By using the estimated individual parameters,
simulations of nkRL in the first free choice trial reproduced the empirically observed decrease in novelty-seeking in PGs (Unequal Information
condition, (c)), comparable choice behavior when choices are equally informative (Equal Information condition, (d)), an increase of preference
for partially informative options (general information-seeking, (e)). f nkRL correctly predicts the novelty-familiarity shift in the healthy sample,
(g) and its absence in the PG group. Error bars: sem (color figure online).
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able to qualitatively reproduce key behavioral patterns observed in
both groups, including reduced novelty-seeking in PGs compared
to HCs (Fig. 3c), comparable choice behavior when choices are
equally informative (Fig. 3d), an increase of preference for partially
informative options (general information-seeking, Fig. 3e), and the
absence of a novelty-familiarity shift in PGs (Fig. 3g).
Next, we performed parameter comparison analyses to examine

which component of the decision-making process may be
responsible for the behavioral pattern observed in PGs. We first
performed a parameter recovery analysis to estimate the degree of
accuracy of the fitting procedure (Supplementary results; Fig. S1).
We were able to recover all the parameters with high accuracy (all
r > 0.8). We then compared the parameter estimates between the
two groups. A Wilcoxon Signed Rank Test showed smaller novelty
parameter ν in PGs (M= 5.58, SD= 12.11) compared to HCs (M=
12.43, SD= 12.91, p= 0.0416; Fig. 4a), while the knowledge
parameter k was higher in PGs (M= 1.38, SD= 2.01) compared
to HCs (M= 0.43, SD= 1.04, p= 0.0017; Fig. 4b). In line with our
model-free results, these results suggest that PGs have reduced
information-seeking for novelty, but not for knowledge accumula-
tion. We further explored this result by entering parameter (ν, k)
and group (HCs, PGs) in a two-way repeated measure ANOVA in a
non-parametric setting using aligned rank transformation (e.g.,
ARTool package in R, http://depts.washington. edu/madlab/proj/
art/; [32]). This revealed an effect of group (F(1,58)= 10.06, p=
0.002), an effect of parameter (F(1,58) = 40.19, p < 10−3) and an
interaction between group and parameter (F(1,58)= 18.13, p <
10−3). These results seem to confirm that the decrease in
information-seeking in PGs is due to a failure in either computing
or utilizing a novelty bonus and to increased preference for
previously encountered alternatives. Interestingly, the two para-
meters interacted in a way such that their relative difference was
higher in HCs compared to PGs. To further investigate this,
we computed the Euclidean distance between ν and k (dv-k)
in the parameter space. Results showed that dv-k was larger in HCs

(M= 14.9, SD= 9.3) than in PGs (M= 9.2, SD= 7.5) p= 0.034
(Fig. 4e). By simulating nkRL with low novelty parameter (i.e., small
dv-k) and high novelty parameters (i.e., large dv-k), the model was
able to predict the behavioral pattern observed in PGs and HCs,
respectively (Supplementary results; Fig. S2).
Lastly, PGs and HCs did not differ in either learning rate α or

softmax parameter β (p < 0.2; Fig. 4c, d) suggesting that the
behavioral patterns observed in PGs are not related to learning
alterations, or due to an increase/decrease of random stochasticity
in choice distribution. This latter result additionally confirms that
exploratory impairments in PGs are specifically driven by novelty-
related information valuation without affecting other undirected or
unexplained exploratory components (e.g., softmax parameter).
Overall, the model-based analyses suggest that HCs are specifically
driven by novelty during exploratory behavior (dv-k is larger and in
the direction of high novelty bonus; Fig. 4e), while in gamblers the
importance of novelty is reduced and the importance of knowl-
edge accumulation is enhanced, resulting in a smaller distance
between the two parameters.

Predicting pathological gambling from model parameters. In the
previous section, we showed that PGs give higher weights to the
knowledge parameter k and lower weights to the novelty
parameter ν compared to HCs. Here, we check whether the
values assigned to these two parameters can predict whether a
participant is assigned to the PG group or HC group. To do so, we
enter the values of both k and ν parameters in a logistic
regression model predicting group (HCs= 0; PGs= 1). Results
show that both k (beta coefficient= 0.569 ± 0.219 (SE), z= 2.61,
p= 0.009) and ν (beta coefficient=−0.082 ± 0.031 (SE), z=
−2.63, p < 10−3) predict group, with higher k parameter and
lower ν parameter predicting PG group. We also run the same
analysis but predict the gambling severity scale (CPGI—collap-
sing PGs’ and HCs’ scores in one variable). Results show that both
k (beta coefficient= 1.025 ± 0.475 (SE), z= 2.16, p= 0.035) and ν

Fig. 4 nkRL parameters and information-seeking modes. Model fit on all free-choice trials revealed a decrease in the novelty parameter ν in
PGs compared to HCs (a), while the knowledge parameter κ was higher in PGs compared to HCs (b). Learning rate α (c) and decision noise β
(d) did not differ between the two groups. e The Euclidean distance dv-k between κ and ν was larger in HCs (in blue) than in PGs (in red).
f Correlation matrix between nkRL model parameters and task performance Π. P-values are corrected for multiple comparisons (FDR). Both ν
and κ positively correlated with Π. Only correlations between Π and model parameters are reported. g Performance Π across ν and κ
parameter space. The averaged values of ν and κ for HCs are shown in blue, while in red for PGs. The two averaged values are expressed closer
to the two optimal modes (in yellow) (color figure online).
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(beta coefficient=−0.172 ± 0.066 (SE), z=−2.59, p= 0.0121)
predict gambling severity, with higher knowledge parameter and
lower novelty parameter predicting higher gambling severity.

HCs and PGs adopt distinct information-seeking modes. Previous
analyses show that altered information-seeking in PGs compared
to HCs is due to a decreased difference between ν and k, with
PGs giving higher weight to knowledge accumulation and
reduced weight to novelty, and this altered pattern predicts PG
group as well as gambling severity. Here, we analyze how this
particular pattern might affect PGs’ reward accumulation
performance in the task. We define task performance as the
sum of points earned on free-choice trials, summed across
games. Our results show no difference in task performance (Π)
between PGs and HCs throughout the task (all p > 0.05). We then
correlated participants’ Π with the estimated model parameters
for each subject in both groups. We entered Π and model
parameters into a correlation matrix where p-values were
corrected for multiple comparisons using false discovery rate
correction (FDR [33]). Results show that both having increased
novelty parameter and increased knowledge parameter relate to
higher performance in the task (points earned; p < 0.05; Fig. 4f).
This seems to suggest that high novelty and high knowledge
parameters are equally helpful for yielding high performance in
our task. In addition, no significant correlation was found
between Π and the distance dv-k (p= 0.096).
The above results seem to suggest that having a large (high

novelty and low knowledge) or small (increased knowledge and
decreased novelty) distance dv-k yields good performance in the
task. We further simulated the nkRL model with different settings
of knowledge and novelty parameters, while keeping constant
both alpha and beta parameters, to see whether there are indeed
two different modes that yield good performance in the task. We
computed Π for each simulation and we plotted it in the
parameter space. Results show that two modes give high
performance (Fig. 4g): one mode with high novelty and low
knowledge parameters (ν= 19.02; κ= 5.37, Π= 48,835 points)
and a second mode with similar values for knowledge and
novelty parameters (ν= 2.55; κ= 2.97, Π= 49,251 points). Inter-
estingly, average estimated values of ν and κ for the two groups
are close to the two locally optimal modes. These results not only
suggest that the differences between HCs and PGs’ information-
seeking behavior correspond to adopting two alternative modes
of adaptive behavior for the task, but that reward feedback from
the task would not be effective for shifting either group’s
behavior to the alternative local optimum.

DISCUSSION
In this study, we adopted behavioral, self-reported, and computa-
tional measures to investigate the underlying motivations to seek
information in healthy and addicted individuals. We focus on
gambling disorder, a form of addiction without the confound of
substance consumption [34] and characterized by compulsive
gambling [10]. We found that HCs and PGs adopt distinct
information-seeking modes, closely related to the two locally
optimal modes that yield good task performance. HCs’
information-seeking behavior appears mostly driven by novelty-
seeking (choosing options which reward distribution was novel to
participants) with little effect of knowledge accumulation (choos-
ing known but imperfectly explored options). To the contrary, PGs
exhibit enhanced general knowledge accumulation and reduced
novelty-seeking compared to HCs. This pattern was also reflected
in the model parameters and was predictive of gambling severity
and membership in the PG group. Our findings not only shed new
light on the motivations driving healthy and addicted individuals
to seek out information, but also have important implications for
the treatment and diagnosis of behavioral addiction.

One possible interpretation of our results in regard to the
difference between PGs and HCs is that novelty-seeking may be
particularly important for human wellbeing and mental health,
and the relative reduction of novelty-seeking may underlie the
pattern of maladaptive behavior in problem gamblers compared
to HCs. The link between novelty-seeking and wellbeing has been
already suggested in previous research [35], where novelty-
seeking relates to positive affect in a bidirectional manner [36].
More research is however needed to better understand the
specific role novelty-seeking plays in human wellbeing and mental
health. Nevertheless, novelty-seeking seems to have an adaptive
role as it is expressed both in animal models and motivates
exploration in artificial agents. For example, animals can learn to
press a key only for the sake of poking the head into a new
compartment [37] or to guarantee the delivery of novel visual
stimuli [38]. To encourage exploration in artificial agents a fictive
reward bonus is given to novel options [30, 39], and similar
heuristics seem to be adopted by the human brain [13]. Novelty
biases therefore might be crucial for quickly understanding
changing environments, as when novel options are available for
selection. The increased weight PGs give to previously chosen
options is consistent with a reduced novelty bonus (both
reflecting unfamiliarity aversion), and might be a compensatory
mechanism that arises in addictive behaviors. It is worth noting
that while both modes of behavior make it possible to achieve
good performance in our experimental task, in real life one may
prove more maladaptive than the other in many situations. In
addition, the benefit of novelty-seeking behaviors may also
depend on the type of environment people are invited to explore.
For example, novelty-seeking behaviors in dangerous environ-
ments might prove maladaptive and may lead to addictive
behaviors in certain cases [40]. Future work is needed to
investigate these issues further.
Another possible interpretation of our finding is that there is a

single underlying pattern of alteration in the brain structure of
PGs that affect both novelty-seeking and general information-
seeking. Information-seeking behaviors are controlled by an
interconnected cortico-basal ganglia network [41]. Previous
studies [12, 13, 19–23] seem to support the dissociation of these
two motivational factors within this network. Further work
however is needed to individuate how the neural markers for
novelty and general information interact within the information-
seeking network and can produce the altered behavioral pattern
observed in PGs.
An interesting implication of our findings is that regardless of

the provenance of the alternative pattern of information-seeking
in PGs compared to HCs, this altered behavior may be useful for
developing novel diagnostic tools and even novel treatments for
this pathology. First of all, our findings potentially suggest a novel
method for identifying individuals with behavioral addiction, that
is, reduced novelty drive and increased general information
accumulation. However, further work is needed to demonstrate
the validity of this behavioral marker and compare its role relative
to other biomarker candidates [42]. Additionally, despite this
behavioral pattern seeming to predict membership in the PG
group as well as gambling severity, it is unclear whether these
results can be generalized to different task settings (e.g., with
larger rewards) or different samples of people. Second of all, novel
theories on the pathophysiology of this disorder suggest that the
resolution of reward uncertainty present in gambling games
creates the capacity for addiction [26, 27, 43]. Our findings can
help clarify why addictive behaviors are characterized by reduced
information-seeking [11], and yet the source of addiction involves
resolving uncertainty. Interestingly, reward uncertainty in addic-
tive behaviors hijacks the dopaminergic system [27, 43, 44], as do
drugs in substance addiction [45]. Given that novelty-seeking
relies on the functioning of the midbrain dopaminergic system
[13, 46, 47], this behavior may compete with responses towards
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reward uncertainty. In other words, reduced novelty-seeking
might be a signature of this hijacking process.
Our study however does not rule out the possibility that

neurophysiological alterations in the brain could pre-date or even
induce problem gambling. In particular, it might be possible that
individuals who exhibit the “reduced novelty-seeking and
increased knowledge accumulation” mode may be more predis-
posed for developing (behavioral) addiction. When addictive
behaviors arise, the reduced ability to adopt novel behavioral
patterns may freeze their decision processes and trap them into
the same behavioral routines. Reduced novelty-seeking might
therefore explain why addicted individuals are trapped in the
same behavioral routines despite the negative consequences
associated with them (e.g., financial loss [10]).
On an additional note, novelty seems to compete with

conditioned drug rewards [48]. This suggests that boosting
novelty-seeking behavior may compete with the addictive stimuli
and reduce the impact of addiction. Therefore, novelty-seeking
might be introduced or induced in current treatments for
addictive behaviors [49, 50]. Additionally, research has failed to
identify the main mediators involved in cognitive and behavioral
training aimed at reducing the attractiveness of addiction-related
cues [51]. These types of interventions may directly or indirectly
promote novelty-seeking behavior. Further work however is
needed to test whether our findings can be extended to effective
clinical interventions: in particular, whether the above behavioral
procedure modifies the relationship between novelty-seeking and
knowledge accumulation in PGs, and if a positive impact on
clinical trajectory can be found. In addition, while reduced
information-seeking has been observed in both behavioral [11]
and substance addiction [25], and while behavioral cognitive and
neural similarities are often observed between these two disorders
[34], our study remains mute about whether this dissociation is a
common code for addiction, or whether it is instead the only key
to behavioral addiction. Further work is needed to test whether
our findings can be generalized to other addiction types.
Concerning healthy information-seeking, our results show a

more nuanced view over information-seeking under repeated
choices (or directed exploration [4]). While in previous RL models,
directed exploration was modeled as knowledge or uncertainty
parameter added to the value function [4, 6, 8, 52, 53], here we
were able to dissociate the contribution of novelty-seeking and
general information-seeking to human exploration. We observe
that a novelty bonus and general information can play dissociable
roles, with potentially different implications for different decision-
making scenarios or exploratory phases. Our findings, therefore,
strengthen the view of exploration as a multifaceted and
sophisticated process [4, 53]. Moreover, our results replicate
previous findings that assign different behavioral roles and
neurocognitive mechanisms to informative and undirected
components of exploration [4, 6, 9, 54–57]. Indeed, PGs displayed
reduced directed exploration (defined here as choosing the most
informative option—the novel option) but not undirected (or
random) exploration (both in terms of softmax parameter and
exploratory choices made in the Equal Information condition).
Altogether, our findings extend the scientific understanding of

human information-seeking in healthy and addictive behaviors.
HCs and PGs showed distinct information-seeking modes. Healthy
information-seeking appears primarily motivated by novelty, while
PGs’ information-seeking is characterized by reduced novelty and
increased knowledge accumulation. Our results suggest that the
expression of novelty-seeking behavior might be a potential
predictor of human wellbeing, and the expression of altered
information-seeking patterns is a potential marker of behavioral
addiction. Methodologically, this work offers promising novel
experimental and computational approaches for studying the
mechanisms underlying information-seeking under repeated
choices in both healthy and pathological populations.
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