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A deep learning account of how language affects thought
Xiaoliang Luo a, Nicholas J. Sexton a and Bradley C. Love a,b

aDepartment of Experimental Psychology, University College London, London, UK; bThe Alan Turing Institute, London, UK

ABSTRACT
How can words shape meaning? Shared labels highlight commonalities between concepts
whereas contrasting labels make differences apparent. To address such findings, we propose a
deep learning account that spans perception to decision (i.e. labelling). The model takes
photographs as input, transforms them to semantic representations through computations that
parallel the ventral visual stream, and finally determines the appropriate linguistic label. The
underlying theory is that minimising error on two prediction tasks (predicting the meaning and
label of a stimulus) requires a compromise in the network’s semantic representations. Thus,
differences in label use, whether across languages or levels of expertise, manifest in differences
in the semantic representations that support label discrimination. We confirm these predictions
in simulations involving fine-grained and coarse-grained labels. We hope these and allied efforts
which model perception, semantics, and labelling at scale will advance developmental and
neurocomputational accounts of concept and language learning.
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1. Introduction

A growing body of research suggests that linguistic lab-
elling can affect how concepts are represented (e.g.
Gleitman and Papafragou (2012), Li and Gleitman
(2002), and Lupyan (2012)). Some have suggested that
differences in labelling across languages can affect the
acquisition of concepts, leading to differences in how
the concepts are semantically represented and percep-
tually perceived (Lupyan et al., 2020; Özgen & Davies,
2002). In this contribution, we will briefly review evi-
dence for this view along with computational models
that offer possible mechanisms for how labelling can
affect the representation of concepts. We will then
offer a straightforward account of how labelling affects
meaning that spans perception to decision (i.e. labelling)
in the form of a error-driven, self-supervised deep con-
volutional neural network (DCNN) that takes photo-
graphs as input and maps them to both semantic
representations and verbal labels. We propose the
joint need to infer meaning and label from percepts
leads to labels affecting meaning. Our model learns in
an error-driven fashion in that it seeks to minimise the
error on the prediction of meaning and labels.

How language may affect concepts is considered in
cross-linguistic and cross-cultural studies (see Gleitman
and Papafragou (2012) for a review). For example,

Boroditsky and Schmidt (2000) found people’s con-
ception of the genders of objects was strongly
influenced by the grammatical genders assigned to the
objects in their native language. Boroditsky (2001) also
found Mandarin and English speakers have different
conceptions of time that may be rooted in language
differences. Choi and Bowerman (1991) found that lear-
ners of English and Korean show differences in their
semantic organisation of spatial meaning. Similarly, Li
and Gleitman (2002) showed spatial reasoning is
strongly affected by spatial lexicons used in different
languages. Winawer et al. (2007) and Roberson et al.
(2008) found habitual or obligatory colour distinctions
made in one’s language are reflected in language-
specific categorical distortions in colour perception.
However, it remains controversial whether language
has direct effects on elementary perceptual processing
(Firestone & Scholl, 2015; Klemfuss et al., 2012; Schyns
et al., 1998).

A crucial function of language is to label objects,
relations, properties, and events that populate everyday
experience (Li & Gleitman, 2002). In category learning
studies in the laboratory, artificial categories and labels
are often used to investigate how verbal labelling
affects meaning (Shepard et al., 1961). Verbal labels
can be manipulated by experimenters to test specific
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hypotheses about how people learn and represent
newly acquired information. For example, research in
categorical perception considers how items that strad-
dle a category boundary can become more distinct
after training on labels (Goldstone & Hendrickson, 2010).

Results from laboratory studies can be used to evalu-
ate computational models of category learning (Wills &
Pothos, 2012). Of course, one drawback of well-con-
trolled laboratory studies of learning is that they
cannot easily assess the effects of lifelong learning
(Ramscar et al., 2013).

Laboratory studies of learning find a variety of effects
for labelling (see Lupyan et al. (2020) for a review).
Whether labels are presented before or after the percep-
tual stimuli can have strong effects on how learners
perform and represent acquired information (Markman
& Ross, 2003; Ramscar et al., 2010; Yamauchi &
Markman, 1998; Yamauchi et al., 2002). Colour discrimi-
nation can be influenced by labels (Özgen & Davies,
2002). Consistent with these laboratory studies,
experts, such as bird watchers, tend to have a richer
feature and labelling vocabulary than novices, reflecting
the fine distinctions that experts can draw (Tanaka &
Taylor, 1991).

One category learning model, SUSTAIN, was devel-
oped to account for how labelling affects learning
(Love et al., 2004). Unlike prototype and exemplar
models that always form the same knowledge represen-
tations regardless of labelling interactions, SUSTAIN is a
clustering model that forms clusters (i.e. new knowledge
representations) in response to surprising failures in
using labels. The mechanisms supporting these rapid
learning processes have been localised to the hippo-
campus and medial prefrontal cortex (Davis et al.,
2012a, 2012b; Love & Gureckis, 2007; Mack et al., 2016,
2018, 2020), though semantic and labelling information
may subsequently be consolidated throughout cortex
(Norman & O’Reilly, 2003).

The strong effect labelling can have on semantic rep-
resentations was demonstrated by a brain imaging study
by Mack et al. (2016) in which participants learned
through trial-and-error to correctly label beetle stimuli
as belonging to one of two contrasting categories.
After mastering one labelling scheme, participants
learned a second labelling scheme involving the same
beetle stimuli. Participants’ behavioural data were fit
with the SUSTAIN clustering model which indicated
that category knowledge was organised very differently
under the two labelling schemes. Representational Simi-
larity Analyses (RSA; Kriegeskorte et al., 2008) revealed
that the model’s clustering representations mirrored
neural representations in the hippocampus. This study

provided a strong demonstration of how labels can
direct the formation of semantic representations.

This relatively simple clustering model has been able
to account for how conceptual representations are
affected by linguistic contrasts. For example, Davis and
Love (2010) demonstrated that learning to minimise lab-
elling errors leads to stimuli sharing a label becoming
more similarly represented whereas items with contrast-
ing labels become more dissimilar (also see Lupyan
(2012)). Connectionist models also explore the effect of
labelling on learning (Boroditsky & Schmidt, 2000;
Ramscar et al., 2010; Rogers & McClelland, 2004; Saxe
et al., 2019)

One inherent limitation of previous modelling efforts
is that the stimuli and categories were artificial and hand
coded in that they were constructed by the exper-
imenters. Such approaches are unlikely to capture the
richness of people’s perceptual experience and the
role natural language labels can play in organising the
knowledge people gleam from such experiences. In lab-
oratory studies, empirical studies and accompanying
simulations are typically conducted on a small scale
(e.g. two artificial categories) using low-dimensional
and handcrafted stimuli that do not match the richness
of the real world. In contrast, DCNNs can process photo-
graphs from a wide range natural object categories and
classify them into categories denoted by natural
language labels.

DCNNs are error-driven, connectionist models
loosely inspired by the human visual system (Fukush-
ima, 1980). A DCNN typically consists a sequence of
layers that are responsible for extracting visual infor-
mation from photographs of natural objects. DCNNs
are usually trained through supervised learning to mini-
mise classification error over millions of naturalistic
images. DCNNs have achieved competitive results on
benchmarks that reflect key elements of human cogni-
tion, such as object recognition (Russakovsky et al.,
2015; Szegedy et al., 2015). Although DCNNs were
designed to satisfy engineering and performance objec-
tives, they have recently been shown to be good
models of the mammalian visual system (Cadieu et al.,
2014; Güçlü & van Gerven, 2015; Kubilius et al., 2019;
Yamins et al., 2014).

DCNNs can serve as building blocks in more encom-
passing models that address semantics. For example,
Devereux et al. (2018) extended a DCNN model to
include visuo-semantic processing to account for how
visual properties of an object elicit semantic information
in the visual ventral stream. We believe DCNNs hold
promise for the study of how verbal labels may affect
the representation of meaning.

2 X. LUO ET AL.



1.1. Shared representations for labelling and
meaning

Semantic meaning does not require linguistic knowl-
edge. For example, a rabbit can determine that an
approaching creature in the bushes is a danger without
labelling the object as a fox. In this case, there is one pre-
diction task, from perceptual input to meaning, which
can be viewed as residing in a continuous multidimen-
sional space. Learning can optimise for this one predic-
tion task. In contrast, humans are faced with the
additional task of inferring discrete linguistic labels.

For humans, we propose that common represen-
tations underlie these two prediction tasks, which pro-
vides a route for labelling to affect semantics (Figure
1). We model this process with a perceptual front-end
in the form of a self-supervised DCNN that is pre-
trained on natural images in the absence of labels
(Chen et al., 2020). The choice of a self-supervised
front-end is appealing in that the perceptual features
are not optimised towards a labelling objective. We
view this perceptual front-end as akin to the ventral
visual stream. We propose that through experience,
high-level perceptual representations from this DCNN
are mapped into a semantic layer, which provides a
high-dimensional continuous space to represent con-
cepts. In this way, people (or rabbits) could learn to
associate perceptual input with meaning. However, in
species that can also label objects, there is an additional
final layer in which semantic knowledge is mapped to an
appropriate discrete linguistic label. During learning, the
system seeks to minimise error on both prediction tasks,
that is the system seeks to both predict the meaning of a
percept and to appropriately label it. This joint optimis-
ation of semantic interpretation and labelling can lead to
labels affecting meaning. For instance, objects that share
the same label, such as “dog”, may come to be rep-
resented in a more similar fashion in our model.
Although we do not explicitly model internal categories
or concepts as discontinuities within a semantic space,
our approach could accommodate these theories of rep-
resentation by various means, such as introducing clus-
ters to the semantic layer.

One exciting aspect of our approach is that it can
operate on pixel-level images because of its DCNN per-
ceptual front-end. The model’s semantic representations
(at the semantic layer) also reflect real-world structure.
The model was trained to map from the visual images
into a high-dimensional semantic space derived from
word embeddings1 (Devlin et al., 2018; Mikolov et al.,
2013; Pennington et al., 2014; Peters et al., 2018). Impor-
tantly, word embeddings capture real-world semantics
based on word usage patterns in natural languages

leading to related concepts having similar semantic
vectors. For example, the concepts relating to pens,
pencils and typewriters are close together in semantic
space, reflecting their similar function, even though
they differ in visual features. Conversely, oranges and
basketballs are further apart in semantic space, despite
somewhat similar visual features.

We should note that even though the semantic rep-
resentations in the model are derived from word usage
patterns that this layer is not intended to reflect label-
ling. It is only for convenience we use word embedding
models to determine semantic representations as they
provide rich semantic representations that do not
require hand coding. In principle, we could use semantic
representations derived from a non-linguistic source. For
example, Hornsby et al. (2020) derive representations for
objects that can be purchased in a supermarket by
examining purchasing patterns as opposed to analysing
word patterns. To provide another viable alternative, we
could have used a semantic space derived from large-
scale human similarity ratings (Hebart et al., 2020;
Roads & Love, 2020).

The final, labelling layer of the model predicts the cat-
egorical target class of the stimulus in the form of verbal
labels. Whereas category learning models applied to lab-
oratory tasks typically use artificial labels and categories,
we consider real-world categories and labels (Miller,
1995). For details regarding model architecture and
training procedure, we refer the readers to the
Appendix.

2. Experiments

One general conclusion from the literature reviewed in
the Introduction is that labelling creates pressures that
affect semantic and perhaps even perceptual represen-
tations. The need to label correctly can lead to differen-
tiation of semantic information when labels differ, and
convergence when there is a common label. Across
two simulation studies, we evaluated our DCNN
account of how labelling affects semantic represen-
tations (Figure 1) in light of these observations.

In both experiments, we systematically evaluated the
importance or pressure to correctly label images rela-
tive to the importance of inferring semantic information
in a veridical manner. The relative importance of label-
ling was controlled by the parameter β. In our simu-
lations, we examined how this emphasis on label
learning affects semantic representations in our
model. Because activity passes through the semantic
layer when predicting labels (i.e, from percept to
meaning to label), the labels learned will affect the net-
work’s semantic representations. For implementational
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details of the semantic aspects of the model, see
Appendix.

We evaluated the alignment of this resulting space
with the canonical semantic space the model was
trained on (in addition to the linguistic labels) using rep-
resentational similarity analysis (RSA). RSA evaluates
how similar two similarity spaces are. In our case, we
can calculate pairwise similarities for concepts in our
network’s semantic layer and Spearman correlate them
with pairwise similarities from the semantic embedding
space that served as training targets for our network’s
semantic layer (see Appendix).

We hypothesise that semantic distortion, operationa-
lised as a decreased Spearman correlation between rep-
resentational similarity matrices, will be greatest when
the relative importance of labelling is high. We also
predict that the type of distortion observed will
depend on whether the labels used are fine-grained
(e.g. “Chihuahua”) vs. coarse-grained (e.g. “dog”). For
fine-grained labels (Experiment 1), we hypothesise that
semantic representations with different labels should
move apart from one another to increase semantic

discriminability. In contrast, coarse-grained labels
(Experiment 2) shared by multiple concepts should
lead to concepts sharing a label converging with one
another in semantic space.

We trained and evaluated our proposed model on the
ImageNet-2012 dataset (Russakovsky et al., 2014) for
both meaning prediction and label prediction tasks at
varying degrees of labelling pressure, β (Table 1). We
examine a wide range of labelling pressure. We start
off from b = 0 where there is no labelling pressure
and the model completely focuses on meaning predic-
tion to b = 10 where the pressure to use labels correctly
is high. ImageNet-2012 is a large-scale dataset of natur-
alistic images drawn from 1000 categories based on the
WordNet ontology (Miller, 1995). Full details of model
architecture and training are presented in Appendix.

2.1. Experiment 1: fine-grained labels

In Experiment 1, we evaluated the effect of the weight
given to labelling, β, on the resulting semantic space
of the model. Pressure to correctly use fine-grained

Figure 1. A proposal for how labelling can affect meaning. When viewing an object, we propose people both attempt to infer its
meaning and its label. A common internal representation is learned to satisfy these two prediction tasks, which provides a route
for labels to affect meaning. We implement this account in a DCNN that takes photographic images as input, processes this visual
input through a series of computations intended to parallel the visual ventral stream, and associates higher-level visual represen-
tations with a semantic vector that reflects the meaning of the object. Finally, from this semantic vector, the linguistic label for
the object is predicted. Prediction errors from both the semantic and label layers will affect the network’s internal representations.
In the above example, we demonstrate how the semantic representation of dog breeds change when the labelling task shifts
from coarse-grained labelling (i.e. all dogs share the same label) to fine-grained labelling (i.e. label dog by their breed). When
there is no pressure to distinguish different dogs, the model develops more homogeneous representations of dogs (the black
dot). When there is pressure for fine-grained distinctions (bold red arrow), representations become more distinct (the red dots) to
reduce label confusions.
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labels should lead to representations in the semantic
layer differentiating from one another to reduce label
confusions, which suggested two empirical predictions.
First, we anticipated that increasing levels of β will
lead to increasing distortions of the model’s semantic
space as evaluated by RSA. Second, the basis for this dis-
tortion should be semantic representations moving
further apart from one another (akin to a caricature
effect) to support label use.

2.1.1. Method
A model was independently trained at each level of β
(labelling pressure). The labelling task was a 1000-way
image classification (i.e. there were 1000 labels for the
model to master). Images were shown to the DCNN
and mapped to 1 of a 1000 ImageNet classes (i.e. the
labels) after passing through the semantic layer
(Figure 1). Further details on how the model was
trained and evaluated are available in the Appendix.

2.1.2. Results & Discussion
Both predictions were confirmed. First, we evaluated
whether increasing labelling pressure (i.e. increasing β)
led to greater representational distortion, which should
manifest in a lower Spearman correlation in an RSA com-
paring model representations in the semantic layer with
the canonical reference embedding space. As β increased,
the semantic similarity structure did become less aligned
with the reference embedding space (Figure 2(A)). The
second prediction was that the basis of this distortion
would be representations in the semantic space moving
apart from one another to support label discrimination.
We evaluated the Euclidean between-class distances in
the semantic layer and found that distances increased
with increasing β (Figure 2(B)). In summary, the pressure
to use fine-grained labels correctly led to semantic distor-
tions in which representations moved apart from one
another to reduce label confusion.

2.2. Experiment 2: coarse-grained labels

In Experiment 1, we found fine-grained labelling led to
distortions in semantic space because representations
moved apart to reduce label confusions. In Experiment
2, we considered how coarse-grained labels affect

semantic representations. People often use labels that
are broad and encompass subcategories. For instance,
superordinate labels, such as “mammal”, by definition
refer to a collection of distinct categories. The specificity
of labelling can also differ as a function of expertise
within a domain. For example, a child may refer to all
dogs as “dog” whereas a veterinarian may refer to
specific breeds. We predicted that items from different
categories sharing a label, such as different species of
birds all being referred to as “birds”, will develop seman-
tic representations that are relatively more similar to one
another, which would complement the differentiation
result in Experiment 1 with fine-grained labels. To test
our hypothesis, we paralleled Experiment 1 but with
some categories sharing a coarse-grained (i.e. higher-
level) linguistic label.

2.2.1. Method
Models were trained in a similar fashion to Experiment
1. A subset of the original 1000 classes were grouped
into 1 superordinate class (hence coarse-grained) and
each model was trained to classify images into either a
pre-defined superordinate or the remaining individual
classes. For example, when training using the ‘reptile”
superordinate label, standard ImageNet labels such as
“thunder snake”, “rock python”, “African crocodile”, and
“mud turtle” were not used but instead the model was
trained to label items from all of these reptile classes
as “reptile”. Individual classes not under the superordi-
nate were trained as in Experiment 1. We explored five
superordinates, “reptile”, “amphibian”, “primate”, “bird”,
and “dog”. In total, 40 models were trained and evalu-
ated in Experiment 2 (8 levels of b× 5 superordinate
classes). Please see the Appendix for further details.

2.2.2. Results & Discussion
First, we replicated Experiment 1’s finding that semantic
space becomes increasingly distorted as pressure to
label correctly increases (Figure 3(A)). Second, we con-
sidered our main prediction for Experiment 2, namely
do categories sharing a higher-level label become
more semantically similar as the pressure to label
increases. Indeed, across all five coarse-grained labels
considered, the pairwise distances between items in
the semantic layer sharing a common coarse-grain
label decreased relative to items in other categories as
the pressure to label increased (Figure 3(B)). One
caveat is that when labelling pressure became extreme
at high β the integrity of the semantic space itself was
weakened, leading to a minor reversal in our distance
ratio. The main finding was that a common umbrella
term for lower-level categories led to their semantic rep-
resentations becoming relatively more similar.

Table 1. Different levels of labelling pressure.
β 0 0.1 1 2 3 5 7 10

We trained and tested our model across a range of labelling pressure. When
b = 0, the proposed model focused exclusively on the semantic predic-
tion task. As β increases, the model focuses more on the labelling task.
The semantic representations acquired by the model (Figure 1) should
vary depending on the level of labelling pressure and the nature of label-
ling task (e.g. fine-grained vs. coarse-grained).

LANGUAGE, COGNITION AND NEUROSCIENCE 5



3. General discussion

We offered a straightforward account of how linguistic
labels can shape meaning. Why do labels appear in
cases to make dissimilar objects appear alike and in
other cases highlight differences between perceptually
similar objects? Can we understand how differences in
labelling schemes across languages and cultures lead
to differences in mental representation? To help
answer these questions, we developed a DCNN model
that spans from perception to decision, taking

photographic images as input, inferring their meaning,
and then finally settling on a label (see Figure 1).

Our basic theory was that performing two prediction
tasks, namely predicting the meaning and label of a
photographic stimulus, requires a compromise in
network representations. In particular, semantic rep-
resentations in later network layers end up reflecting
label use. The more pressure or emphasis there is on cor-
rectly using linguistic labels, the more semantic rep-
resentations will distort to support labelling. In
particular, items sharing a label will tend to be

Figure 2. Main results for Experiment 1 with fine-grained labels. To evaluate the prediction that the pressure to label affects the rep-
resentation of meaning, semantic representations of the same object categories were evaluated at varying degrees of labelling
pressure. (A) Using representational similarity analysis (RSA), we observed a decreasing Spearman correlation between the predicted
semantic space and the reference embedding space, indicating that the semantic space became more distorted as the pressure on
labelling increased. (B) We confirmed that the basis for this distortion was items between classes moving apart from one another. As
the pressure to label increased, the average distance between each pair of semantic concepts increased. This pattern of results indi-
cates that to accommodate the pressure of labelling, the distance between individual concepts increased to reduce label confusability.

Figure 3. Main results for Experiment 2 with coarse-grained labels. To evaluate the prediction that the pressure to label affects the rep-
resentation of meaning, semantic representations of the same object categories were evaluated at varying degrees of labelling pressure
with a subset of categories sharing a common superodinate label (e.g. all birds labelled as “bird”). (A) As in Experiment 1, using represen-
tational similarity analysis (RSA), we observed a decreasing Spearman correlation between the predicted semantic space and the reference
embedding space, indicating that the semantic space becamemore distorted as the pressure on labelling increased. (B) As the pressure to
label increased, the relative distance between concepts sharing a superordiante label decreased relative to other concepts. Sharing a
higher-level label makes objects from different lower-level categories become more semantically similar.
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represented in a more similar fashion (Experiment 2),
whereas those with conflicting labels will be differen-
tiated (Experiment 1) to reduce labelling confusion.
Both these effects arise from discriminative learning
principles (Nixon, 2020; Ramscar et al., 2010).

Although these principles recapitulate work in the
category learning literature (e.g. Love et al. (2004)), pre-
vious work relied on artificial categories from laboratory
studies using hand-coded stimulus representations.
Here, we demonstrated these basic principles can scale
to natural categories and labelling schemes using photo-
graphic stimuli as model input. In doing so, it is straight-
forward to envision how differences in labelling schemes
across languages could influence thought. Indeed, our
model as specified could be applied to such questions
to provide quantitative predictions and a candidate
mechanism for how labelling affects thought.

Although we have discussed labelling as having a dis-
tortive effect on meaning, labels are of course an impor-
tant signal to meaning (Waxman & Markow, 1995). The
boundaries for label use in natural language are not arbi-
trary and can serve as useful learning signals, highlight-
ing commonalities for items sharing a label and
differences for items with conflicting labels. Although
distortive, labels can be an important cue to meaning.

As we briefly reviewed in the Introduction, it remains
debatable whether linguistic labelling affects lower-level
perceptual experiences. Models like the one we have
proposed can help clarify this issue. In our current simu-
lations, the weights of the lower network layers, which
can be viewed as corresponding to the ventral visual
stream (Güçlü & van Gerven, 2015), were kept fixed
during learning. This was in accord with the intuition
that our visual system does not reorganise when we
learn a new concept or word. However, future simu-
lations could allow these weights in lower network
layers to also change in response to error when learning
new concepts or labels. A number of questions are likely
to arise in such simulations. First, what constitutes a sig-
nificant change in learning? Weights in the lower
network layers will change, but for most learning pro-
blems the changes are likely to be minuscule as most
novel concepts can be mastered by reweighting high-
level features present in more advanced network
layers. A related issue is whether one only considers
weight changes critical that lead to interesting
changes in behaviour. Second, where does one draw
the line between perception and cognition? Researchers
may disagree on where perception ends and cognition
begins both within the brain and the corresponding
network layer. Some researchers may dismiss the ques-
tion entirely. Finally, changes in perception and decision
can occur by top-down modulation of lower-layers

absent weight changes in DCNNs by applying selective
attention (Luo et al., 2021).

Some view language as key to what makes humans
unique, but what is labelling in our computational
account? In our account, labelling is a task pressure
that shapes semantic representations. We view choosing
a label as a mental action that could of course also result
in a motor action, such as when communicating a label
to others. Decisions not communicated through
language should have similar effects. In a sense our
example from the Introduction about the rabbit being
constrained by only the semantic prediction task,
whereas a human both predicts semantics and a label,
was over simplified. The rabbit could of course need to
make a number of other predictions, such as predicting
the value of different actions (e.g. hide, flee, rest, etc.) in
the presence of the fox. In this light, just as common
labels may lead to the meaning of objects converging,
so too might objects who engender the same action.
For example, the semantic representations of a fox and
a dog may become more similar in the rabbit’s mind
because in both cases the rabbit would flee. In this
light, linguistic labelling is but one more discrimination
task that influences the formation of semantic
representations.

Interestingly, the importance of labelling in shaping
representations has recently been acknowledged by
the deep learning community. Most deep learning
models, like our own, are trained on the ImageNet data-
base of images and labels. ImageNet propelled the deep
learning revolution, which led to the best models of
human object recognition in terms of accounting for
behaviour and brain response. However, closer inspec-
tion of ImageNet reveals that the frequency of cat-
egories does not closely correspond to human
experience. A more recent image and label database,
ecoset, attempts to remedy the situation by creating a
more representative training set for models (Mehrer
et al., 2021). Deep learning models trained on these
images and labels prove to be better models of
humans (Mehrer et al., 2021), which highlights the
importance of labelling in shaping representation.

We hope that our work, exploring how linguistic lab-
elling can affect semantic meaning, serves as a starting
point for others to further consider a wide array of
issues. For example, DCNN models of language and
thought can be useful in understanding the interplay
between concept and word learning in children during
both typical and atypical development. Because
aspects of DCNNs can be put in correspondence with
brain regions, neurocomputational accounts of
language and learning can be proposed and evaluated.
As the science progresses, we expect network
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architectures to diverge from those used here, which
were chiefly motivated by engineering concerns, to
better reflect implementational aspects of the brain,
such as long-range recurrence. We encourage other
researchers to take advantage of DCNNs and large data-
bases to model mental processes from perception to
decision at scale, which can complement well-controlled
laboratory studies and, hopefully, add value to those
studies by informing their design and interpretation.

Note

1. For details of deriving word embeddings for image con-
cepts, we refer the readers to the Appendix.
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