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Abstract—This paper proposes a dual-supervised uncertainty

inference (DS-UI) framework for improving Bayesian estimation-

based UI in DNN-based image recognition. In the DS-UI, we

combine the classifier of a DNN, i.e., the last fully-connected (FC)

layer, with a mixture of Gaussian mixture models (MoGMM) to

obtain an MoGMM-FC layer. Unlike existing UI methods for

DNNs, which only calculate the means or modes of the DNN

outputs’ distributions, the proposed MoGMM-FC layer acts as

a probabilistic interpreter for the features that are inputs of

the classifier to directly calculate the probabilities of them for

the DS-UI. In addition, we propose a dual-supervised stochastic

gradient-based variational Bayes (DS-SGVB) algorithm for the

MoGMM-FC layer optimization. Unlike conventional SGVB and

optimization algorithms in other UI methods, the DS-SGVB not

only models the samples in the specific class for each Gaussian

mixture model (GMM) in the MoGMM, but also considers the

negative samples from other classes for the GMM to reduce the

intra-class distances and enlarge the inter-class margins simul-

taneously for enhancing the learning ability of the MoGMM-

FC layer in the DS-UI. Experimental results show the DS-UI

outperforms the state-of-the-art UI methods in misclassification

detection. We further evaluate the DS-UI in open-set out-of-

domain/-distribution detection and find statistically significant

improvements. Visualizations of the feature spaces demonstrate

the superiority of the DS-UI.

Index Terms—Deep Learning, Image Recognition, Uncertainty

Inference, Dual Supervised Framework, Mixture of Gaussian

Mixture Models

I. INTRODUCTION

I
N recent years, deep neural networks (DNNs) have
achieved significant improvement in image recognition and

other research fields [1], [2], [3], [4], [5], [6], [7]. However,
robust image recognition is still challenging, as DNNs tend to
output certain and even overconfident predictions, but without
confidence intervals of the predictions [8], [9], and thus unable
to assess the uncertainty of their outputs and detect abnormal
samples. To address this issue, uncertainty inference (UI),
containing misclassification and out-of-domain/-distribution
detections (as shown in Figure 1), has been introduced for
estimating how uncertain the outputs of a DNN are to further
improve its reliability and applicability.
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Fig. 1: Illustration of uncertainty inference. Taking a “dog
(red circles) versus cat (blue circles)” image recognition task
as an example, abnormal samples contains misclassified im-
ages (triangles) and out-of-domain/-distribution images (grey
squares). The out-of-domain samples include other unknown
classes (e.g., airplane in this case) and the out-of-distribution
samples include noisy data.

Recent works [9], [10], [11], [12], [13], [14] on the UI
intended to model the outputs of DNNs by distributions,
such as Gaussian [10], [12], [14], Dirichlet [9], [13], and
softmax [11] distributions, and define uncertainty only on the
outputs. In practice, they only calculate the means or modes
of the distributions, although in different ways, for the UI.

In this paper, a dual-supervised uncertainty inference
(DS-UI) framework is introduced for improving Bayesian
estimation-based UI. In the DS-UI, we propose to combine a
mixture of Gaussian mixture models (MoGMM) with a fully-
connected (FC) layer into an MoGMM-FC layer to replace the
classifier of a DNN and calculate probabilities of the outputs
directly. The probabilities can be transformed to the repre-
sentations of confidence or uncertainty. In general, a DNN
architecture for image recognition can be divided into two
cascaded parts, i.e., a feature extractor that contains multiple
convolutional and/or FC layers, and a classifier (the last FC
layer), as shown in Figure 2(a) [15], [16]. In Figure 2(b), the
output for one class is proportional to the projection of the
extracted feature in the direction of the class center. As the
Gaussian distribution is a simple and generic distribution, and
a mixture of mixture models [17], [18] can better estimate
large intra-class variability in complex scenes, we adopt an
MoGMM to model both the intra-class variability and the
inter-class difference, and accordingly extend the DNN model
to a new model with the proposed MoGMM-FC layer for
modeling the features w.r.t. the class centers (i.e., the row
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vectors of the parameter matrix of the classifier) and enhancing
the learning ability of the classifier. In the MoGMM-FC layer,
each Gaussian mixture model (GMM) is learned for one class,
which is a common setting in probabilistic model-based image
recognition [19], [20]. Each class center is shared with the
weighted summation of the means of the components in a
associated GMM and optimized with the MoGMM.

Moreover, traditional stochastic gradient-based variational
Bayes (SGVB) algorithms generally supervise the optimiza-
tion of mixture models by using only positive samples of each
class and aim at reducing the distances between samples and
their corresponding class centers [19], [20]. However, the mar-
gin between different classes might be undesirably compressed
(see Figure 2(d)), as also found in the optimizations of other UI
methods. In this paper, we propose to improve the SGVB for
the DS-UI by comprehensively considering both the positive
samples (in the class) and the negative samples (in other
classes) for each GMM, a strategy defined hereafter as dual-
supervised optimization, to reduce the intra-class distances and
enlarge the inter-class margins simultaneously, as shown in
Figure 2(c).

The contributions of this paper are four-fold:
• A new DS-UI framework is introduced for image recogni-

tion. We propose an MoGMM-FC layer with a parameter-
shared and jointly-optimized MoGMM to act as a prob-
abilistic interpreter for the features of DNNs to calculate
probabilities for the DS-UI directly.

• We propose a dual-supervised SGVB (DS-SGVB) for
the MoGMM-FC layer optimization. The DS-SGVB can
enhance the learning ability of the MoGMM-FC layer for
the DS-UI.

• The proposed DS-UI outperforms the state-of-the-art UI
methods in the misclassification detection. Statistically
significant improvement compared with the referred UI
methods can be found.

• We extend the evaluation of the DS-UI to open-set
out-of-domain/-distribution detection (detecting unknown
samples from unknown classes or noisy samples) and find
statistically significant improvements.

II. RELATED WORK

A. Uncertainty Inference

Most of the recently proposed UI methods define uncer-
tainty only on the outputs and calculate the means or modes
of the DNN outputs’ distributions.

Blundell et al. [21] proposed a backpropagation-compatible
algorithm with unbiased Monte Carlo (MC) gradients for
estimating parameter uncertainty of a DNN, called Bayesian
by backpropagation (BBP). MC dropout [10] utilized the
standard dropout [22] as an MC sampler to study the dropout
uncertainty properties. Variance of different output values
with the same input and different dropout masks were used
for presenting the uncertainty of the output. Li at al. [23]
gave theoretical properties on asymptotic convergence and
predictive risk of stochastic gradient descent (SGD), and sam-
pled the posterior by combining adaptive preconditioners with
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Fig. 2: Illustration of the DS-UI. A conventional DNN archi-
tecture for image recognition with cross-entropy loss (orange
stream in (a)) can be divided into a feature extractor and a
classifier (i.e., the last FC layer) with parameter matrix W .
Here, W i, the ith row vector of W , is assumed to be the
center of the ith class. Given a feature vector z, the output
value yi of the classifier is proportional to the projection
length |ỹi| of z in the direction of W i in (b). We extend
the DNN to a model with a parameter-shared MoGMM by
adding a probabilistic stream to model z w.r.t. the class centers
(purple stream in (a)) and obtain uncertainty representations
by p. Traditional SGVB for mixture models and optimization
algorithms in other UI methods aim at decreasing the distances
between each sample and its corresponding class center, which
may undesirably compress the margin between two classes in
the case in (d). We modify it by “pulling” positive samples
and “pushing” negative samples simultaneously for the class
centers (in (c)) to reduce intra-class distances and enlarge inter-
class margins simultaneously by proposing a dual-supervised
SGVB, which benefits the DS-UI.

stochastic gradient Langevin dynamics (SGLD), shorten as p-
SGLD. Lakshminarayanan et al. [8] proposed a deep ensemble
method to yield predictive uncertainty estimations, which can
be considered as an Markov chain Monte Carlo (MCMC)-
based alternative to Bayesian neural networks. However, as
the aforementioned MC sampling-based methods cannot sat-
isfy the requirement of inference speed [15], more explicit
distributional assumption-based methods have been proposed
in recent years to address this problem.

Lee et al. [24] introduced a simple yet effective method for
detecting any abnormal samples, including out-of-distribution
samples and adversarial attacks. The method applies the class
conditional Gaussian distributions w.r.t. shallower- and deeper-
features of the DNNs under Gaussian discriminant analysis
and obtains confidence scores with Mahalanobis distances.
Maddox et al. [12] proposed stochastic weight averaging
Gaussian (SWAG) method, which estimates a Gaussian distri-
bution for the first-order moment of the SGD iterations as an
approximate posterior distribution over DNN parameters and
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Fig. 3: Structure of the MoGMM-FC layer. The MoGMM is paralleled with the classifier (i.e., the final FC layer). Both of
them are cascaded after the feature extractor. In the MoGMM-FC layer, C GMMs (one GMM for each class) are mixed and
their output probabilities are used for the UI. Here, we take three Gaussian components (K = 3) for each GMM as an example.
According to the PDF of the MoGMM, which mixes those of all the GMMs, abnormal samples, including misclassified and
out-of-domain/-distribution ones, can be easily detected and distinguished from normal samples, as the probabilities of an
abnormal sample belonging to individual classes are all small (bottom-right), unlike the pattern of a normal sample (top-right).
Thus, the probabilities can be transformed to the representations of confidence or uncertainty.

samples from this Gaussian distribution to perform Bayesian
model averaging and UI. Distributional estimation was utilized
for learning feature and uncertainty simultaneously in face
recognition [14].

Among UI methods based on explicit distributional as-
sumptions, Hendrycks and Gimpel [11] introduced a baseline
model with cross-entropy (CE) loss training that assumes
the outputs following softmax distributions and detects the
misclassified or the out-of-distribution samples with maximum
softmax probabilities in multiple tasks. In [9], the authors pre-
sented Dirichlet prior network (DPN) using Kullback-Leibler
(KL) divergence loss from the Dirichlet distributions of the
smooth labels to those of model outputs to introduce Dirichlet
distributions into the DNNs for modeling the uncertainty,
especially distributional uncertainty (i.e., dataset shift). Fol-
lowing the DPN, a reverse Kullback-Leibler (RKL) divergence
loss between the aforementioned Dirichlet distributions was
introduced for prior network training to improve the UI and
adversarial robustness [13]. Posch and Pilz [25] trained DNNs
using Bayesian techniques which allow an easy evaluation
of model uncertainty. Counterfactual latent uncertainty ex-
planations (CLUE) [26] was proposed for interpreting the
uncertainty estimates from differentiable probabilistic models.
The above methods calculate only the means or the modes of
the predictions for the UI.

In addition to the above conventional methods, Guo et

al. [27] proposed three scaling methods, namely temperature,
vector, and matrix scaling methods, for prediction calibrations
on DNN architectures with different depth and width. The
authors found that the temperature scaling is surprisingly effec-
tive at calibrating predictions. An inhibited softmax function,
which extends the softmax layer with an additional constant
input, was proposed for uncertainty estimation in DNNs with
softmax outputs [28]. Neural stochastic differential equation
(SDE) network (SDE-Net) in [15], a non-Bayesian method,
brought the concept of SDE into the UI. The SDE-Net contains
a drift net that controls the system to fit the predictive function

and a diffusion net that captures the model uncertainty. Van
Amersfoort et al. [29] proposed deterministic uncertainty
quantification (DUQ) based on radial basis function (RBF)
networks to enforce detectability of changes in the input
using a gradient penalty and reliably detect out of distribution
data. A multi-input multi-output (MIMO) framework [30]
was proposed that independently trains the input and the
output layers for each class and shares hidden layers in order
to implement a partially weight-sharing ensemble model for
robust prediction and uncertainty estimation.

The aforementioned methods only consider the positive
samples for the corresponding class centers and jointly train
with both the in-domain samples and the out-of-domain
samples, which is a close-set out-of-domain detection. They
mainly applied the CE loss function for training, except for
some methods adapting the KL and the RKL.

B. Mixture Models and SGVB

Several works [31], [32], [33] have incorporated GMMs into
the DNNs but not for the UI. Variani et al. [32] first proposed
a GMM layer, which is jointly optimized within a DNN using
asynchronous stochastic gradient descent (ASGD). The GMM
layer is cascaded after the DNN and models deep features
extracted from it. In [33], an unsupervised deep learning
framework was proposed to combine deep representations and
GMM-based deep modeling. Later on, a temporal Gaussian
mixture (TGM) layer was introduced for capturing longer-term
temporal information in videos [31]. However, no mixtures of
mixture models have been explored for jointly modeling the
outputs of DNNs or estimating uncertainty.

In addition to some of the aforementioned works, which
introduced their own optimization algorithms, various SGVB
algorithms [34], [35], [36], [37], [38] have been proposed in
recent years for probabilistic model optimization. However,
these SGVB algorithms do not consider the negative samples
in other classes for the mixture model of a class.
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III. DUAL-SUPERVISED UNCERTAINTY INFERENCE

As the UI usually requires stronger learning ability than
other tasks, it is desirable to comprehensively consider both
the positive and the negative samples for optimization of each
class during training. In this section, we introduce the so-called
dual-supervised uncertainty inference (DS-UI) framework to
achieve this goal.

Although the classifier of a DNN, commonly the top FC
layer, can model the correlation to describe the membership
of a feature z belonging to a class, it cannot obtain the
uncertainty of z directly. To this end, we propose an MoGMM-
FC layer, which can be treated as a probabilistic interpreter
for modeling z, as shown in Figure 3. For each GMM in the
MoGMM, we propose a dual-supervised SGVB (DS-SGVB)
algorithm, which not only models the positive samples in
the class as the conventional SGVB and the optimization
algorithms in other UI methods, but also considers the negative
samples from other classes. The DS-SGVB can enhance the
learning ability of the MoGMM and improve the UI perfor-
mance by reducing the intra-class distances and enlarging the
inter-class margins simultaneously.

A. MoGMM-FC Layer

We propose to use an MoGMM to model the extracted
feature vector z 2 RM⇥1, where M is the dimension of z.
Assuming a recognition task with C classes, we assign a GMM
in the MoGMM to each class. The probability density function
(PDF) of the MoGMM is defined as

MoGMM(z;µ,⌃,⌘,!) =
CX

i=1

!i

KX

j=1

⌘ijN (z;µij ,⌃ij)

| {z }
GMMi(z)

, (1)

with Gaussian distributions N (z;µij ,⌃ij), where K is the
number of components in each GMM and µ =

�
µij

 
,

⌃ = {⌃ij}, and ⌘ = {⌘ij} are the parameter sets of
means, covariances, and mixing weights, respectively. µij

(M ⇥ 1 dimensions), ⌃ij (M ⇥M dimensions), and ⌘ij are
means, covariances, and mixing weight of the jth Gaussian
component in the ith GMM. For high-dimensional z in
practice, ⌃ij can be defined as a non-singular diagonal matrix
for simplicity, which is employed in this paper. Meanwhile,
! = [!1, · · · ,!C ]T contains C nonnegative mixing weights
of the C GMMs and

PC
i=1 !i = 1. In the recognition task, !i

can be roughly estimated by the proportions of each class in
the training set beforehand [39].

The distribution of µijm is defined as a Gaussian distri-
bution with mean aijm and variance bijm, where aijm and
bijm are elements of their corresponding hyperparameter sets
A = {aijm} and B = {bijm}, respectively. Meanwhile,
⌃ijmm follows a Dirac delta distribution �(bijm) where the
value of the PDF is equal to one if ⌃ijmm = bijm, zero
otherwise. We define the parameter set of the MoGMM as
� = {µ,⌃,V }, where the latent variable matrix V is a
C⇥K-dimensional matrix and each row vi is a one-hot vector
following p(vij = 1) = ⌘ij , and the hyperparameter set as
✓ = {A,B,⌘} for optimization.

Here, the mean parameters in µ are shared with the
classifier. As each row W i of the parameter matrix W of
the classifier is described as a class center, we introduce an
approximation of W by µ to align their dimensions. For the
ith GMM (representing the ith class) in the MoGMM, the
mean W i of the whole GMM can be calculated as W i =PK

j=1 ⌘ijµij (Please find the derivation in Section III-A1).
We define that y = [y1, · · · , yC ]T is the output vector of the
classifier. Thus, the ith output yi of the classifier for the ith

class can be determined by

yi =
KX

j=1

⌘ijµ
T
ijz, (2)

assuming the bias vector of the classifier is removed.
As ⌘i = [⌘i1, · · · , ⌘iK ]T is normalized, which is a hard

regularization in stochastic gradient-based optimization, we
define an alternative ⌘̃i 2 RK⇥1 to implicitly optimize ⌘i by
⌘i = softmax(⌘̃i). Similarly, an alternative b̃ijm is introduced
for the positive bijm by bijm = eb̃ijm .

1) Derivation of the Mean of A GMM: The mean of the
ith GMM, GMMi(z), in the MoGMM can be obtained by

mean (GMMi(z)) =

Z
z

KX

j=1

⌘ijN (z;µij ,⌃ij)d z

=
KX

j=1

⌘ij

Z
zN (z;µij ,⌃ij)d z

=
KX

j=1

⌘ijµij . (3)

B. Optimization for the MoGMM-FC Layer

1) Conventional SGVB: In variational inference (VI), the
common approach [40] is to optimize the hyperparameters
of a probability model by maximizing the lower bound
L(q✓(�);D) with the approximated posterior distribution
q✓(�), where D = {Z,T } is the dataset, Z = {zi}Ni=1 and
T = {ti}Ni=1 are the inputs and labels, respectively, and N
is the number of samples in D. L(q✓(�);D), which can be
considered as the negative KL divergence from q✓(�) to the
joint distribution p(D,�)= p(D|�)p(�) (where p(D|�) is
likelihood and p(�) is prior distribution) is defined as

L(q✓(�);D) =

Z
q✓(�) ln

p(D,�)

q✓(�)
d�

=

Z
q✓(�) ln p(D|�)d�

| {z }
LD(q✓(�))

�
Z

q✓(�) ln
q✓(�)

p(�)
d�

| {z }
DKL(q✓(�)||p(�))

, (4)

where the first term LD(q✓(�)) is the expected log-likelihood
and the second term DKL(q✓(�)||p(�)) is the KL divergence
from q✓(�) to the prior distribution p(�).
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For the SGVB algorithm, we usually approximate the ex-
pected log-likelihood LD(q✓(�)) by

LD(q✓(�)) =
1

N

X

z2Z,t2T

Eq✓(�) [ln p(z, t|�)]

⇡ LSGVB
D (q✓(�))

=
1

B

BX

b=1

ln (!tbGMMtb(zb)) , (5)

where B is batch size and tb is the label of the bth sam-
ple zb. To be able to use the SGVB, the next step is to
consider optimizing {�LSGVB

D (q✓(�))+�DKL(q✓(�)||p(�))}
with nonnegative multiplier �, where the KL divergence is
seen as a regularization term. Note that the previous meth-
ods [10], [40] are computationally expensive by making use
of the MC estimation approaches. We propose to derive a
generalized form for the KL divergence in Section III-B3 as
a regularization term to constrain the hyperparameters in ✓.

Note that although the closed-form solution of the MoGMM
optimization under the VI can be found, it is infeasible to be
extended to an SGVB solution, which makes it difficult to
jointly optimize the MoGMM together with the classifier.

2) Dual-supervised SGVB: In this section, we propose the
DS-SGVB algorithm to reduce the intra-class distances and
enlarge the inter-class margins simultaneously. Recall that the
approximated expected log-likelihood in (5) undertakes “pull”
operation between the class centers and their corresponding
positive samples, we define a dual-supervised expected log-
likelihood LDS

D (q✓(�)) as

LDS
D (q✓(�)) = LSGVB

D (q✓(�))� ⇢LNSGVB
D (q✓(�)), (6)

where ⇢ is a nonnegative multiplier, LSGVB
D (q✓(�)) is given

by (5), and LNSGVB
D (q✓(�)) is the negative-sample expected

log-likelihood as

LNSGVB
D (q✓(�)) =

1

B

BX

b=1

X

i 6=tb

ln (!iGMMi(zb)) , (7)

which minimizes the log-likelihood of each GMM w.r.t. neg-
ative samples and undertakes “push” operation between the
class centers and the negative samples belonging to other
classes. By minimizing �LDS

D (q✓(�)), the learning ability
of the MoGMM can be further enhanced, as it not only
models the positive samples in the class for a GMM as the
conventional SGVB, but also considers the negative samples
from other classes.

3) Generalized Form of DKL(q✓(�)||p(�)): In this sec-
tion, a regularization term Reg(q✓(�)), which is related to
DKL(q✓(�)||p(�)) and performs as a generalized form of it, is
applied to constrain the hyperparameters in ✓ of the MoGMM.
Definition 1. Let the prior distributions of µijm, ⌃ijmm, and

vi be standard normal distribution, uniform distribution in

the interval of (0,1) and categorical distribution with equal

probabilities, respectively. The generalized form Reg(q✓(�))
of DKL(q✓(�)||p(�)) is defined to be

Reg(q✓(�))

=
CX

i=1

!⇤
i

KX

j=1

⌘⇤ij

MX

m=1

DKL(q(µijm|aijm, bijm)||p(µijm))

+
CX

i=1

!⇤
i

KX

j=1

⌘⇤ij

MX

m=1

DKL(q(⌃ijmm|bijm)||p(⌃ijmm))

+
CX

i=1

!⇤
i DKL(q(vi|⌘i)||p(vi))

=
CX

i=1

!⇤
i

8
<

:

KX

j=1

"
⌘ij ln(⌘ij ·K)

+
⌘⇤ij
2

MX

m=1

�
bijm + a2ijm � ln bijm � 1

�
#9
=

; , (8)

where ⌃ij is assumed to be a non-singular diagonal matrix.

!⇤
i and ⌘⇤ij are nonnegative sub-multipliers and set equal to

!i and ⌘ij , respectively, in this paper. Note that Reg(q✓(�))
is equivalent to the original DKL(q✓(�)||p(�)) when !⇤

i and

⌘⇤ij have equal values for different i or/and j, respectively.

Derivation of Reg(q✓(�)) can be found in Section III-B4.
Here, we discuss the motivation and advantages of
Reg(q✓(�)) in (8). Firstly, the KL divergence in (4) is com-
monly utilized as regularization terms and loss functions, e.g.,
in [9], [13]. Furthermore, using Reg(q✓(�)) can be seen as
adaptive hyperparameter (i.e., multipliers in the loss) optimiza-
tion of the KL divergence terms for different parameters. This
can avoid not only the rigid constraint of equal multipliers,
but also manual hyperparameter tuning. In the experiments
discussed in Section IV, the learned ⌘⇤ij vary in [0.05, 0.25]
instead of being equal, which confirms Reg(q✓(�)) has gen-
eralized learning capacity. In addition, the sub-multipliers
in Reg(q✓(�)) can also reflect the contributions of the KL
divergences of µijm and ⌃ijmm in the MoGMM optimization.

In the end, the total loss function L , which is used during
training, is defined as

L = LCE � LDS
D (q✓(�)) + �Reg(q✓(�)), (9)

where LCE is the cross-entropy (CE) loss for the classifier in
Figure 3 and � is a nonnegative multiplier. We should note
that this loss function is an extension of the lower bound in
variational Bayes and the Bayesian optimization is carried out
by a gradient-based method.

4) Derivation of the Regularization Term Reg(q✓(�)):
We start with the derivation of the Kullback-Leibler (KL)
divergence DKL(q✓(�)||p(�)). As we define the parameter
set of the mixture of Gaussian mixture models (MoGMM)
as � = {µ,⌃,V } and the hyperparameter set of it as
✓ = {A,B,⌘} for optimization, the approximated posterior
distribution q✓(�) can be factorized as

q✓(�) =q(µ|A,B) · q(⌃|B) · q(V |⌘)

=
CY

i=1

KY

j=1

MY

m=1

q(µijm|aijm, bijm)

·
CY

i=1

KY

j=1

MY

m=1

q(⌃ijmm|bijm) ·
CY

i=1

q(vi|⌘i), (10)
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where ⌃ij is assumed to be a non-singular diagonal matrix,
and

q(µijm|aijm, bijm) = N (aijm, bijm), (11)
q(⌃ijmm|bijm) = �(bijm)

=

(
1,⌃ijmm = bijm
0, otherwise

, (12)

q(vi|⌘i) = Categorical(⌘i), (13)

with

q(vij = 1) = ⌘ij , j = 1, · · · ,K, (14)

where q(µijm|aijm, bijm) is Gaussian distribution with mean
aijm and variance bijm, q(⌃ijmm|bijm) is Dirac delta dis-
tribution with parameter bijm1, and q(vi|⌘i) is categorical
distribution with parameter ⌘i. For the Dirac delta distribution
�(bijm), the value of its PDF is equal to one if ⌃ijmm = bijm
and zero otherwise. A categorical distributed vector vi is a
one-hot vector with the probability ⌘ij that vij = 1. We set ⌘
as hyperparameters of the MoGMM, and the elements ⌘ij in
⌘ are not further assumed to be random variables.

Furthermore, we choose the prior distributions of the pa-
rameters in the MoGMM as

p(µijm) = N (0, 1), (15)
p(⌃ijmm) = Uniform(0,1), (16)

p(vi) = Categorical(

1

K
, · · · , 1

K

�

| {z }
K elements

), (17)

with

p(vij = 1) =
1

K
, j = 1, · · · ,K, (18)

where p(µijm) is a standard normal distribution with zero
mean and unit variance, p(⌃ijmm) is a uniform distribution in
the interval of (0,1)2, and p(vi) is a categorical distribution
with equal probabilities 1

K . Here, note that p(⌃ijmm) =
Uniform(0,1) = 1 is an improper prior distribution, as the
integral over its support is not equal to one. However, this
does not affect the optimization of the MoGMM.

1As distinct distribution forms can be introduced for ⌃ijmm, we select
a simple and easily implemented form in the paper. Here, we assume the
mean variance of each component is equal to the corresponding data variance
to reflect the variations of the data in modeling. In addition to the Dirac
delta distribution, other distributional forms can be empirically chosen as
well. The different choices of the prior distributions do not majorly affect
the performance of the whole model, since the influence of prior distributions
can be ignored when we have enough training data.

2Although it is better to choose the prior distribution in the same form
as the approximated posterior distribution, for the purpose of applying non-
informative prior distribution, we selected the simple yet easily implemented
form, i.e., the uniform distribution. In addition to the uniform distribution,
other distributions can be chosen as well.

Then, the KL divergence DKL(q✓(�)||p(�)) from the pos-
terior q✓(�) to the prior p(�) can be presented by

DKL(q✓(�)||p(�))

=

Z
q✓(�) ln

q✓(�)

p(�)
d�

=

Z
q(µ|A,B)q(⌃|B)q(V |⌘)

· ln
q(µ|A,B)q(⌃|B)q(V |⌘)

p(µ)p(⌃)p(V )
dµ d⌃ dV

=

Z
q(µ|A,B)q(⌃|B)q(V |⌘)

·
✓
ln

q(µ|A,B)

p(µ)
+ ln

q(⌃|B)

p(⌃)
+ ln

q(V |⌘)
p(V )

◆
dµ d⌃ dV

=

Z
q(µ|A,B) ln

q(µ|A,B)

p(µ)
dµ

| {z }
DKL(q(µ|A,B)||p(µ))

+

Z
q(⌃|B) ln

q(⌃|B)

p(⌃)
d⌃

| {z }
DKL(q(⌃|B)||p(⌃))

+

Z
q(V |⌘) ln

q(V |⌘)
p(V )

dV

| {z }
DKL(q(V |⌘)||p(V ))

, (19)

with

p(�)

=p(µ) · p(⌃) · p(V )

=
CY

i=1

KY

j=1

MY

m=1

p(µijm) ·
CY

i=1

KY

j=1

MY

m=1

p(⌃ijmm) ·
CY

i=1

p(vi).

(20)

The KL divergence in (19) can be decomposed into three KL
divergence terms for µ, ⌃, and V , respectively. These three
terms can be further decomposed as

DKL(q(µ|A,B)||p(µ))

=
CX

i=1

KX

j=1

MX

m=1

DKL(q(µijm|aijm, bijm)||p(µijm)), (21)

DKL(q(⌃|B)||p(⌃))

=
CX

i=1

KX

j=1

MX

m=1

DKL(q(⌃ijmm|bijm)||p(⌃ijmm)), (22)

DKL(q(V |⌘)||p(V ))

=
CX

i=1

DKL(q(vi|⌘i)||p(vi)), (23)

respectively, where

DKL(q(µijm|aijm, bijm)||p(µijm))

=
1

2

�
bijm + a2ijm � ln bijm � 1

�
, (24)

DKL(q(⌃ijmm|bijm)||p(⌃ijmm))

=0, (25)
DKL(q(vi|⌘i)||p(vi))

=
KX

j=1

⌘ij ln(⌘ij ·K). (26)

As DKL(q✓(�)||p(�)) is treated as a regularization term
in the SGVB and the nonnegative multiplier � is assigned
for the term, each sub-term in DKL(q✓(�)||p(�)) for
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TABLE I: Ablation studies with VGG16 on the CIFAR-10 dataset for misclassification detection. The number of components
in each GMM (i.e., K) is discussed. The effectiveness of two key parts in the DS-SGVB algorithm, i.e., LNSGVB

D (q✓(�)) and
Reg(q✓(�)), are discussed as well. “X” means the part is contained and “�” means replacing Reg(q✓(�)) by the original
DKL(q✓(�)||p(�)). The best results are highlighted in bold.

Optimizer LNSGVB
D (q✓(�)) Reg(q✓(�)) K Accuracy (%) AUROC (%) AUPR (%)

Max.P. Ent. Max.P. Ent.
Adam X X 1 92.09± 0.15 91.27± 0.35 91.22± 0.36 46.14± 1.23 46.51± 1.64
Adam X X 2 92.12± 0.14 91.12± 0.38 91.11± 0.38 46.01± 0.83 46.76± 1.03
Adam X X 4 92.16± 0.09 91.97± 0.38 91.93± 0.38 49.76± 0.88 49.24± 1.05
Adam X X 8 92.64 ± 0.31 93.51 ± 0.27 93.48 ± 0.27 53.60 ± 0.85 53.25± 0.48
Adam X X 16 92.25± 0.26 93.12± 0.30 93.09± 0.31 53.28± 0.51 53.09± 0.16
Adam X X 32 92.63± 0.38 93.14± 0.21 93.12± 0.21 53.30± 0.50 53.32 ± 0.42
Adam X � 8 92.28± 0.76 92.67± 0.21 92.74± 0.30 50.05± 0.53 50.30± 0.27
Adam X 8 92.36± 0.25 90.89± 0.47 90.88± 0.49 46.69± 2.30 47.24± 2.64
Adam X 8 92.57± 0.10 91.37± 0.26 91.32± 0.28 45.95± 0.56 46.81± 1.08
Adam 8 92.36± 0.08 91.09± 0.34 91.03± 0.36 45.52± 0.88 46.37± 0.93
SGD X X 8 92.34± 0.56 92.76± 0.23 92.84± 0.24 52.08± 0.43 52.30± 0.32

TABLE II: Discussion of the influence of the bias vector in the classifier. We compare the performance of the baseline and
that without the bias vector (“Baseline w/o bias”) with the VGG16 on the CIFAR-10 dataset for misclassification detection.
“⇥” means no significance.

Method Accuracy (%) AUROC (%) AUPR (%)
Max.P. Ent. Max.P. Ent.

Baseline 91.76± 0.09 (⇥) 91.36± 0.38 (⇥) 91.30± 0.37 (⇥) 46.51± 2.60 (⇥) 46.90± 2.57 (⇥)

Baseline w/o bias 91.67± 0.25 91.63± 0.18 91.57± 0.18 46.91± 1.59 47.21± 1.89

each parameter can be also treated as a sub-regularization
term, and their corresponding sub-multipliers can be
empirically set, respectively. Here, we set the nonnegative sub-
multipliers !⇤

i ⌘
⇤
ij for both DKL(q(µijm|aijm, bijm)||p(µijm))

and DKL(q(⌃ijmm|bijm)||p(⌃ijmm)), and !⇤
i for

DKL(q(vi|⌘i)||p(vi)). In this case, we can obtain the
generalized form Reg(q✓(�)) of DKL(q✓(�)||p(�)) with the
sub-multipliers as

Reg(q✓(�))

=
CX

i=1

KX

j=1

MX

m=1

!⇤
i ⌘

⇤
ij

⇢
1

2

�
bijm + a2ijm � ln bijm � 1

��

+
CX

i=1

KX

j=1

MX

m=1

!⇤
i ⌘

⇤
ij · 0

+
CX

i=1

!⇤
i

8
<

:

KX

j=1

⌘ij ln(⌘ij ·K)

9
=

;

=
CX

i=1

!⇤
i

8
<

:

KX

j=1

"
⌘ij ln(⌘ij ·K)

+
⌘⇤ij
2

MX

m=1

�
bijm + a2ijm � ln bijm � 1

�
#9
=

; , (27)

where !⇤
i and ⌘⇤ij are sub-multipliers and set equal to !i and

⌘ij , respectively, in this paper.
After optimization, as we obtain the optimal hyperparam-

eters A and B, we set µijm = aijm and ⌃ijmm = bijm
directly in the inference procedure, which is a common setting
in variational inference.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We conducted three different UI tasks, including misclas-
sification detection, open-set out-of-domain detection, and
open-set out-of-distribution detection in image recognition.
The proposed DS-UI was evaluated with VGG16 [41] and
ResNet18 [42] as backbone models on CIFAR-10/-100 [43],

street view house numbers (SVHN) [44], and tiny ImageNet
(TIM) [45] datasets. We compared the DS-UI with the base-
line [11], the MC dropout [10], the DPN [9], the RKL [13],
and the SDE-Net [15]. In addition to the UI methods, we also
compared the DS-UI with some classic open-set recognition
methods, G-OpenMax [46], C2AE [47], and GDOSR [16], for
the open-set out-of-domain detection.

A. Implementation Details

Following the settings in [11], [9], we introduced max
probability (Max.P.) and entropy (Ent.) of output probabilities
as metrics of uncertainty measurement and adopted the area
under receiver operating characteristic curve (AUROC) and
the area under precision-recall curve (AUPR) for evaluations.
Large values of AUROC and AUPR indicate good perfor-
mance.

In the training procedure, we applied Adam [48] optimizer
by following [9], [11] with 100 epochs for CIFAR-10/-100,
40 epochs for SVHN, and 120 epochs for TIM. We used 1-
cycle learning rate scheme, where we set initial learning rates
as 7.5⇥ 10�4 for each dataset and cycle length as 70 epochs
for CIFAR-10/-100, 30 epochs for SVHN, and 80 epochs for
TIM. Weight decay values were set as 5 ⇥ 10�4. � (in (9))
and ⇢ (in (6)) were set as 1 ⇥ 10�4 and 4, respectively. We
performed the same training strategy to the referred methods.
Following [11], [9], the FC layers of VGG16 and ResNet18
are replaced by a three-layer FC net with 2048 hidden units for
each hidden layer. Leaky ReLU [49] was used as the activation
function. Hyperparameters of the referred methods were set
the same as those in the original papers.

For all the methods, we conducted five runs and report the
means and the standard deviations of recognition accuracies,
the AUROC and the AUPR. The SDE-Net can be implemented
with the ResNet structure only and the DPN does not work
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TABLE III: Means and standard deviations of image recognition accuracies (%) on the four datasets. Note that “-” means that
the model do not work in the case of reimplementation, “X” means statistically significant difference between the accuracies
of the DS-UI and those of the referred methods, “⇥” means no significance, and “N/A” means inapplicable. The best results
are highlighted in bold.

Dataset CIFAR-10 CIFAR-100 SVHN TIM
Method VGG16 ResNet18 VGG16 ResNet18 VGG16 ResNet18 VGG16 ResNet18

Baseline (ICLR2017) 91.76± 0.09 (X) 92.56± 0.14 (X) 70.46± 0.24 (X) 71.04± 0.19 (X) 95.25± 0.11 (X) 95.23± 0.13 (X) 46.13± 0.41 (X) 50.37± 0.45 (X)

MC dropout (ICML2016) 91.76± 0.09 (X) 92.56± 0.14 (X) 70.46± 0.24 (X) 71.04± 0.19 (X) 95.25± 0.11 (X) 95.23± 0.13 (X) 46.13± 0.41 (X) 50.37± 0.45 (X)

DPN (NeurIPS2018) 90.73± 0.35 (X) 91.98± 0.32 (X) 67.56± 0.28 (X) 69.80± 0.11 (X) 93.51± 0.42 (X) 93.98± 0.67 (X) - -
RKL (NeurIPS2019) 92.25± 0.30 (⇥) 92.37± 0.23 (X) 70.58± 0.26 (X) 71.62± 0.76 (⇥) 94.95± 0.07 (X) 95.09± 0.09 (X) 45.21± 0.16 (X) 50.31± 0.29 (X)

SDE-Net (ICML2020) - 92.15± 0.76 (X) - 52.52± 1.80 (X) - 95.00± 0.23 (X) - -
DS-UI (Ours) 92.64 ± 0.31 (N/A) 93.09 ± 0.04 (N/A) 71.39 ± 0.38 (N/A) 71.94 ± 0.43 (N/A) 95.71 ± 0.11 (N/A) 95.94 ± 0.11 (N/A) 46.83 ± 0.28 (N/A) 52.02 ± 0.30 (N/A)

Baseline (ICLR2017) MC dropout (ICML2016) DPN (NeurIPS2018) RKL (NeurIPS2019) SDE-Net (ICML2020) DS-UI (Ours)
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Fig. 4: Performance of misclassification detection with the two backbones on the four datasets. Note that annotations in x-axis
mean “dataset, backbone”. The error bars represent standard deviations of the values of the metrics for the methods. The
dashed lines in each subfigure present the DS-UI and the other solid lines present the referred methods.

on the TIM dataset in practice. In order to check if the
DS-UI has statistically significant performance improvement
compared with the referred methods, we conducted unpaired
Student’s t-tests between the values of the metrics of them.
The significance level was set as 0.05.

B. Ablation Studies

We conducted ablation studies with VGG16 on the CIFAR-
10 dataset under misclassification detection (Table I) to discuss
the selection of number of components K in each GMM
of the MoGMM, as well as the effectiveness of two key
parts in the DS-SGVB, i.e., LNSGVB

D (q✓(�)) and Reg(q✓(�)).
Although the accuracies maintain steady in different cases,
the AUROC and the AUPR change sharply in the full DS-
SGVB after increasing K to eight and then obtain slight
decreases when K rises to 16 and 32. Thus, we set K as
eight in the following experiments. In addition, the results
using Reg(q✓(�)) surpasses those using DKL(q✓(�)||p(�)).
Meanwhile, only introducing LNSGVB

D (q✓(�)) or Reg(q✓(�))
cannot statistically significantly improve the performance. The
AUROC and the AUPR of the full DS-SGVB can outperform
those of removing one or two key parts, which means the two
key parts are essential and should be combined in implemen-
tation.

We also discuss the influence of optimizer. As we used
Adam for all the experiments, we compare its performance
with those using SGD with momentum 0.9 (other parts in the
training recipe are the same to those of the Adam) introducing
LNSGVB
D (q✓(�)) and Reg(q✓(�)) with K = 8, which are also

listed in Table I. The proposed DS-UI can also converge with
SGD used, with slightly worse performance.

Here, we further discuss the influence of the bias vector in
the classifier and conduct experiments, with the baseline as the
uncertainty inference method and VGG16 as the base model,
on the CIFAR-10 dataset under misclassification detection.
Table II shows the comparison between the original baseline
and that without the bias vector. It can be observed that
removing the bias vector has no statistically significant effect
on the performance. It is worthy to note that the proposed
model can be only implemented with the bias vector removed,
according to the model description in Section III-A.

C. Misclassification Detection

The first important task in the UI is misclassification de-
tection, which aims at detecting mispredicted samples in the
test sets with uncertainty. Table III lists the image recognition
accuracies with two backbones on four datasets. According to
Table III, the DS-UI leads to the best performance in each case
and achieves statistically significant performance improvement
in most of the cases except the RKL with VGG16 on the
CIFAR-10 dataset and ResNet18 on the CIFAR-100 dataset.
Figure 4 illustrates the experimental results in the misclassi-
fication detection. The DS-UI yields the best AUROC/AUPR
in all the cases as well, and achieves statistically significant
improvement in most of the cases. Therefore, we can conclude
that the DS-UI is better for misclassification detection than the
referred methods.

D. Open-set Out-of-domain Detection

We further evaluated the DS-UI in open-set out-of-domain
detection. Different in-domain and out-of-domain dataset pairs
were applied for the task, and the out-of-domain set in each
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Fig. 5: Estimated Gaussian distributions of Max.P. and Ent. values in the open-set out-of-domain detection. Test sets of the
“CIFAR-10 !SVHN” pair are chosen.
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Fig. 6: Performance of open-set out-of-domain detection with ResNet18 on ten dataset pairs. Note that annotations in x-axis
mean “in-domain dataset!out-of-domain dataset”. The error bars represent standard deviations of the values of the metrics
for the methods. The dashed lines in each subfigure present the DS-UI and the solid lines present the referred ones.

TABLE IV: Performance of open set out-of-domain detection on the CIFAR-10 and the TIM datasets (another setting). The
datasets are divided into in-domain (ID) and out-of-domain (OoD) sets, respectively. “#ID” and “#OoD” mean the class numbers
of the ID set and the OoD set, respectively. Note that “†” means the results in the row are obtained from [16], “X” means
statistically significant difference between the values of the evaluation metrics of the DS-UI and those of the referred methods,
“⇥” means no significance, and “N/A” means inapplicable. The best results in each case are highlighted in bold.

Dataset CIFAR-10 (#ID: 6, #OoD: 4) TIM (#ID: 20, #OoD: 180)
Metric AUROC (%) AUPR (%) AUROC (%) AUPR (%)
Method Max.P. Ent. Max.P. Ent. Max.P. Ent. Max.P. Ent.

MC dropout (ICML2016) 66.88± 0.28 (X) 66.61± 0.27 (X) 54.89± 0.45 (X) 54.22± 0.44 (X) 65.09± 0.37 (X) 64.60± 0.47 (X) 93.28± 0.10 (X) 92.98± 0.11 (X)

RKL (NeurIPS2019) 76.47± 0.94 (X) 76.58± 0.99 (X) 65.49± 0.52 (⇥) 66.42± 0.49 (⇥) 70.30± 0.80 (X) 70.89± 0.82 (X) 93.85± 0.17 (X) 93.97± 0.13 (X)

SDE-Net (ICML2020) 77.02± 0.81 (X) 77.94± 0.79 (X) 64.57± 0.85 (X) 66.53± 0.82 (⇥) 65.68± 0.99 (X) 66.95± 1.06 (X) 93.51± 0.31 (X) 93.71± 0.31 (X)

G-OpenMax (BMVC2017)† 67.50± 3.50 (X) - - - 58.00± N/A (X) - - -
C2AE (CVPR2019)† 71.10± 0.80 (X) - - - 58.10± 1.90 (X) - - -
GDOSR (CVPR2020)† 80.70± 3.90 (⇥) - - - 60.80± 1.70 (X) - - -
DS-UI (Ours) 81.02 ± 0.54 (N/A) 81.34 ± 0.55 (N/A) 66.26 ± 0.88 (N/A) 67.26 ± 0.86 (N/A) 72.27 ± 0.11 (N/A) 73.10 ± 0.24 (N/A) 94.90 ± 0.08 (N/A) 95.11 ± 0.09 (N/A)

pair was not used for training. Figure 5 shows the distributions
of Max.P. and Ent. on the test sets of the “CIFAR-10!SVHN”
pair as an example. We can observe that distribution of out-
of-domain samples is almost separated from those of in-
domain classes, which means the DS-UI can effectively es-
timate uncertainty. Figure 6 shows that the DS-UI can surpass
all the referred methods in most of the cases, except the
AUPR of Ent. on the “TIM!SVHN” pair. Although the RKL
outperforms the DS-UI in the case, there is no statistically
significant difference between them, as the p-value of the
unpaired Student’s t-test is larger than 0.05. In addition, the
DS-UI obtains statistically significant improvement in most of
the other cases, which shows the superiority of the DS-UI in
the task.

In addition, we also evaluated the DS-UI following the
settings in [16]. The CIFAR-10 and the TIM datasets were
divided into in-domain and out-of-domain sets, respectively.

In Table IV, the best performance of the DS-UI under the
metrics can be found on two datasets and the DS-UI achieves
statistically significant improvement in all the cases on the
TIM dataset and most of the cases on the CIFAR-10 dataset.
The results show the remarkable ability of the DS-UI in the
out-of-domain detection task.

E. Open-set Out-of-distribution Detection

We then evaluated the DS-UI in open-set out-of-distribution
detection on a synthetic noise dataset. The dataset contains
10, 000 random images, where each pixel is independently
sampled from a uniform distribution in [0, 1]. Table V shows
the experimental results in open-set out-of-distribution detec-
tion between the CIFAR-100 dataset and the synthetic noise
dataset. Although the DS-UI can only obtain the second best
results under the metrics, no statistically significant difference
is observed between the values of the evaluation metrics of
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TABLE V: Performance of open-set out-of-distribution detection between CIFAR-100 dataset and the synthetic uniform noise
dataset. Means and standard deviations of the metrics (%) are shown. Note that “X” means statistically significant difference
between the values of the metrics of the DS-UI and those of the referred methods, “⇥” means no significance, and “N/A” means
inapplicable. The best and the second best results are highlighted in bold and underline. 3The SDE-Net applied adversarial
learning (AL) with noisy input samples during its training procedure. The training procedure of the AL is undertaken similarly
to the test procedure of the open-set out-of-distribution detection task, as both of them add noises into the input samples. Thus,
the AL can benefit the open-set out-of-distribution detection.

Method AUROC (%) AUPR (%)
Max.P. Ent. Max.P. Ent.

Baseline (ICLR2017) 84.20± 4.56 (X) 86.70± 5.75 (X) 74.14± 6.97 (X) 77.18± 8.40 (X)

MC dropout (ICML2016) 82.39± 0.16 (X) 84.11± 0.18 (X) 78.24± 0.31 (X) 79.07± 0.31 (X)

DPN (NeurIPS2018) 88.99± 3.01 (X) 90.35± 0.64 (X) 82.67± 1.47 (X) 83.55± 2.87 (X)

RKL (NeurIPS2019) 87.64± 7.15 (X) 88.61± 6.03 (X) 79.44± 10.57 (X) 80.17± 8.89 (X)

SDE-Net (ICML2020)3 97.44 ± 2.39 (⇥) 98.13 ± 2.22 (⇥) 93.68 ± 6.82 (⇥) 94.46 ± 6.64 (⇥)

DS-UI (Ours) 97.43± 0.81 (N/A) 97.50± 0.76 (N/A) 91.76± 3.33 (N/A) 91.72± 3.40 (N/A)

MC dropout (ICML2016) DPN (NeurIPS2018) RKL (NeurIPS2019) SDE-Net (ICML2020) DS-UI (Ours) DS-UI + AL (Ours)
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Fig. 7: Performance of open-set out-of-distribution detection under FGSM attacks with ResNet18 on the CIFAR-10 dataset. "
is the step size in the FGSM and selected in the set { n

20}
20
n=1. The error bars represent standard deviations of the values of

the metrics. The dashed and solid lines in each subfigure present the DS-UI and the referred methods, respectively.

the DS-UI and those of the SDE-Net (the p-values of the
unpaired Student’s t-test are all larger than 0.05). The SDE-
Net performs the best as it involves adversarial learning (AL)
during its training procedure. This means it benefits from both
the UI and the AL. In summary, the DS-UI works well and
achieves comparable performance with the AL-based method
(SDE-Net).

Furthermore, we evaluated the DS-UI under the adversarial
attack, which can be considered as a distributional attack task,
on the CIFAR-10 dataset. We introduced fast gradient-sign
method (FGSM) [50] as the attacker in the original input
images on the test set. Treating the attacked images as the out-
of-distribution samples, the adversarial attack task can be seen
as an open-set out-of-distribution detection task. Parameter "
in the FGSM presents the amplitude of the noises (or called
the offset of distribution shift), which was selected in the
set { n

20}
20
n=1 [15]. For different ", independent experiments

were conducted. Figure 7 shows the DS-UI obtains statistically
significant improvement when " is small ("  0.2, i.e,, adding
minor noises) and even outperforms the AL-based SDE-Net.
Although the SDE-Net can gain almost 99% on all the four
metrics when " is large (" � 0.4, which are easier cases than
the cases that minor noises are added), the DS-UI can perform
comparably. Thus, the DS-UI can obtain superior ability in
this task. In addition, we further combined the AL into the
proposed DS-UI and the corresponding results are shown in
Figure 7 as well. The AL can indeed improve the performance

of the DS-UI in the open-set out-of-distribution detection task
and the DS-UI with the AL can outperform the SDE-Net on
all the evaluation metrics with each ".

F. Visualizations

We conducted visualizations of the feature spaces of feature
z of the baseline [11] and the proposed DS-UI by t-distributed
stochastic neighbor embedding (t-SNE) [51], respectively, and
show the results in Figure 8. The ResNet18 model was used
as the backbone, and the test sets of the CIFAR-10 and the
SVHN datasets were used as the in-domain and the out-of-
domain datasets, respectively. For the baseline in Figure 8(a),
all the classes are fused with each other and the inter-class
margins are small, especially airplane, bird, cat, and dog (most
confusing classes) mix with the other ones. In contrast, the DS-
UI in Figure 8(b) obtains larger margins between most of the
classes and the four most confusing classes are far away from
the other ones, which is much better for the misclassification
detection. Meanwhile, the intra-class distances of the DS-UI is
also smaller than the baseline. More importantly, a clear and
patent margin can be found between most of the in-domain
classes and the out-of-domain samples in Figure 8(d), even
though some in-domain classes are partly confused with the
out-of-domain samples. In the baseline model, the in-domain
samples and the out-of-domain samples are more confusing
with each other (Figure 8(c)). It can be observed that the DS-
UI can not only reduce intra-class distances, but also obtain
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Out-of-domainAirplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

(a) Baseline (b) DS-UI (c) Baseline with OoD (d) DS-UI with OoD

Fig. 8: Visualizations of feature spaces of samples in the test sets of the baseline and the DS-UI with ResNet18 on the
CIFAR-10 dataset as an example. The SVHN dataset is selected as the out-of-domain (OoD) dataset.

much wider inter-class margins than the baseline model for
both the misclassification detection and the open-set out-of-
domain detection.

V. CONCLUSIONS

In order to improve UI, DS-UI, a dual-supervised learn-
ing framework has been introduced to UI. Conventional UI
methods commonly define uncertainty only on the outputs
of DNNs. In the DS-UI, an MoGMM-FC layer that com-
bines the classifier with an MoGMM was proposed to act
as a probabilistic interpreter for the features of the DNNs.
To enhance the learning ability of the MoGMM-FC layer,
the DS-SGVB algorithm was proposed. It comprehensively
considers both positive and negative samples to not only
reduce the intra-class distances, but also enlarge the inter-
class margins simultaneously. We evaluated the proposed DS-
UI in the three UI tasks. Experimental results show the
proposed DS-UI outperforms the state-of-the-art UI methods
in misclassification detection. In addition, we found the DS-
UI can achieve statistically significant improvements in open-
set out-of-domain/-distribution detection. Visualizations also
support the superiority of the DS-UI for the learning ability
enhancement.
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[17] G. Malsiner-Walli, S. Frühwirth-Schnatter, and B. Grün, “Identifying

mixtures of mixtures using Bayesian estimation,” Journal of Computa-

tional and Graphical Statistics, vol. 26, no. 2, pp. 285–295, 2017.
[18] M. D. Zio, U. Guarnera, and R. Rocci, “A mixture of mixture models

for a classification problem: The unity measure error,” Computational

Statistics & Data Analysis, vol. 51, pp. 2573–2585, 2007.
[19] Z. Ma and A. Leijon, “Bayesian estimation of Beta mixture models

with variational inference,” IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), vol. 33, no. 11, pp. 2160–2173, 2011.
[20] Z. Ma, J. Xie, Y. Lai, J. Taghia, J.-H. Xue, and J. Guo, “Insights

into multiple/single lower bound approximation for extended variational
inference in non-Gaussian structured data modeling,” IEEE Transactions

on Neural Networks and Learning Systems (TNNLS), vol. 31, no. 7, pp.
2240–2254, 2020.

Page 11 of 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[21] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in International Conference on Machine

Learning (ICML), 2015, pp. 1613–1622.
[22] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.

Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” ArXiv preprint, arXiv:1207.0580, 2012.

[23] C. Li, C. Chen, D. Carlson, and L. Carin, “Preconditioned stochastic
gradient langevin dynamics for deep neural networks,” in AAAI Confer-

ence on Artificial Intelligence, 2016, pp. 1788–1794.
[24] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework

for detecting out-of-distribution samples and adversarial attacks,” in
Advances in Neural Information Processing Systems (NeurIPS), 2018.

[25] K. Posch and J. Pilz, “Correlated parameters to accurately measure
uncertainty in deep neural networks,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 32, no. 3, pp. 1037–1051, 2020.
[26] J. Antorán, U. Bhatt, T. Adel, A. Weller, and J. Hernández-Lobato,

“Getting a CLUE: A method for explaining uncertainty estimates,” in
International Conference on Learning Representations, 2021.

[27] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International Conference on Machine

Learning (ICML), 2017.
[28] M. Mozejko, M. Susik, and R. Karczewski, “Inhibited softmax for uncer-

tainty estimation in neural networks,” ArXiv preprint, arXiv:1810.01861,
2018.

[29] J. Van Amersfoort, L. Smith, Y. W. Teh, and Y. Gal, “Uncertainty estima-
tion using a single deep deterministic neural network,” in International

Conference on Machine Learning, 2020, pp. 9690–9700.
[30] M. Havasi, R. Jenatton, S. Fort, J. Z. Liu, J. Snoek, B. Lakshmi-

narayanan, A. M. Dai, and D. Tran, “Training independent subnetworks
for robust prediction,” in International Conference on Learning Repre-

sentations, 2021.
[31] A. Piergiovanni and M. Ryoo, “Temporal Gaussian mixture layer for

videos,” in International Conference on Machine Learning (ICML),
2019, pp. 5152–5161.

[32] E. Variani, E. McDermott, and G. Heigold, “A Gaussian mixture model
layer jointly optimized with discriminative features within a deep neural
network architecture,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2015, pp. 4270–4274.
[33] J. Wang and J. Jiang, “An unsupervised deep learning framework

via integrated optimization of representation learning and GMM-based
modeling,” in Asian Conference on Computer Vision (ACCV), 2018, pp.
249–265.

[34] J. Altosaar, R. Ranganath, and D. M. Blei, “Proximity variational
inference,” in International Conference on Artificial Intelligence and

Statistics (AISTATS), 2018.
[35] K. Fan, Z. Wang, J. M. Beck, J. T. Kwok, and K. A. Heller, “Fast

second-order stochastic backpropagation for variational inference,” in
Advances in Neural Information Processing Systems (NIPS), 2015, pp.
1387–1395.

[36] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” Journal of Machine Learning Research (JMLR),
vol. 14, pp. 1303–1347, 2013.
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